US011163677B2

12 United States Patent (10) Patent No.: US 11,163,677 B2

Ostrovsky et al. 45) Date of Patent: *Nov. 2, 2021
(54) DYNAMICALLY ALLOCATED GO6F 9/5016 (2013.01); GOG6F 2212/1016
THREAD-LOCAL STORAGE (2013.01); GO6F 2212/1044 (2013.01)

(58) Field of Classification Search
CPC GO6F 8/443; GO6F 9/5026; GO6F 12/0804;
GO6F 12/0817; GO6F 12/0815

(71) Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

(72) Inventors: Igor Ostrovsky, Redmond, WA (US); See application file for complete search history.
Joseph E. Hoag, Kenmore, WA (US); _
Stephen H. Toub, Seattle, WA (US); (56) References Cited
Mike Liddell, Scattle, WA (US) U S PATENT DOCUMENTS
(73) Assignee: Microsoft Technology Licensing, LLC, 6,345,313 B1* 2/2002 Lindholm GOGF 9/5016
Redmond, WA (US) 719/315
6,820,261 B1* 11/2004 Bloch GOGF 9/4843
(*) Notice: Subject to any disclaimer, the term of this 717/114
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis- OTHER PUBLICATIONS
claimer. |
Unknown Author, “Thread Local Storage”, msdn.microsoft.com/
(21) Appl. No.: 16/196,757 en-US/library/windows/desktop/ms686749(v=vs.85).aspx, Jul. 1, 2002.
(Year: 2002).*
(22) Filed: Nov. 20, 2018 (Continued)
(65) Prior Publication Data Primary Examiner — Lewis A Bullock, Ir.
US 2019/0087316 A1~ Mar. 21, 2019 Assistant Examiner — Kevin X Lu
Related U.S. Application Data gﬁrﬁ éfirromeyj Agent, or Firm — Dicke, Billig & Czaja,
(63) Continuation of application No. 15/168,621, filed on
May 31, 2016, now Pat. No. 10,133,660, which is a (57) ABSTRACT
(Continued) Dynamically allocated thread storage in a computing device
1s disclosed. The dynamically allocated thread storage 1is
» VL conligured to work with a process mcluding two or more
(1) Int. Cl | figured k with a p including
Gool 12/02 (2006-O:~) threads. Fach thread includes a statically allocated thread-
GOol 9/50 (2006-O:~) local slot configured to store a table. Each table 1s configured
Gool 3/06 (2006.01) to include a table slot corresponding with a dynamically
(52) U.S. CL allocated thread-local value. A dynamically allocated thread-
CPC Gool’ 12/023 (2013.01); GO6L 3/061 local instance corresponds with the table slot.
(2013.01); GO6F 3/0608 (2013.01); GO6F
3/0631 (2013.01); GO6F 3/0673 (2013.01); 14 Claims, 6 Drawing Sheets
230
234\
FH
234 236
206 O\ -
\ lThraadz .
934 - — 214
208 ‘ . I 220
\lThreads FH '

238

US 11,163,677 B2
Page 2

Related U.S. Application Data

continuation of application No. 13/165,421, filed on
Jun. 21, 2011, now Pat. No. 9,354,032,

(56) References Cited
U.S. PATENT DOCUMENTS

7,991,962 B2* 8/2011 Finnie GO6F 9/5016
711/132

2010/0058362 Al* 3/2010 Cownieccoovvvnnen, GOOF 9/466
719/328

2010/0192139 Al* 7/2010 Titzerccvvvvnn GOOF 9/485
717/151

2011/0126202 Al1* 5/2011 Krausscccceunnnn. GOOF 9/485
718/102

OTHER PUBLICATIONS

Unknown Author, “ConcurrentBag <T>.IEnumerable.GetEnumera-
tor Method”, msdn.microsoft.com/en-us/library/dd381956(v=vs.

