12 United States Patent

Joshi et al.

US0111467383B2

US 11,146,788 B2
Oct. 12, 2021

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(60)

(51)

(52)

(58)

GROUPING PALETTE BYPASS BINS FOR
VIDEO CODING

Applicant: QUALCOMM Incorporated, San
Diego, CA (US)

Inventors: Rajan Laxman Joshi, San Diego, CA

(US); Vadim Seregin, San Diego, CA
(US); Wei Pu, Pittsburgh, PA (US);
Feng Zou, San Diego, CA (US); Marta
Karczewicz, San Diego, CA (US)

Assignee: QUALCOMM Incorporated, San

Diego, CA (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 926 days.

Notice:

Appl. No.: 15/177,201

Filed: Jun. 8, 2016

Prior Publication Data

US 2016/0373745 Al Dec. 22, 2016

Related U.S. Application Data

Provisional application No. 62/175,137, filed on Jun.
12, 2015.

Int. Cl.

HO4N 19/119 (2014.01)

HO4N 19/186 (2014.01)
(Continued)

U.S. CL

CPC HO4N 19/119 (2014.11); HO4N 19/13
(2014.11); HO4N 19/159 (2014.11);
(Continued)

Field of Classification Search

None

See application file for complete search history.

N

(56) References Cited
U.S. PATENT DOCUMENTS
6,748,116 Bl 6/2004 Yue
7,733,245 B2 6/2010 Spencer
(Continued)
FOREIGN PATENT DOCUMENTS
CA 2795620 Al 10/2011
CN 101217668 A 7/2008
(Continued)

OTHER PUBLICATTIONS

International Search Report and Written Opinion from International
Application No. PCT/US2016/036572, dated Sep. 6, 2016, 14 pp.

(Continued)

Primary Examiner — Cliflord Hilaire

(74) Attorney, Agent, or Firm — Shumaker & Sietlert,
P.A.

(57) ABSTRACT

An example method of coding video data includes coding,
from a coded video bitstream, a syntax element that indi-
cates whether a transpose process 1s applied to palette
indices of a palette for a current block of video data;
decoding, from the coded video bitstream and at a position
in the coded video bitstream that 1s after the syntax element
that indicates whether the transpose process 1s applied to
palette indices of the palette for the current block of video
data, one or more syntax elements related to delta quanti-
zation parameter (QP) and/or chroma QP ofisets for the
current block of video data; and decoding the current block
of video data based on the palette for the current block of
video data and the one or more syntax elements related to
delta QP and/or chroma QP oflsets for the current block of
video data.

24 Claims, 7 Drawing Sheets

e

ENTRY
INDEX

VALUE

1

VALUE A

2

VALUEB

3

VALUEC

L/

RASTER

¥~ SCAN
240
N RUN=2 RUN=1 RUN=2
w
266
253"11122333 1 2 3 -
z?n111111333"'* 1 3 4\2\55
AT 1T 3212 | | | 268
2212121233l z
2l2lzlzl2l3t3l3
slalalslal3lalz SNAKE
333333J33 f"scAH
RUN=2 RUN=1 RUN=5_
EE-\I !]
268~y 1 2 3 "
o 1 y
[] . I
! RUN =9
- TT T

RUN =5 ‘,

US 11,146,788 B2
Page 2

(51) Int. CL
HO4N 19/91 (2014.01)
HO4N 19/176 (2014.01)
HO4N 19/70 (2014.01)
HO4N 19/13 (2014.01)
HO4N 19/159 (2014.01)
HO4N 19/184 (2014.01)
(52) U.S. CL
CPC HO4N 19/176 (2014.11); HO4N 19/184
(2014.11); HO4N 19/186 (2014.11); HOIN
19/70 (2014.11); HO4N 19/91 (2014.11)
(56) References Cited

U.S. PATENT DOCUMENTS

9,538,172 B2 1/2017 Chien et al.
2008/0246637 Al 10/2008 Chen et al.
2010/0214577 Al 8/2010 Owen
2011/0280306 Al 11/2011 Zheludkov et al.
2011/0317704 A1 12/2011 Brown et al.
2012/0082244 Al 4/2012 Chen et al.
2012/0163452 Al 6/2012 Horowitz
2012/0177107 Al 7/2012 Fu et al.
2012/0230417 Al 9/2012 Rojals et al.
2012/0294353 Al 11/2012 Fu et al.
2013/0266060 Al 10/2013 Budagavi
2013/0272389 Al 10/2013 Sze et al.
2014/0185665 Al 7/2014 Pu et al.
2014/0192861 Al 7/2014 Chuang et al.
2014/0301474 Al 10/2014 Guo et al.
2014/0301475 Al 10/2014 Guo et al.
2015/0016501 Al 1/2015 Guo et al.
2015/0098513 Al 4/2015 Fu et al.
2015/0256857 Al 9/2015 Joshi et al.
2017/0374372 Al* 12/2017 Liu ...cooovvvivvnnnnnnn, HO4N 19/186

FOREIGN PATENT DOCUMENTS

CN 104104951 A 10/2014
JP 2018514142 A 5/2018
TW [353181 B 11/2011
TW 1355204 B 12/2011
WO 2012045269 Al 4/2012
WO 2013154939 A] 10/2013
WO 2014084109 Al 6/2014
WO 2015006724 A3 3/2015
WO WO-2016123388 Al * 82016 ... HO4N 19/176

OTHER PUBLICATIONS

Joshi, et al., “Comment on Signalling the Palette Transpose Flag
After Last Palette Run Type Flag (JCTVC-U0090)”, JCT-VC Meet-
ing; Jun. 19-26, 2015; Warsaw, PL; (Joint Collaborative Team on
Video Coding of ISO! IEC JTC1/SC29NVGI11 and ITU-T SG.16);
URL:HTTP:/WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/, No. JCTVC-

U0133,Jun. 15, 2015, XP030117576, 4 pp.

Joshi, et al., “HEVC Screen Content Coding: Draft 1,” JCT-VC
Meeting; Jun. 30-Jul. 9, 2014; Sapporo, JP; (Joint collaborative
Team on Video Coding of ISO/IEC JTC1/SC291WG11 and ITU-T
SG.16); URL: HTTP:/WFTP3.1TU.INT/AV-ARCH/JCTVC-
SITE/, no. JCTVC-R1005-v2, Aug. 23, 2014, XP030116694, pp.
1-70, 361 pp.

Joshi, et al., “HEVC Screen Content Coding Draft Text 37, JCT-VC
Meeting; Feb. 10-18, 2015, Geneva, CH; (Joint Collaborative Team
on Video Coding of ISO/IEC JTCI/SC29NVGI11 and ITU-T
SG.16); URL: HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-
SITE/, no. JCTVC-T1005, Feb. 22, 2015, XP030117412, 335 pp.
Joshi, et al., “HEVC Screen Content Coding Draft Text 47, JCT-VC
Meeting; Jun. 19-26, 2015; Warsaw, PL; (Joint Collaborative Team
on Video Coding of ISO/IEC JTC1/SC29/WGI11 and ITU-T
SG.16); URL: HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-
SITE/ ,No. JCTVC-U1005-v2, Sep. 5, 2015, XP030117647, 636 pp.

Sole, et al., “Non-CE6: Delta QP Signalling for Palette”, JCT-VC
Meeting;, Oct. 17-24, 2014, Strasbourg; FR; (Joint Collaborative
Team on Video Coding of ISO/IEC JTC1/SC29/WGI11 and I'TU-T
SG.16); URL: HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-
SITE/, No. JCTVC-S0043-v5, Oct. 22, 2014, XP030116772, 3 pp.
Ye, et al.,“CEl-Related: Palette Mode Context and Codeword
Simplification”, JCT-VC Meeting; Jun. 19-26, 2015, Warsaw, PL;
(Joint Collaborative Team on Video Coding of ISO/IEC JTC1/SC29/
WGI11 and ITU-T SG.16); URL: HTTP:/WFTP3.ITU.INT/AV-
ARCH/ICTVC-SITE/, No. JCTVC-U0090, Jun. 10, 2015,
XP030117516, 6 pp.

Sullivan et al., “Meeting report of the 21st meeting of the Joint
Collaborative Team on Video Coding (JCT-VC), Warsaw, PL, Jun.
19-26, 20157, 21. JCT-VC Meeting; Jun. 19-26, 2015, Warsaw, PL;
(Joint Collaborative Team on Video Coding of ISO/IEC JTC1/SC29/
WGI11 and ITU-T SG.16); JCTVC-U1000, Dec. 1, 2015, 127 pp.
Karczewicz et al., “Palette Mode for Screen Content Coding”, 13th
JCT-VC Meetmg, Apr. 18-26, 2013, Incheon, KR, Apr. 18 through
23, 2013, (Joint Collaborative Team on Video Coding of ISO/IEC
JTCL1/SC29/WGI11 and ITU-T SG.16), JCTVC-M0323, Apr. 8,

2013, 5 pp.

Karczewicz et al., “Palette Mode for Screen Content Coding”, 13th
JCT-VC Meetmg, Apr. 18-26, 2013, Incheon, KR, Apr. 18 through
23, 2013, (Joint Collaborative Team on Video Coding of ISO/IEC
JTC1/SC29/WGI11 and ITU-T SG.16), JCTVC-M0323_rl, Apr. 17,

2013, 6 pp.

Karczewicz et al., “Palette Mode for Screen Content Coding™, 13th
JCT-VC Meeting, Apr. 18-26, 2013, Incheon, KR, (Joint Collab-
orative Team on Video Coding of ISO/IEC JTC1/SC29/WG11 and
[TU-T SG.16), JCTVC-V10323_12, Apr. 20, 2013, 12 pp.

Wang et al., “High Efficiency Video Coding (HEVC) Defect Report
27, 15th Meetmg, Oct. 23-Nov. 1, 2013, Geneva, CH ; (Joint
Collaborative Team on Video Codmg of ISO/IEC JTCL/
SC291WGI11 and ITU-T SG.16), JCTVC-01003_v2, Nov. 24,
2013, 311 pp.

Flynn et al., “High Efficiency Video Coding (HEVC) Range Exten-
sions text specification: Draft 77, 17th Meeting, Mar. 27-Apr. 4,
2014, Valencia, ES; (Joint Collaborative Team on Video Coding of
ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16), JCTVC-Q1005
v4, Apr. 10, 2014, 379 pp.

ITU-T 1- 265, Series H: Audiovisual and Multimedia Systems,
Infrastructure of audiovisual services—Coding of moving video,
Advanced video coding for generic audiovisual services, The Inter-
national Telecommunication Union. Apr. 2015, 634 pp.

Guo et al., “RCE4: Summary report of HEVC Range Extensions
Core Experiments 4 (RCE4) on palette coding for screen content™,
16th Meeting, Jan. 9 through 17, 2014, San Jose, CA, USA; Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16
WP 3 and ISO/IEC JTC 1/SC 29/WG 11, JCTVC-P0035, Jan. 9,
2014, 8 pp.

Response to First Written Opinion from corresponding PCT Appli-
cation Serial No. PCT/US2016/036572 filed on Apr. 10, 2017 (29

pages).

Second Written Opinion from corresponding PCT Application Serial
No. PCT/US2016/036572 dated May 9, 2017 (8 pages).
International Preliminary Report on Patentability from correspond-
ing PCT Application Serial No. PCT/US2016/036572 dated Sep. 7
2017 (26 pages).

Bross B., et al., “High Efliciency Video Coding (HEVC) Text
specification draft 10 (for FDIS & Last Call),” Joint Collaborative
Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11, Document JCTVC-L1003 v34, 12th
Meeting, Geneva, CH, Jan. 14-23, 2013, 310 pages.

Bross B., et al., “High Efliciency Video Coding (HEVC) Text
Specification Draft 67, JCTVC-H1003, Joint Collaborative Team on
Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/
SC29/WG11, 8th Meeting San Jose, CA, USA, Feb. 1-10, 2012, 259
pp. 34, 54-55, 74-75, 90-98,220-224, URL: http://witp3.itu.int/ AV-
ARCH/JCTVC-SITE/.

Bross B., et al., “High Efficiency Video Coding (HEVC) Text
Specification Draft 87, Jul. 11-20, 2012, 10. JCT-VC Meeting, 101
MPEG Meeting, Stockholm; (Joint Collaborative Team On Video
Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16); URL:

US 11,146,788 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

HTTP://WEFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/ No. JCTVC-

J1003_d7, XP0301 12947, pp. 197-201, section A 4.1 ,A.4.2, 260
Pages.

Bross, et al., “High efliciency video coding (HEVC) text specifi-
cation draft 6,” Joint Collaborative Team on Video Coding (JC'I-
VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 JCTVC-
H1003, 7th Meeting: Geneva, CH, Nov. 21-30, 2011, p. 259.
Bross, et al., “High Efficiency Video Coding (HEVC) Text Speci-
fication Draft 97, Joint Collaborative Team on Video Coding (JC'I-
VC) of ITU-T SG16 WP3 and ISO/IEC JTCL/SC29/WGL11, JCTVC-
K1003_v7, 11th Meeting: Shanghai, CN, Oct. 10-19, 2012, 290 pp.
Bross, et al., “Suggested bug-fixes for HEVC text specification draft
6,” Document JCTVC-0030, Joint Collaborative Team on Video
Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/
WGI11, 9th Meeting: Geneva, CH, 27 Apr.-May 7, 2012, 270 pages.
Bross, et al., “WD4: Working Draft 4 of High-Efficiency Video
Coding,” JCTVC-F803 d2, (JCT-VC) of ITU-T SG16 WP3 and
ISO/TIEC JTC1/SC29/WG11 Joint Collaborative Team on Video
Coding, 6th Meeting, Torino, IT, Jul. 14-22, 2011, 226 pp.

Bross, et al., “WD5: Working Draft 5 of High-Efficiency Video
Coding,” JCTVC-G1103_d2, (JCT-VC) of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11 Joint Collaborative Team on Video
Coding, 7th Meeting, Geneva, Switzerland (Nov. 2011), 214 pages.
Chang, “A Novel Pipeline Architecture for H.264/AVC CABAC
Decoder”, IEEE Asia Pacific Conference on Circuits and Systems,
APCCAS, Nov. 30, 2008-Dec. 3, 2008, pp. 308-311.

Chien, et al., “Last position coding for CABAC,” JCTVC-G704, 7th
Meeting: Geneva, Nov. 21-30, 2011, 4 pages.

Chien, W-J1, etal., “Intra mode coding for INTRANxN", 9. JCT-VC
Meeting; 100. Mpeg Meeting; Apr. 27, 2012 -Jul. 5, 2012; Geneva;
(Joint Collaborative Team on Video Coding of ISO/IEC JTC1/SC29/
WGI11 and ITU-T SG.16) URL: HTTP:/WFTP3.ITU.INT/AV-
ARCH/JCTVC-SITE/ No. JCTVC-10302, Apr. 17, 2012 (Apr. 17,
2012), XP0301120635, abstract section 1. “Introduction’, section 2.2
“Bypass grouping for INTRA NxN”.

Chuang T-D., etal., “Non-CEl: Codeword reordering for last
significant_coefl’ X and last_significant coefl y”, 7. JCT-VC Meet-
ing; 98. MPEG Meeting; Nov. 21, 2011-Nov. 30, 2011; Geneva;
(Joint Collaborative Team On Mideo Coding of Iso/Iec JTC1/SC29/
WGI1 and ITU-TSG.16); URL: HTTP://WFTP3.1TU.INT/AV-
ARCH/JCTVC-SITE/, No. JCTVC-G201, Nov. 7, 2011 (Nov. 7,
2011), XP0O30110185.

Fu C-M., et al., “CEl3: Sample Adaptive Offset with LCU-
Independent Decoding,” Joint Collaborative Team on Video Coding
(JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WGL1,
5th Meeting: Geneva, CH, Mar. 16-23, 2011, Document: JCTVC-
E049, 6 pages.

Fu C-M., et al., “Non-CEl: Bug-fix of offset coding in SAO
interleaving mode™, 9. JCT-VC Meeting; 100. MPEG Meeting; Apr.
27, 2012-Jul. 5, 2012, Geneva, (Joint Collaborative Team On Video
Coding of ISO/IEC JTC1/SC29/WGI11 and ITU-TSG.16), URL:
HTTP://WFTP3.1TU.INT/AV Arch/Jctvc-Site/, No. JCTVC-10168,
Apr. 16, 2012 (Apr. 16, 2012), XP030111931.

Huang, et al., “BoG report on integrated text of SAO adoptions on
top of JCTVC-10030,” Document: JCTVC-10602, Joint Collabora-
tive Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, 9th Meeting: Geneva, CH, 27 Apr.-
May 7, 2012, pp. 1-2.

ITU-T H.264, Series H: Audiovisual and Multimedia Systems,
Infrastructure of Audiovisual Services—Coding of Moving Video,
Advanced Video Coding for Generic Audiovisual Services, The
International Telecommunication Union, Jun. 2011, 674 Pages.
ITU-T H.265, Series H: Audiovisual and Multimedia Systems,
Infrastructure of Audiovisual Services—Coding of Moving Video,

High Efficiency Video Coding, The International Telecommunica-
tion Union, Apr. 30, 2013, 317 Pages (pp. 227-228,231, 237-241,

250-251, 276-278), Retrieved from the Internet: https:/www.itu.
int/rec/dologin_pub.asp? ang-e&1d-H.265-201304-S1PDF-E&type-
items.

Joshi R., et al., “HEVC Screen Content Coding Draft Text 17, 18.
JCT-VC Meeting; Jun. 30, 2014-Sep. 7, 2014 Sapporo; (Joint
Collaborative Team On Video Coding of ISO/IEC JTC1/SC29/
WGI11 and ITU-T SG.16); URL: http://phenix.itsudparis.eu/jct/doc_
end_user/current document.php?1d=9471 No. JCTVC-R1005-v3,
Aug. 9, 2014 Aug. 9, 2014), XP030116693, 360 pages.

