US011163587B2

12 United States Patent (10) Patent No.: US 11,163,587 B2

Miner et al. 45) Date of Patent: Nov. 2, 2021
(54) INTERFACE THAT ENABLES (56) References Cited
STREAMLINED USER-FRIENDLY |
INITIATION/CONTROL OF u.5. PALENT DOCUMENIS
MODIFICATIONS AND/OR INITIAL _ .
PROGRAM LOADING (IPL) OF A TARGET S350 117 Do (92013 Davies et al
SYSTEM 2010/0036940 Al* 2/2010 Carey GO6F 15/173
709/224
(71) Applicant: International Business Machines (Continued)
Corporation, Armonk, NY (US)
(72) Inventors: Kevin L. Miner, Apopka, FL (US); OLTHER PUBLICATIONS
Trinh Nguyen, San Jose, CA (US); Anonymous, “An [oT System that Combines Externally Sourced
Camvu Pham, San Jose, CA (US); and Public Sensor Data with Internal Enterprise Sensor Data for
Bard Allen Doster, Tucson, AZ (US) Action Determination,” IP.com Prior Art Database, Technical Dis-
closure No. IPCOMO000255135D, Sep. 4, 2018, 23 pages.

(73) Assignee: International Business Machines

Corporation, Armonk, NY (US) (Continued)

(*) Notice: Subject to any disclaimer, the term of this ~ Primary Examiner — Timothy A Mudrick
patent 1s extended or adjusted under 35 (74) Attorney, Agent, or Firm — Zilka-Kotab, P.C.
U.S.C. 154(b) by 220 days.

(21) Appl. No.: 16/596,442 (57) ABSTRACT

A computer-implemented method according to one embodi-

(22) Filed: Oct. 8, 2019 ment 1includes outputting an interface, receiving a first input
and parsing contents of the first mput. It 1s determined
(65) Prior Publication Data whether the first input includes the instances of information:
IS 2021/0103448 A1l Apr. 8, 2021 a type of modification that 1s to be performed, a program that
1s to be icorporated 1n the performing of the modification,
(51) Int. CL. and a target system on which the modification 1s to be
GO6F 9/00 (2006.01) performed. In response to a determination that the first input
GO6F 9/445 (2018.01) does not mclude one or more of the 1nstances of information,
GO6F 9/48 (2006.01) a request 1s output. In response to a determination that the
GO6F 9/451 (2018.01) first input includes the instances of information, a process 1s
(52) U.S. Cl. performed. The process includes correlating the instances of
CPC GO6F 9/4451 (2013.01); GOGF 9/453 information to a script file and performing the modification
(2018.02); GO6F 9/485 (2013.01) in accordance with the instances of information of the first
(58) Field of Classification Search input. The process further includes collecting status infor-
@) G GOGF 9/544] ~ mation and outputting the status mnformation.
USPC e 713/1
See application file for complete search history. 20 Claims, 9 Drawing Sheets

430
h Outpyt an inlerfacse to a first destination, wherein 40
the interface Includes a feature configured for 2
accepting user input

'

[Receive a first input from a user J~

'

[Parse contents of the first input }L-ﬂlﬂﬁ

[Does the first input
inctude the following instances of
informadion: & type of modification that is o he NG
performed, a2 program thatl is 1o be incorporaled In
the performing of the modification, and a target
system on which the modificalion s to
be perdormed?

Yes

Y

rDutput a regliest for the
instancels) of

41 Ew""* information not inciuded

i the first input

4 Recelve a response
14 including 1he missing

instance(s} of information

Ll

Y

Perfarm 410
a Process

US 11,163,587 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2010/0058356 Al1* 3/2010 Ahoccooooeeiiiinnnnn, GO6F 9/455
719/313

2010/0191923 Al*

2010/0251029 Al*

2018/0081846 Al*
2018/0157422 Al*

3/2018 Compton

7/2010 Archer

/2010 Agha ..ocoovveee....

iiiiiiiiiiii

6/2018 Greercoovvvnnn,

OTHER PUBLICATIONS

GO6F 12/1036

711/154

GOO6F 11/2284

714/40

GOO6F 13/4027
GOOF 11/3668

Anonymous, “System for Detecting and/or Locating Portable Objects
using Beacon Devices,” IP.com Prior Art Database, Technical

Disclosure No. IPCOMO00255137D, Sep. 4, 2018, 22 pages.
Anonymous, “Augmented Intelligence Remote Assistant for IT
Support,” IP.com Prior Art Database, Technical Disclosure No.
[PCOMO000255246D, Sep. 11, 2018, 7 pages.
IBM, “Planning for Installation z/OS: Version 2 Release 3,” Inter-
national Business Machines Corporation, 2019, pp. 1-165.
Winnard et al., “Mainframe from Scratch Hardware Configuration
and z/OS Build,” IBM Redbooks, Dec. 2016, pp. 1-262.

Brody, B., “A System Programmer Productivity Tool Bag,” IBM,

PowerPoint Session 12716, Feb. 2013, pp. 1-267.

* cited by examiner

1

12

US 11,163,587 B2

1

'

P .

..}..r}....}..v}....}....}..-..-..“. R I o
P i T i S e T
-

1

B U
K

SRR kR &K
b Jdr Jr Jr O O Jr O Jp Jp dp

RERE RN .t.-.r.r.t.r.._......r......_..
.

Network 3

F R I T R R R I)
& & & & & b & &
b & & & b & & &

Sheet 1 of 9

r A b o M b o M o N
T

L

1
1

1

Nov. 2, 2021

noaoa A dr A od A odr
a a h kW d ok ki

Nelwork 2

X
R T e T I P I,

Network 1

1
1

100

U.S. Patent
102

U.S. Patent Nov. 2, 2021 Sheet 2 of 9 US 11,163,587 B2

235
| NETWORK

~ 234

220 ~

210 216 214

COMMUNICATION
ADAPTER |

222~ 236 - 236

USER
INTERFACE
ADAPTER

» Tt 'q.rq.‘_q.*q.*l L IL NI N N - T

DISPLAY
ADAFPTER

0 \)l

232 226

U.S. Patent Nov. 2, 2021 Sheet 3 of 9 US 11,163,587 B2

/ 300

Host Interface
314

U.S. Patent Nov. 2, 2021 Sheet 4 of 9 US 11,163,587 B2

400

Qutput an interface to a first destination, wherein | .
the interface includes a feature configured for ~ 402
accepting user input

________________________ | .. N ’ | . | __ e . 404

Parse contents of the first input 406

408
, Does the first input N
. include the following instances of ™\
Yes -~ information: a type of modification that is to be ™ No
- performed, a program that is to be incorporated in '
N the perfarming of the modification, and a target
< System on which the modification is to
A be performed? '

Output a request for the
instance(s) of
information not included
in the first input

412

Receive a response
including the missing |
instance(s) of information |

414

FIG. 4A

U.S. Patent Nov. 2, 2021 Sheet 5 of 9 US 11,163,587 B2

410

Correlate the instances of information to a script file that is pre- 420
associated with the program indicated in the instances of information

_ Are QL

-~ jobs actively running ™

" on the target system and/or

users are using

- the target
N\ system?

NoO Yes

Perform the modification in
accordance with the instances of |

information of the first input by |
initiating running of the script file

- Qutput a first question to the first
~ destination, the first question
‘requesting input as to whether the
- aclive jobs and/or the active user
~ use of the target system should

| be terminated o alliow the

modification to be performed

424

426 _

R Receive a response
corresponding to the first question

428

430

Terminate
the active jobs
and/or the aclive user use of the
target system {o

allow the modification to
be performed? -~

No Yes

FIG. 4B

U.S. Patent Nov. 2, 2021 Sheet 6 of 9 US 11,163,587 B2

[From “Yes” of |
| decision 430

[From “No” of |
| decision 430

432

Terminate the active jobs
and/or the active user use
of the target system

Not terminating the active
jobs and/or the active user
use of the target system and
not performing the
modification

434

Perform the modification in accordance with the instances of | _436

Collect status information detailing the modification being performed ™ 436

Qutput the status information {o the first destination 440

 Are g

~"jobs actively running ™~
" on the target system and/or
users are using
, the target

. System?

444

Yes

No

Perform initial
program loading

(continued)

U.S. Patent Nov. 2, 2021 Sheet 7 of 9 US 11,163,587 B2

410

\‘ From “Yes”

of 442

Quiput a second question to the first destination, the
second question requesting input as to whether the
active jobs and/or the active user use of the target . 446
system should be terminated to aliow initial program '
loading be performed

| Receive a response corresponding to
' the second question

448

450

> Terminate ~_
active jobs and/or the active user

_. use of the target system {o

™ allow the initial program loadingto _~"

- be performed? -

NoO ~. Y€es

Terminate the aclive jobs
and/or the active user use

, of the target system
. 4582 Me———— - e nreren—————

Not terminating the |
active jobs and/or
the active user use

454

of the target system
and not performing .

the initial program 456 Perform the initial
program loading

loading

FIG. 4B
(continued)

U.S. Patent Nov. 2, 2021 Sheet 8 of 9 US 11,163,587 B2

FIG. 5

506

500

U.S. Patent Nov. 2, 2021 Sheet 9 of 9 US 11,163,587 B2

600 026
- '

User please enter input(s) here 624
602

Hello, how can | help you {oday?

604
Install AAS5460

606 -
} On what system would you like AA55460 installed”?