100).aspx, Jan. 8, 2007 (Year: 2007).*

Multiple authors, “Algorithm—Grid Data Structure”, stackoverflow.
com/questions/3544337/grid-data-structure, Aug. 23, 2010 (Year:
2010).*

Unknown Author, “Thread Local Storage 1.35.0—Boost C++ Librar-
ies”, Jul. 5, 2008 (Year: 2008).*

Domani et al., “Thread-local heaps for Java”, ISMM’02, Jun. 20,
2002 (Year: 2002).*

* cited by examiner

US 11,163,677 B2

49Va01S 3 1dVAONIY

d (SINOILDINNOD _
SNOLLY I lddY NOLUVIINAWNOD | —————"——"—~"—"—"—"—"—"—"—"—"—"—"——— — =
IS¥TLNdINOD _
- Y43HLO ¥3HLO _
- _ | 1LY TOA-NON
D _
= N (9om3aind |
|
| | SLINN ONISSTI0¥d LY 10A
|
. | “
& 1 LLL
o5 | (S)3DIAIA LNdLNO “ AJOINIIN WFLSAS
2 | | 201
rd _ |
"o: I9V401S |
TI9YAONIN-NON |-~~~ —————— — —
" IDIA3A ONILNAINOD
|

U.S. Patent

U.S. Patent Nov. 2, 2021 Sheet 2 of 6 US 11,163,677 B2

THREAD
LOCAL LOCAL
ID= 0 D=3

202
/ 210

204 -
- Illlwl

228 THREAD

230

206

Thread ... 224

208

- llln"éa

200/
Fig. 2

U.S. Patent Nov. 2, 2021 Sheet 3 of 6 US 11,163,677 B2

228 THREAD 230
LOCAL
D=0
210

234

204

234

212

e [ELTTTF

B IIII d

208

238

Kig. 3

U.S. Patent Nov. 2, 2021 Sheet 4 of 6 US 11,163,677 B2

206

203

230

TL<Int>

232

212

234 234
- — 218
messz [(ST T

214
234

s [oe] (T T 1]

220

U.S. Patent Nov. 2, 2021 Sheet 5 of 6 US 11,163,677 B2

206

208

TL<int>

234
R |

234 936

212
e)] T T 1)

214
234

220

s (o] (T T 1]

U.S. Patent Nov. 2, 2021 Sheet 6 of 6 US 11,163,677 B2

Fig. 4C

230

TL<int>
Id = 3

232

236
213
234
206 T 218
oz [] [FT T T]

214
234

208 , _ anssx 220

sz [o] o T 710
_ | | :

US 11,163,677 B2

1

DYNAMICALLY ALLOCATED
THREAD-LOCAL STORAGE

CROSS-REFERENCE TO RELATED
APPLICATIONS 5

This patent application 1s a continuation of Ser. No.
15/168,621 filed May 31, 2016, entitled “DYNAMICALLY
ALLOCATED THREAD-LOCAL STORAGE,” now U.S.
patent Ser. No. 10,133,660, which 1s a continuation of Ser. 10
No. 13/165,421 filed Jun. 21, 2011, entitled “DYNAMI-
CALLY ALLOCATED THREAD-LOCAL STORAGE,”
now U.S. Pat. No. 9,354,932, both of which are incorporated
herein by reference.

15
BACKGROUND

Computer applications having concurrent threads
executed on multiple processing systems (such as multiple
processors, multiple processor cores, or other forms or 20
parallelism) present great promise lfor increased perfor-
mance but also present great challenges to developers. The
growth of raw sequential processing power has flattened as
processor manufacturers have reached roadblocks in pro-
viding significant increases to processor clock frequency. 25
Processors continue to evolve, but the current focus for
Improving processing power 1s to provide multiple processor
cores on a single die to increase processor throughput.
Sequential applications, which have previously benefited
from 1ncreased clock speed, obtain significantly less scaling 30
as the number of processing systems increase. In order to
take advantage of multiple processing systems, concurrent
(or parallel) applications are written to include concurrent
threads distributed over the processing systems.

A process includes one or more threads and the code, data, 35
and other resources of a program in memory. Typical pro-
gram resources are open files, semaphores, and dynamically
allocated memory. A thread 1s basically a path of execution
through a program. A thread typically includes a stack, the
state of the processor registers, and an entry 1n the execution 40
list of the system scheduler. Each thread shares resources of
the process. A program executes when the system scheduler
gives one of 1ts threads execution control. The scheduler
determines which threads will run and when they will run.
Threads of lower priority might have to wait while higher 45
priority threads complete their tasks. On multiprocessor
machines, the scheduler can move individual threads to
different processors to balance the workload. Each thread 1n
a process operates mdependently. Unless the threads are
made visible to each other, the threads execute individually 50
and are unaware of the other threads 1n a process. Threads
sharing common resources, however, coordinate their work
by using semaphores or another method of inter-process
communication.