Kim, I-K., et al., “Grouping of bypass bins for last position coding
of transform coetflicients”, 7. JCT-VC Meeting; 98. MPEG Meeting;
Nov. 21, 2011-Nov. 30, 2011; Geneva, (Joint Collaborative Team
On Video Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16);
URL: HTTP://WFITP3 ITU.INT/AV-ARCH/JCTVC-SITE/No. JCTVC-
3554, Nov. 8, 2011 (Nov. 8, 2011), XP030110538, the whole
document.

Maani E., et al., “SAO Type Coding Sumplification (JCTVC-10246
version 3),” 9. JCT-VC meeting; 100. MPEG meeting; Apr. 27,
2012-Jul. 5, 2012; Geneva; (Joint Collaborative Team on Video
Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T SG.16), Apr. 28,
2012 (Apr. 28, 2012), pp. 1-4, XP055077671.

Maani E., et al., “SAQO Type Coding Simplification (JCTVC-10246
version 3 -CD)”, 9. JCT-VC meeting; 100. MPEG meeting; Apr. 27,
2012-Jul. 5, 2012; Geneva; (Joint Collaborative Team on Video
Coding of ISO/IEC JTC1/SC29/WG11 and ITU-T SG. 16), Apr. 28,
2012 (Apr. 28, 201), pp. 1-3, XP055077673.

Maani, et al., “SAO Type Coding Simplification,” Document:
JCTVC-10246, Jomnt Collaborative Team on Video Coding (JC'T-
VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 9th
Meeting: Geneva, CH, Apr. 27-May 7, 2012, pp. 1-4.

Sole J., et al., “AhG6: Bypass bins grouping in SAO”, 10. JCT-VC
Meeting; 101. MPEG Meeting; Nov. 7, 2012 -Jul. 20, 2012;
Stockholm; (Joint Collaborative Team On Video Coding of ISO/IEC
JTC1/SC29/WGI11 and ITU-T SG.16); URL: HTTP://WFTP3.ITU.
INT/AV-ARCH/JCTVC-SITE/ No. JCTVC-J0054, Jun. 26, 2012
(Jun. 26, 2012), XP030112416, the whole document.

Sole J., et al., “Non-CE6: Delta QP signalling for palette,” JCTVC-
S0043-r2, Joint Collaborative Team on Video Coding (JCT-VC) of
[TU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 19th
Meeting: Strasbourg, FR, Oct. 17-24, 2014, URL: http://phenix.
itsudparis.ew/jct/doc_end user/current document.php?1d=9489, 3 pages.
Sze V., et al., “High Throughput CABAC Entropy Coding In
HEVC”, IEEE Transactions On Circuits And Systems For Video
Technology, IEEE Service Center, Piscataway, NJ, US, vol. 22, No.
12, Dec. 1, 2012 (Dec. 1, 2012), pp. 1778-1791, XP011487151,
ISSN: 1051-8215, DOI: 10.1109/TCSVT.2012.2221526.

Sze, V., et al., “Parallel Context Processing of Coeflicient Level”, 6.
JCT-VC MEETING;97. MPEG Meeting Jul. 14, 2011-Jul. 22, 2011;
Torino; (Joint Collaborative Team On Video Coding of ISO/IEC
JTC1/SC29/WGI11 and ITU-T SG.16);URL: HTTP://WFTP3.ITU.
INT/AV-ARCH/JCTVC-SITE/, No. JCTVC-F130, Jul. 22, 2011
(Jul. 22, 2011), XP030009153.

Taiwan Search Report—TW105118449—TIPO—dated Dec. 31,
20109.

Wiegand T., et al., “WD3: Working Draft 3 of High-Efliciency
Video Coding”, JCTVC-E603 d8, Joint Collaborative Team on
Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/
SC29/WG11, XP030009014, Document JCTVC-E603, 5th Meet-
ing, Geneva, CH, Mar. 16-23, 2011, 16 Pages.

Wiegand, T., et al., “WD2: Working Draft 2 of High-Efficiency
Video Coding”, 20110128, No. JCTVC-D503, Jan. 28, 2011 (Jan.
28, 2011), XP002679642, Retrieved from the Internet: URL: http://
witp3.1tu.int/av-arch/jctve-site/2011_01_D Daegw/ [retrieved on Jul.
11, 2012], 153 pp.

Wiegand T., et al.,“WD1: Working Draft 1 of High-Efliciency Video
Coding”, JCTVC-C403, Joint Collaborative Team an Video Coding
(JCT-VC), of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WGl1,
3rd Meeting: Guangzhou, CN, Oct. 7-15, 2010, 137 pp.

* cited by examiner

U.S. Patent Oct. 12, 2021 Sheet 1 of 7 US 11,146,788 B2

10

/

SOURCE DEVICE DESTINATION DEVICE
12 14

VIDEO SOURCE DISPLAY DEVICE
18 32

VIDEO VIDEO
ENCODER DECODER

20 30

OUTPUT
INTERFACE
22

INPUT INTERFACE
28

FIG. 1

9Ll
d344N49

JANLOId LINA

US 11,146,788 B2

NY3IH1SlIg 4300040 ~ ONISSID0ONd
NOLLOIa3¥d

“VALNI

Vil

1INN W31 ocl
LINN

ONISS300ud

oLl NOILOIddd

8Ll 801

Sheet 2 of 7

ONISS300¥dd

AdOYLINZ ISHIANI NHOISNVHL L N\,

LINN LINN LINN e SCETLN
ONIAODNI NOLLVZILNVND

4SAadANI

ccl

LINM ONIAOONH
a4svda-41131vd

ll

SLNIJNITd XVLNAS

Oct. 12, 2021

— 201 _
— T i
907 g
= LINN NS oa e LINN ONISSIO0Nd
NOLLOIa3¥d
m NOILVZILNVNDO M OJENYY L
- _
. 02
) ¥3IA0ONI O3dIA v.1Va O3diA
-

US 11,146,788 B2

Sheet 3 of 7

Oct. 12, 2021

U.S. Patent

O3dIA
d3d024a

29t
y344n89
JANLOId
d3a0o3a

0¢
43a004d O4dIA

09l
LINN
-ERNE

¢ Old

991
LINN
ONISS300dd
NOILOId3dd
“VALNI

9l
LINM _
NOILVSN3adINOD
NOILOW

g9l
LINN ONIGOO3a
d3svd
-411371vd

4%
LINN ONISS300ud
NOILOIAdddd

9g1
1INN

ONISS300dd
NHO4ASNVYL
4SHFANI

vSl
LINN
NOILVZILNVYND
J3SHJANI

oSt

1INN
ONIAOD40a
AdOd1NH

6Vl
AJONIN

OddIA
d4dOON4

US 11,146,788 B2

Sheet 4 of 7

Oct. 12, 2021

U.S. Patent

o]
r

vic

961
VALNI

08l
1vd

00¢
d4LNI

¥ Oid

U.S. Patent Oct. 12, 2021 Sheet 5 of 7 US 11,146,788 B2

244 \

ENTRY I
INDEX VALUE l
[t

RASTER
¥ SCAN
240
\‘ RUN=2 RUN=1 RUN =2
s EEEREE] . R
A 1[1]3]3]3 HEERREEN -

G EE] 268
2|2|2]2[2]3[3]3

2(2]2/2]2/3]3|3

RUN=2 RUN=1 RUN=5

266
~
268~ L1 (2] 13] | |
AL LIl] |#

’
#
#
’
§

RUN=S

A
LI

RUN=5'",:

FIG. §

U.S. Patent Oct. 12, 2021 Sheet 6 of 7 US 11,146,788 B2

DECODE, FROM A CODED VIDEO BITSTREAM AND USING 602
BYPASS MODE, A GROUP OF SYNTAX ELEMENTS FOR A
PALETTE FOR A CURRENT BLOCK OF VIDEO DATA

DECODE, USING CONTEXT ADAPTIVE BINARY ARITHMETIC 604
CODING (CABAC) WITH A CONTEXT AND AT POSITION IN THE
CODED VIDEO BITSTREAM THAT IS AFTER THE GROUP OF
SYNTAX ELEMENTS, A SYNTAX ELEMENT THAT INDICATES
WHETHER A TRANSPOSE PROCESS IS APPLIED TO PALETTE
INDICES OF THE PALETTE FOR THE CURRENT BLOCK OF
VIDEO DATA

DECODE, USING CABAC WITH A CONTEXT AND AT POSITION | 606
IN THE CODED VIDEO BITSTREAM THAT IS AFTER THE
SYNTAX ELEMENT THAT INDICATES WHETHER THE
TRANSPOSE PROCESS IS APPLIED TO PALETTE INDICES OF
THE PALETTE FOR THE CURRENT BLOCK OF VIDEO DATA,
ONE OR MORE SYNTAX ELEMENTS RELATED TO DELTA
QUANTIZATION PARAMETER (QP) AND/OR CHROMA QP
OFFSETS FOR THE CURRENT BLOCK OF VIDEO DATA

GENERATE THE PALETTE FOR THE CURRENT BLOCK OF 608
VIDEO DATA BASED ON THE GROUP OF SYNTAX ELEMENTS
AND THE SYNTAX ELEMENT THAT INDICATES WHETHER A
TRANSPOSE PROCESS IS APPLIED TO PALETTE INDICES OF
THE PALETTE FOR THE CURRENT BLOCK OF VIDEO DATA

DECODE THE CURRENT BLOCK OF VIDEO DATA BASED ON 610
THE PALETTE AND THE ONE OR MORE SYNTAX ELEMENTS
RELATED TO DELTA QUANTIZATION PARAMETER (QP) AND/
OR CHROMA QP OFFSETS FOR THE CURRENT BLOCK OF
VIDEO DATA

FIG. 6

U.S. Patent Oct. 12, 2021 Sheet 7 of 7 US 11,146,788 B2

ENCODE, IN A CODED VIDEO BITSTREAM AND USING BYPASS | ~702
MODE, A GROUP OF SYNTAX ELEMENTS FOR A PALETTE FOR

A CURRENT BLOCK OF VIDEO DATA

ENCODE, USING CONTEXT ADAPTIVE BINARY ARITHMETIC 704
CODING (CABAC) WITH A CONTEXT AND AT POSITION IN THE
CODED VIDEO BITSTREAM THAT IS AFTER THE GROUP OF
SYNTAX ELEMENTS, A SYNTAX ELEMENT THAT INDICATES
WHETHER A TRANSPOSE PROCESS IS APPLIED TO PALETTE
INDICES OF THE PALETTE FOR THE CURRENT BLOCK OF
VIDEO DATA

ENCODE, USING CABAC WITH A CONTEXT AND AT POSITION | 706
IN THE CODED VIDEO BITSTREAM THAT IS AFTER THE
SYNTAX ELEMENT THAT INDICATES WHETHER THE
TRANSPOSE PROCESS IS APPLIED TO PALETTE INDICES OF
THE PALETTE FOR THE CURRENT BLOCK OF VIDEO DATA,
ONE OR MORE SYNTAX ELEMENTS RELATED TO DELTA
QUANTIZATION PARAMETER (QP) AND/OR CHROMA QP
OFFSETS FOR THE CURRENT BLOCK OF VIDEO DATA

FIG. 7

US 11,146,788 B2

1

GROUPING PALETTE BYPASS BINS FOR
VIDEO CODING

This application claims the benefit of U.S. Provisional
Application No. 62/175,137 filed Jun. 12, 2015, the entire
content of which 1s incorporated herein by reference.

TECHNICAL FIELD

This disclosure relates to video encoding and decoding.

BACKGROUND

Digital video capabilities can be incorporated into a wide
range of devices, including digital televisions, digital direct
broadcast systems, wireless broadcast systems, personal
digital assistants (PDAs), laptop or desktop computers,
tablet computers, e-book readers, digital cameras, digital
recording devices, digital media players, video gaming
devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferenc-
ing devices, video streaming devices, and the like. Digital

video devices implement video compression techniques,
such as those described 1n the standards defined by MPEG-2,

MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10,
Advanced Video Coding (AVC), ITU-T-H.265, the High
Eficiency Video Coding (HEVC) standard, and extensions
of such standards. The video devices may transmit, receive,
encode, decode, and/or store digital video information more
ciiciently by implementing such video compression tech-
niques.

Video compression techniques perform spatial (intra-
picture) prediction and/or temporal (inter-picture) prediction
to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (1.e.,
a video frame or a portion of a video frame) may be
partitioned 1nto video blocks. Video blocks 1in an intra-coded
(I) slice of a picture are encoded using spatial prediction
with respect to reference samples in neighboring blocks in
the same picture. Video blocks 1n an inter-coded (P or B)
slice of a picture may use spatial prediction with respect to
reference samples 1n neighboring blocks in the same picture
or temporal prediction with respect to reference samples 1n
other reference pictures. Pictures may be referred to as
frames, and reference pictures may be referred to a reference
frames.

Spatial or temporal prediction results 1n a predictive block
for a block to be coded. Residual data represents pixel
differences between the original block to be coded and the
predictive block. An inter-coded block 1s encoded according,
to a motion vector that points to a block of reference samples
forming the predictive block, and the residual data indicates
the difference between the coded block and the predictive
block. An itra-coded block 1s encoded according to an
intra-coding mode and the residual data. For further com-
pression, the residual data may be transformed from the
pixel domain to a transform domain, resulting 1n residual
coellicients, which then may be quantized. The quantized
coellicients, 1nitially arranged in a two-dimensional array,
may be scanned in order to produce a one-dimensional
vector of coeflicients, and entropy coding may be applied to
achieve even more compression.

SUMMARY

In one example, a method of decoding video data includes
decoding, from a coded video bitstream, a syntax element

10

15

20

25

30

35

40

45

50

55

60

65

2

that indicates whether a transpose process 1s applied to
palette indices of a palette for a current block of video data;
decoding, from the coded video bitstream and at a position
in the coded video bitstream that 1s after the syntax element
that indicates whether the transpose process 1s applied to
palette indices of the palette for the current block of video
data, one or more syntax elements related to delta quanti-
zation parameter (QP) and/or chroma QP oflsets for the
current block of video data; and decoding the current block
of video data based on the palette for the current block of
video data and the one or more syntax elements related to
delta QP and/or chroma QP oflsets for the current block of
video data.

In another example, a method of encoding video data
includes encoding, 1n a coded video bitstream, a syntax
clement that indicates whether a transpose process 1s applied
to palette 1indices of a palette for a current block of video
data; encoding, in the coded wvideo bitstream and at a
position 1n the coded video bitstream that 1s after the syntax
clement that indicates whether the transpose process 1is
applied to palette indices of the palette for the current block
of video data, one or more syntax elements related to delta
QP and/or chroma QP offsets for the current block of video
data; and encoding the current block of video data based on
the palette for the current block of video data and the one or
more syntax elements related to delta QP and/or chroma QP
oflsets for the current block of video data.

In another example, a device for coding video data
includes a memory configured to store video data and one or
more processors. In this example, the one or more proces-
sors are configured to: code, 1n a coded video bitstream, a
syntax element that indicates whether a transpose process 1s
applied to palette indices of a palette for a current block of
video data; code, in the coded video bitstream and at a
position 1n the coded video bitstream that 1s after the syntax
clement that indicates whether the transpose process 1is
applied to palette indices of the palette for the current block
of video data, one or more syntax elements related to delta
QP and/or chroma QP offsets for the current block of video
data; and code the current block of video data based on the
palette for the current block of video data and the one or
more syntax elements related to delta QP and/or chroma QP
oflsets for the current block of video data

In another example, a device for coding video data
includes means for coding, 1 a coded video bitstream, a
syntax element that indicates whether a transpose process 1s
applied to palette indices of a palette for a current block of
video data; means for coding, 1n the coded video bitstream
and at a position 1n the coded video bitstream that 1s after the
syntax element that indicates whether the transpose process
1s applied to palette indices of the palette for the current
block of video data, one or more syntax elements related to
delta QP and/or chroma QP oflsets for the current block of
video data; and means for coding the current block of video
data based on the palette for the current block of video data
and the one or more syntax elements related to delta QP
and/or chroma QP oflsets for the current block of video data.

In another example, a computer-readable storage medium
stores 1nstructions that, when executed, cause one or more
processors of a video coding device to: code, mn a coded
video bitstream, a syntax element that indicates whether a
transpose process 1s applied to palette indices of a palette for
a current block of video data; code, in the coded wvideo
bitstream and at a position 1n the coded video bitstream that
1s aiter the syntax element that indicates whether the trans-
pose process 1s applied to palette indices of the palette for
the current block of video data, one or more syntax elements

US 11,146,788 B2

3

related to delta QP and/or chroma QP offsets for the current
block of video data; and code the current block of video data
based on the palette for the current block of video data and
the one or more syntax elements related to delta QP and/or
chroma QP offsets for the current block of video data.

In another example, a computer-readable storage medium
stores at least a portion of a coded video bitstream that, when
processed by a video decoding device, cause one or more
processors ol the video decoding device to: determine
whether a transpose process 1s applied to palette indices of
a palette for a current block of video data; and decode the
current block of the video data based on the palette for the
current block of video data and a delta QP and one or more
chroma QP oflsets for the current block of video data,
wherein one or more syntax elements related to the delta QP
and one or more syntax elements related to the one or more
chroma QP offsets for the current block of video data are
located at a position 1n the coded video bitstream that 1s after
a syntax element that indicates whether the transpose pro-
cess 1s applied to palette indices of the palette for the current
block of video data.

The details of one or more examples are set forth 1n the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a block diagram illustrating an example video
coding system that may utilize the techniques described 1n
this disclosure.

FIG. 2 1s a block diagram illustrating an example video
encoder that may implement the techniques described in this
disclosure.

FIG. 3 1s a block diagram illustrating an example video
decoder that may implement the techniques described 1n this
disclosure.

FIG. 4 1s a conceptual diagram illustrating an example of
determining a palette for coding video data, consistent with
techniques of this disclosure.