608
Actually install AA55560 on mes1

610
Installing AA55560 on mes1...

AA55560 has been installed successfully. Here is its
status:

AA55560 TYPE: APAR
STATUS = REC APP

FMID: HDZ2220

REWORK = 2019080

DATE/TIME REC = 19.080 13:24:45

INS = 19.080 13:24:45

PRE VER(001) = UA83249 UA93418

MAC = IDCDE70

MOD = IDCCDLA IDCLAO1 IDCSS02 IDCTSLA1

612

Syslib LINKLIB was updated, thus IPLing is required. Do
you want an IPLing now?

614

0616
Thank you, | am going to check the native system mes1

now to get ready for {PLing. If there is no problem, | will

IPL right away...
There is active user Smith on system mes1 right now.

Do you want to force an IPLing?

618

620

Thank you for your answer. Please give me 5 minutes to
let the IPL job run...

mes1 has been IPLed successfully to apply the new
APAR AA55560

622

US 11,163,587 B2

1

INTERFACE THAT ENABLES
STREAMLINED USER-FRIENDLY
INITIATION/CONTROL OF
MODIFICATIONS AND/OR INITIAL
PROGRAM LOADING (IPL) OF A TARGET
SYSTEM

BACKGROUND

The present invention relates to interfaces, and more
specifically, this invention relates to an interface for enabling
initiation/control of modifications and/or IPL processes of a
target system.

Interfaces are visual outputs that may be displayed on a
device. Such interfaces may differ in contents and/or appear-
ance depending on any number of variables, e.g., use
case(s), user access restrictions, device constraints, etc.

Some user interfaces are configured to, via a display
displaying the user interface, allow user input thereon. In
some cases, mterfaces are modified depending on the con-
tents of recerved user 1mputs. In one specific example, as a
result of ongoing updating of an interface, users may per-
ceive that they are interacting with artificial intelligence.

SUMMARY

A computer-implemented method according to one
embodiment includes outputting an interface to a first des-
tination, receiving a first mput from a user and parsing
contents of the first input. The interface includes a feature
configured to accept user input. It 1s determined, using the
parsed contents of the first mput, whether the first input
includes the following instances of information: a type of
modification that 1s to be performed, a program that 1s to be
incorporated in the performing of the modification, and a
target system on which the modification 1s to be performed.
In response to a determination that the first input does not
include one or more of the instances of information, a
request 1s output for the instance(s) of information not
included 1n the first input. In response to a determination that
the first mput includes the instances of information, a
process 1s performed. The process includes correlating the
instances of mformation to a script {ile that 1s pre-associated
with the program indicated 1n the instances of information,
and performing the modification 1n accordance with the
instances of information of the first mput by i1mitiating
running of the script file. The process further includes
collecting status information detailing the modification
being performed, and outputting the status information to
the first destination.

A computer program product for outputting an interface
that enables streamlined user-friendly initiation/control of
modifications and/or initial program loading of a target
system, according to another embodiment, includes a com-
puter readable storage medium having program instructions
embodied therewith. The program instructions are readable
and/or executable by a computer to cause the computer to
perform the foregoing method.

A system according to another embodiment includes a
processor, and logic integrated with the processor, execut-
able by the processor, or integrated with and executable by
the processor. The logic 1s configured to perform the fore-

going method.
Other aspects and embodiments of the present invention
will become apparent from the following detailed descrip-

5

10

15

20

25

30

35

40

45

50

55

60

65

2

tion, which, when taken in conjunction with the drawings,
illustrate by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a network architecture, in accordance with one
embodiment.

FIG. 2 1s a representative hardware environment that may
be associated with the servers and/or clients of FIG. 1, 1n
accordance with one embodiment.

FIG. 3 1s a tiered data storage system 1n accordance with
one embodiment.

FIG. 4A 1s a flowchart of a method, 1n accordance with
one embodiment.

FIG. 4B 1s a flowchart having sub-operations of an
operation of the method of FIG. 4A.

FIG. 5 a representational environment, in accordance with
one embodiment.

FIG. 6 a display device, in accordance with one embodi-
ment.

DETAILED DESCRIPTION

The following description 1s made for the purpose of
illustrating the general principles of the present mmvention
and 1s not meant to limit the inventive concepts claimed
herein. Further, particular features described herein can be
used in combination with other described features in each of
the various possible combinations and permutations.

Unless otherwise specifically defined herein, all terms are
to be given their broadest possible interpretation including
meanings 1mplied from the specification as well as meanings
understood by those skilled in the art and/or as defined in
dictionaries, treatises, etc.

It must also be noted that, as used 1n the specification and
the appended claims, the singular forms “a,” “an” and “the”
include plural referents unless otherwise specified. It will be
further understood that the terms “comprises™ and/or “com-
prising,” when used in this specification, specily the pres-
ence of stated features, integers, steps, operations, elements,
and/or components, but do not preclude the presence or
addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The following description discloses several preferred
embodiments of systems, methods and computer program
products for outputting an interface that enables streamlined
user-iriendly initiation/control of modifications and/or IPL
ol a target system.

In one general embodiment, a computer-implemented
method 1ncludes outputting an interface to a first destination,
receiving a first input from a user and parsing contents of the
first mput. The interface includes a feature configured to
accept user input. It 1s determined, using the parsed contents
of the first input, whether the first input includes the fol-
lowing instances of information: a type of modification that
1s to be performed, a program that 1s to be icorporated 1n
the performing of the modification, and a target system on
which the modification 1s to be performed. In response to a
determination that the first mput does not include one or
more of the instances of information, a request 1s output for
the 1mstance(s) of information not included in the first input.
In response to a determination that the first input includes the
instances of information, a process i1s performed. The pro-
cess includes correlating the instances of information to a
script file that 1s pre-associated with the program indicated
in the istances of information, and performing the modi-
fication 1n accordance with the instances of information of

US 11,163,587 B2

3

the first input by iitiating running of the script file. The
process turther includes collecting status information detail-
ing the modification being performed, and outputting the
status mnformation to the first destination.

In another general embodiment, a computer program
product for outputting an 1nterface that enables streamlined
user-iriendly 1nitiation/control of modifications and/or 1ni-
tial program loading of a target system, includes a computer
readable storage medium having program instructions
embodied therewith. The program instructions are readable
and/or executable by a computer to cause the computer to
perform the foregoing method.

In another general embodiment, a system includes a
processor, and logic integrated with the processor, execut-
able by the processor, or imntegrated with and executable by
the processor. The logic 1s configured to pertorm the fore-
going method.

FIG. 1 1llustrates an architecture 100, 1n accordance with
one embodiment. As shown in FIG. 1, a plurality of remote
networks 102 are provided including a first remote network
104 and a second remote network 106. A gateway 101 may
be coupled between the remote networks 102 and a proxi-
mate network 108. In the context of the present architecture
100, the networks 104, 106 may each take any form 1nclud-
ing, but not limited to a local area network (LAN), a wide
area network (WAN) such as the Internet, public switched
telephone network (PSTN), internal telephone network, etc.

In use, the gateway 101 serves as an entrance point from
the remote networks 102 to the proximate network 108. As
such, the gateway 101 may function as a router, which 1s
capable of directing a given packet of data that arrives at the
gateway 101, and a switch, which furnishes the actual path
in and out of the gateway 101 for a given packet.

Further included 1s at least one data server 114 coupled to
the proximate network 108, and which 1s accessible from the
remote networks 102 via the gateway 101. It should be noted
that the data server(s) 114 may include any type of com-
puting device/groupware. Coupled to each data server 114 1s
a plurality of user devices 116. User devices 116 may also
be connected directly through one of the networks 104, 106,
108. Such user devices 116 may include a desktop computer,
lap-top computer, hand-held computer, printer or any other
type of logic. It should be noted that a user device 111 may
also be directly coupled to any of the networks, in one
embodiment.

A peripheral 120 or series of peripherals 120, e¢.g., fac-
simile machines, printers, networked and/or local storage
units or systems, etc., may be coupled to one or more of the
networks 104, 106, 108. It should be noted that databases
and/or additional components may be utilized with, or
integrated 1nto, any type of network element coupled to the
networks 104, 106, 108. In the context of the present
description, a network element may refer to any component
ol a network.

According to some approaches, methods and systems
described herein may be implemented with and/or on virtual
systems and/or systems which emulate one or more other
systems, such as a UNIX® system which emulates an
IBM®z/OS® environment, a UNIX® system which virtu-
ally hosts a Microsolt® Windows® environment, a
Microsolt® Windows® system which emulates an IBM®z/
OS® environment, etc. This virtualization and/or emulation
may be enhanced through the use of VMware® software, in
some embodiments.

In more approaches, one or more networks 104, 106, 108,
may represent a cluster of systems commonly referred to as
a “cloud.” In cloud computing, shared resources, such as

10

15

20

25

30

35

40

45

50

55

60

65

4

processing power, peripherals, software, data, servers, etc.,
are provided to any system 1n the cloud 1n an on-demand
relationship, thereby allowing access and distribution of
services across many computing systems. Cloud computing
typically involves an Internet connection between the sys-
tems operating in the cloud, but other techniques of con-
necting the systems may also be used.

FIG. 2 shows a representative hardware environment
associated with a user device 116 and/or server 114 of FIG.
1, in accordance with one embodiment. Such figure 1llus-
trates a typical hardware configuration of a workstation
having a central processing unit 210, such as a micropro-
cessor, and a number of other units interconnected via a
system bus 212.