Thread Local Storage (TLS) 1s a method by which each 55
thread 1n a given multithreaded process can allocate loca-
tions 1n which to store thread-specific data and uses static or
global memory local to a thread. Typically all threads 1n a
process share the same address space, which 1s sometimes
undesirable. Data 1n a static or global vanable 1s typically 60
located at the same memory location, when referred to by
threads from the same process. Variables on the stack are
local to threads, because each thread has its own stack,
residing 1 a different memory location. Sometimes 1t 1s
desirable that two threads referring to the same static or 65
global vaniable are actually referring to different memory
locations, thereby making the variable thread-local. If a

2

memory address sized variable can be made thread-local,
arbitrarily sized memory blocks can be made thread-local by
allocating such a memory block and storing the memory
address of that block 1n a thread-local variable.

SUMMARY

This summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This summary 1s not
intended to identily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used to limait
the scope of the claimed subject matter.

Thread-local storage 1s a programming construct that 1s
useiul 1n multi-threaded programming. A thread-local vari-
able has one memory location for each thread, and each
thread will be able to see its own value when accessing the
variable. One example scenario where thread-local variables
are useful 1s a two-phase program where each thread first
computes a partial result, and then the partial results are
combined into a final answer. The thread-local storage can
be exposed 1n a platform with a ThreadStatic attribute. A
limitation of ThreadStatic attribute 1s that each thread-local
variable 1s defined 1n the program source code and not
allocated and released dynamically depending on the input.

The present disclosure 1s directed to dynamically allo-
cated thread storage in the memory of a computing device.
Dynamically allocated thread storage 1s configured to work
with a process including two or more threads. Each thread
includes a statically allocated thread-local slot configured to
store a table. Each table 1s configured to include a table slot
corresponding with a dynamically allocated thread-local
value. A dynamically allocated thread-local instance corre-
sponds with the table slot. Dynamically allocated thread-
local slots are implemented on top of statically allocated
thread-local slots.

This implementation has several advantages over thread-
local vaniables. For example, the implementation provides
for faster reads and writes of thread-local variables. Addi-
tionally, the implementation can conserve computer
memory. Further, the implementation enables enumeration
of the values of all threads for a particular thread-local value.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a
turther understanding of embodiments and are incorporated
in and constitute a part of this specification. The drawings
illustrate embodiments and together with the description
serve to explain principles of embodiments. Other embodi-
ments and many of the intended advantages of embodiments
will be readily appreciated as they become better understood
by reference to the following detailed description. The
clements of the drawings are not necessarily to scale relative
to each other. Like reference numerals designate corre-
sponding similar parts.

FIG. 1 1s a block diagram illustrating an example of a
computing device for running, hosting, or developing a hash
table that can be accessed by two or more concurrent
threads.

FIG. 2 1s a schematic diagram illustrating an example
implementation of dynamically allocated thread-local slots
on top of statically allocated thread-local slots configured 1n
the computing device of FIG. 1.

FIG. 3 1s a modified schematic diagram illustrating the
example 1implementation of FIG. 2 during cleanup after a
thread-local instance 1s disposed.

US 11,163,677 B2

3

FIGS. 4A, 4B, and 4C are modified schematic diagrams
illustrating the example implementation of FIG. 3 in suc-
cessive stages of a cleanup after a thread exits.

DETAILED DESCRIPTION

In the following Detailed Description, reference 1s made
to the accompanying drawings, which form a part hereof,
and 1 which 1s shown by way of illustration specific
embodiments 1n which the invention may be practiced. It 1s
to be understood that other embodiments may be utilized
and structural or logical changes may be made without
departing from the scope of the present invention. The
following detailed description, therefore, 1s not to be taken
in a limiting sense, and the scope of the present invention 1s
defined by the appended claims. It 1s to be understood that
features of the various exemplary embodiments described
herein may be combined with each other, unless specifically
noted otherwise.