FIG. 5 1s a conceptual diagram illustrating an example of
determining indices to a palette for a block of pixels,
consistent with techniques of this disclosure.

FIG. 6 1s a flowchart 1llustrating an example process for
decoding a block of video data using palette mode, 1n
accordance with one or more techniques of this disclosure.

FIG. 7 1s a flowchart 1llustrating an example process for
encoding a block of video data using palette mode, 1n
accordance with one or more techniques of this disclosure.

DETAILED DESCRIPTION

This disclosure describes techniques for video coding and
compression. In particular, this disclosure describes tech-
niques for palette-based coding of video data. For instance,
this disclosure describes techniques to support coding of
video content, especially screen content with palette coding,
such as techniques for improved palette index binarization,
and techniques for signaling for palette coding.

In traditional video coding, images are assumed to be
continuous-tone and spatially smooth. Based on these
assumptions, various tools have been developed such as
block-based transtform, filtering, etc., and such tools have
shown good performance for natural content videos.

However, in applications like remote desktop, collabora-
tive work and wireless display, computer generated screen
content may be the dominant content to be compressed. This

10

15

20

25

30

35

40

45

50

55

60

65

4

type ol content tends to have discrete-tone and feature sharp
lines, and high contrast object boundaries. The assumption
of continuous-tone and smoothness may no longer app, y and
thus traditional video coding techniques may not be eflicient
ways to compress.

Based on the characteristics of screen content video,
palette coding i1s introduced to improve screen content
coding (SCC) efliciency as proposed 1 Guo et al., “Palette
Mode for Screen Content Coding,” Joint Collaboratwe Team

on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/8C 29/WG 11, 13th Meeting: Incheon, KR,
18-26 Apr. 2013, Document: JCTVC-MO0323, available at
http://phenix.it-sudparis.eu/jct/doc_end_user/documents/
13_Incheon/wgl1/JCTVC-M0323-v3.zip, (hereinafter
“JCTVC-M0323”). Specifically, palette coding introduces a
lookup table, 1.e., a color palette, to compress repetitive pixel
values based on the fact that in SCC, colors within one CU
usually concentrate on a few peak values. Given a palette for
a specific CU, pixels within the CU are mapped to palette
indices. In the second stage, an effective copy from leit run
length method 1s proposed to etlectively compress the index
block’s repetitive pattern. In some examples, the palette
index coding mode may be generalized to both copy from
left and copy from above with run length coding. Note that,
in some examples, no transformation process may be
invoked for palette coding to avoid blurring sharp edges
which can have a huge negative impact on visual quality of
screen contents.

As discussed above, this disclosure describes palette-
based coding, which may be particularly suitable for screen
generated content coding. For example, assume a particular
area of video data has a relatively small number of colors.
A video coder (a video encoder or video decoder) may code
a so-called “palette” as a table of colors for representing the
video data of the particular area (e.g., a given block). Each
pixel may be associated with an entry 1n the palette that
represents the color of the pixel. For example, the video
coder may code an index that maps the pixel value to the
appropriate value in the palette.

In the example above, a video encoder may encode a
block of video data by determining a palette for the block,
locating an entry in the palette to represent the color value
of each pixel, and encoding the palette with index values for
the pixels mapping the pixel value to the palette. A video
decoder may obtain, from an encoded bitstream, a palette for
a block, as well as index values for the pixels of the block.
The video decoder may map the index values of the pixels
to entries of the palette to reconstruct the luma and chroma
pixel values of the block.

The example above i1s intended to provide a general
description of palette-based coding. In various examples, the
techniques described in this disclosure may include tech-
niques for various combinations of one or more of signaling
palette-based coding modes, transmitting palettes, predict-
ing palettes, deriving palettes, and transmitting palette-based
coding maps and other syntax elements. Such techniques
may improve video coding efliciency, e.g., requiring fewer
bits to represent screen generated content.

For example, according to aspects of this disclosure, a
video coder (video encoder or video decoder) may code one
or more syntax elements for each block that 1s coded using
a palette coding mode. For example, the video coder may
code a palette_mode_tlag to indicate whether a palette-based
coding mode 1s to be used for coding a particular block. In
this example, a video encoder may encode a palette_mod-
¢_flag with a value that 1s equal to one to specily that the
block currently being encoded (*current block™) 1s encoded

US 11,146,788 B2

S

using a palette mode. In this case, a video decoder may
obtain the palette_mode flag from the encoded bitstream
and apply the palette-based coding mode to decode the
block. In instances in which there 1s more than one palette-
based coding mode available (e.g., there 1s more than one
palette-based technique available for coding), one or more
syntax elements may indicate one of a plurality of different
palette modes for the block.

In some 1instances, the video encoder may encode a
palette_mode_flag with a value that i1s equal to zero to
specily that the current block 1s not encoded using a palette
mode. In such instances, the video encoder may encode the
block using any of a variety of inter-predictive, intra-
predictive, or other coding modes. When the palette_mod-
¢_flag 1s equal to zero, the video encoder may encode
additional information (e.g., syntax elements) to indicate the
specific mode that 1s used for encoding the respective block.
In some examples, as described below, the mode may be an
HEVC coding mode. The use of the palette_mode_flag 1s
described for purposes of example. In other examples, other
syntax elements such as multi-bit codes may be used to
indicate whether the palette-based coding mode 1s to be used
for one or more blocks, or to indicate which of a plurality of
modes are to be used.

When a palette-based coding mode 1s used, a palette may
be transmitted by an encoder in the encoded video data
bitstream for use by a decoder. A palette may be transmitted
for each block or may be shared among a number of blocks
in a picture or slice. The palette may refer to a number of
pixel values that are dominant and/or representative for the
block, including, e.g., a luma value and two chroma values.

In some examples, a syntax element, such as a transpose
flag, may be coded to indicate whether a transpose process
1s applied to palette indices of a current palette. It transpose
flag 1s zero, the palette indices for samples may be coded 1n
a horizontal traverse scan. Similarly, if the transpose flag 1s
one, the palette indices for samples may be coded 1 a
vertical traverse scan. This can be thought of as decoding the
index values assuming horizontal traverse scan and then
transposing the block (rows to columns).

10

15

20

25

30

35

40

6

Aspects of this disclosure include techniques for coding
the palette. For example, according to aspects of this dis-
closure, a video encoder may encode one or more syntax
clements to define a palette. Some example syntax elements
which a video encoder may encode to define a current palette
for a current block of video data include, but are not limited
to, a syntax eclement that indicates whether a transpose
process 1s applied to palette indices of the current palette
(e.g., palette_transpose_1ilag) (1.e., whether the, one or more
syntax elements related to delta quantization parameter (QP)
(e.g., cu_qgp_delta_palette_abs, cu_qgp_delta_palette_sign
flag, cu_chroma_qp_palette_oflset_flag, and/or cu_chro-
ma_qp_palette_oflset_1dx), one or more syntax eclements
related to chroma QP offsets for the current block of video
data, one or more syntax elements that indicate a number of
zeros that precede a non-zero entry 1n an array that indicates
whether entries from a predictor palette are reused 1n the
current palette (e.g., palette_predictor_run), one or more
syntax elements that indicate a number of entries in the
current palette that are explicitly signalled (e.g., num_sig-
nalled_palette_entries), one or more syntax elements that
indicate a value of a component 1n a palette entry in the
current palette (e.g., palette_entry), one or more syntax
clements that indicate whether the current block of video
data 1includes at least one escape coded sample (e.g., palet-
te_escape_val_present_flag), one or more syntax elements
that indicate a number of entries 1n the current palette that
are explicitly signalled or inferred (e.g., num_palette_indi-
ces_idc), and one or more syntax elements that indicate
indices 1n an array of current palette entries (e.g., palette_1in-
dex_idc). For example, when operating 1n accordance with

the HEVC Screen Content Coding (SCC) Drait 3 (Joshi et
al., “High Filiciency Video Coding (HEVC) Screen Content
Coding: Drait 3,” Joint Collaborative Team on Video Cod-
ing (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11, 20th Meeting: Geneva, CH, 10 Feb.-17 Feb.
20135, Document: JCTVC-T10035, available at http://phenix.
int-evey.ir/jct/doc_end_user/documents/20_Geneva/wgll/
JCTVC-T1005-v2.z1p, (herematiter “HEVC SCC Dratt 37),
a video coder may signal the syntax elements listed 1n
palette_coding() syntax table (section 7.3.8.8 of HEVC
SCC Dratt 3), reproduced below as Table 1.

TABLE 1

Descriptor

palette_coding(x0, y0, nCbS) {
palettePredictionFinished = O
NumPredictedPaletteEntries = O
for(1 = 0; 1 < PredictorPaletteSize & & !palettePredictionFinished &é&
NumPredictedPaletteEntries < palette_max_size; i++) {

palette predictor_ run

ue(v)

if(palette_predictor run !'= 1) {
1f{ palette_predictor run > 1)
1 += palette_predictor_run - 1
PalettePredictorEntryReuseFlag|[1 | = 1
NumPredictedPaletteEntries++

} else

palettePredictionFinished = 1

h

1f{ NumPredictedPaletteEntries < palette_max_size)

num_signalled_palette_entries

ue(v)

numComps = (ChromaArraylype==0)71 :3
for(cldx = 0; cldx < numComps; cldx++)
for(1 = 0; 1 < num_signalled_palette_entries; 1++)

palette_entry

ae(v)

if{ CurrentPaletteSize 1= 0)

palette_escape_val_present flag

ae(v)

if(palette_escape_val_present_flag) {
if(cu_qp_delta_enabled_flag && !IsCuQpDeltaCoded) {

cu_qp_delta_palette_abs

ae(v)

0)

US 11,146,788 B2

7
TABLE 1-continued

1f(cu_qp_delta_palette_abs)
cu_qp_delta_palette_sign flag
h
if(cu_chroma_qp_offset_enabled_flag && IsCuChromaQpOffsetCoded) {
cu_chroma_qgp_palette_ofiset flag
1f(cu_chroma_qp_offset flag && chroma_qp_oflset list_len_minusl >

cu_chroma_qp_palette_oflset_1dx

h
h

if(MaxPaletteIndex > 0) {
palette_transpose_flag
num_palette indices_idc
for(i=0; i < NumPaletteIndices; i++) {
palette_index_idc
PaletteIndexIdc| 1 | = palette_index_idc

h

last_palette_run_type_flag
h
CurrNumlIndices = O
PaletteScanPos = 0
while(PaletteScanPos < nCbS * nCbS) {
xC = x0 + travScan|[PaletteScanPos |[O]
yC = yO + travScan| PaletteScanPos |[1]
if(PaletteScanPos > 0) {
xcPrev = x0 + travScan| PaletteScanPos — 1][O]
ycPrev = yO + travScan| PaletteScanPos — 1][1]
h
PaletteRun = nCbS * nCbS - PaletteScanPos — 1
if(MaxPaletteIndex > 0 && CurrNumlIndices < NumPaletteIndices) {
1f(PaletteScanPos >= nCbS && palette_run_type_flag| xcPrev |[ycPrev |
= COPY_ABOVE_MODE && PaletteScanPos < nCbS * nCbS - 1) {
palette_run_type_flag] xC |[yC]

h

readIndex = 0
1f(palette_run_type flag] xC |[yC | = = COPY_INDEX MODE &&
AdjustedMaxPaletteIndex > 0)
readIndex =1
maxPaletteRun = nCbS* nCbS - PaletteScanPos — 1
1I{ AdjustedMaxPaletteIndex > 0 &&
((CurrNumIndices + readIndex) < NumPaletteIndices | |
palette_run_type_flag| xC][yC] != last_palette_run_type_flag))
if(maxPaletteRun > 0) {
palette_run_msb_id_plusl
1f(palette_run_msb_i1d_plusl > 1)
palette_run_refinement_bits

f
CurrNumlIndices + = readIndex
!
runPos = 0

while (runPos < = paletteRun) {
xR = x0 + travScan| PaletteScanPos || O |
vR = yO + travScan| PaletteScanPos |[1]
if(palette_run_type_flag[xC][yC] = = COPY_INDEX_MODE) {
PaletteSampleMode[xR][yR | = COPY_INDEX_MODE
PaletteIndexMap[xR][yR | = CurrPaletteIndex

I else {

PaletteSampleMode[xR][yR] = COPY_ABOVE_MODE
PaletteIndexMap[xR][vR | = PaletteIndexMap[xR || yR = 1]

h

runPos++
PaletteScanPos++

h
h

if(palette_escape_val_present_flag) {
sPos = 0
while(sPos < nCbS * nCbS) {
XC = X0 + travScan| sPos |[O]
yC = vy0 + travdcan| sPos |[1]

Descriptor

ae(v)

ae(v)

ae(v)

ae(v)
ae(v)

ae(v)

ae(v)

ae(v)

ae(v)

ae(v)

US 11,146,788 B2

9
TABLE 1-continued

if(PaletteIndexMap[xC][yC] = = MaxPaletteIndex) {
for(cldx = 0; cldx < numComps; cldx++)

i cldx ==0 | |
(XR% 2==0 && yR % 2 = = 0 && ChromaArrayType = =
(xR % 2 = =0 && ChromaArraylype ==2) | |
ChromaArrayType = = 3) {

palette_escape_val

PaletteEscapeVal[cldx |[xC = palette_escape_val

Il yC |
t

1

sPos++

y
)
h

In addition to providing an order in which the syntax
clements are included 1n a bitstream, Table 1 also provides

10

Descriptor

1)1

ae(v)

When encoding a bin using CABAC with a context, a
video encoder may load the context from storage into

a descriptor for each of the syntax elements that indicates an 20 memory. In some examples, a video encoder may have
encoding type for each syntax element. As one example, a limited memory resources available and/or 1t may be time
video encoder may encode syntax elements with the ue(v) consuming to load a context into memory. As such, it may
descriptor using unsigned integer 0-th order Exp-Golomb- be desirable for a video encoder to minimize the amount of
codes with the left bit first. As another example, a video times contexts are loaded into memory. In some examples,
encoder may encode syntax elements with the ae(v) descrip- 25 grouping bypass bins together may reduce the amount of
tor using context-adaptive arithmetic entropy-codes (CA- times contexts are loaded into memory, which may increase
BAC). When bins of a syntax element are encoded use CABAC throughput.
CABAC, a video encoder may encode one or more of the In Ye et al.,, “CEl-related: Palette Mode Context and
bins using a context and/or may encode one or more of the Codeword Simplification,” Joint Collaborative Team on
bins without a context. Encoding a bin using CABAC 30 Video Coding (JCT-VC)of ITU-T SG 16 WP 3 and ISO/IEC
without a context may be referred to as bypass mode. HEVC JTC 1/8C 29/WG 11, 21st Meeting: Warsaw, P L, 19-26 Jun.
SCC Drait 3 further provides a table (Table 9-47 of the 2015, Document: JCTVC-UO0090, available at http://
HEVC SCC Dratt 3), partially reproduced below as Table 2, phenix.it-sudparis.eu/ict/doc_end_user/documents/21_War-
that indicates which bins of the syntax elements listed in saw/wgll/JCTVC-U0090-v1.z1ip (hereinafter, “JCTVC-
Table 1 are coded with contexts (i.e., as indicated by context 35 U00907), 1t was proposed that the palette_transpose_flag be
“0” and context “1”) and which bins are coded in bypass signalled after the last_palette_run_type_1lag. Specifically,
mode. JCTVC-UO090 proposes modifying the palette coding()

TABLE 2

binldx

Syntax element 0 1 2 3 4 >= 3
palette predictor run bypass bypass bypass bypass bypass bypass
num__signalled_ palette_ entries bypass bypass bypass bypass bypass bypass
p&lﬂttﬂ_ﬂlltl"y DYPass DY pass DYPass DY Pass DYPpass DYPpass
palette_ escape_ val_present_ flag DYPAass na na na na na
cu_ qp_delta_ palette abs 0 1 1 1 1 bypass
cu_qp__delta_ palette_ sign_ flag bypass na na na na na
cu_ chroma_ qp_ palette_ offset_ flag 0 na na na na na
cu_ chroma_ gp_ palette_ offset 1dx 0 0 0 0 0 na
palette_ transpose_ flag 0 na na na na na
num__palette__indices__idc bypass bypass bypass bypass bypass bypass
last palette run_ type_flag 0 na na na na na
palette_ run_ type flag 0 na Na na na na
palette index_ 1dc bypass bypass bypass bypass bypass bypass
palette_run__msb_ 1d plusl (clause 9.3.4.2.8)
palette_ run_ refinement_ bits bypass bypass bypass bypass bypass bypass
palette_ escape val bypass bypass bypass bypass bypass bypass

tries,

A comparison of Table 1 and Table 2 shows that HEVC

num_signalled_palette_en-

palette_entry, and palette_escape_val_present_flag)

are bypass-coded. Similarly, syntax elements after palette_t-
ranspose_tlag and before last palette_run_type flag (.e.,
num_palette_indices_idc and palette_index_idc) are also
bypass coded.

65

syntax table as shown below 1n Table 3 (where text 1n 1talics
SCC Draft 3 prescribes that all the syntax elements before ¢ 1S nserted and text in [[double bracket italics]] 1s deleted).

cu_qp_delta_palette_abs (1.e.,

TABLE 3

if(MaxPaletteIndex > 0) {
[[paletic_transpose_flag]]

num_palette_indices_idc

[[ae(v)]]

ae(v)

US 11,146,788 B2

11
TABLE 3-continued

for(i=0; i < NumPaletteIndices; i++) {

palette_index_idc ae(v)
PaletteIndexIdc[1 | = palette_index_idc
h
last_palette_rmn_type_flag ae(v)
palette_transpose_flag ae(v)

h

However, in some examples, the arrangement of syntax 10

clements proposed by JCTVC-U0090 may not be optimal.
For instance, when syntax elements related to delta QP (1.e.,
cu_qgp_delta_palette_abs and cu_qp_delta_palette_sign_
flag) and chroma QP oflset (1.e., cu_chroma_qp_palette_ofl-
set_flag and cu_chroma_qp_palette_oflset_1dx) are present,
the arrangement of syntax elements proposed by JCTVC-
U0090 may not result 1n grouping of any additional bypass
bins.