The workstation shown 1 FIG. 2 includes a Random
Access Memory (RAM) 214, Read Only Memory (ROM)
216, an mput/output (I/O) adapter 218 for connecting
peripheral devices such as disk storage units 220 to the bus
212, a user interface adapter 222 for connecting a keyboard
224, a mouse 226, a speaker 228, a microphone 232, and/or
other user interface devices such as a touch screen and a
digital camera (not shown) to the bus 212, communication
adapter 234 for connecting the workstation to a communi-
cation network 235 (e.g., a data processing network) and a
display adapter 236 for connecting the bus 212 to a display
device 238.

The workstation may have resident thereon an operating,
system such as the Microsoit Windows® Operating System
(0OS), a macOS®, a UNIX® OS, etc. It will be appreciated
that a preferred embodiment may also be implemented on
platforms and operating systems other than those mentioned.
A preferred embodiment may be written using eXtensible
Markup Language (XML), C, and/or C++ language, or other
programming languages, along with an object oriented pro-
gramming methodology. Object oriented programming
(OOP), which has become increasingly used to develop
complex applications, may be used.

Now referring to FIG. 3, a storage system 300 1s shown
according to one embodiment. Note that some of the ele-
ments shown 1n FIG. 3 may be implemented as hardware
and/or software, according to various embodiments. The
storage system 300 may include a storage system manager
312 for communicating with a plurality of media and/or
drives on at least one higher storage tier 302 and at least one
lower storage tier 306. The higher storage tier(s) 302 pret-
erably may include one or more random access and/or direct
access media 304, such as hard disks in hard disk drives
(HDDs), nonvolatile memory (NVM), solid state memory in
solid state drives (SSDs), flash memory, SSD arrays, tlash
memory arrays, etc., and/or others noted herein or known in
the art. The lower storage tier(s) 306 may preferably include
one or more lower performing storage media 308, including
sequential access media such as magnetic tape 1n tape drives
and/or optical media, slower accessing HDDs, slower
accessing SSDs, etc., and/or others noted herein or known 1n
the art. One or more additional storage tiers 316 may include
any combination of storage memory media as desired by a
designer of the system 300. Also, any of the higher storage
tiers 302 and/or the lower storage tiers 306 may include
some combination of storage devices and/or storage media.

The storage system manager 312 may communicate with
the drives and/or storage media 304, 308 on the higher
storage tier(s) 302 and lower storage tier(s) 306 through a
network 310, such as a storage areca network (SAN), as
shown 1n FIG. 3, or some other suitable network type. The
storage system manager 312 may also communicate with
one or more host systems (not shown) through a host

US 11,163,587 B2

S

interface 314, which may or may not be a part of the storage
system manager 312. The storage system manager 312
and/or any other component of the storage system 300 may
be implemented 1n hardware and/or software, and may make
use of a processor (not shown) for executing commands of
a type known in the art, such as a central processing unit
(CPU), a field programmable gate array (FPGA), an appli-
cation specific integrated circuit (ASIC), etc. Of course, any
arrangement ol a storage system may be used, as will be
apparent to those of skill in the art upon reading the present
description.

In more embodiments, the storage system 300 may
include any number of data storage tiers, and may include
the same or different storage memory media within each
storage tier. For example, each data storage tier may include
the same type ol storage memory media, such as HDDs,
SSDs, sequential access media (tape 1n tape drives, optical
disc 1n optical disc drives, etc.), direct access media (CD-
ROM, DVD-ROM, etc.), or any combination of media
storage types. In one such configuration, a higher storage tier
302, may include a majority of SSD storage media for
storing data 1n a higher performing storage environment, and
remaining storage tiers, including lower storage tier 306 and
additional storage tiers 316 may include any combination of
SSDs, HDDs, tape drives, etc., for storing data 1n a lower
performing storage environment. In this way, more fre-
quently accessed data, data having a higher priority, data
needing to be accessed more quickly, etc., may be stored to
the higher storage tier 302, while data not having one of
these attributes may be stored to the additional storage tiers
316, including lower storage tier 306. Of course, one of skill
in the art, upon reading the present descriptions, may devise
many other combinations of storage media types to 1mple-
ment into different storage schemes, according to the
embodiments presented herein.

According to some embodiments, the storage system
(such as 300) may include logic configured to receive a
request to open a data set, logic configured to determine 1t
the requested data set 1s stored to a lower storage tier 306 of
a tiered data storage system 300 in multiple associated
portions, logic configured to move each associated portion
of the requested data set to a higher storage tier 302 of the
tiered data storage system 300, and logic configured to
assemble the requested data set on the higher storage tier 302
of the tiered data storage system 300 from the associated
portions.

Of course, this logic may be implemented as a method on
any device and/or system or as a computer program product,
according to various embodiments.

As mentioned elsewhere above, interfaces are visual
outputs that may be displayed on a device. Such interfaces
may differ in contents and/or appearance depending on any
number of variables, e.g., use case(s), user access restric-
tions, device constraints, etc.

Some user interfaces are configured to, via a display
displaying the user interface, allow user input thereon. In
some cases, mterfaces are modified depending on the con-
tents of received user inputs. In one specific example, as a
result of ongoing updating of an interface, users may per-
ceive that they are iteracting with artificial intelligence.

In some approaches, a user may enter inputs to a device
displaying an interface thereon, in order to manage soltware
products of a system. According to a more specific approach,
a user may enter inputs that when processed by a program
that manages software products within the system, results in
an update being installed on a program within a system. For
example, System Modification Program Extended (SMP/E)

5

10

15

20

25

30

35

40

45

50

55

60

65

6

by IBM® (which may be purchased from IBM North
America, 590 Madison Avenue, New York, N.Y. 10022,
United States) 1s the z7OS® tool for managing the installa-
tion of software products on a zZ/OS® system, and for
tracking modifications to those products.

Entering 1mputs into a graphical user interface for man-
aging software products of a system in some approaches
requires user familiarity and/or specialized knowledge. For
example, a manner in which a program that manages sofit-
ware products within a system works and a prerequisite
extent of user knowledge that may be necessary to package
fixes and software products for such a program may be
relatively complex, e.g., beyond general knowledge and
even up to a specialized extent of knowledge/degree of
training.

Initial program load (IPL) 1s a process of loading an
operating system of a mainirame nto the computer’s main
memory. Various embodiments and approaches herein
include using a chatbot interface for streamlining user-
initiated system soltware processes. More specifically, such
embodiments and/or approaches include outputting an inter-
face that enables streamlined user-friendly mnitiation/control
of modifications and/or IPL of a target system. As a result,
as will be described in greater detail elsewhere herein,
customers lacking a familiarity and/or specialized knowl-
edge with such systems are able to initiate such software
processes without having to resort to entering relatively
more complex and time-consuming command inputs on a
device.

Now referring to FIG. 4A, a flowchart of a method 400 1s
shown according to one embodiment. The method 400 may
be performed in accordance with the present imnvention in
any of the environments depicted in FIGS. 1-3, 5 and 6,
among others, in various embodiments. Of course, more or
fewer operations than those specifically described 1n FIG.
4 A may be included in method 400, as would be understood
by one skilled in the art upon reading the present descrip-
tions.

Each of the steps of the method 400 may be performed by
any suitable component of the operating environment. For
example, 1 various embodiments, the method 400 may be
partially or entirely performed by a controller, or some other
device having one or more processors therein. The proces-
sor, e.g., processing circuit(s), chip(s), and/or module(s)
implemented 1n hardware and/or software, and preferably
having at least one hardware component may be utilized in
any device to perform one or more steps of the method 400.
[lustrative processors include, but are not limited to, a
central processing unit (CPU), an application specific inte-
grated circuit (ASIC), a field programmable gate array
(FPGA), etc., combinations thereof, or any other suitable
computing device known 1n the art.

Operation 402 of method 400 includes outputting an
interface to a first destination. According to some
approaches, the first destination may be a known type of user
device, e.g., such as an LCD display, at the first destination.
In another approach the first destination may be a processor
that determines a device that the interface should be routed
to, and routes the interface thereto. According to a more
specific approach, the interface may be configured to be
visually output on a web browser.

The interface may include one or more feature(s) config-
ured to accept user mput. For example, in some approaches,
the interface may include one or more features that are
compatible with user input devices displaying the interface.
According to various approaches, the feature of the interface
may be, e.g., a chat window, a group of options that are

US 11,163,587 B2

7

selectable by a selection device of the device displaying the
interface, an audio sample mput portal, etc.

A first 1input may be received from a user, e.g., see
operation 404 of method 400. The first input may be
received 1n response to the user using the feature of the
interface. For example, according to one or more
approaches, the first mput may be recerved as, e.g., a
command, a request, a question, a selection, an audio
sample, etc., mput by the user using a feature of the
interface.

Contents of the first mput may be parsed, e.g., see
operation 406 of method 400. The parsing may be performed
using any known type of parsing, e.g., applying speech
recognition to the first input where the first input 1s an audio
sample, applying word parsing to the first input for deter-
miming content and/or context where the first input 1s a text
sample, translating a detected language of the first input, etc.

In some approaches a determination 1s made as to whether
the first input mncludes one or more predetermined instances
of information, e.g., see decision 408. Such a determination
may be performed using the parsed contents of the first
input. For example, in one approach, such a determination
may be based on the result of a comparing of at least some
of the parsed contests of the first input with a list containing
one or more entries of the instances of mmformation.