FIG. 1 illustrates an exemplary computer system that can
be employed 1n an operating environment such as a distrib-
uted computing system or other form of computer network
and used to host or run a distributed application included on
one or more computer readable storage mediums storing
computer executable 1nstructions for controlling a comput-
ing device or distributed computing system to perform a
method. The computer system can also be used to develop
the distributed application and/or provide a serialized
description or visualized rendering of the application.

The exemplary computer system includes a computing
device, such as computing device 100. In a basic configu-
ration, computing device 100 typically includes a processor
system having one or more processing units, 1.€., processors
102, and memory 104. Depending on the configuration and
type of computing device, memory 104 may be volatile
(such as random access memory (RAM)), non-volatile (such
as read only memory (ROM), flash memory, etc.), or some
combination of the two. This basic configuration 1s 1llus-
trated 1n FIG. 1 by dashed line 106. The computing device
can take one or more of several forms. Such forms 1nclude
a person computer, a server, a handheld device, a consumer
clectronic device (such as a video game console), or other.

Computing device 100 can also have additional features
or functionality. For example, computing device 100 may
also include additional storage (removable and/or non-re-
movable) including, but not limited to, magnetic or optical
disks or solid-state memory, or flash storage devices such as
removable storage 108 and non-removable storage 110.
Computer storage media icludes volatile and nonvolatile,
removable and non-removable media implemented in any
suitable method or technology for storage of information
such as computer readable instructions, data structures,
program modules or other data. Memory 104, removable
storage 108 and non-removable storage 110 are all examples
of computer storage media. Computer storage media
includes, but 1s not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital
versatile discs (DVD) or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, universal serial bus (USB) flash
drive, flash memory card, or other tlash storage devices, or
any other storage medium that can be used to store the
desired information and that can be accessed by computing
device 100. Any such computer storage media may be part
of computing device 100.

Computing device 100 includes one or more communi-
cation connections 114 that allow computing device 100 to

10

15

20

25

30

35

40

45

50

55

60

65

4

communicate with other computers/applications 115. An
example communication connection can be an FEthernet
interface. In some examples, the computing device can also
have one or more additional processors or specialized pro-
cessors (not shown) to perform processing functions ofl-
loaded from the processor 102. Computing device 100 may
also 1nclude mput device(s) 112, such as keyboard, pointing
device (e.g., mouse), pen, voice input device, touch mput
device, etc. Computing device 100 may also include output
device(s) 111, such as a display, speakers, printer, or the like.

The computing device 100 can be configured to run an
operating system software program and one or more sofit-
ware applications, which make up a system platform. In one
example, the computing device 100 includes a software
component referred to as a managed, or runtime, environ-
ment. The managed environment can be included as part of
the operating system or can be included later as a software
download. Typically, the managed environment includes
pre-coded solutions to common programming problems to
aid soltware developers to create applications, such as
soltware programs, to run 1n the managed environment. An
example of a managed environment can include an appli-
cation framework or platform available under the trade
designation .NET Framework available from Microsofit, Inc.
of Redmond, Wash. U.S.A.

The computing device 100 can be coupled to a computer
network, which can be classified according to a wide variety
ol characteristics such as topology, connection method, and
scale. A network 1s a collection of computing devices and
possibly other devices interconnected by communications
channels that facilitate communications and allows sharing
of resources and information among interconnected devices.
Examples of computer networks include a local area net-
work, a wide area network, the Internet, or other network.

A computer application configured to execute on the
computing device 100 includes at least one process (or task),
which 1s an executing program. Each process provides the
resources to execute the program. One or more threads run
in the context of the process. A thread is the basic unit to
which an operating system allocates time in the processor
102. The thread 1s the entity within a process that can be
scheduled for execution. Threads of a process can share its
virtual address space and system resources. Each thread can
include exception handlers, a scheduling priority, thread-
local storage, a thread identifier, and a thread context (or
thread state) until the thread 1s scheduled. A thread context
includes the thread’s set of machine registers, the kernel
stack, a thread environmental block, and a user stack 1n the
in the address space of the process corresponding with the
thread.

In parallel applications, threads can be concurrently
executed on the processor 102. Concurrent programming for
shared-memory multiprocessors can include the ability for
multiple threads to access the same data. The shared-
memory model 1s the most commonly deployed method of
multithread communication. Multiple threads execute on
multiple processors, multiple processor cores, or other
classes of parallelism that are attached to a memory shared
between the processors.