In accordance with one or more techniques of this dis-

closure, a video encoder may encode the syntax elements

15

12

used to define a current palette such that syntax elements that
are encoded using bypass mode are consecutively encoded.
For instance, as opposed to encoding one or more syntax
clements related to delta quantization parameter (QP) and/or
chroma QP offsets for a current block of video data before
a syntax element that indicates whether a transpose process
1s applied to palette indices of a palette for the current block
of video data, a video encoder may encode the one or more
syntax elements related to delta QP and/or chroma QP
oflsets for the current block of video data after the syntax
clement that indicates whether a transpose process 1s applied
to the palette indices of the palette for the current block of
video data.

One example of how the palette coding() syntax table
may be modified to move the signalling of the syntax
clements related to delta QP and chroma QP oflsets after the
palette_transpose_1ilag 1s shown below 1n Table 4 (where text
1in 1talics 1s 1mnserted and text 1n [[double bracket 1talics]] 1s
deleted relative to a previous version of Table 4 1n HEVC

SCC Dratt 3).

TABLE 4

Descriptor

palette_coding(x0, y0, nCbS) {
palettePredictionFinished = 0
NumPredictedPaletteEntries = O
for(1 = 0; 1 < PredictorPaletteSize & & !palettePredictionFinished &&
NumPredictedPaletteEntries < palette_max_size; i++) {

palette_predictor_run

ue(v)

if(palette_predictor run !'= 1) {
1f(palette_predictor run > 1)
1 += palette_predictor_run - 1
PalettePredictorEntryReuseFlag[1 | = 1
NumPredictedPaletteEntries++

} else

palettePredictionFinished = 1

h

1f{ NumPredictedPaletteEntries < palette_ max_size)

num_signalled_palette entries

ue(v)

numComps = { ChromaArraylype ==0)71 : 3
for(cldx = 0; cldx < numComps; cldx++)
for(1 = 0; 1 < num_signalled palette entries; 1++)

palette_entry

ae(v)

1f(CurrentPaletteSize != 0)

palette_escape_val_present flag

ae(v)

[[ifl palette_escape_val_present flag) {]]
[[ifl cu_qp_delta_enabled flag & & IsCuQpDeltaCoded) {]]

[[cu_gp_delta_paletie_abs]]

[[ae(v)]]

[[if{ cu_qgp_delta_palette_abs)]]

[[cu_qgp_delta_palette_sign_flag]]

[[31]

[[ae(v)]]

[[if{ cu_chroma_gp_offset_enabled flag && IsCuChromaQpOffsetCoded) {]]

[[cu_chroma_qp_paletie_offset_flag]]

[[ae(v)]]

[[if{ cu_chroma_qgp_offset_flag & & chroma_qgp_offset_list_len_minusl > 0)]]

[[cu_chroma_qp_paletie_offset_idx]|]

[[31]
[[31]

[[ae(v)]]

if(MaxPalettelndex > 0) {

[[palette_transpose_flag]]
num_palette_indices_idc

[[ae(v)]]

ae(v)

for(i=0; i < NumPaletteIndices; i++) {

palette_index_idc

ae(v)

PaletteIndexIdc| 1 | = palette_index_idc

h

last_palette_run_type_flag
palette_transpose_flag

h

ae(v)
ae(v)

ifl palette_escape_val_present_flag) {
ifl cu_qp_delta_enabled flag && !IsCuQpDeltaCoded) {

cu_qp_delta_palette_abs

ae(v)

ifl cu_qp_delta_paletie_abs)

cu_qgp_delta_palette_sign_flag

ae(v)

US 11,146,788 B2

13
TABLE 4-continued

ifl cu_chroma_qp_offset_enabled_flag && HsCuChromaQpOffsetCoded) {

cu_chroma_qp_palette_offset_flag

if{ cu_chroma_gp_ofiset_flag && chroma_gp_offset_list _len_minusl > 0)

cu_chroma_qp_palette_offset_idx
h
h
CurrNumlIndices = O
PaletteScanPos = O

By moving the one or more syntax elements related to

delta QP and/or chroma QP oflsets for the current block of 15

video data aiter the syntax element that indicates whether a
transpose process 1s applied to the palette indices of the
palette for the current block of video data, the video encoder
may group together (1.e., consecutively encode) a larger
number of syntax elements that are coded using bypass
mode. For example, by moving the one or more syntax
clements related to delta QP and/or chroma QP oflsets for
the current block of video data after the syntax element that
indicates whether a transpose process 1s applied to the
palette indices of the palette for the current block of video
data, the video encoder may group together one or more
syntax elements that indicate a number of entries in the
current palette that are explicitly signalled or inferred (e.g.,
num_palette_indices_idc) and one or more syntax elements
that entriesindices 1n an array of current palette entries (e.g.,
palette_index_1dc) with one or more syntax elements related
to chroma QP offsets for the current block of video data, one
or more syntax elements that indicate a number of zeros that
precede a non-zero entry in an array that indicates whether
entries from a predictor palette are reused in the current
palette (e.g., palette_predictor_run), one or more syntax
clements that indicate a number of entries 1n the current

20

25

30

35

14

Descriptor

ae(v)

ae(v)

palette that are explicitly signalled (e.g., num_signalled_pal-
ctte_entries), one or more syntax elements that indicate a
value of a component 1n a palette entry 1n the current palette

(e.g., palette_entry), and one or more syntax elements that
indicate whether the current block of video data includes at

least one escape coded sample (e.g., palette_escape_val_
present_flag). In this way, the techniques of this disclosure

may increase CABAC throughput, which may reduce the
time needed to encode video data using palette mode encod-
ing. For instance, by grouping together the bypass coded
syntax elements, a video coder may sequentially encode the
grouped syntax elements using without starting, stopping,
restarting, reloading, and resetting a CABAC coding engine

Table 4 1s only one example of how the syntax elements
may be arranged. In some examples, the syntax elements
related to delta QP and chroma QP offset may be moved
further down the syntax table. For example, the syntax
clements related to delta QP and chroma QP offset could be
placed just before the component values for escape samples
(1.e., palette_escape_val). One example of how the syntax
clements related to delta QP and chroma QP offset could be
placed just before the component values for escape samples
1s shown below 1n Table 5 (where text in 1talics 1s inserted

and text 1n [[double bracket 1talics]| 1s deleted relative to
HEVC SCC Dratt 3).

TABL.

(L]

D

Descriptor

palette_coding(x0, y0, nCbS) {

palettePredictionFinished = O

NumPredictedPaletteEntries = 0O
for(1 = 0; 1 < PredictorPaletteS1ze & & !palettePredictionFinished &&
NumPredictedPaletteEntries < palette_max_size; i++) {
palette_predictor_run
if(palette_predictor run != 1) {
1f(palette_predictor run > 1)
1 += palette_predictor_run - 1
PalettePredictorEntryReuselFlag[1] =1
NumPredictedPaletteEntries++

} else

ue(v)

palettePredictionFinished = 1

h

1f{ NumPredictedPaletteEntries < palette_max_size)

num_signalled_palette entries

ue(v)

numComps = (ChromaArraylype ==0)71 : 3
for(cldx = 0; cldx < numComps; cldx++)
for(1 = 0; 1 < num_signalled_palette_entries; 1++)

palette_entry

1f{ CurrentPaletteSize != 0)
palette_escape val_ present_flag

ae(v)

ae(v)

[[ifl palette_escape_val_present flag) {]]
[[ifl cu_qp_delta_enabled flag && sCuQpDeltaCoded) {]]

[[cu_qgp_delta_palette_abs]]

[[ae(v)]]

[[if{ cu_qgp_delta_palette_abs)]]

[[cu_qgp_delta_paletie_sign_flag]]

[[31]

[[ae(v)]]

[[ifl cu_chroma_qp_offset_enabled_flag && HsCuChromaQpOffsetCoded) {]]

[[cu_chroma_qgp_palette_offset_flag]]

[[ae(v)]]

US 11,146,788 B2

15
TABLE 5-continued

[[if{ cu_chroma_gp_offset_flag && chroma_gqgp_offset_list_len_minusl > 0)]]
[[cu_chroma_qp_palette_offset_idx]]

[[1]]

[[}]
if(MaxPaletteIndex > 0) {

—patette—transpose—flagH

num_palette_indices_idc
for(i=0; i < NumPaletteIndices; i++) {
palette_index_idc
PaletteIndexIdc[1 | = palette_index_idc
h
last_palette_run_type_flag
palette_transpose_flag
h
CurrNumIndices = O
PaletteScanPos = 0
while(PaletteScanPos < nCbS * nCbS) {
xC = x0 + travScan| PaletteScanPos |[O]
yC = yO + travScan| PaletteScanPos |[1]
if(PaletteScanPos > 0) {
xcPrev = X0 + travScan| PaletteScanPos — 1 |[O]
ycPrev = yO + travScan| PaletteScanPos — 1 |[1]
h
PaletteRun = nCbS * nCbS - PaletteScanPos - 1
if(MaxPaletteIndex > 0 && CurrNumlIndices < NumPaletteIndices) {
1f(PaletteScanPos >= nCbS && palette_run_type flag] xcPrev |[ycPrev |
= COPY_ABOVE_MODE && PaletteScanPos < nCbS * nCbS - 1) {

palette_run_type_flag] xC |[yC]
h
readIndex = 0
1f(palette_run_type_flag| xC |[yC | = = COPY_INDEX_MODE &&
AdjustedMaxPaletteIndex > 0)
readIndex =1
maxPaletteRun = nCbS * nCbS - PaletteScanPos — 1
1f(AdjustedMaxPaletteIndex > 0 &&
((CurrNumlIndices + readIndex) < NumPaletteIndices | |
palette_run_type_flag| xC][yC] != last_palette run_type flag))
if(maxPaletteRun > 0) {
palette_run_msb_id_plusl
11 palette_run_msb_i1d_plusl > 1)
palette_run_refinement_bits

i
CurrNumlIndices + = readlndex
i
runPos = 0

while (runPos < = paletteRun) {
xR = x0 + travScan| PaletteScanPos |[O]
yR = yO + travScan| PaletteScanPos |[1]
if(palette_run_type_flag[xC][yC] = = COPY_INDEX_MODE) {
PaletteSampleMode[xR][yR] = COPY_INDEX_MODE
PaletteIndexMap[xR][yR | = CurrPaletteIndex
I else {
PaletteSampleMode[xR][yR | = COPY_ABOVE_MODE
PaletteIndexMap[xR][yR] = PaletteIndexMap[xR || yR = 1]
h
runPos++
PaletteScanPos++
h
h
if(palette_escape_val_present_flag) {
ifl cu_gp_delta_enabled flag && IsCuQpDeltaCoded) {

cu_qp_delta_palette_abs
ifl cu_qp_delta_palette_abs)

cu_qp_delta_palette_sign_flag
h

ifl cu_chroma_qp_offset_enabled_flag && HsCuChromaQpOffsetCoded) {
cu_chroma_qp_palette_offset_flag
if{ cu_chroma_gp_offset_flag && chroma_gp_offset_list_len_minusl > 0)
cu_chroma_qp_palette_offset_idx
h

sPos = 0

while(sPos < nCbS * nCbS) {
XC = X0 + travdean| sPos || O]
yC = yO + travdean| sPos |[1]

Descriptor

[[ae()]]

ae(v)

ae(v)

ae(v)
ae(v)

ae(v)

ae(v)

ae(v)

ae(v)

ae(v)

ae(v)

ae(v)

16

US 11,146,788 B2

17
TABLE 5-continued

if(PaletteIndexMap[xC][yC] = = MaxPalettelndex) {
for(cldx = 0; cldx < numComps; cldx++)
i cldx ==0 | |

18

Descriptor

(xR % 2==0 && yR % 2 = = 0 && ChromaArraylype==1) | |

(xR % 2 = =0 && ChromaArraylype ==2) | |
ChromaArrayType = = 3) {
palette_escape_val

PaletteEscapeVal[cldx][xC][vC] = palette_escape_val

!
i
sPos++

h
)
h

The techniques for palette-based coding of video data
may be used with one or more other coding techniques, such
as techniques for inter- or intra-predictive coding. For
example, as described 1n greater detail below, an encoder or
decoder, or combined encoder-decoder (codec), may be
configured to perform inter- and intra-predictive coding, as
well as palette-based coding.

In some examples, the palette-based coding techniques
may be configured for use with one or more video coding
standards. Some example video coding standards include,

but are not limited to, I'TU-T H.261, ISO/IEC MPEG-1
Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual, ITU-T
H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also
known as ISO/IEC MPEG-4 AVC), including its Scalable
Video Coding (SVC) and Multiview Video Coding (MVC)
extensions.

Recently, the design of a new video coding standard,
namely High-Efliciency Video Coding (HEVC), has been
finalized by the Joint Collaboration Team on Video Coding
(JCT-VC) of ITU-T Video Coding Experts Group (VCEG)
and ISO/IEC Motion Picture Experts Group (MPEG). A

copy of the finalized HEVC standard (1.e., ITU-T H.265,
Series H: AUDIOVISUAL AND MULTIMEDIA SYS-

TEMS Infrastructure of audiovisual services—Coding of

moving video, April, 2015) 1s available at https://www.1tu.
int/rec/T-REC-H.2635-201504-1/en, (heremnafter the “HEVC
Standard”.

A Range Extension to HEVC, namely HEVC Screen
Content Coding (SCC), 1s also being developed by the
JCT-VC. A recent drait of HEVC SCC (Joshi et al., “High
Eficiency Video Coding (HEVC) Screen Content Coding:
Drait 4,” Joint Collaborative Team on Video Coding (JCT-
VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG
11, 21st Meeting: Warsaw, P L, 19 Jun.-16 Jun. 2015, 1s
available from http://phenix.it-sudparis.cu/jct/doc_en-
d_user/documents/21_Warsaw/wgl1/JCTVC-U1003-
v2.71p, (heremnatter “HEVC SCC Drait 47).

With respect to the HEVC framework, as an example, the
palette-based coding techniques may be configured to be
used as a coding unit (CU) mode. In other examples, the
palette-based coding techniques may be configured to be

20

25

30

35

40

45

50

55

used as a prediction unit (PU) mode in the framework of 60

HEVC. Accordingly, all of the following disclosed processes
described 1n the context of a CU mode may, additionally or
alternatively, apply to PU. However, these HEVC-based
examples should not be considered a restriction or limitation
of the palette-based coding techniques described herein, as
such techniques may be applied to work independently or as
part of other existing or yet to be developed systems/

65

ae(v)

standards. In these cases, the unit for palette coding can be
square blocks, rectangular blocks, or even regions of non-
rectangular shape.

FIG. 1 1s a block diagram illustrating an example video
coding system 10 that may utilize the techniques of this
disclosure. As used herein, the term “video coder” refers
generically to both video encoders and video decoders. In
this disclosure, the terms “video coding” or “coding” may
refer generically to video encoding or video decoding. Video
encoder 20 and video decoder 30 of video coding system 10
represent examples of devices that may be configured to
perform techniques for palette-based video coding 1n accor-
dance with various examples described in this disclosure.
For example, video encoder 20 and video decoder 30 may be
configured to selectively code various blocks of video data,
such as CU’s or PU’s in HEVC coding, using either palette-
based coding or non-palette based coding. Non-palette based
coding modes may refer to various inter-predictive temporal
coding modes or intra-predictive spatial coding modes, such
as the various coding modes specified by the HEVC Stan-
dard.

As shown 1 FIG. 1, video coding system 10 includes a
source device 12 and a destination device 14. Source device
12 generates encoded video data. Accordingly, source device
12 may be referred to as a video encoding device or a video
encoding apparatus. Destination device 14 may decode the
encoded video data generated by source device 12. Accord-
ingly, destination device 14 may be referred to as a video
decoding device or a video decoding apparatus. Source
device 12 and destination device 14 may be examples of
video coding devices or video coding apparatuses.

Source device 12 and destination device 14 may comprise
a wide range of devices, including desktop computers,
mobile computing devices, notebook (e.g., laptop) comput-
ers, tablet computers, set-top boxes, telephone handsets such
as so-called “smart” phones, televisions, cameras, display
devices, digital media players, video gaming consoles, 1n-
car computers, or the like.

Destination device 14 may receive encoded video data
from source device 12 via a channel 16. Channel 16 may
comprise one or more media or devices capable of moving
the encoded video data from source device 12 to destination
device 14. In one example, channel 16 may comprise one or
more communication media that enable source device 12 to
transmit encoded video data directly to destination device 14
in real-time. In this example, source device 12 may modu-
late the encoded video data according to a communication
standard, such as a wireless communication protocol, and
may transmit the modulated video data to destination device
14. The one or more commumnication media may include

US 11,146,788 B2

19

wireless and/or wired communication media, such as a radio
frequency (RF) spectrum or one or more physical transmis-
s1on lines. The one or more communication media may form
part of a packet-based network, such as a local area network,
a wide-area network, or a global network (e.g., the Internet).
The one or more communication media may iclude routers,
switches, base stations, or other equipment that facilitate
communication from source device 12 to destination device
14.

In another example, channel 16 may include a storage
medium that stores encoded video data generated by source
device 12. In this example, destination device 14 may access
the storage medium via disk access or card access. The
storage medium may include a variety of locally-accessed
data storage media such as Blu-ray discs, DVDs, CD-
ROMs, flash memory, or other suitable digital storage media
for storing encoded video data.