The instances of information may depend on the
approach. According to one non-limiting approach, the
instances ol information may include a type of modification
that 1s to be performed. In such an approach, the modifica-
tion may be one that the user wishes to be performed on a
system, €.g., a target system. Accordingly, the instances of
information may additionally and/or alternatively include a
target system on which the modification 1s to be performed.
The target system may be any type of system, e.g., a data
storage system, an operating system such as the z/OS®
system, a computing system, etc. In another approach, the
instances ol information may additionally and/or alterna-
tively include a program that 1s to be incorporated 1n the
performance of the modification, e.g., a program of the
target system that 1s modified as a result of performing the
modification.

Various examples of types of modification that may be
determined to be included in the instances of information
will now be described. However, 1t should be noted that such
examples are not intended to limit descriptions herein, and
thus the type of modification may be any type of modifica-
tion. According to a first approach, the type of modification
that 1s to be performed may be installing an update that 1s
associated with an error that was previously detected on the
target system. For example, in response to detecting that an
error has occurred, e.g., occurred on the target system, an
update may be generated that when 1mitiated, mitigates the
error, €.g., a patch/fix.

In contrast, according to another approach, the type of
modification that 1s to be performed may be uninstalling an
update that 1s associated with an error that was previously
detected on the target system. For example, 1n response to a
determination that an error has occurred, e.g., occurred on
the target system, an update previously performed on the
target system, that 1s determined to be/potentially be asso-
ciated with the error, may be uninstalled. According to
various approaches, an update may be determined to be
associated with the error 1n response to, e.g., the error being
detected on the target system within a predetermined amount
of time subsequent the update being performed on the target
system, the error being detected on the target system after an
operation associated with the update 1s performed on the

10

15

20

25

30

35

40

45

50

55

60

65

8

target system subsequent the update being performed on the
target system (such as an IPL operation), a reduction of
performance being detected subsequent the update being
performed on the target system, etc. As a result of uninstall-
ing the update that was previously detected on the target
system, the resulting state of the target system likely will no
longer experience the error, although further error correction
measures may be performed 1n response to the error still
being detected after performing an uninstalling of the
update.

According to some other approaches, the type of modi-
fication that 1s to be performed may 1include changing a state
ol the program indicated in the 1nstances of information. For
context, a “state” of the program may refer to, e.g., an
amount ol processing resources that are reserved for the
program, current program operating metrics, a version of the
program, etc.

In one approach, the type of modification that 1s to be
performed may include updating a state of the program
indicated 1n the instances of information. Reasons for such
an updating may include, e.g., routine maintenance, 1n
response to a new state of the program being developed,
user/admimstrator preference, etc. In contrast, the type of
modification that 1s to be performed may include reverting
a state of the program indicated in the instances of infor-
mation. In such an approach, performing the reverting may
include accessing a prior state of the program, and mitiating
a known type of reversion operation on the program. Of
course, the state of the program prior to the reverting may
additionally be stored, e.g., in memory of the system.

In response to a determination that the first input does not
include one or more of the instances of information (as
illustrated by the “No” logical path of decision 408), a
request may be output for the mstance(s) of information not
included 1n the first mput, e.g., see operation 412 of method
400. Subsequent being output, the request may preferably be
added to an updated state of the interface, e.g., as an entry
of a chat dialogue of the iterface (see FIG. 6). During
generation of the request, the request 1s preferably trans-
lated, e.g., formatted, n a format that about matches the
format of received first input. For example, in response to
the first input being recetved as a text input in English, the
request may be formatted and output to the first destination
as an English text entry on a chat dialogue of the interface.
According to another example, 1n response to the first input
being received as an audio mput 1n German, the request may
be formatted and output to the first destination as a German
audio sample that 1s accessible for listening to as an entry on
a chat dialogue of the interface.

A response may be received that includes the missing
instance(s) of information, e.g., see operation 414. Accord-
ingly, 1n the current embodiment, the received response may
be considered a second input. In some approaches, contents
of the response may be parsed to determine whether the
response ncludes the missing instance(s) of information. In
response to receiving the response that includes the missing
instance(s) of information, a predetermined process may be
performed, e.g., see operation 410. Note that the process of
operation 410 will be described 1n greater detail elsewhere
herein, e.g., see FIG. 4B.

In contrast, 1n response to a determination that the first
input includes the mstances of information (as illustrated by
the “Yes” logical path of decision 408) the predetermined
process may be performed, e.g., see operation 410 of method
400. The process may be performed any number of times,
¢.g., a single time, 1n iterations where it 1s determined from
the 1nstances of information of the first mput that multiple

US 11,163,587 B2

9

modifications are to be performed, as a batch job where 1t 1s
determined from the instances of information of the first
input that multiple modifications are to be performed, etc.
According to some approaches, the process preferably

10

amount of time, an answer to the first question may be
determined, e.g., 1t may be assumed that the actively running

jobs/user use should be terminated, or alternatively 1t may be

assumed that 1t may be assumed that the actively running

includes performing the modification according to the 5 jobs/user use should not be terminated.

instances of information of the first input, e.g., see FIG. 4B.

Looking to FIG. 4B, exemplary sub-processes 420-456 of
the process are illustrated 1n accordance with one embodi-
ment, one or more of which may be used to perform
operation 410 of FIG. 4A. However, it should be noted that
the sub-processes of FIG. 4B are illustrated 1n accordance
with one embodiment which 1s 1n no way intended to limait
the descriptions herein.

In some approaches, the process may include correlating,
the instances of information to one or more script file(s) that
are pre-associated with the program indicated in the
istances of information, e.g., see sub-operation 420. Such
correlating may 1n some approaches include first correlating
the 1nstances of information to a predetermined/pre-associ-
ated action, e.g., run file, access file, etc., where a subsequent
performance of the action results 1n the mitiating of prede-
termined script files.

With continued reference to FIG. 4B, 1n some approaches,
prior to performing the modification in accordance with the
instances of iformation of the first mput by i1mtiating
running of the script {ile, it may be determined whether there
are any active processes running within the target system.
For example, according to a more specific approach, i1t may
be determined prior to performing the modification, whether
jobs are actively running on the target system and/or users
are using the target system, e.g., see sub-operation 422. Such
a consideration may be made in order to prevent a job from
going uniulfilled/freezing, and/or in order to prevent a user
actively using the target system from losing access to the
target system without warning.

In response to a determination that jobs are not actively
running on the target system and/or users are not using the
target system (as illustrated by the “No” logical path of
sub-operation 422), the modification may be performed 1n
accordance with the instances of information of the first
input, e.g., see sub-operation 424. In other words, in some
approaches, as a result of mitiating running of the script file,
a modification may be performed on the target system in the
type and while incorporating the program, as specified 1n the
instances of information of the first mnput. However, recall
that 1n some approaches, the mnstances of mnformation may
be specified 1n more than one 1put, and therefore 1n such
approaches the modification may be performed on the target
system 1n the type and while incorporating the program as
specified 1n the mstances of information of several received
inputs.

On the contrary, in response to a determination that jobs
are actively running on the target system and/or users are
using the target system (as illustrated by the “Yes” logical
path of sub-operation 422), a first question may be generated
and output to the first destination. In some approaches the
first question requests mput, e.g., from the user, as to
whether the active jobs and/or the active user use of the
target system should be terminated to allow the modification
to be performed, e.g., see sub-operation 426.

Sub-operation 428 includes receiving a response corre-
sponding to the first question, e.g., a first response. However,
in some approaches, 1f a response 1s not received within a
predetermined amount of time, the first question may be
output again, €.g., re-output to the first destination, output to
a second destination, etc. In another approach, in response to
a response not being received within a predetermined

10

15

20

25

30

35

40

45

50

55

60

65

Subsequent to receiving the response corresponding to the
first question, 1 some approaches 1t may be determined
from the response whether the active jobs and/or the active
user use of the target system should be terminated to allow
the modification to be performed, e.g., see sub-operation
430. In response to a determination that the response cor-
responding to the first question indicates that the active jobs
and/or the active user use of the target system should not be
terminated to allow the modification to be performed (as
illustrated by the “No” logical path of sub-operation 430), 1n
some approaches the active jobs and/or the active user use
of the target system may not be terminated, €.g. see sub-
operation 432. Moreover, 1n some approaches, the modifi-
cation may not be performed, at least until the active jobs
and/or the active user use of the target system 1s completed.
For example, in some approaches the modification may be
scheduled to be performed upon a determination being made
that the active jobs and/or the active user use of the target
system are no longer active, e.g., are determined to have
fallen below a predetermined threshold of activity.

In response to the response corresponding to the first
question 1ndicating that the active jobs and/or the active user
use of the target system should be terminated to allow the
modification to be performed (as illustrated by the “Yes”™
logical path of sub-operation 430), the active jobs and/or the
active user use of the target system may be terminated, e.g.,
see sub-operation 434. The active jobs and/or the active user
use of the target system may be terminated by performing
any one or more operations that make the target system
available for performing the modification thereon, e.g.,
terminating a previously granted user access credential to
the interface, suspending the user interface, locking the
teature of the interface, etc. In some approaches, a warning
may be output to the first destination that indicates that such
active jobs/user use 1s going to be terminated. Such a
warning may be output to the first destination as an updated
state of the interface.

Although 1n the approach above, the determination
whether jobs are actively running on the target system and/or
users are using the target system 1s made prior to performing
the modification, 1n some approaches a similar determina-
tion may be additionally and/or alternatively performed after
performing the modification. For example, as will be
described elsewhere herein, a similar determination may be
additionally and/or alternatively performed prior to perform-
ing an IPL process, €.g., see sub-operations 442-456.