Thread-local storage 1s a programming construct that
comes uselul in multi-threaded programming. An ordinary
variable represents a single location i the computer
memory, and so all computation threads that access the
variable will see and mutate the same value. A thread-local
variable, 1n contrast, has one memory location for each
thread, and each thread will see 1its own value when access-
ing the variable. One example scenario where thread-local

US 11,163,677 B2

S

variables are useful 1s a two-phase program where each
thread first computes a partial result, and then the partial
results are combined into a final answer. Such problems can
often be conveniently expressed using thread-local storage.

The thread-local storage 1s exposed 1n a platform with a
ThreadStatic attribute. An example of a ThreadStatic attri-
bute 1n a platform such as .NET Framework 1s known as
ThreadStaticAttribute. A ThreadStaticAttiribute constructor
iitializes a ThreadStaticAttribute class in C # (C-sharp)
syntax such as: public ThreadStaticAttribute(). The Thread-
StaticAttribute class indicates that the value of a static field
1s unique for the thread. A static field marked with Thread-
StaticAttribute 1s not shared between threads. Each execut-
ing thread has a separate instance of the field, and 1indepen-
dently sets and gets values for that field. It the field 1s
accessed on a diflerent thread, it will contain a diflerent
value. The ThreadStatic attribute allows the user to annotate
a static field as thread-local storage. By using a ThreadStatic
attribute, the user can annotate multiple global variables as
thread-local. Then, each of those global varniables will have
one storage slot 1 each thread in the process, instead of
simply having one storage location 1n total for example.

A limitation of ThreadStatic attribute 1s that each thread-
local varniable 1s defined 1n the program source code. As a
result, thread-local variables are not allocated and released
dynamically. Instead, the number of thread-local variables 1s
constant and defined 1n the program source code.

FIG. 2 illustrates an example implementation 200 of
dynamically allocated thread-local slots on top of statically
allocated thread-local slots in a computer memory 104 that
can be operated on by the processor 102. The example
implementation 200 includes two or more threads 202, such
as three threads 204, 206, 208 shown each having a statically
allocated thread-local slot 210, 212, 214, respectively. The
instance of the statically allocated thread-local slot 210, 212,
214, 1n each thread 204, 206, 208 i1s configured to store a
table 216, 218, 220, respectively. Each thread 204, 206, 208
has a different copy of the thread-local slot 210, 212, 214 so
cach thread will include a separate table. Each table 216,
218, 220 includes at least one slot 222, 224, 226. In the
illustrations, each table 216, 218, 220 includes five slots, 1.e.,
slots 0-4. Each slot 222, 224, 226 in the table 216, 218, 220
can correspond to a dynamically allocated thread-local
value.

The example implementation 200 includes at least one
dynamically-allocated ThreadlLocal i1nstance, such as
ThreadlLocal instances 228 and 230. Threadlocal instance

228 has an identifier (ID) of O, which indicates that values
of Threadl.ocal instance 228 are stored in slot, or location,
0 of tables 216, 218, 220. Threadl.ocal instance 230 has an
ID of 3, which indicates that 1ts values are stored in location
3 of the tables 216, 218, 220. Dynamically allocated thread-
local values can be implemented on top of statically allo-
cated thread-local values. A platform such as the .NET
Framework exposes GetData and SetData methods for allo-
cating thread-local slots at runtime. The “Threadlocal
class” accomplishes the same and provides a convenient
interface.

FIG. 3 1s a modified schematic diagram 1llustrating the
example implementation 200 demonstrating an example of
ThreadlLocal instance 230 being removed. (By modified,
FIG. 3 does not include an indication of ThreadlLocal
instance 228 although it can remain 1n the implementation
200 or even be the subject of the example.) When Thread-
Local mstance 230 1s removed, corresponding slots, 1.e.,
location 3, are removed. On a platform with garbage col-
lection, the value could be a reference to a large object. Until

10

15

20

25

30

35

40

45

50

55

60

65

6

the reference 1s cleared, 1.e., set to a null value, the memory
occupied by the large object will not be released even 1f no
other reference to the large object exusts.