In a further example, channel 16 may include a file server
or another intermediate storage device that stores encoded
video data generated by source device 12. In this example,
destination device 14 may access encoded video data stored
at the file server or other intermediate storage device via
streaming or download. The file server may be a type of
server capable of storing encoded video data and transmit-
ting the encoded wvideo data to destination device 14.
Example file servers include web servers (e.g., for a web-
site), file transier protocol (F'TP) servers, network attached
storage (NAS) devices, and local disk drives.

Destination device 14 may access the encoded video data
through a standard data connection, such as an Internet
connection. Example types of data connections may include
wireless channels (e.g., Wi-F1 connections), wired connec-
tions (e.g., DSL, cable modem, etc.), or combinations of
both that are suitable for accessing encoded video data
stored on a file server. The transmission of encoded video
data from the file server may be a streaming transmission, a
download transmission, or a combination of both.

The techniques of this disclosure are not limited to
wireless applications or settings. The techniques may be
applied to video coding 1n support of a variety of multimedia
applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmis-
s1ons, streaming video transmissions, €.g., via the Internet,
encoding of video data for storage on a data storage medium,
decoding of video data stored on a data storage medium, or
other applications. In some examples, video coding system
10 may be configured to support one-way or two-way video
transmission to support applications such as video stream-
ing, video playback, video broadcasting, and/or video tele-
phony.

FIG. 1 1s merely an example and the techniques of this
disclosure may apply to video coding settings (e.g., video
encoding or video decoding) that do not necessarily include
any data communication between the encoding and decod-
ing devices. In other examples, data 1s retrieved from a local
memory, streamed over a network, or the like. A video
encoding device may encode and store data to memory,
and/or a video decoding device may retrieve and decode
data from memory. In many examples, the encoding and
decoding 1s performed by devices that do not communicate
with one another, but simply encode data to memory and/or
retrieve and decode data from memory. Source device 12
and destination device 14 may comprise any of a wide range
of devices, including desktop computers, notebook (i.e.,
laptop) computers, tablet computers, set-top boxes, appli-
ances, telephone handsets such as so-called “smart™ phones,
so-called “smart” pads, televisions, cameras, display

10

15

20

25

30

35

40

45

50

55

60

65

20

devices, digital media players, video gaming consoles, video
streaming device, or the like. In some cases, source device
12 and destination device 14 may be equipped for wireless
communication.

Destination device 14 may receive the encoded video data
to be decoded via a link 16. Link 16 may comprise any type
of medium or device capable of moving the encoded video
data from source device 12 to destination device 14. In one
example, link 16 may comprise a communication medium to
enable source device 12 to transmit encoded video data
directly to destination device 14 1n real-time. The encoded
video data may be modulated according to a communication
standard, such as a wireless communication protocol, and
transmitted to destination device 14. The communication
medium may comprise any wireless or wired communica-
tion medium, such as a radio frequency (RF) spectrum or
one or more physical transmission lines. The communica-
tion medium may form part of a packet-based network, such
as a local area network, a wide-area network, or a global
network such as the Internet. The communication medium
may 1nclude routers, switches, base stations, or any other
equipment that may be useful to facilitate communication
from source device 12 to destination device 14.

Alternatively, encoded data may be output from output
interface 22 to a storage device 19. Similarly, encoded data
may be accessed from storage device 19 by input interface.
Storage device 19 may include any of a vaniety of distributed
or locally accessed data storage media such as a hard drive,
Blu-ray discs, DVDs, CD-ROMs, flash memory, volatile or
non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example,
storage device 19 may correspond to a file server or another
intermediate storage device that may hold the encoded video
generated by source device 12. Destination device 14 may
access stored video data from storage device 19 via stream-
ing or download. The file server may be any type of server
capable of storing encoded video data and transmitting that
encoded video data to the destination device 14. Example
file servers include a web server (e.g., for a website), an FTP
server, network attached storage (NAS) devices, or a local
disk drive. Destination device 14 may access the encoded
video data through any standard data connection, including
an Internet connection. This may include a wireless channel
(e.g., a Wi-F1 connection), a wired connection (e.g., DSL,
cable modem, etc.), or a combination of both that 1s suitable
for accessing encoded video data stored on a file server. The
transmission of encoded video data from storage device 19
may be a streaming transmission, a download transmission,
or a combination of both.

The techmiques of this disclosure are not necessarily
limited to wireless applications or settings. The techniques
may be applied to video coding 1n support of any of a variety
of multimedia applications, such as over-the-air television
broadcasts, cable television transmissions, satellite televi-
s1on transmissions, streaming video transmissions, €.g., via
the Internet, encoding of digital video for storage on a data
storage medium, decoding of digital video stored on a data
storage medium, or other applications. In some examples,
system 10 may be configured to support one-way or two-
way video transmission to support applications such as
video streaming, video playback, video broadcasting, and/or
video telephony.

In the example of FIG. 1, source device 12 includes a
video source 18, video encoder 20 and an output interface
22. In some cases, output interface 22 may include a
modulator/demodulator (modem) and/or a transmitter. In
source device 12, video source 18 may include a source such

US 11,146,788 B2

21

as a video capture device, e.g., a video camera, a video
archive containing previously captured video, a video feed
interface to receive video from a video content provider,
and/or a computer graphics system for generating computer
graphics data as the source video, or a combination of such
sources. As one example, iI video source 18 1s a video
camera, source device 12 and destination device 14 may
form so-called camera phones or video phones. However,
the techniques described 1n this disclosure may be applicable
to video coding 1n general, and may be applied to wireless
and/or wired applications.

The captured, pre-captured, or computer-generated video
may be encoded by video encoder 20. The encoded video
data may be transmitted directly to destination device 14 via
output interface 22 of source device 12. The encoded video
data may also (or alternatively) be stored onto storage device
19 for later access by destination device 14 or other devices,
for decoding and/or playback.

Destination device 14 includes an input interface 28, a
video decoder 30, and a display device 32. In some cases,
input interface 28 may include a receiver and/or a modem.
Input interface 28 of destination device 14 receives the
encoded video data over link 16. The encoded video data
communicated over link 16, or provided on storage device
19, may include a variety of syntax elements generated by
video encoder 20 for use by a video decoder, such as video
decoder 30, 1n decoding the video data. Such syntax ele-
ments may be included with the encoded video data trans-
mitted on a communication medium, stored on a storage
medium, or stored a file server.

Display device 32 may be integrated with, or external to,
destination device 14. In some examples, destination device
14 may include an integrated display device and also be
configured to interface with an external display device. In
other examples, destination device 14 may be a display
device. In general, display device 32 displays the decoded
video data to a user, and may comprise any of a variety of
display devices such as a liquid crystal display (LCD), a
plasma display, an organic light emitting diode (OLED)
display, or another type of display device.

Video encoder 20 and video decoder 30 may operate
according to a video compression standard, such as the
recently finalized HEVC standard (and various extensions
thereot presently under development). Alternatively, video
encoder 20 and video decoder 30 may operate according to
other proprietary or industry standards, such as the ITU-T
H.264 standard, alternatively referred to as MPEG-4, Part
10, Advanced Video Coding (AVC), or extensions of such
standards. The techmiques of this disclosure, however, are
not limited to any particular coding standard. Other
examples of video compression standards include VP8, and
VP9.

Although not shown i FIG. 1, 1n some aspects, video
encoder 20 and video decoder 30 may each be integrated
with an audio encoder and decoder, and may include appro-
priate MUX-DEMUX units, or other hardware and software,
to handle encoding of both audio and video 1n a common
data stream or separate data streams. If applicable, 1n some
examples, MUX-DEMUX units may conform to the ITU
H.223 multiplexer protocol, or other protocols such as the
user datagram protocol (UDP).

Video encoder 20 and video decoder 30 each may be
implemented as any of a variety of suitable encoder cir-
cuitry, such as one or more integrated circuits including
microprocessors, digital signal processors (DSPs), applica-
tion specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, soiftware, hardware,

10

15

20

25

30

35

40

45

50

55

60

65

22

firmware, or any combinations thereof. When the techniques
are 1mplemented partially in software, a device may store
instructions for the software in a suitable, non-transitory
computer-readable medium and execute the instructions 1n
hardware such as integrated circuitry using one or more
processors to perform the techniques of this disclosure. Each
of video encoder 20 and video decoder 30 may be included
in one or more encoders or decoders, either of which may be
integrated as part of a combined encoder/decoder (CODEC)
in a respective device.

As 1ntroduced above, the JCT-VC has recently finalized
development of the HEVC standard. The HEVC standard-
1zation eflorts were based on an evolving model of a video
coding device referred to as the HEVC Test Model (HM).
The HM presumes several additional capabilities of video
coding devices relative to existing devices according to, e.g.,
ITU-T H.264/AVC. For example, whereas H.264 provides
nine intra-prediction encoding modes, the HM may provide
as many as thirty-five intra-prediction encoding modes.

In HEVC and other video coding specifications, a video
sequence typically includes a series of pictures. Pictures
may also be referred to as “frames.” A picture may include
three sample arrays, denoted S,, S.,, and S.. S, 1s a
two-dimensional array (1.e., a block) of luma samples. S,
1s a two-dimensional array of Cb chrominance samples. S,
1s a two-dimensional array of Cr chrominance samples.
Chrominance samples may also be referred to herein as
“chroma” samples. In other instances, a picture may be
monochrome and may only include an array of luma
samples.

To generate an encoded representation of a picture, video
encoder 20 may generate a set of coding tree umts (CTUSs).
Each of the C'TUs may comprise a coding tree block of luma
samples, two corresponding coding tree blocks of chroma
samples, and syntax structures used to code the samples of
the coding tree blocks. In monochrome pictures or pictures
having three separate color planes, a C1'U may comprise a
single coding tree block and syntax structures used to code
the samples of the coding tree block. A coding tree block
may be an NxN block of samples. A CTU may also be
referred to as a “tree block” or a LCU. The CTUs of HEVC
may be broadly analogous to the macroblocks of other
standards, such as H.264/AVC. However, a CTU 1s not
necessarily limited to a particular size and may include one
or more coding units (CUs). A slice may include an integer
number of CTUs ordered consecutively in a raster scan
order.

To generate a coded CTU, video encoder 20 may recur-
sively perform quad-tree partitioming on the coding tree
blocks of a CTU to divide the coding tree blocks into coding
blocks, hence the name “coding tree units.” A coding block
may be an NxN block of samples. A CU may comprise a
coding block of luma samples and two corresponding coding
blocks of chroma samples of a picture that has a luma
sample array, a Cb sample array, and a Cr sample array, and
syntax structures used to code the samples of the coding
blocks. In monochrome pictures or pictures having three
separate color planes, a CU may comprise a single coding
block and syntax structures used to code the samples of the
coding block.

Video encoder 20 may partition a coding block of a CU
into one or more prediction blocks. A prediction block 1s a
rectangular (i.e., square or non-square) block of samples on
which the same prediction 1s applied. A prediction unit (PU)
of a CU may comprise a prediction block of luma samples,
two corresponding prediction blocks of chroma samples,
and syntax structures used to predict the prediction blocks.

US 11,146,788 B2

23

In monochrome pictures or pictures having three separate
color planes, a PU may comprise a single prediction block
and syntax structures used to predict the prediction block.

Video encoder 20 may generate predictive luma, Cb, and Cr
blocks for luma, Cb, and Cr prediction blocks of each PU of

the CU.

Video encoder 20 may use intra prediction or inter pre-
diction to generate the predictive blocks for a PU. If video
encoder 20 uses 1ntra prediction to generate the predictive
blocks of a PU, video encoder 20 may generate the predic-
tive blocks of the PU based on decoded samples of the
picture associated with the PU. If video encoder 20 uses
inter prediction to generate the predictive blocks of a PU,
video encoder 20 may generate the predictive blocks of the
PU based on decoded samples of one or more pictures other
than the picture associated with the PU.

After video encoder 20 generates predictive luma, Ch, and
Cr blocks for one or more PUs of a CU, video encoder 20
may generate a luma residual block for the CU. Each sample
in the CU’s luma residual block indicates a difference
between a luma sample 1n one of the CU’s predictive luma
blocks and a corresponding sample 1 the CU’s original
luma coding block. In addition, video encoder 20 may
generate a Ch residual block for the CU. Each sample 1n the
CU’s Cb residual block may indicate a difference between a
Cb sample 1n one of the CU’s predictive Cb blocks and a
corresponding sample 1n the CU’s original Cb coding block.
Video encoder 20 may also generate a Cr residual block for
the CU. Each sample 1n the CU’s Cr residual block may
indicate a diflerence between a Cr sample 1n one of the CU’s
predictive Cr blocks and a corresponding sample 1n the CU’s
original Cr coding block.

Furthermore, video encoder 20 may use quad-tree parti-
tioming to decompose the luma, Cb, and Cr residual blocks
of a CU into one or more luma, Cb, and Cr transtorm blocks.
A transform block 1s a rectangular (e.g., square or non-
square) block of samples on which the same transform 1s
applied. A transform unit (TU) of a CU may comprise a
transform block of luma samples, two corresponding trans-
form blocks of chroma samples, and syntax structures used
to transform the transform block samples. Thus, each TU of
a CU may be associated with a luma transform block, a Cb
transform block, and a Cr transform block. The luma trans-
form block associated with the TU may be a sub-block of the
CU’s luma residual block. The Cb transform block may be
a sub-block of the CU’s Cb residual block. The Cr transform
block may be a sub-block of the CU’s Cr residual block. In
monochrome pictures or pictures having three separate color
planes, a TU may comprise a single transiform block and
syntax structures used to transform the samples of the
transiform block.

Video encoder 20 may apply one or more transforms to a
luma transform block of a TU to generate a luma coethlicient
block for the TU. A coeflicient block may be a two-
dimensional array of transform coeflicients. A transiorm
coellicient may be a scalar quantity. Video encoder 20 may
apply one or more transforms to a Cb transform block of a
TU to generate a Cb coellicient block for the TU. Video
encoder 20 may apply one or more transforms to a Cr
transform block of a TU to generate a Cr coellicient block
for the TU.

After generating a coeflicient block (e.g., a luma coefli-
cient block, a Cb coellicient block or a Cr coethicient block),
video encoder 20 may quantize the coeflicient block. Quan-
tization generally refers to a process in which transform
coellicients are quantized to possibly reduce the amount of
data used to represent the transform coeflicients, providing

5

10

15

20

25

30

35

40

45

50

55

60

65

24

further compression. After video encoder 20 quantizes a
coeflicient block, video encoder 20 may entropy encode
syntax elements indicating the quantized transform coefl-
cients. For example, video encoder 20 may perform Con-
text-Adaptive Binary Arithmetic Coding (CABAC) on the
syntax elements indicating the quantized transform coefli-
cients.

Video encoder 20 may output a bitstream that includes a
sequence of bits that forms a representation of coded pic-
tures and associated data. The bitstream may comprise a
sequence of NAL units. A NAL unit 1s a syntax structure
containing an indication of the type of data 1n the NAL unait
and bytes containing that data in the form of a RBSP
interspersed as necessary with emulation prevention bits.
Each of the NAL umts includes a NAL unit header and
encapsulates a RBSP. The NAL unit header may include a
syntax element that indicates a NAL unit type code. The
NAL unit type code specified by the NAL unit header of a
NAL unit indicates the type of the NAL unit. A RBSP may
be a syntax structure containing an integer number of bytes
that 1s encapsulated within a NAL unit. In some instances,
an RBSP includes zero bits.

Different types of NAL units may encapsulate different
types of RBSPs. For example, a first type of NAL umt may
encapsulate an RBSP for a PPS, a second type of NAL unait
may encapsulate an RBSP for a coded slice, a third type of
NAL unit may encapsulate an RBSP for SEI messages, and
so on. NAL units that encapsulate RBSPs for video coding
data (as opposed to RBSPs for parameter sets and SFEI
messages) may be referred to as VCL NAL units.

Video decoder 30 may receive a bitstream generated by
video encoder 20. In addition, video decoder 30 may parse
the bitstream to obtain syntax elements from the bitstream.
Video decoder 30 may reconstruct the pictures of the video
data based at least 1n part on the syntax elements obtained
from the bitstream. The process to reconstruct the video data
may be generally reciprocal to the process performed by
video encoder 20. In addition, video decoder 30 may inverse
quantize coetlicient blocks associated with TUs of a current
CU. Video decoder 30 may perform inverse transforms on
the coethicient blocks to reconstruct transform blocks asso-
ciated with the TUs of the current CU. Video decoder 30
may reconstruct the coding blocks of the current CU by
adding the samples of the predictive blocks for PUs of the
current CU to corresponding samples of the transform
blocks of the TUs of the current CU. By reconstructing the
coding blocks for each CU of a picture, video decoder 30
may reconstruct the picture.

In some examples, video encoder 20 and video decoder 30
may be configured to perform palette-based coding. For
example, 1n palette based coding, rather than performing the
intra-predictive or 1nter-predictive coding techniques
described above, video encoder 20 and video decoder 30
may code a so-called palette as a table of color values for
representing the video data of the particular area (e.g., a
given block). Each pixel may be associated with an entry 1n
the palette that represents the color of the pixel, e.g., with a
luma (Y) value and chroma (Cb and Cr) values. For
example, video encoder 20 and video decoder 30 may code
an index that relates the pixel value to the appropriate value
in the palette.

In the example above, video encoder 20 may encode a
block of video data by determining a palette for the block,
locating an entry 1n the palette to represent the value of each
pixel, and encoding the palette with index values for the
pixels relating the pixel value to the palette. Video decoder
30 may obtain, from an encoded bitstream, a palette for a

US 11,146,788 B2

25

block, as well as index values for the pixels of the block.
Video decoder 30 may relate the index values of the pixels
to entries of the palette to reconstruct the pixel values of the
block.

Aspects of this disclosure are directed to palette deriva-
tion, which may occur at the encoder and at the decoder. As
one example, video encoder 20 may derive a palette for a
current block by deriving a histogram of the pixels in the
current block. In some examples, the histogram may be
expressed as H={(v_.f),1={0, 1, 2, . . . , M} } where M+1 is
the number of different pixel values in the current block, v,
1s pixel value, and 1, 1s the number of occurrence of v, (1.e.,
how many pixels in the current block have pixel value v)).
In such examples, the histogram generally represents a
number of times that a pixel value occurs in the current
block.