Sub-operation 436 includes performing the modification
in accordance with the instances of information of the first
input. Note that the modification may be additionally and/or
alternatively performed in accordance with one or more
other recerved inputs. In the current approach performing the
modification may include initiating runmng of the script file.

With continued reference to FIG. 4B, at any time during,
performing the modification, the process of method 400 may
include collecting status information detailing the modifi-
cation being performed, e.g., see operation 438. According
to several 1llustrative approaches, types of such status infor-
mation may 1include, e.g., a date and time at which the
program that 1s to be incorporated in performance of the
modification was previously received, maintenance opera-
tions that are scheduled to be performed before a next action
1s performed 1n accordance with performing the modifica-

US 11,163,587 B2

11

tion, macros that have been updated on the target system
since 1nitiating the script file, a time of completion of
performing the modification, and 1dentities of load modules
that were amended (updated/reverted) during performance
of the modification, etc.

The status information may be useful for the user, such as
to, e.g., update the user of the status of the modification
process, allow the user to monitor performance of the target
system while the modification 1s being performed, inform
the user of one or more aspects of the target system that are
impacted as a result of the modification being performed,
etc. Accordingly, 1n some approaches, the process may
include outputting the status information to the first desti-
nation, €.g., see sub-operation 440. Outputting of the status
information to the first destination may include outputting an
updated state of the interface.

In some approaches, the status mnformation may be trans-
lated to a predetermined format that the first user or any
other user that has access to the device displaying the
interface may be familiar with. For example, prior to out-
putting the status information, the status information may be
translated to chat window dialogue that corresponds to the
contents of the status information. Specifications of the chat
window dialogue may be set by, e.g., an administrator of the
target system, mnput recerved from the user, 1n accordance
with/matching any specifications of the received first input
and/or any other received input, etc.

Subsequent to performing the modification, 1 some
approaches, a refresh may be performed on the target
system, €.g., an automatic reiresh.

In some approaches, the process of method 400 may
additionally and/or alternatively apply to IPL processes. For
example, 1n one approach, it may be determined prior to
performing an IPL of the program indicated in the instances
of information, whether jobs are actively running on the
target system and/or users are using the target system, e.g.,
see sub-operation 442. In one approach, such a determina-
tion may be performed in order to prevent users and/or
programs Irom unexpectedly losing progress as a result of
the IPL being performed in the program.

According to one approach, in response to a determina-
tion that jobs are not actively running on the target system
and/or users are not using the target system (as illustrated by
the “No” logical path of sub-operation 442), the IPL. may be
performed, e.g., see sub-operation 444,

In contrast, in response to a determination that jobs are
actively runming on the target system and/or users are using
the target system (as 1llustrated by the “Yes” logical path of
sub-operation 442), according to one approach, a second
question may be output to the first destination, e.g., see
sub-operation 446. In the current approach, the second
question requests 1nput as to whether the active jobs and/or
the active user use of the target system should be terminated
to allow the IPL to be performed. For contextual purposes,
it may be noted that “second” of the second question may
assume that the first question of sub-operation 426 1s pre-
viously output to the first destination. However, this assump-
tion 1s not mtended to limit the descriptions herein. For
example, according to various approaches, the process of
operation 410 may include, e.g., only outputting the question
of sub-operation 426 or only outputting the question of
sub-operation 446, outputting the question of sub-operation
426 and outputting the question of sub-operation 446, or
outputting neither of the questions of sub-operation 426 and
sub-operation 446.

Sub-operation 448 includes receiving a response corre-
sponding to the second question. Subsequent receiving the

10

15

20

25

30

35

40

45

50

55

60

65

12

response corresponding to the second question, in some
approaches 1t may be determined from the response corre-
sponding to the second question whether the active jobs
and/or the active user use of the target system should be
terminated to allow the IPL to be performed, e.g., see
sub-operation 450. In response to a determination that the
response corresponding to the second question indicates that
the active jobs and/or the active user use of the target system
should not be terminated to allow the IPL to be performed
(as 1illustrated by the “No” logical path of sub-operation
450), in some approaches, the active jobs and/or the active
user use of the target system may not be terminated, e.g. see
sub-operation 452. Moreover, 1n some approaches, the IPL
may not be performed, at least until the active jobs and/or the
active user use of the target system 1s completed, e.g. see
sub-operation 452. For example, in some approaches the IPL
may be scheduled to be performed upon a determination
being made that the active jobs and/or the active user use of
the target system are no longer active, e¢.g., are determined
to have fallen below a predetermined threshold of activity.

In response to the response corresponding to the second
question indicating that the active jobs and/or the active user
use of the target system should be terminated to allow the
IPL to be performed (as 1llustrated by the “Yes™ logical path
of sub-operation 450), the active jobs and/or the active user
use of the target system may be terminated, e.g., see sub-
operation 434. The active jobs and/or the active user use of
the target system may be terminated by performing any one
or more operations that make the target system available for
performing the IPL thereon, e.g., terminating previously
granted user access credential to the interface, suspending
the user interface, locking the feature of the interface, etc. In
some approaches, a warning may be output to the first
destination that indicates that such active jobs/user use 1s
going to be terminated.

In the current approach, subsequent terminating the active
jobs and/or the active user use of the target system, the IPL
may be performed, e.g., see sub-operation 456.

It should be noted that there are several benefits that result
from utilizing method 400 1n system management processes.
For example, method 400 enables an outputting of an
interface that enables streamlined user-ifriendly initiation/
control of modifications and/or 1nitial program loading (IPL)
of a target system. This 1s because as described elsewhere
herein, modifications/IPL of target systems conventionally
often require users to have a developed familiarity with
and/or a specialized knowledge of program(s) used to ini-
tiate and perform such operations. However, where a user
does not have a developed familiarity and/or specialized
knowledge with such program(s), inexperienced users are
conventionally sometimes unable to mitiate modifications/
IPL on target systems or are forced to resort to other attempts
to 1nitiate/control such operations, e.g., trial by error
attempts, recruiting a user that 1s familiar with/has a spe-
cialized knowledge of the target system program that 1s to be
modified/have IPL performed thereon, expending time to
acquire a familianty/specialized knowledge of the target
system program that 1s to be modified/have IPL performed
thereon, etc.

These attempts may otherwise consume user time and
system resources, and therefore decrease performance of the
target system as a result of any such attempts being unsuc-
cessiul. In sharp contrast, utilizing one or more embodi-
ments and/or approaches described herein, e.g., such as
method 400, for managing a target system, may result 1n a
preservation of resources and performance of a target system
because users do not have to have a familianity with/a

US 11,163,587 B2

13

specialized knowledge of how to specily/initiate target sys-
tem program modifications/IPL. For example, assuming that
it 1s determined, e.g., determined by performing decision
408, that the first input received from a user of operation 404
of method 400 does not include even a single instance of
information, requests may be output for such information,
thereby guiding the wuser 1n 1mitiating/controlling the
intended modification/IPL.

The relative simplicity of initiating/controlling modifica-
tions and/or IPL using one or more embodiments and/or
approaches described herein 1s readily apparent when con-
sidering the extent of familiarity and/or specialized knowl-
edge that users otherwise must have using conventional
techniques for imitiating/controlling modifications and/or
IPL on a target system. For purposes of an example, which
1s 1n no way intended to limit the descriptions herein, such
an extent of familiarity and/or specialized knowledge of
operations that a user may have to have for initiating/
controlling a modification and/or IPL operation without the

use ol embodiments and/or approaches described herein 1s

detailed in the list below.

List 1

1.) Open personal communication (PCOMM) and log 1n a
predetermined machine

2.) Traverse to a dataset list utility panel

3.) Type correct name of a data set on a predetermined
volume to access a given dataset

4.) Create job control language (JCL) to install a new
authorized program analysis report (APAR) with correct
information of APAR name and current IPL volume

5.) Return to PCOMM and log 1n the native system that the
APAR 1s to be installed on

6.) Return to the data set list utility panel

7.) Correctly enter name of the data set on the volume to go
into the data set

8.) Search for the name of the newly created JCL file that
installs the APAR

9.) Submit the job

10.) Go to system display search facility (SDSF) Held output
queue

11.) Read the output of the installing job to check 11 the job
has run fine and which load module system library has
been updated

12.) Go to system log panel

13.) Check which jobs are being run

14.) Check which users are using the system

15.) Check IPL volume number

16.) Set up diagnose value to be the right IPL volume

1'7.) Check which native systems are in the same syplex

18.) Log ofl the system

19.) Return to PCOMM and log in a native system that 1s 1n
the same syplex

20.) Check remotely 11 the target native system has been
tully shutdown

21.) Correctly 1ssue an IPL. command

22.) Answer the system with the message number and the
name of the target system

23.) Check the job log repeatedly to see if the target system
has been done with IPLing
In summary, while conventional techniques for mnitiating/

controlling modification of a target system, e.g., SMP/E

operations, may require that a user have a familiarity and/or

specialized knowledge of software, some embodiments and

approaches described herein simplify such processes for

most, if not all users. For example, as will be described in

turther detail elsewhere herein, query processes are simpli-

fied through the use of script file(s) that may be pre-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

associated with a program indicated in the instances of
information of a user mput, e.g., see Java and Rexx scripts
of FIG. 5. Accordingly, there 1s no need for users to
know/become familiar with specific APAR/release naming
conventions, which are conventionally used, e.g., see Table
1. Moreover, users need not themselves track the progress of
a modification process/optional operations that may be next
performed subsequent such modification being performed,
as they may be provided with such information, e.g., see
status mnformation of sub-operations 438-440.