A cleanup routine 1s defined for Threadl.ocal when
Threadl.ocal instance, such as Threadl.ocal instance 230 1s
disposed. The cleanup routine can clear out the table slots
associated with the disposed ThreadlLocal instance 230. In
order to run cleanup routine, however, a linked list 232 1s
used locate the tables that hold a slot associated with the
cleaned up ThreadlLocal instance 230, such as tables 216 and
220. Linked list 232 1s added into the ThreadlLocal instance
230 and enumerates over arrays that hold a value {for
Threadlocal instance 230. The linked list 232 thus enables
the cleanup routine to locate the tables that hold values for
Threadlocal instance 230.

While the linked list 232 solves the i1ssue of locating the
tables that hold values for the Threadl.ocal instance 230, the
linked list 232 by 1tself also introduces another 1ssue 1n that
the tables 216, 218, 220 themselves cannot be garbage
collected when threads 204, 206, 208 are removed. If the
only incoming reference to the tables 216, 220 1s a statically
allocated thread-local variable, the thread slots 210, 212,
214 can be automatically garbage collected after 1ts owning
thread 1s finished. Now that the thread slots 210, 212, 214 are

also a part of the linked list 232, they cannot be garbage
collected because the thread slots 210, 212, 214 have an
additional incoming reference.

To address this 1ssue, the implementation 200 provides for
the back-references to a table to be removed when the
corresponding thread 202 i1s removed with a helper cleanup
routine 234 that executes when a thread, such as thread 202,
1s removed. The helper cleanup routine 234 can be added
with a ThreadStatic field i each of the tables 216, 218, 220
that holds an object whose cleanup routine performs the

desired cleanup that operates to clear all back references to

the tables 216, 218, 220 when the corresponding thread 204,
206, 208 exits.

Thread local storage can be used to enumerate all values
associated with a particular ThreadlLocal istance 230, 1.e.,
the values from all threads. For example, values 5 and 7 are
associated with the ThreadLLocal instance 230. The example
implementations 1n this disclosure can extend to support
value enumeration.

To save the values for threads that have exited, the helper
cleanup routine 233 can be modified after a thread exits.
Betore releasing the tables 216, 218, 220, the helper cleanup
routine 234 saves the final values 1nto nodes 236, 238 of the
linked list 232. The saved values 1n the linked list 232 can
continue to be included 1n the enumeration of values for the
Threadlocal instance. FIG. 4 shows the steps 1n the cleanup
alter a thread has exated.

FIGS. 4A to 4C illustrate an example method of cleanup
after a thread has exited from an 1mitial state of the threads
202, 204 and 206 such as the state illustrated n FIG. 3. FIG.
4 A 1llustrates how the linked list 232, second cleanup object
234 and table 216 remain after thread 204 has exited from
the mitial state illustrated FIG. 3. FIG. 4B illustrates how
node 236 of the linked list 232 saves the final value of
ThreadlLocal instance 230. The second cleanup routine
clears the back references of the table 216. Afterwards, 1n
FIG. 4C, the table 216 1s garbage collected and the value 1n
node 236 can be enumerated.

Although specific embodiments have been illustrated and
described herein, 1t will be appreciated by those of ordinary
skill 1n the art that a vanety of alternate and/or equivalent
implementations may be substituted for the specific embodi-
ments shown and described without departing from the

US 11,163,677 B2

7

scope of the present invention. This application 1s intended
to cover any adaptations or vanations of the specific
embodiments discussed herein. Therefore, 1t 1s intended that
this invention be limited only by the claims and the equiva-
lents thereof.

What 1s claimed 1s:

1. A method of allocating thread storage 1n a memory for
processing a plurality of threads, the method comprising:

for each thread of the plurality of threads, generating a

statically allocated thread-local slot storing a table, the
table having one or more slots wherein each slot
position in the one or more slots of the respective thread
of the plurality of threads 1s configured to store a
thread-local value associated with a dynamically allo-
cated thread-local instance, the dynamaically allocated
thread-local instance containing a linked list, each node
of the linked list referencing the specific slot position of
a table of the plurality of tables with stored values
corresponding to the dynamically-allocated thread-lo-
cal instance;

storing a respective value 1n a slot of the one or more slots

of the table corresponding to the dynamically-allocated
thread-local instance 1 two or more threads of the
plurality of threads;

in response to a thread of the two or more threads of the

plurality of threads releasing during runtime, performs-

ng:

saving the stored thread-local value of the released
thread to a respective node of the linked list refer-
encing the table of the released thread,;

removing reference of the node of the linked list, to the
table of the released thread; and

removing the table and the statically allocated thread-
local slot for the released thread of the two or more
threads:

wherein, the saved value 1s accessible for a remaining
thread of the two or more threads having a respective
value at the specific slot positions of their respective
tables.