Video encoder 20 may initialize one or more variables
when deriving the histogram. As one example, video
encoder 20 may mitialize a palette index 1dx to 0, (1.e., set
1dx=0). As another example, video encoder 20 may 1nitialize
the palette P to be empty (1.e., P=0, set 1=0.).

Video encoder 20 may sort the histogram, e.g., 1n
descending order, such that pixels having more occurrences
are placed near the front of a list of values. For instance,
video encoder 20 may sort H according to the descending
order of f; and the ordered list may be expressed as H_={(u,,
£),i={0, 1,2, ..., M}, f=f_,}. In this example, the ordered
l1st includes the most frequently occurring pixel values at the
front (top) of the list and the least frequently occurring pixel
values at the back (bottom) of the list.

Video encoder 20 may copy one or more entries from the
histogram 1nto the palette. As one example, video encoder
20 may insert the entry in the histogram with the greatest
frequency 1nto the palette. For instance, video encoder 20
may insert (j, u,) into the palette P (i.e., P=PU{(idx,u)}). In
some examples, after mnserting the entry into the palette,
video encoder 20 may evaluate the entry 1n the histogram
with the next greatest frequency for insertion 1nto the palette.
For instance, video encoder 20 may set 1idx=1dx+1, 1=7+1.

Video encoder 20 may determine whether the entry with
the next greatest frequency (1.., u,,,) 1s within the neigh-
borhood of any pixel (i.e., X) 1n the palette (1.e., Distance
(u,,,.x)<Thresh). For instance, video encoder 20 may deter-
mine whether the entry 1s within the neighborhood of any
pixel 1n the palette by determining whether a value of the
entry 1s within a threshold distance of a value of any pixel
in the palette. In some examples, video encoder 20 may
flexibly select the distance function. As one example, video
encoder 20 may select the distance function as a sum of
absolute diflerences (SAD) or a sum of squared errors of
prediction (SSE) of the three color components (e.g., each of
luminance, blue hue chrominance, and red hue chromi-
nance), or one color component (e.g., one of luminance, blue
hue chrominance, or red hue chrominance). In some
examples, video encoder 20 may flexibly select the thresh-
old value Thresh. As one example, video encoder 20 may
select the threshold value to be dependent on the quantiza-
tion parameter (QQP) of the current block. As another
example, video encoder 20 may select the threshold value to
be dependent on the value of 1dx or the value of ;.

If video encoder 20 determines that the entry with the next
greatest frequency (1.e., u,,) 1s within the neighborhood ot
any pixel 1n the palette, video encoder 20 may not insert the
entry in the histogram. If video encoder 20 determines that
the entry with the next greatest frequency (i.e., u) 1s not
within the neighborhood of any pixel in the palette, video
encoder 20 may insert the entry in the histogram.

10

15

20

25

30

35

40

45

50

55

60

65

26

Video encoder 20 may continue to insert entries in the
palette until one or more conditions are satisfied. Some
example conditions are when 1dx=M, when =M, or when
the size of the palette 1s larger than a predefined value.

Palette-based coding may have a certain amount of sig-
naling overhead. For example, a number of bits may be
needed to signal characteristics of a palette, such as a size of
the palette, as well as the palette 1tself. In addition, a number
of bits may be needed to signal index values for the pixels
of the block. The techniques of this disclosure may, 1n some
examples, reduce the number of bits needed to signal such
information. For example, the techniques described 1n this
disclosure may include techniques for various combinations
of one or more of signaling palette-based coding modes,
transmitting palettes, predicting palettes, deriving palettes,
and transmitting palette-based coding maps and other syntax
clements.

In some examples, video encoder 20 and/or video decoder
30 may predict a palette using another palette. For example,
video encoder 20 and/or video decoder 30 may determine a
first palette having first entries indicating first pixel values.
Video encoder 20 and/or video decoder 30 may then deter-
mine, based on the first entries of the first palette, one or
more second entries indicating second pixel values of a
second palette. Video encoder 20 and/or video decoder 30
may also code pixels of a block of video data using the
second palette.

When determining the entries of the second palette based
on the entries in the first palette, video encoder 20 may
encode a variety of syntax elements, which may be used by
video decoder to reconstruct the second palette. For
example, video encoder 20 may encode one or more syntax
clements 1n a bitstream to indicate that an entire palette (or
palettes, 1 the case of each color component, e.g., Y, Cb, Cr,
or Y, U, V, or R, G, B, of the video data having a separate
palette) 1s copied from one or more neighboring blocks of
the block currently being coded. The palette from which
entries of the current palette of the current block are pre-
dicted (e.g., copied) may be referred to as a predictive
palette. The predictive palette may contain palette entries
from one or more neighboring blocks including spatially
neighboring blocks and/or neighboring blocks 1n a particular
scan order of the blocks. For example, the neighboring
blocks may be spatially located to the left (left neighboring
block) of or above (upper neighboring block) the block
currently being coded. In another example, video encoder 20
may determine predictive palette entries using the most
frequent sample values 1n a causal neighbor of the current
block. In another example, the neighboring blocks may
neighbor the block current being coded according to a
particular scan order used to code the blocks. That 1s, the
neighboring blocks may be one or more blocks coded prior
to the current block in the scan order. Video encoder 20 may
encode one or more syntax elements to indicate the location
of the neighboring blocks from which the palette(s) are
copied.

In some examples, palette prediction may be performed
entry-wise. For example, video encoder 20 may encode one
or more syntax elements to indicate, for each entry of a
predictive palette, whether the palette entry 1s included 1n the
palette for the current block. If video encoder 20 does not
predict an entry of the palette for the current block, video
encoder 20 may encode one or more additional syntax
clements to specily the non-predicted entries, as well as the
number of such entries.

The syntax elements described above may be referred to
as a palette prediction vector. For example, as noted above,

US 11,146,788 B2

27

video encoder 20 and video decoder 30 may predict a palette
for a current block based on one or more palettes from
neighboring blocks (referred to collectively as a reference
palette). When generating the reference palette, a first-in
first-out (FIFO) may be used by adding the latest palette into
the front of the queue. If the queue exceeds a predefined
threshold, the oldest elements may be popped out. After
pushing new elements 1nto the front of the queue, a pruning
process may be applied to remove duplicated elements,
counting from the beginning of the queue. Specifically, 1n
some examples, video encoder 20 may encode (and video
decoder 30 may decode) a 0-1 vector to indicate whether the
pixel values 1n the reference palette are reused for the current
palette. As an example, as shown 1n the example of Table 6,
a reference palette may include six items (e.g., six 1ndex
values and respective pixel values).

TABLE 6
Index Pixel Value
0 Vo
1 Vi
2 V5
3 Va
4 Vy
S Vs

In an example for purposes of illustration, video encoder 20
may signal a vector (1, 0, 1, 1, 1, 1) that indicates that v, v,,
v, V., and v are reused 1n the current palette, while v, 1s not
re-used. In addition to reusing v, v,, v3, v,, and v., video
encoder 20 may add two new 1tems to the current palette
with indexes 5 and 6. The current palette for this example 1s
shown 1n Table 7, below.

TABLE 7
Pred Flag Index Pixel Value
1 0 Vo
0
] 1 Vo
2 Vs
3 \F
4 Vs
S Ug
0 U,

To code the palette prediction 0-1 vector, for each 1tem in
the vector, video encoder 20 may code one bit to represent
its value. Additionally, the number of palette items which
cannot be predicted (e.g., the number of new palette entries
(u0 and ul 1n the example of Table 7 above)) may be
binarized and signaled.

Other aspects of this disclosure relate to constructing
and/or transmitting a map that allows video encoder 20
and/or video decoder 30 to determine pixel values. For
example, other aspects of this disclosure relate to construct-
ing and/or transmitting a map of indices that relate a
particular pixel to an entry of a palette.

In some examples, video encoder 20 may indicate
whether pixels of a block have a corresponding value 1n a
palette. In an example for purposes of illustration, assume
that an (1, j) entry of a map corresponds to an (1, 1) pixel
position 1 a block of video data. In this example, video
encoder 20 may encode a flag for each pixel position of a
block. Video encoder 20 may set the flag equal to one for the
(1, 1) entry to indicate that the pixel value at the (1, 1) location
1s one of the values 1n the palette. When a color 1s included

10

15

20

25

30

35

40

45

50

55

60

65

28

in the palette (1.e., the flag 1s equal to one), video encoder 20
may also encode data indicating a palette index for the (1,)
entry that identifies the color 1n the palette. When the color
of the pixel 1s not included in the palette (1.e., the flag 1s
equal to zero) video encoder 20 may also encode data
indicating a sample value for the pixel, which may be
referred to as an escape pixel. Video decoder 30 may obtain
the above-described data from an encoded bitstream and use
the data to determine a palette index and/or pixel value for
a particular location in a block.

In some 1nstances, there may be a correlation between the
palette index to which a pixel at a given position 1s mapped
and the probability of a neighboring pixel being mapped to
the same palette index. That 1s, when a pixel 1s mapped to
a particular palette index, the probability may be relatively
high that one or more neighboring pixels (1n terms of spatial
location) are mapped to the same palette index.

In some examples, video encoder 20 and/or video decoder
30 may determine and code one or more indices of a block
ol video data relative to one or more indices of the same
block of video data. For example, video encoder 20 and/or
video decoder 30 may be configured to determine a first
index value associated with a first pixel 1n a block of video
data, where the first index value relates a value of the first
pixel to an entry of a palette. Video encoder 20 and/or video
decoder 30 may also be configured to determine, based on
the first index value, one or more second index values
associated with one or more second pixels in the block of
video data, and to code the first and the one or more second
pixels of the block of video data. Thus, i this example,
indices of a map may be coded relative to one or more other
indices of the map.

As discussed above, video encoder 20 and/or wvideo
decoder 30 may use several diflerent techniques to code
index values of a map relative to other indices of the map.
For instance, video encoder 20 and/or video decoder 30 may
use index mode, copy above mode, and transition mode to
code index values of a map relative to other indices of the
map.

In the “index mode” of pallet-based coding, video
encoder 20 and/or video decoder 30 may first signal a palette
index. If the index 1s equal to the size of the palette, this
indicates that the sample 1s an escape sample. In this case,
video encoder 20 and/or video decoder 30 may signal the
sample value or quantized samples value for each compo-
nent. For example, if the palette size 1s 4, for non-escape
samples, the palette indices are in the range [0, 3]. In this
case, an mdex value of 4 may signmify an escape sample. If
the index indicates a non-escape sample, video encoder 20
and/or video decoder 30 may signal a run-length, which may
specily the number of subsequent samples 1n scanning order
that share the same index, by a non-negative value n-1
indicating the run length, which means that the following n
pixels including the current one have the same pixel index
as the first signaled index.

In the “copy from above” mode of palette-based coding,
video encoder 20 and/or video decoder 30 may signal a
non-negative run length value m-1 to indicate that for the
following m pixels including the current pixel, palette
indexes are the same as their neighbors directly above,
respectively. Note that the copy from above” mode 1s
different from the “index” mode, 1n the sense that the palette
indices could be diflerent within the “copy from above™ run
mode.

As discussed above, 1n some examples, 1t may be desir-
able to group bypass bins together (i.e., to increase CABAC
throughput). In accordance with one or more techniques of

US 11,146,788 B2

29

this disclosure, video encoder 20 may encode, and video
decoder 30 may decode, syntax elements used to define a
current palette such that syntax elements that are coded
using bypass mode are grouped together. For instance, as
opposed to coding one or more syntax elements related to
delta quantization parameter (QP) and/or chroma QP oflsets
for a current block of video data before a syntax element that
indicates whether a transpose process 1s applied to palette
indices of a palette for the current block of video data, video
encoder 20 and/or video decoder 30 may code the one or
more syntax elements related to delta QP and/or chroma QP
oflsets for the current block of video data after the syntax
clement that indicates whether a transpose process 1s applied
to the palette indices of the palette for the current block of
video data. In this way, video encoder 20 and/or video
decoder 30 may code a larger group of syntax elements
using bypass mode, which may increase CABAC through-
put.

In some examples, the one or more syntax elements
related to delta QP for the current block of video data may
include a syntax elements that specifies the absolute value of
a diflerence between a luma QP for the current block of
video data and a predictor of the luma QP for the current
block (e.g., cu_qp_delta_palette_abs), and a syntax element
that specifies a sign of the difference between the luma QP
for the current block of video data and the predictor of the
luma QP for the current block (e.g., cu_qgp_delta pal-
ctte_sign_flag). In some examples, the one or more syntax
clements related to chroma QP ofisets for the current block
of video data may include a syntax element that indicates
whether entries 1n one or more oflset lists are added to the
luma QP for the current block to determine chroma QPs for
the current block (e.g., cu_chroma_qgp_palette_oflset_flag),

and a syntax element that specifies an index of an entry 1n
cach of the one or more oflset lists that are added to the luma
QP for the current block to determine chroma QPs for the
current block (e.g., cu_chroma_qp_palette_oflset_1dx). As
such, video encoder 20 and/or video decoder 30 may each be
configured to code a palette_transpose_flag syntax element
at a first position 1n a bitstream and code a cu_qp_delta_pal-
ctte_abs syntax element, a cu_qp_delta_palette_sign_flag
syntax element, a cu_chroma_qp_palette_oilset_flag syntax
clement, and a cu_chroma_qp_palette offset_1dx syntax
clement at a second position 1n the bitstream that 1s after the
first position.

FIG. 2 1s a block diagram illustrating an example video
encoder 20 that may mmplement the techmiques of this
disclosure. FIG. 2 1s provided for purposes ol explanation
and should not be considered limiting of the techniques as
broadly exemplified and described 1n this disclosure. For
purposes ol explanation, this disclosure describes video
encoder 20 in the context of HEVC coding. However, the
techniques of this disclosure may be applicable to other
coding standards or methods.

Video encoder 20 represents an example of a device that
may be configured to perform techniques for palette-based
video coding 1n accordance with various examples described
in this disclosure. For example, video encoder 20 may be
configured to selectively code various blocks of video data,
such as CU’s or PU’s in HEVC coding, using either palette-
based coding or non-palette based coding. Non-palette based
coding modes may refer to various inter-predictive temporal
coding modes or 1mntra-predictive spatial coding modes, such
as the various coding modes specified by the HEVC Stan-
dard. Video encoder 20, in one example, may be configured
to generate a palette having entries indicating pixel values,
select pixel values 1n a palette to represent pixels values of

10

15

20

25

30

35

40

45

50

55

60

65

30

at least some positions of a block of video data, and signal
information associating at least some of the positions of the
block of video data with entries 1n the palette corresponding,
respectively, to the selected pixel values. The signaled
information may be used by video decoder 30 to decode
video data.

In the example of FIG. 2, video encoder 20 includes a
prediction processing unit 100, a residual generation umit
102, a transform processing unit 104, a quantization unit
106, an inverse quantization unit 108, an mverse transform
processing unit 110, a reconstruction unit 112, a filter umt
114, a decoded picture buller 116, and an entropy encoding,
umt 118. Prediction processing unit 100 includes an inter-
prediction processing unit 120 and an intra-prediction pro-
cessing umt 126. Inter-prediction processing unit 120
includes a motion estimation unit and a motion compensa-
tion unit (not shown). Video encoder 20 also includes a
palette-based encoding unit 122 configured to perform vari-
ous aspects of the palette-based coding techniques described
in this disclosure. In other examples, video encoder 20 may
include more, fewer, or different functional components.

Video encoder 20 may receive video data. Video encoder
20 may encode each CTU 1n a slice of a picture of the video
data. Each of the CTUs may be associated with equally-
sized luma coding tree blocks (C'1Bs) and corresponding
C'TBs of the picture. As part of encoding a CTU, prediction
processing unit 100 may perform quad-tree partitioning to
divide the CTBs of the CTU into progressively-smaller
blocks. The smaller block may be coding blocks of CUs. For
example, prediction processing unit 100 may partition a
CTB associated with a CTU into four equally-sized sub-
blocks, partition one or more of the sub-blocks mto four
equally-sized sub-sub-blocks, and so on.

Video encoder 20 may encode CUs of a CTU to generate
encoded representations of the CUs (1.e., coded CUs). As
part of encoding a CU, prediction processing unit 100 may
partition the coding blocks associated with the CU among
one or more PUs of the CU. Thus, each PU may be
associated with a luma prediction block and corresponding
chroma prediction blocks. Video encoder 20 and video
decoder 30 may support PUs having various sizes. As
indicated above, the size of a CU may refer to the size of the
luma coding block of the CU and the size of a PU may refer
to the size of a luma prediction block of the PU. Assuming
that the si1ze of a particular CU 1s 2ZNx2N, video encoder 20
and video decoder 30 may support PU sizes of 2Nx2N or
NxN {for intra prediction, and symmetric PU sizes of
2Nx2N, 2ZNxN, Nx2N, NxN, or similar for inter prediction.
Video encoder 20 and video decoder 30 may also support
asymmetric partitioning for PU sizes of 2NxnU, 2NxnD,
nL.x2N, and nRx2N for inter prediction.

Inter-prediction processing unit 120 may generate predic-
tive data for a PU by performing inter prediction on each PU
of a CU. The predictive data for the PU may include a
predictive sample blocks of the PU and motion information
for the PU. Inter-prediction processing unit 120 may per-
form different operations for a PU of a CU depending on
whether the PU 1s 1n an I slice, a P slice, or a B slice. In an
I slice, all PUs are intra predicted. Hence, 1f the PU 1s 1n an
I slice, inter-prediction processing unit 120 does not perform
inter prediction on the PU. Thus, for blocks encoded 1n
I-mode, the predicted block 1s formed using spatial predic-
tion from previously-encoded neighboring blocks within the
same frame.