A similar summary of benefits also extends into the
context of IPLs operations described herein. This 1s because
conventionally, IPL operations are often mitiated by user
input of users that have specialized knowledge i such
management processes, €.g., human interaction with hard-
ware management console (HMC) graphical user interfaces,
program 1interaction with specialized program management
interfaces, third party system automation software, etc.
However, using one or more embodiments and/or
approaches described herein, such interaction with the HMC
may be bypassed using existing z/OS features to reduce the
time and complexity of IPL process management. Some
embodiments and/or approaches described herein enable
additional bypassing, including the altering of load
addresses (IPL volumes) using existing z/OS features with-
out accessing HMCs. It may be noted that the driving/
invoking of these z/OS features may be performed in various
embodiments and/or approaches described herein through a
chatbot interface, e.g., for example one that 1s integrated
through IBM Watson Assistant, making 1t possible to IPL a
7/OS system through a web interface without the traditional
HMC access.

FIG. 5§ depicts a representational environment 300, 1n
accordance with one embodiment. As an option, the present
environment 500 may be implemented 1n conjunction with
features from any other embodiment listed herein, such as
those described with reference to the other FIGS. Of course,
however, such environment 500 and others presented herein
may be used 1n various applications and/or in permutations
which may or may not be specifically described i the
illustrative embodiments listed herein. Further, the environ-
ment 500 presented herein may be used in any desired
environment.

In the present approach, environment 500 includes a first
set of users 502 and another user 504. Environment 500
further includes a system 506, which 1n the present embodi-
ment 1s a cloud-based system, although in other embodi-
ments may be any type of system. Various operations will
now be described 1n which a target system 308 of the system
506 1s modified according to instances of information of
input(s) received from the user 504.

In operation 310, an interface 1s output to a first destina-
tion, e.g., to a conversation 1nterface 512. The conversation
interface may be a known type of user device configured to
display an interface. In the current approach, the interface 1s
configured to be visually output on a web browser. Accord-
ingly, 1n the present approach, the interface 1s accessed by
users 502, 504 via a web browser addresses, e.g., the first set
of users 502 may access the interface via the web browser
address: http://1paddress:portl, and the users 504 may access
the interface via the web browser address: http://ipaddress:
port2.

The interface may include one or more feature(s) config-
ured to accept user mput. For example, the interface may
include a chat window feature in which the user 504 inputs
a first input, e.g., see operation 514. The contents of the first
input may be received by the system 306 and parsed using

US 11,163,587 B2

15

any known technique(s). According to one specific
approach, 1n order to parse the first input, the contents of the
first input may be delivered, e.g., see operation 518, as a user
query/command to an artificial mtelligence/machine leamn-
ing program of the system 3506, e.g., such as a program/
service ol Watson Assistant 520 by IBM® (which may be
purchased from IBM North America, 590 Madison Avenue,
New York, N.Y. 10022, United States), which may be
configured to parse contents of a received mput. In such
parsing, 1n one approach the first input may be divided into
parameters, e.g., intent, entities, dialogue, etc., based on the
content of the first input, which may be used to build a
dialogue node. In some approaches, a type of cloud function
service(s) 522 known 1n the art may be additionally and/or
alternatively utilized for performing such parsing into
JavaScript Object Notation (JSON) style parameters.

It may be determined, using the parsed contents of the first
input, whether the first mput includes predetermined
instances ol information, €.g., a type of modification that 1s
to be performed, a program that 1s to be incorporated 1n the
performance of the modification, a target system on which
the modification 1s to be performed, etc. In one approach, in
response to a determination that the first input does not
include one or more of the instances of information, a
request may be output, e.g., to the first destination, for the
instance(s) of information not mncluded 1n the first mnput. In
an alternate approach, in response to a determination that the
first mput 1ncludes the instances of information, a process
may be performed. Operations that are to be performed
during the performance of the process may be determined
based on the mstances of information. In the present
approach, such operations of the process may be delivered
as an action to an application 526 by the cloud function
service(s) 522 for further processing, €.g., see operation 324,

For context, 1n one specific approach, the application 526
may be a Watson Assistant SMP/E Application by IBM®
(which may be purchased from IBM North America, 590
Madison Avenue, New York, N.Y. 10022, United States).
The application 526 may be in communication with a server
528, e.g., such as a VM5 server. According to one approach,
such communication may be enabled using a two-way 1/0O
interaction 532, which may utilize JavaScript and/or the
IBM® SDK ifor Node.js 530 which may provide a
JavaScript runtime and server-side JavaScript solution for
IBM® operating systems (which may be purchased from
IBM North America, 590 Madison Avenue, New York, N.Y.
10022, United States). The server 528 may additionally
and/or alternatively be in communication with a known type
of database, e.g., see two-way 1I/O 1nteraction 344 between
the server 528 and database DB. Moreover, the server 528
may additionally and/or alternatively be 1n communication
with the conversation interface 512 via a two-way [/O
interaction 542. The two-way 1/0O iteraction 542 may serve
as a relay for interface specifications, e.g., html specification
information, cascading style sheets (CSS) specification
information, etc., between the server 528 and the conversa-
tion interface 512.

In the current approach, the instances of information may
be correlated, e.g., by application 526, to a script file, e.g.,
such as a JavaScript file, that 1s pre-associated with the
program indicated 1n the mstances of information. The script
file may use a Node.,js node package manager (NPM)
package using a zos-node-accessor 336 to connect to one or
more systems, such as the target system 508 and other
systems 338, 540, ¢.g., see operation 534. Depending on the
approach, one or more of the systems 508, 538, 540 may be
7z/OS® systems that use ZOS® operating systems.

10

15

20

25

30

35

40

45

50

55

60

65

16

The modification may be performed 1n accordance with
the instances of information of the first input by 1nitiating
running of the script file, e.g., see operation 546. In some
preferred approaches, the modification may be performed by
one of the systems 3508, 538, 540 runnming the script file.
Running of the script file may 1n some approaches include
using one or more zZOS® tools, e.g., ZOS® batch jobs,
Rexx libraries, automated z/OS® processes, querying the
target system, momitoring processes of cumulative program
temporary fix (PTF) packages, etc., which may be auto-
mated by processing predefined formatted collections of
languages, ¢.g., Rexx, JCL, etc., which may be stored 1n a
database 548 that 1s 1n communication with one or more of
the systems 508, 538, 540, ¢.g., see two-way /O interaction
550.

In some approaches the modification may be at least 1n
part controlled by SMP/E, which may control such changes
at a component level of the target system 508. For example,
according to various approaches, the controlling may
include, e.g., collecting status information detailing the
modification being performed, selecting predetermined
amounts/extents of code to be installed from a greater a
library of potential code, calling system utility programs to
install updates, generating and/or storing records detailing
the modifications performed by providing an input feature
that allows the user to inquire status of the modification,
reversing a most previously performed modification, eftc.
However, as would be appreciated by one of ordinary skill
in the art upon reading descriptions herein, users need not
have familiarity and/or specialized knowledge with the
intricacies of SMP/E 1n order to perform modification opera-
tions such as the controlling described above.

The collected status information may be output to the first
destination. For example, according to the present approach,
the status information may be sent from the target system
508 to the application 526, ¢.g., see operation 552. There the
collected information may be formatted for the Watson
Assistant 520, e.g., in JavaScript. From the application 526,
the status information may be sent to the Watson Assistant
520, e.g., see the collected information being output from
the application 526 to the Watson Assistant 520 as a Watson-
developer-cloud JavaScript package 554, e¢.g., see operation
556. Moreover, 1n the current approach, outputting the status
information to the first destination includes sending the
status information, e.g., by Watson Assistant 520, to the
conversation interface 512, e.g., see operation 558, where
the status information may be viewed by the user 504, e.g.,
see status information received by the user 504 in operation
560.

FIG. 6 depicts a display device 600, 1n accordance with
one embodiment. As an option, the present display device
600 may be implemented 1n conjunction with features from
any other embodiment listed herein, such as those described
with reference to the other FIGS. Of course, however, such
display device 600 and others presented herein may be used
in various applications and/or 1n permutations which may or
may not be specifically described 1n the illustrative embodi-
ments listed herein. Further, the display device 600 pre-
sented herein may be used 1n any desired environment.

The display device 600 includes a display 624, which may
be any known type ol user display device. Moreover,
circuitry and logic of a type known 1n the art for driving the
display 624 may be included 1n the display device 600.

In the current approach, the display device 600 serves as
a first destination to which an interface 626 may be output
to. The interface 626 may include a feature 602 for accepting
user mput. Specifically, in the present approach, the feature

US 11,163,587 B2

17

602 of the interface 626 1s a text entry bar to which user
inputs may be entered using a known type of entry, e.g.,
voice samples, tapping the area of the display 624 displaying,
the feature 602 and thereafter typing an enfry mto a key-
board that 1s synced with the feature 602, dragging and
dropping, selecting options that are presented 1n the feature

602, etc.