2. The method of claim 1 comprising:

preserving saved values in the statically allocated thread-

local slot for remaining threads of the plurality of
threads.

3. The method of claim 1 comprising:

enumerating the saved value associated with a thread-

local variable.

4. The method of claim 1 comprising;

enumerating the saved value of the dynamically allocated

thread thread-local instance in each of the plurality of
threads.

5. The method of claim 1 wherein removing the statically
allocated thread-local slot includes locating the table.

6. The method of claim 1 comprising:

defining a cleanup routine for the statically allocated

thread-local slot.

7. A computer readable storage medium, which does not
include transitory propagating signals, to store computer
executable instructions to control a processor to:

for each thread of a plurality of threads, generate a

statically allocated thread-local slot storing a table, the
table having one or more slots wherein each slot
position in the one or more slots of the respective thread
of the plurality of threads i1s configured to store a
thread-local value associated with a dynamically allo-
cated thread-local instance, the dynamaically allocated
thread-local instance containing a linked list, each node
of the linked list referencing the specific slot position of

10

15

20

25

30

35

40

45

50

55

60

65

8

a table of the plurality of tables with stored values
corresponding to the dynamically-allocated thread-lo-
cal instance;

store a respective value 1n a slot of the one or more slots

of the table corresponding to the dynamically-allocated
thread-local instance in two or more threads of the
plurality of threads;

in response to a thread of the two or more threads of the

plurality of threads releasing during runtime, perform:

save the stored thread-local value of the released thread
to a respective node of the linked list referencing the
table of the released thread;

remove reference of the node of the linked list, to the
table of the released thread: and

remove the table and the statically allocated thread-
local slot for the released thread of the two or more
threads:

wherein, the saved value 1s accessible for a remaining
thread of the two or more threads having a respective
value at the specific slot positions of their respective
tables.

8. The computer readable storage medium of claim 7
wherein the statically allocated thread-local slot 1s removed
with a cleanup routine.

9. The computer readable storage medium of claim 7
wherein the instructions to remove the statically allocated
thread local slot includes instructions to garbage collect the
statically allocated thread local slot.

10. A system, comprising;:

memory to store a set of mnstructions; and

a processor to execute the set of 1nstructions to:

for each thread of a plurality of threads, generate a

statically allocated thread-local slot storing a table, the
table having one or more slots wherein each slot
position in the one or more slots of the respective thread
of the plurality of threads i1s configured to store a
thread-local value associated with a dynamically allo-
cated thread-local instance, the dynamically allocated
thread-local instance containing a linked list, each node
of the linked list referencing the specific slot position of
a table of the plurality of tables with stored values
corresponding to the dynamically-allocated thread-lo-
cal instance;

store a respective value 1n a slot of the one or more slots

of the table corresponding to the dynamically-allocated
thread-local instance in two or more threads of the
plurality of threads;

in response to a thread of the two or more threads of the

plurality of threads releasing during runtime, perform:

save the stored thread-local value of the released thread
to a respective node of the linked list referencing the
table of the released thread;

remove reference of the node of the linked list, to the
table of the released thread: and

remove the table and the statically allocated thread-
local slot for the released thread of the two or more
threads;

wherein, the saved value 1s accessible for a remaining
thread of the two or more threads having a respective
value at the specific slot positions of their respective
tables.

11. The system of claim 10 wherein the statically allo-
cated thread-local slot 1s removed with a cleanup routine to
back retferences to the thread-local slot.

12. The system of claim 11 wherein the cleanup routine 1s
associated with the statically allocated statically allocated
thread-local slot of the released thread.

US 11,163,677 B2
9

13. The system of claim 11, the processor to execute the
set of instructions to perform a garbage collection.

14. The system of claim 10, the processor to execute the
set of 1structions to enumerate the value associated with the
thread-local variable. 5

G e x Gx ex

	Front Page
	Drawings
	Specification
	Claims