If a PU 1s in a P slice, the motion estimation unit of
inter-prediction processing unit 120 may search the refer-
ence pictures 1 a list of reference pictures (e.g., “RefPi-

US 11,146,788 B2

31

cLi1st0”) for a reference region for the PU. The reference
region for the PU may be a region, within a reference
picture, that contains sample blocks that most closely cor-
responds to the sample blocks of the PU. The motion
estimation unit may generate a reference index that indicates
a position in RefPicListO of the reference picture containing
the reference region for the PU. In addition, the motion
estimation unit may generate an MV that indicates a spatial
displacement between a coding block of the PU and a
reference location associated with the reference region. For
instance, the MV may be a two-dimensional vector that
provides an oflset from the coordinates in the current
decoded picture to coordinates 1n a reference picture. The
motion estimation umt may output the reference index and
the MV as the motion information of the PU. The motion
compensation unit of inter-prediction processing unit 120
may generate the predictive sample blocks of the PU based
on actual or iterpolated samples at the reference location
indicated by the motion vector of the PU.

If a PU 1s 1n a B slice, the motion estimation unit may
perform uni-prediction or bi-prediction for the PU. To
perform uni-prediction for the PU, the motion estimation
unit may search the reference pictures of RefPicListO or a
second reference picture list (“RefPicList]™) for a reference
region for the PU. The motion estimation unit may output,
as the motion information of the PU, a reference index that
indicates a position 1n RefPicListO0 or RefPicListl of the
reference picture that contains the reference region, an MV
that indicates a spatial displacement between a sample block
of the PU and a reference location associated with the
reference region, and one or more prediction direction
indicators that indicate whether the reference picture 1s 1n
RetPicListO or RefPicListl. The motion compensation unit
of inter-prediction processing unit 120 may generate the
predictive sample blocks of the PU based at least 1n part on
actual or interpolated samples at the reference region indi-
cated by the motion vector of the PU.

To perform bi-directional inter prediction for a PU, the
motion estimation unit may search the reference pictures in
RefPicListO for a reference region for the PU and may also
search the reference pictures in RefPicListl for another
reference region for the PU. The motion estimation unit may
generate reference picture indexes that indicate positions 1n
RefPicListO0 and RefPicListl of the reference pictures that
contain the reference regions. In addition, the motion esti-
mation unit may generate MV that indicate spatial displace-
ments between the reference location associated with the
reference regions and a sample block of the PU. The motion
information of the PU may include the reference indexes and
the MVs of the PU. The motion compensation umt may
generate the predictive sample blocks of the PU based at
least 1n part on actual or interpolated samples at the refer-
ence region indicated by the motion vector of the PU.

In accordance with various examples of this disclosure,
video encoder 20 may be configured to perform palette-
based coding. With respect to the HEVC framework, as an
example, the palette-based coding techniques may be con-
figured to be used as a coding unit (CU) mode. In other
examples, the palette-based coding techniques may be con-
figured to be used as a PU mode 1n the framework of HEVC.
Accordingly, all of the disclosed processes described herein
(throughout this disclosure) 1n the context of a CU mode
may, additionally or alternatively, apply to PU. However,
these HEVC-based examples should not be considered a
restriction or limitation of the palette-based coding tech-
niques described herein, as such techniques may be applied
to work independently or as part of other existing or yet to

10

15

20

25

30

35

40

45

50

55

60

65

32

be developed systems/standards. In these cases, the unit for
palette coding can be square blocks, rectangular blocks, or
even regions ol non-rectangular shape.

Palette-based encoding unit 122, for example, may per-
form palette-based encoding when a palette-based encoding
mode 1s selected, e.g., for a CU or PU. For example,
palette-based encoding unit 122 may be configured to gen-
crate a palette having entries indicating pixel values, select
pixel values 1n a palette to represent pixels values of at least
some positions ol a block of video data, and signal infor-
mation associating at least some of the positions of the block
of video data with entries in the palette corresponding,
respectively, to the selected pixel values. Although various
functions are described as being performed by palette-based
encoding unit 122, some or all of such functions may be
performed by other processing units, or a combination of
different processing units.

Palette-based encoding unit 122 may generate syntax
clements to define a palette for a block of video data. Some
example syntax elements which palette-based encoding unit
122 may generate to define a current palette for a current
block of video data include, but are not limited to, a syntax
clement that indicates whether a transpose process 1s applied
to palette indices of the current palette (e.g., palette_trans-
pose_flag), one or more syntax elements related to delta
quantization parameter (QP) (e.g., cu_qp_delta_palette_abs,
cu_qp_delta_palette_sign_flag, cu_chroma_ qp_palette_ofl-
set_flag, and/or cu_chroma_qp_palette_offset_i1dx), one or
more syntax elements related to chroma QP oflsets for the
current block of video data, one or more syntax elements
that indicate a number of zeros that precede a non-zero entry
in an array that indicates whether entries from a predictor
palette are reused in the current palette (e.g., palette_pre-
dictor_run), one or more syntax elements that indicate a
number of entries i1n the current palette that are explicitly
signalled (e.g., num_signalled_palette_entries), one or more
syntax elements that indicate a value of a component 1 a
palette entry in the current palette (e.g., palette_entry), one
or more syntax elements that indicate whether the current
block of video data includes at least one escape coded
sample (e.g., palette_escape_val_present_flag), one or more
syntax elements that indicate a number of entries in the
current palette that are explicitly signalled or inferred (e.g.,
num_palette_indices_idc), and one or more syntax elements
that indicate indices 1n an array of current palette entries
(e.g., palette_index_idc). Palette-based encoding unit 122
may output the generated syntax elements that define the
current palette for the current block to one or more other
components of video encoder 20, such as entropy encoding
unit 118.

Accordingly, video encoder 20 may be configured to
encode blocks of video data using palette-based code modes
as described 1n this disclosure. Video encoder 20 may
selectively encode a block of video data using a palette
coding mode, or encode a block of video data using a
different mode, e.g., such an HEVC inter-predictive or
intra-predictive coding mode. The block of video data may
be, for example, a CU or PU generated according to an
HEVC coding process. A video encoder 20 may encode
some blocks with inter-predictive temporal prediction or
intra-predictive spatial coding modes and decode other
blocks with the palette-based coding mode.

Intra-prediction processing unit 126 may generate predic-
tive data for a PU by performing intra prediction on the PU.
The predictive data for the PU may include predictive
sample blocks for the PU and various syntax elements.

US 11,146,788 B2

33

Intra-prediction processing unit 126 may perform intra pre-
diction on PUs 1n I slices, P slices, and B slices.

To perform intra prediction on a PU, tra-prediction
processing unit 126 may use multiple intra prediction modes
to generate multiple sets of predictive data for the PU. To use
an intra-prediction mode to generate a set of predictive data
tor the PU, intra-prediction processing unit 126 may extend
samples from sample blocks of neighboring PUs across the
sample blocks of the PU 1n a direction associated with the
intra prediction mode. The neighboring PUs may be above,
above and to the right, above and to the left, or to the left of
the PU, assuming a left-to-right, top-to-bottom encoding
order for PUs, CUs, and CTUs. Intra-prediction processing
unit 126 may use various numbers of intra prediction modes,
¢.g., 33 directional intra prediction modes. In some
examples, the number of intra prediction modes may depend
on the size of the region associated with the PU.

Prediction processing unit 100 may select the predictive
data for PUs of a CU from among the predictive data
generated by inter-prediction processing unit 120 for the
PUs or the predictive data generated by intra-prediction
processing unit 126 for the PUs. In some examples, predic-
tion processing unit 100 selects the predictive data for the
PUs of the CU based on rate/distortion metrics of the sets of
predictive data. The predictive sample blocks of the selected
predictive data may be referred to herein as the selected
predictive sample blocks.

Residual generation unit 102 may generate, based on the
luma, Cb and Cr coding block of a CU and the selected
predictive luma, Cb and Cr blocks of the PUs of the CU, a
luma, Cb and Cr residual blocks of the CU. For instance,
residual generation umit 102 may generate the residual
blocks of the CU such that each sample i1n the residual
blocks has a value equal to a diflerence between a sample in
a coding block of the CU and a corresponding sample 1n a
corresponding selected predictive sample block of a PU of
the CU.

Transform processing unit 104 may perform quad-tree
partitioning to partition the residual blocks associated with
a CU 1nto transform blocks associated with TUs of the CU.
Thus, a TU may be associated with a luma transform block
and two chroma transform blocks. The sizes and positions of
the luma and chroma transform blocks of TUs of a CU may
or may not be based on the sizes and positions of prediction
blocks of the PUs of the CU. A quad-tree structure known as
a “residual quad-tree” (RQT) may include nodes associated
with each of the regions. The TUs of a CU may correspond
to leal nodes of the RQT.

Transform processing unit 104 may generate transiorm
coellicient blocks for each TU of a CU by applying one or
more transforms to the transtorm blocks of the TU. Trans-
form processing unit 104 may apply various transforms to a
transform block associated with a TU. For example, trans-
form processing unit 104 may apply a discrete cosine
transform (DCT), a directional transform, or a conceptually
similar transform to a transform block. In some examples,
transform processing umt 104 does not apply transforms to
a transtorm block. In such examples, the transform block
may be treated as a transform coellicient block.

Quantization unit 106 may quantize the transform coet-
ficients 1n a coellicient block. The quantization process may
reduce the bit depth associated with some or all of the
transform coeflicients. For example, an n-bit transform
coellicient may be rounded down to an m-bit transform
coellicient during quantization, where n 1s greater than m.
Quantization umt 106 may quantize a coetlicient block
associated with a TU of a CU based on a quantization

10

15

20

25

30

35

40

45

50

55

60

65

34

parameter ((QP) value associated with the CU. Video encoder
20 may adjust the degree of quantization applied to the
coellicient blocks associated with a CU by adjusting the QP
value associated with the CU. Quantization may introduce
loss of information, thus quantized transform coeflicients
may have lower precision than the original ones.

Inverse quantization unit 108 and inverse transform pro-
cessing unit 110 may apply inverse quantization and mverse
transforms to a coethlicient block, respectively, to reconstruct
a residual block from the coeflicient block. Reconstruction
unmit 112 may add the reconstructed residual block to corre-
sponding samples from one or more predictive sample
blocks generated by prediction processing unit 100 to pro-
duce a reconstructed transform block associated with a TU.
By reconstructing transform blocks for each TU of a CU 1n
this way, video encoder 20 may reconstruct the coding
blocks of the CU.

Filter unit 114 may perform one or more deblocking
operations to reduce blocking artifacts in the coding blocks
associated with a CU. Decoded picture bufller 116 may store
the reconstructed coding blocks after filter unit 114 performs
the one or more deblocking operations on the reconstructed
coding blocks. Inter-prediction processing unit 120 may use
a reference picture that contains the reconstructed coding
blocks to perform inter prediction on PUs of other pictures.
In addition, intra-prediction processing unmit 126 may use
reconstructed coding blocks 1n decoded picture butler 116 to
perform intra prediction on other PUs in the same picture as
the CU.

Entropy encoding unit 118 may receive data from other
functional components of video encoder 20. For example,
entropy encoding unit 118 may receive coellicient blocks
from quantization unit 106 and may receive syntax elements
from prediction processing unit 100. Entropy encoding unit
118 may perform one or more entropy encoding operations
on the data to generate entropy-encoded data. For example,
entropy encoding unit 118 may perform a context-adaptive
variable length coding (CAVLC) operation, a CABAC
operation, a variable-to-variable (V2V) length coding opera-
tion, a syntax-based context-adaptive binary arithmetic cod-
ing (SBAC) operation, a Probability Interval Partitioning
Entropy (PIPE) coding operation, an Exponential-Golomb
encoding operation, or another type of entropy encoding
operation on the data. Video encoder 20 may output a
bitstream that includes entropy-encoded data generated by
entropy encoding unit 118. For instance, the bitstream may
include data that represents a RQT for a CU.

As discussed above, palette-based encoding unit 122 may
output the generated syntax elements that define the current
palette for the current block to entropy encoding unit 118.
Entropy encoding unit 118 may encode one or more bins of
the syntax elements received from palette-based encoding
unmit 122 using CABAC with contexts and one or more bins
of the syntax elements received from palette-based encoding
umt 122 using CABAC without contexts (1.e., bypass mode).
In some examples, entropy encoding unit 118 may encode
the bins of the syntax elements using contexts or bypass
mode as defined above 1n Table 2.

As discussed above, 1t may be desirable to group bypass
coded bins together to increase CABAC throughput. In SCC
Draft 3, the bins of the palette_predictor_run, num_sig-
nalled_palette_entries, palette_entry, and palette_escape
val_present_{flag syntax elements are bypass coded and are
grouped together. However, while the bins of the num_ pal-
ette_indices_idc, and palette_index_i1dc syntax elements are
also bypass coded, they are not grouped with the bins of the
palette_predictor_run, num_signalled_palette_entries, palet-

US 11,146,788 B2

35

te_entry, and palette_escape_val_present_flag syntax ele-
ments. Instead, in HEVC SCC Draft 3, the num_pal-
ette_indices_idc, and palette_index_1dc syntax elements are
separated from the palette_predictor_run, num_signalled_
palette_entries, palette_entry, and palette_escape_val_pre-
sent_{lag syntax elements by one or more syntax elements
related to delta quantization parameter (QP) and/or chroma
QP oflsets for a current block of video data (i.e., cu_qp_del-
ta_palette_abs, cu_qp_delta_palette_sign_flag, cu_chro-
ma_qp_palette_oflset_flag, and cu_chroma_qp_palette_ofl-
set_1dx) and a syntax element that indicates whether a
transpose process 1s applied to the palette indices of the
palette for the current block of video data (i.e., palette_t-
ranspose_flag).

In accordance with one or more techniques of this dis-
closure, entropy encoding unit 118 may encode the syntax
clements used to define a current palette such that syntax
clements that are encoded using bypass mode are consecu-
tively encoded. For instance, as opposed to separating the
bins of the palette_predictor_run, num_signalled_palet-
te_entries, palette_entry, and palette_escape val_present
flag syntax elements and the bins of the num_palette_indi-
ces_idc, and palette_index_idc syntax elements, entropy
encoding unit 118 may encode one or more syntax elements
related to delta QP and/or chroma QP oflsets for the current
block of video data after a syntax element that indicates
whether a transpose process 1s applied to the palette indices
ol the palette for the current block of video data such that the
bins of the palette_predictor_run, num_signalled_palet-
te_entries, palette_entry, and palette_escape val_present_
flag, num_palette_indices_idc, and palette_index_idc syntax
clements are grouped together. In this way, the CABAC
throughput of entropy encoding unit 118 may be increased.

FIG. 3 1s a block diagram illustrating an example video
decoder 30 that 1s configured to implement the techniques of
this disclosure. FIG. 3 1s provided for purposes of explana-
tion and 1s not limiting on the techniques as broadly exem-
plified and described in this disclosure. For purposes of
explanation, this disclosure describes video decoder 30 1n
the context of HEVC coding. However, the techniques of
this disclosure may be applicable to other coding standards
or methods.

Video decoder 30 represents an example of a device that
may be configured to perform techniques for palette-based
video coding 1n accordance with various examples described
in this disclosure. For example, video decoder 30 may be
configured to selectively decode various blocks of video
data, such as CU’s or PU’s 1n HEVC coding, using either
palette-based coding or non-palette based coding. Non-
palette based coding modes may refer to various inter-
predictive temporal coding modes or intra-predictive spatial
coding modes, such as the various coding modes specified
by the HEVC Standard. Video decoder 30, 1n one example,
may be configured to generate a palette having entries
indicating pixel values, receive miformation associating at
least some positions of a block of video data with entries 1n
the palette, select pixel values 1n the palette based on the
information, and reconstruct pixel values of the block based
on the selected pixel values.

In the example of FIG. 3, video decoder 30 includes an
entropy decoding unit 150, a prediction processing unit 152,
an 1mverse quantization umt 154, an mverse transform pro-
cessing unit 156, a reconstruction unit 158, a filter unit 160,
and a decoded picture buller 162. Prediction processing unit
152 includes a motion compensation unit 164 and an intra-
prediction processing umt 166. Video decoder 30 also
includes a palette-based decoding umt 165 configured to

5

10

15

20

25

30

35

40

45

50

55

60

65

36

perform various aspects of the palette-based coding tech-
niques described 1n this disclosure. In other examples, video
decoder 30 may include more, fewer, or different functional
components.

In some examples, video decoder 30 may further include
video data memory 149. Video data memory 149 may store
video data, such as an encoded wvideo bitstream, to be
decoded by the components of video decoder 30. The video
data stored 1n video data memory 149 may be obtained, for
example, from channel 16, e.g., from a local video source,
such as a camera, via wired or wireless network communi-
cation of video data, or by accessing physical data storage
media. Video data memory 149 may form a coded picture
bufler (CPB) that stores encoded video data from an encoded
video bitstream. The CPB may be a reference picture
memory that stores reference video data for use in decoding
video data by video decoder 30, e.g., in intra- or inter-coding
modes. Video data memory 149 may be formed by any of a
variety of memory devices, such as dynamic random access
memory (DRAM), including synchronous DRAM
(SDRAM), magnetoresistive RAM (MRAM), resistive
RAM (RRAM), or other types of memory devices. Video
data memory 149 and decoded picture bufler 162 may be
provided by the same memory device or separate memory
devices. In various examples, video data memory 149 may
be on-chip with other components of video decoder 30, or
ofl-chip relative to those components.

A coded picture bufler (CPB) may receive and store
encoded video data (e.g., NAL units) of a bitstream. Entropy
decoding unit 150 may receive encoded video data (e.g.,
NAL units) from the CPB and parse the NAL units to decode
syntax elements. Entropy decoding unit 150 may entropy
decode entropy-encoded syntax elements 1n the NAL units.
Prediction processing unit 152, inverse quantization unit
154, inverse transform processing unit 156, reconstruction
umt 158, and filter umt 160 may generate decoded video
data based on the syntax elements extracted from the bait-
stream.