As 1llustrated 1n FIG. 6, the interface 626 may be arranged
as chat window, 1n which comments received from a user
and comments output on the display device 600 that are
chronologically ordered. For example, a first comment 604
includes a request that asks for user input. The interface may
enable considerable faster target system management than
existing system management interfaces. For example, a
relative increase 1n proficiency may result from the display
device being configured to be driven by operator commands
as opposed to other GUI interface that may be configured to
interact with a hardware management console. However, 1n
some approaches, the display device 600 may be configured
to use at least some existing security constructs to ensure the
IPL process can be strictly controlled.

A first mput, e.g., “Install AAS5460” may be received
from a user, e.g., see comment 606. The first mput of
comment 606 may be parsed using any one or more known
techniques for parsing comments of an input. Using the
parsed contents of the first mput, 1t may be determined
whether the first input includes predetermined instances of
information. For purposes of an example which 1s 1n no way
intended to limit the descriptions herein, 1t may be assumed
that 1n the current approach, the predetermined instances of
information include: a type of modification that 1s to be
performed, a program that 1s to be incorporated in the
performance of the modification, and a target system on
which the modification 1s to be performed.

It may be determined, e.g., using the parsed contents of
the first input, whether the first input includes the predeter-
mined 1nstances of mformation. In the current approach, it
may be determined that the first input of comment 606
includes the instances of information including, a type of
modification that 1s to be performed, 1.e., Install, and a
program that 1s to be incorporated 1n the performance of the
modification, 1.e., AA55460. However, 1t may be noted that
the first input of comment 606 does not include an 1nstance
of information that specifies a target system on which the
modification 1s to be performed. Accordingly, in one
approach, 1n response to a determination that the first input
does not include one or more of the instances of information,
¢.g., 1n the present approach a target system on which the
modification 1s to be performed, a request may be output for
the 1instance(s) of information not included in the first input.
For example, 1n the current approach, the request 1s output
to the display device 600, and added as a comment 608 on
the interface 626. More specifically, in the current approach,
the request of comment 608 includes a request for the user
to specily on which system the AA55460 program should be
installed.

A second 1nput, e.g., answering the request of comment
608, may be received from the user as a result of the user
entering input using the feature 602. In the current approach,
the contents of the second input are included 1n a comment
that 1s added to the 1interface 626, e.g., see comment 610. The
contents of the second mput may be parsed for determining
whether the second mmput includes the mstances of informa-
tion not included in the first mnput. It may be determined
using the parsed contents of the second input that the second
input includes the instance of information not included in the

10

15

20

25

30

35

40

45

50

55

60

65

18

first 1nput, e.g., content speciiying that the installation 1s to
be performed on target system mes].

In some approaches, 1t may be additionally and/or alter-
natively determined whether the second input includes any
instances of mnformation that replace/update the mstances of
information of the first mput. For example, 1n the current
approach, 1t may be determined whether the second 1nput
includes instances of information that are intended to replace
instances of mformation of the first input. More specifically,
as 1llustrated in comment 610, according to one approach,
the content of the second 1nput may include mput “Actually
install the AAS5560 on mesl.” In such an example, it may
be determined using the parsed contents of the second input
that the AA55560 program 1s to be installed on system mesl.
Moreover, a context may be determined from the portion
“Actually” of the second 1nput, which specifies that the user
intends for the program AAS55360 to be installed on the
program mes]1 instead of the previously mentioned program
AAS55460.

In response to a determination that the first input and/or
subsequent mput(s) mnclude the mstances of mformation, a
process may be performed. As described elsewhere herein,
in some approaches the process includes correlating the
instances of information to a script file that 1s pre-associated
with the program indicated 1n the instances of information.
Moreover, in some approaches, the process may include
performing the modification 1n accordance with the
instances of information of the first mmput by initiating
running of the script file, e.g., see Installing AA55560 on
mesl of comment 612.

In the current approach, status information 1s collected
detailing the modification being performed. The collected
status information may be translated to chat window dia-
logue that corresponds to the contents of the status infor-
mation. For example, the comment 612 includes status
information that 1s displayed as chat window dialogue.
Specifically, in sequential order, the status information of
comment 612 includes: specifications of the program type,
e.g., see AS5560 TYPE; a status indicating whether the
program that 1s to be incorporated in performance of the
modification has been received or not, e.g., see STATUS; a
function applied during performing the modification, e.g.,
see FDIM; a date at which a the modification 1s scheduled
to be performed, e.g., see REWORK; a date and time at
which the program that 1s to be incorporated in performance
of the modification was previously received, e.g., see DATE/
TIME REC; a date and time of completion of performing the
modification, e.g., see INS; maintenance operations that are
scheduled to be performed before a next action 1s performed
in accordance with performing the modification, e.g., see
PRE VER(001); macros that have been updated on the target
system since initiating the script file, e.g., see MAC; and
identities of load modules that were amended during per-
formance of the modification, e.g., see MOD.

In some approaches, it may be determined whether jobs
are actively running on the target system and/or users are
using the target system prior to one or more operations being
performed. For example, in response to the user selecting
that they would like IPLing performed now, €.g., see com-
ments 614-616, in the current approach, 1t 1s determined
prior to performing the IPL, whether jobs are actively
running on the target system and/or users are using the target
system, €.g., see comment 618. In response to a determina-
tion that jobs are not actively running on the target system
and/or users are not using the target system, IPL may be
performed. However, in contrast, in response to a determi-
nation that jobs are actively running on the target system

US 11,163,587 B2

19

and/or users are using the target system, e.g., see comment
618 indicating a finding that Smith 1s actively using mesl],
a question may be output to the first destination that requests
input as to whether the active jobs and/or the active user use
of the target system should be terminated to allow the IPL
to be performed, e.g., see “Do you want to force an IPLing?”

In response to receiving a response, €.g., from the user,
indicating that the active jobs and/or the active user use of
the target system should be terminated to allow the IPL to be
performed, e.g., see “Ok” of comment 620, the active jobs
and/or the active user use of the target system may be
terminated and the IPL may be performed, e.g., see comment
622.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1n each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-

5

10

15

20

25

30

35

40

45

50

55

60

65

20

gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart 1llustrations and/or block diagrams, can be 1imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a computer, or other program-
mable data processing apparatus to produce a machine, such
that the mstructions, which execute via the processor of the
computer or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the tlowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tlow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, in fact, be accomplished as one step,
executed concurrently, substantially concurrently, 1n a par-
tially or wholly temporally overlapping manner, or the

US 11,163,587 B2

21

blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks i1n the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

Moreover, a system according to various embodiments
may include a processor and logic integrated with and/or
executable by the processor, the logic being configured to
perform one or more of the process steps recited herein. The
processor may be of any configuration as described herein,
such as a discrete processor or a processing circuit that
includes many components such as processing hardware,
memory, I/O interfaces, etc. By integrated with, what 1s
meant 1s that the processor has logic embedded therewith as
hardware logic, such as an application specific integrated
circuit (ASIC), a FPGA, etc. By executable by the processor,
what 1s meant 1s that the logic 1s hardware logic; software
logic such as firmware, part of an operating system, part of
an application program; etc., or some combination of hard-
ware and software logic that 1s accessible by the processor
and configured to cause the processor to perform some
functionality upon execution by the processor. Software
logic may be stored on local and/or remote memory of any
memory type, as known 1n the art. Any processor known in
the art may be used, such as a software processor module
and/or a hardware processor such as an ASIC, a FPGA, a
central processing unit (CPU), an integrated circuit (IC), a
graphics processing unit (GPU), efc.

It will be clear that the various features of the foregoing
systems and/or methodologies may be combined in any way,
creating a plurality of combinations from the descriptions
presented above.

It will be further appreciated that embodiments of the
present mvention may be provided in the form of a service
deployed on behalf of a customer to offer service on
demand.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spinit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What 1s claimed 1s:

1. A computer-implemented method, comprising:

outputting an interface to a first destination, wherein the
interface includes a feature configured to accept user
input;

receiving a first mput from a user;

parsing contents of the first mnput;

determining, using the parsed contents of the first input,
whether the first input includes the following instances
of imnformation: a type of modification that i1s to be
performed, a program that 1s to be incorporated in the
performing of the modification, and a target system on
which the modification 1s to be performed;

in response to a determination that the first input does not
include one or more of the instances of information,

10

15

20

25

30

35

40

45

50

55

60

65

22

outputting a request for the instance(s) of information

not included 1n the first mput; and
in response to a determination that the first input includes

the mstances of information, performing a process, the
process 1mcluding:

correlating the istances of information to a script file
that 1s pre-associated with the program indicated 1n
the instances of information;

performing the modification in accordance with the
instances of information of the first mnput by 1nitiat-
ing running of the script file;

collecting status information detailing the modification
being performed; and

outputting the status information to the first destination.

2. The computer-implemented method of claim 1,
wherein the interface 1s configured to be visually output on
a web browser, wherein the feature of the interface 1s a chat
window, and comprising: prior to outputting the status
information, translating the status information to chat win-
dow dialogue that corresponds to the contents of the status
information.

3. The computer-implemented method of claim 1,
wherein the type of modification that 1s to be performed 1s
a modification selected from the group consisting of: 1nstall-
ing an update that 1s associated with an error that was
previously detected on the target system, and uninstalling an
update that 1s associated with an error that was previously
detected on the target system.

4. The computer-implemented method of claim 1,
wherein the type of modification that 1s to be performed 1s
a modification selected from the group consisting of: updat-
ing a state ol the program indicated in the instances of
information, and reverting a state of the program indicated
in the mstances of information.

5. The computer-implemented method of claim 1,
wherein the collected status information includes one or
more types of information selected from the group consist-
ing of: a date and time at which the program that 1s to be
incorporated 1n performance of the modification was previ-
ously recerved, maintenance operations that are scheduled to
be performed before a next action 1s performed 1n accor-
dance with performing the modification, macros that have
been updated on the target system since initiating the script
file, a time of completion of performing the modification,
and i1dentities of load modules that were amended during
performance of the modification.

6. The computer-implemented method of claim 1, com-
prising:

determining, prior to performing the modification,

whether jobs are actively running on the target system
and/or users are using the target system;

in response to a determination that jobs are actively

running on the target system and/or users are using the
target system, outputting a first question to the first
destination, wherein the first question requests 1input as
to whether the active jobs and/or the active user use of
the target system should be terminated to allow the
modification to be performed;

in response to a determination that jobs are not actively

running on the target system and/or users are not using
the target system, performing the modification;
determining, prior to performing an initial program load
(IPL) of the program indicated in the instances of
information, whether jobs are actively running on the
target system and/or users are using the target system;
in response to a determination that jobs are actively
running on the target system and/or users are using the

US 11,163,587 B2

23

target system, outputting a second question to the first
destination, wherein the second question requests mnput
as to whether the active jobs and/or the active user use

of the target system should be terminated to allow the
IPL to be performed; and

in response to a determination that jobs are not actively
running on the target system and/or users are not using
the target system, performing the IPL.
7. The computer-implemented method of claim 6, com-
prising:
receiving a first response corresponding to the first ques-
tion;
in response to the first response indicating that the active
jobs and/or the active user use of the target system
should be terminated to allow the modification to be
performed, terminating the active jobs and/or the active
user use of the target system and performing the
modification;
receiving a second response corresponding to the second
question; and
in response to the second response indicating that the
active jobs and/or the active user use of the target
system should be terminated to allow the IPL to be
performed, terminating the active jobs and/or the active
user use of the target system and performing the IPL.
8. A computer program product for outputting an intertace
that enables streamlined user-friendly 1nitiation/control of
modifications and/or initial program loading of a target
system, the computer program product comprising a com-
puter readable storage medium having program instructions
embodied therewith, the program instructions readable and/
or executable by a computer to cause the computer to:
output, by the computer, an interface to a first destination,
wherein the interface includes a feature configured to
accept user mput;
receive, by the computer, a first input from a user;
parse, by the computer, contents of the first input;
determine, by the computer, using the parsed contents of
the first input, whether the first mput includes the
following instances of information: a type of modifi-
cation that 1s to be performed, a program that 1s to be
incorporated 1n the performing of the modification, and
a target system on which the modification 1s to be
performed;
in response to a determination that the first input does not
include one or more of the instances of information,
output, by the computer, a request for the instance(s) of
information not included 1n the first input; and
in response to a determination that the first input includes
the 1nstances of information, perform, by the computer,
a process, the process mcluding:
correlating the instances of information to a script file
that 1s pre-associated with the program indicated 1n
the instances of information;
performing the modification in accordance with the
instances of information of the first input by initiat-
ing running of the script file;
collecting status information detailing the modification
being performed; and
outputting the status information to the first destination.
9. The computer program product of claim 8, wherein the
interface 1s configured to be visually output on a web
browser, wherein the feature of the interface 1s a chat
window, the program instructions readable and/or execut-
able by the computer to cause the computer to: prior to
outputting the status information, translate, by the computer,

10

15

20

25

30

35

40

45

50

55

60

65

24

the status information to chat window dialogue that corre-
sponds to the contents of the status information.

10. The computer program product of claim 8, wherein
the type of modification that 1s to be performed 1s a modi-
fication selected from the group consisting of: mstalling an
update that 1s associated with an error that was previously
detected on the target system, and uninstalling an update that
1s associated with an error that was previously detected on
the target system.

11. The computer program product of claim 8, wherein the
type of modification that 1s to be performed 1s a modification
selected from the group consisting of: updating a state of the
program 1indicated in the instances of mformation, and
reverting a state of the program indicated 1n the istances of
information.

12. The computer program product of claim 8, wherein
the collected status mformation includes one or more types
of information selected from the group consisting of: a date
and time at which the program that is to be incorporated 1n
performance of the modification was previously received,
maintenance operations that are scheduled to be performed
before a next action 1s performed in accordance with per-
forming the modification, macros that have been updated on
the target system since initiating the script file, a time of
completion of performing the modification, and 1dentities of
load modules that were amended during performance of the
modification.

13. The computer program product of claim 8, the pro-
gram 1nstructions readable and/or executable by the com-
puter to cause the computer to:

determine, by the computer, prior to performing the

modification, whether jobs are actively running on the
target system and/or users are using the target system;
in response to a determination that jobs are actively
running on the target system and/or users are using the
target system, output, by the computer, a first question
to the first destination, wherein the first question
requests mput as to whether the active jobs and/or the
active user use of the target system should be termi-
nated to allow the modification to be performed;
in response to a determination that jobs are not actively
running on the target system and/or users are not using
the target system, perform, by the computer, the modi-
fication;

determine, by the computer, prior to performing an initial

program load (IPL) of the program indicated in the
instances ol information, whether jobs are actively
running on the target system and/or users are using the
target system;

in response to a determination that jobs are actively

running on the target system and/or users are using the
target system, output, by the computer, a second ques-
tion to the first destination, wherein the second question
requests mput as to whether the active jobs and/or the
active user use of the target system should be termi-
nated to allow the IPL to be performed; and

in response to a determination that jobs are not actively

running on the target system and/or users are not using
the target system, perform, by the computer, the IPL.

14. The computer program product of claim 13, the
program 1nstructions readable and/or executable by the
computer to cause the computer to:

receive, by the computer, a first response corresponding to

the first question;

in response to the first response 1indicating that the active

jobs and/or the active user use of the target system
should be terminated to allow the modification to be

US 11,163,587 B2

25

performed, terminate, by the computer, the active jobs
and/or the active user use of the target system and
performing the modification;
receive, by the computer, a second response correspond-
ing to the second question; and
in response to the second response indicating that the
active jobs and/or the active user use of the target
system should be terminated to allow the IPL to be
performed, terminate, by the computer, the active jobs
and/or the active user use of the target system and
performing the IPL.
15. A system, comprising:
a processor; and
logic itegrated with the processor, executable by the
processor, or mtegrated with and executable by the
processor, the logic being configured to:
output an interface to a first destination, wheremn the
interface includes a feature configured to accept user
input;
receive a lirst mput from a user;
parse contents of the first iput;
determine, using the parsed contents of the first input,
whether the first input includes the following instances
of mformation: a type of modification that i1s to be
performed, a program that 1s to be incorporated in the
performing of the modification, and a target system on
which the modification 1s to be performed;
in response to a determination that the first input does not
include one or more of the instances of information,
output a request for the mstance(s) of information not
included in the first iput; and
in response to a determination that the first input includes
the istances of information, perform a process, the
process including:
correlating the instances of information to a script file
that 1s pre-associated with the program indicated 1n
the instances of information;
performing the modification in accordance with the
instances of information of the first input by 1nitiat-
ing running of the script file;
collecting status information detailing the modification
being performed; and
outputting the status information to the first destination.
16. The system of claim 15, wherein the interface 1is
configured to be visually output on a web browser, wherein
the feature of the interface i1s a chat window, and the logic
being configured to: prior to outputting the status informa-
tion, translate the status information to chat window dia-
logue that corresponds to the contents of the status infor-
mation.
17. The system of claim 15, wherein the type of modifi-
cation that 1s to be performed 1s a modification selected from

10

15

20

25

30

35

40

45

50

26

the group consisting of: installing an update that 1s associ-
ated with an error that was previously detected on the target
system, and uninstalling an update that 1s associated with an
error that was previously detected on the target system.

18. The system of claim 15, wherein the type of modifi-
cation that 1s to be performed 1s a modification selected from
the group consisting of: updating a state of the program
indicated in the instances of information, and reverting a
state of the program indicated 1n the instances of informa-
tion.

19. The system of claim 15, wherein the collected status
information includes one or more types of information
selected from the group consisting of: a date and time at
which the program that 1s to be incorporated in performance
of the modification was previously received, maintenance
operations that are scheduled to be performed before a next
action 1s performed in accordance with performing the
modification, macros that have been updated on the target
system since mitiating the script file, a time of completion of
performing the modification, and 1dentities of load modules
that were amended during performance of the modification.

20. The system of claim 15, the logic being configured to:

determine, prior to performing the modification, whether

jobs are actively runming on the target system and/or
users are using the target system;

in response to a determination that jobs are actively

running on the target system and/or users are using the
target system, output a first question to the first desti-
nation, wherein the first question requests input as to
whether the active jobs and/or the active user use of the
target system should be terminated to allow the modi-
fication to be performed;

in response to a determination that jobs are not actively

running on the target system and/or users are not using
the target system, perform the modification;
determine, prior to performing an initial program load
(IPL) of the program indicated in the instances of
information, whether jobs are actively running on the
target system and/or users are using the target system;
in response to a determination that jobs are actively
running on the target system and/or users are using the
target system, outputting a second question to the first
destination, wherein the second question requests input
as to whether the active jobs and/or the active user use

of the target system should be terminated to allow the
IPL to be performed; and

in response to a determination that jobs are not actively
running on the target system and/or users are not using
the target system, performing the IPL.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