The NAL units of the bitstream may include coded slice
NAL units. As part of decoding the bitstream, entropy
decoding unit 150 may extract and entropy decode syntax
clements from the coded slice NAL units. Each of the coded
slices may include a slice header and slice data. The slice
header may contain syntax elements pertaining to a slice.

The syntax elements in the slice header may include a syntax
clement that identifies a PPS associated with a picture that
contains the slice.

In addition to decoding syntax elements from the bit-
stream, video decoder 30 may perform a reconstruction
operation on a non-partitioned CU. To perform the recon-
struction operation on a non-partitioned CU, video decoder
30 may perform a reconstruction operation on each TU of
the CU. By performing the reconstruction operation for each
TU of the CU, video decoder 30 may reconstruct residual
blocks of the CU.

As part of performing a reconstruction operation on a TU
of a CU, inverse quantization unit 154 may iverse quantize,
1.€., de-quantize, coeflicient blocks associated with the TU.
Inverse quantization unit 154 may use a QP value associated
with the CU of the TU to determine a degree of quantization
and, likewise, a degree of inverse quantization for inverse
quantization unit 1354 to apply. That 1s, the compression
ratio, 1.e., the ratio of the number of bits used to represent an
original sequence and the compressed sequence, may be
controlled by adjusting the value of the QP used when

US 11,146,788 B2

37

quantizing transform coetlicients. The compression ratio
may also depend on the method of entropy coding
employed.

After mverse quantization unit 154 inverse quantizes a
coellicient block, imnverse transform processing unit 156 may
apply one or more 1nverse transforms to the coeflicient block
in order to generate a residual block associated with the TU.
For example, mverse transform processing unit 156 may
apply an mverse DCT, an inverse integer transform, an
inverse Karhunen-Loeve transform (KL'T), an 1mverse rota-
tional transform, an inverse directional transform, or another
inverse transform to the coetlicient block.

If a PU 1s encoded using intra prediction, intra-prediction
processing unit 166 may perform intra prediction to generate
predictive blocks for the PU. Intra-prediction processing
unit 166 may use an 1ntra prediction mode to generate the
predictive luma, Cb and Cr blocks for the PU based on the
prediction blocks of spatially-neighboring PUs. Intra-pre-
diction processing unit 166 may determine the intra predic-
tion mode for the PU based on one or more syntax elements
decoded from the bitstream.

Prediction processing umt 152 may construct a first
reference picture list (RefPicListO) and a second reference
picture list (RefPicList]l) based on syntax elements extracted
from the bitstream. Furthermore, 1f a PU 1s encoded using
inter prediction, entropy decoding unit 150 may extract
motion information for the PU. Motion compensation unit
164 may determine, based on the motion information of the
PU, one or more reference regions for the PU. Motion
compensation unit 164 may generate, based on samples
blocks at the one or more reference blocks for the PU,
predictive luma, Cb and Cr blocks for the PU.

Reconstruction unit 1538 may use the luma, Cb and Cr
transform blocks associated with TUs of a CU and the
predictive luma, Cb and Cr blocks of the PUs of the CU, 1.¢.,
either intra-prediction data or inter-prediction data, as appli-
cable, to reconstruct the luma, Cb and Cr coding blocks of
the CU. For example, reconstruction unit 158 may add
samples of the luma, Cb and Cr transform blocks to corre-
sponding samples of the predictive luma, Cb and Cr blocks
to reconstruct the luma, Cb and Cr coding blocks of the CU.

Filter unit 160 may perform a deblocking operation to
reduce blocking artifacts associated with the luma, Cb and
Cr coding blocks of the CU. Video decoder 30 may store the
luma, Cb and Cr coding blocks of the CU 1n decoded picture
bufler 162. Decoded picture builer 162 may provide refer-
ence pictures for subsequent motion compensation, intra
prediction, and presentation on a display device, such as
display device 32 of FIG. 1. For instance, video decoder 30
may perform, based on the luma, Cb and Cr blocks in
decoded picture builer 162, intra prediction or inter predic-
tion operations on PUs of other CUs. In thus way, video
decoder 30 may extract, from the bitstream, transform
coellicient levels of the significant luma coetlicient block,
inverse quantize the transform coeflicient levels, apply a
transform to the transform coetlicient levels to generate a
transform block, generate, based at least in part on the
transform block, a coding block, and output the coding block
for display.

In accordance with various examples of this disclosure,
video decoder 30 may be configured to perform palette-
based coding. Palette-based decoding unit 165, for example,
may perform palette-based decoding when a palette-based
decoding mode 1s selected, e.g., for a CU or PU. For
example, palette-based decoding unit 165 may be configure
to generate a palette having entries indicating pixel values,
receive information associating at least some positions of a

10

15

20

25

30

35

40

45

50

55

60

65

38

block of video data with entries in the palette, select pixel
values 1n the palette based on the information, and recon-
struct pixel values of the block based on the selected pixel
values. Although various functions are described as being
performed by palette-based decoding unit 165, some or all
of such functions may be performed by other processing
units, or a combination of different processing units.

Palette-based decoding unit 165 may receive palette cod-
ing mode information, and perform the above operations
when the palette coding mode information indicates that the
palette coding mode applies to the block. When the palette
coding mode information indicates that the palette coding
mode does not apply to the block, or when other mode
information indicates the use of a different mode, prediction
processing umt 152 decodes the block of video data using a
non-palette based coding mode, e.g., such an HEVC inter-
predictive mode using motion compensation umt 164 or
intra-predictive coding mode using intra-prediction process-
ing unit 166, when the palette coding mode information
indicates that the palette coding mode does not apply to the
block. The block of video data may be, for example, a CU
or PU generated according to an HEVC coding process.
Video decoder 30 may decode some blocks with inter-
predictive temporal prediction or intra-predictive spatial
coding modes and decode other blocks with the palette-
based coding mode. The palette-based coding mode may
comprise one of a plurality of different palette-based coding
modes, or there may be a single palette-based coding mode.

The palette coding mode information received by palette-
based decoding unit 165 may comprise a palette mode
syntax element, such as a flag. A first value of the palette
mode syntax element indicates that the palette coding mode
applies to the block and a second value of the palette mode
syntax element indicates that the palette coding mode does
not apply to the block of video data. Palette-based decoding
unit 165 may recerve the palette coding mode information at
one or more of a predictive umit level, a coding unit level, a
slice level, or a picture level, or may receive the palette
coding mode information 1n at least one of picture parameter
set (PPS), sequence parameter set (SPS) or video parameter
set (VPS).

In some examples, palette-based decoding unit 165 may
infer the palette coding mode information based on one or
more of a size of the coding block, a frame type, a color
space, a color component, a frame size, a frame rate, a layer
1d 1n scalable video coding or a view 1d 1n multi-view coding
associated with the block of video data.

Palette-based decoding unit 165 also may be configured to
receive information defining at least some of the entries in
the palette with video data, and generate the palette based at
least 1 part on the received information. The size of the
palette may be fixed or variable. In some cases, the size of
the palette 1s variable and 1s adjustable based on information
signaled with the video data. The signaled information may
specily whether an entry 1n the palette 1s a last entry in the
palette. Also, 1n some cases, the palette may have a maxi-
mum size.

The palette may be a single palette including entries
indicating pixel values for a luma component and chroma
components of the block. In this case, each entry 1n the
palette 1s a triple entry indicating pixel values for the luma
component and two chroma components. Alternatively, the
palette comprises a luma palette including entries indicating,
pixel values of a luma component of the block, and chroma
palettes including entries indicating pixel values for respec-
tive chroma components of the block.

US 11,146,788 B2

39

In some examples, palette-based decoding unit 165 may
generate the palette by predicting the entries 1n the palette
based on previously processed data. The previously pro-
cessed data may include palettes, or information from pal-
cttes, for previously decoded neighboring blocks. Palette-
based decoding unit 165 may receive a prediction syntax
clement indicating whether the entries 1n the palette are to be
predicted. The prediction syntax element may include a
plurality of prediction syntax elements indicating, respec-
tively, whether entries in palettes for luma and chroma
components are to be predicted.

Palette-based decoding unit 165 may, in some examples,
predict at least some of the entries 1n the palette based on
entries 1n a palette for a left neighbor block or a top neighbor
block 1 a slice or picture. In this case, the entries 1n the
palette that are predicted based on entries 1n either a palette
for the left neighbor block or the top neighbor block may be
predicted by palette-based decoding unit 165 based on a
syntax element that indicates selection of the left neighbor
block or the top neighbor block for prediction. The syntax
clement may be a flag having a value that indicates selection
of the left neighbor block or the top neighbor block for
prediction.

In some examples, palette-based decoding unit 165 may
receive one or more prediction syntax elements that indicate
whether at least some selected entries 1n the palette, on an
entry-by-entry basis, are to be predicted, and generate the
entries accordingly. Palette-based decoding unit 165 may
predict some of the entries and receive information directly
specilying other entries in the palette.

Information, received by palette-based decoding unit 163,
associating at least some positions of a block of video data
with entries 1n the palette, may comprise map information
including palette index values for at least some of the
positions in the block, wherein each of the palette index
values corresponds to one of the entries 1n the palette. The
map information may include one or more run syntax
clements that each indicate a number of consecutive posi-
tions 1n the block having the same palette index value.

In some examples, palette-based decoding unit 165 may
receive information indicating line copying whereby palette
entries for a line of positions in the block are copied from
palette entries for another line of positions in the block.
Palette-based decoding unit 165 may use this information to
perform line copying to determine entries 1n the palette for
various positions of a block. The line of positions may
comprise a row, a portion of a row, a column or a portion of
a column of positions of the block.

Palette-based decoding unit 165 may generate the palette
in part by receiving pixel values for one or more positions
of the block, and adding the pixel values to entries in the
palette to dynamically generate at least a portion the palette
on-the-fly. Adding the pixel values may comprise adding the
pixel values to an 1nitial palette comprising an initial set of
entries, or to an empty palette that does not include an matial
set of entries. In some examples, adding comprises adding
the pixel values to add new entries to an initial palette
comprising an initial set of entries or {ill existing entries 1n
the 1nitial palette, or replacing or changing pixel values of
entries 1n the mnitial palette.

In some examples, the palette may be a quantized palette
in which a pixel value selected from the palette for one of the
positions 1n the block 1s different from an actual pixel value
of the position in the block, such that the decoding process
1s lossy. For example, the same pixel value may be selected
from the palette for two different positions having different
actual pixel values.

10

15

20

25

30

35

40

45

50

55

60

65

40

As discussed above, palette-based decoding unit 165 may
receive information that defines a palette for a current block
of video data. For instance, palette-based decoding unit 165
may receive a plurality of syntax elements from entropy
decoding unit 150. In some examples, entropy decoding unit
150 may decode the plurality of syntax elements from a
coded video bitstream according to a syntax table. As one
example, entropy decoding unit 150 may decode the plural-
ity ol syntax elements from a coded video bitstream 1n
accordance with the palette syntax table of HEVC SCC
Drait 3, which 1s reproduced above 1n Table 1. However, as
discussed above, the arrangement of syntax elements 1n
HEVC SCC Drait 3 may not be optimal. In particular, the
arrangement of syntax elements in HEVC SCC Dratt 3 does
not maximize the number of bypass mode coded syntax
clements that are grouped together, which may decrease
CABAC throughput.

In accordance with one or more techniques of this dis-
closure, entropy decoding unit 150 may decode the syntax
clements used to define a current palette such that additional
bypass mode coded syntax elements are grouped together.
For instance, as opposed to separating the bins of the
palette_predictor_run, num_signalled_palette_entries, palet-
te_entry, and palette_escape_val_present_flag syntax ele-
ments and the bins of the num_palette_indices_idc, and
palette_index_idc syntax elements, entropy decoding unit
150 may decode one or more syntax elements related to delta
QP and/or chroma QP oflsets for the current block of video
data after a syntax element that indicates whether a trans-
pose process 1s applied to the palette indices of the palette
for the current block of video data such that the bins of the
palette_predictor_run, num_signalled_palette_entries, palet-
te_entry, and palette_escape val_present_tlag, num_pal-
ette_indices_idc, and palette_index_i1dc syntax elements are
grouped together. As one example, entropy decoding unit
150 may decode the syntax elements used to define the
current palette in the order shown above 1n Table 4. As
another example, entropy decoding unit 150 may decode the
syntax elements used to define the current palette 1n the
order shown above 1n Table 5. In this way, the CABAC
throughput of entropy decoding unit 150 may be increased.

FIG. 4 1s a conceptual diagram 1llustrating an example of
determining a palette for coding video data, consistent with
techniques of this disclosure. The example of FIG. 4
includes a picture 178 having a first coding unit (CU) 180
that 1s associated with first palettes 184 and a second CU 188
that 1s associated with second palettes 192. As described in
greater detail below and 1n accordance with the techniques
of this disclosure, second palettes 192 are based on {irst
palettes 184. Picture 178 also includes block 196 coded with
an 1ntra-prediction coding mode and block 200 that 1s coded
with an inter-prediction coding mode.

The techniques of FIG. 4 are described 1n the context of
video encoder 20 (FIG. 1 and FIG. 2) and video decoder 30
(FIG. 1 and FIG. 3) and with respect to the HEVC Standard
for purposes of explanation. However, it should be under-
stood that the techniques of this disclosure are not limited 1n
this way, and may be applied by other video coding proces-
sors and/or devices 1n other video coding processes and/or
standards.

In general, a palette refers to a number of pixel values that
are dominant and/or representative for a CU currently being
coded, such as CU 188 in the example of FIG. 4. First
palettes 184 and second palettes 192 are shown as including
multiple palettes. In some examples, a video coder (such as
video encoder 20 or video decoder 30) may code palettes
separately for each color component of a CU. For example,

US 11,146,788 B2

41

video encoder 20 may encode a palette for a luma (Y)
component of a CU, another palette for a chroma (U)
component of the CU, and yet another palette for the chroma
(V) component of the CU. In this example, entries of the Y
palette may represent Y values of pixels of the CU, entries
of the U palette may represent U values of pixels of the CU,
and entries of the V palette may represent V values of pixels
of the CU. In another example, video encoder 20 may
encode a palette for a luma (Y) component of a CU, and
another palette for two components (U, V) of the CU. In this
example, entries of the Y palette may represent Y values of
pixels of the CU, and entries of the U-V palette may
represent U-V value pairs of pixels of the CU.

In other examples, video encoder 20 may encode a single
palette for all color components of a CU. In this example,
video encoder 20 may encode a palette having an 1-th entry
that 1s a triple value, including Yi, Ui, and Vi. In this case,
the palette includes values for each of the components of the
pixels. Accordingly, the representation of palettes 184 and
192 as a set of palettes having multiple individual palettes 1s
merely one example and not intended to be limiting.

In the example of FIG. 4, first palettes 184 includes three
entries 202-206 having entry mdex value 1, entry index
value 2, and entry index value 3, respectively. Entries
202-206 relate the mdex values to pixel values including
pixel value A, pixel value B, and pixel value C, respectively.
As described herein, rather than coding the actual pixel
values of first CU 180, a video coder (such as video encoder
20 or video decoder 30) may use palette-based coding to
code the pixels of the block using the indices 1-3. That 1s, for
cach pixel position of first CU 180, video encoder 20 may
encode an index value for the pixel, where the index value
1s associated with a pixel value 1n one or more of {first
palettes 184. Video decoder 30 may obtain the index values
from a bitstream and reconstruct the pixel values using the
index values and one or more of first palettes 184. Thus, first
palettes 184 are transmitted by video encoder 20 in an
encoded video data bitstream for use by video decoder 30 1n
palette-based decoding. In general, one or more palettes may
be transmitted for each CU or may be shared among
different CUSs.

Video encoder 20 and video decoder 30 may determine
second palettes 192 based on first palettes 184. For example,
video encoder 20 may encode a pred_palette flag for each
CU (including, as an example, second CU 188) to indicate
whether the palette for the CU 1s predicted from one or more
palettes associated with one or more other CUSs, such as
neighboring CUs (spatially or based on scan order) or the
most frequent samples of a causal neighbor. For example,
when the value of such a flag 1s equal to one, video decoder
30 may determine that second palettes 192 for second CU
188 are predicted from one or more already decoded palettes
and therefore no new palettes for second CU 188 are
included 1n a bitstream containing the pred_palette_flag.
When such a flag 1s equal to zero, video decoder 30 may
determine that palette 192 for second CU 188 1s included 1n
the bitstream as a new palette. In some examples, pred_pal-
ctte_flag may be separately coded for each diflerent color
component of a CU (e.g., three flags, one for Y, one for U,
and one for V, for a CU 1 YUYV wvideo). In other examples,
a single pred_palette_tlag may be coded for all color com-
ponents of a CU.

In the example above, the pred_palette_tlag 1s signaled
per-CU to indicate whether any of the entries of the palette
for the current block are predicted. In some examples, one
or more syntax elements may be signaled on a per-entry
basis. That 1s, a flag may be signaled for each entry of a

10

15

20

25

30

35

40

45

50

55

60

65

42

palette predictor to indicate whether that entry 1s present in
the current palette. As noted above, 1f a palette entry 1s not
predicted, the palette entry may be explicitly signaled.

When determining second palettes 192 relative to first
palettes 184 (e.g., pred_palette_flag 1s equal to one), video
encoder 20 and/or video decoder 30 may locate one or more
blocks from which the predictive palettes, 1n this example
first palettes 184, are determined. The predictive palettes
may be associated with one or more neighboring CUs of the
CU currently being coded (e.g., such as neighboring CUs
(spatially or based on scan order) or the most frequent
samples of a causal neighbor), 1.e., second CU 188. The
palettes of the one or more neighboring CUs may be
associated with a predictor palette. In some examples, such
as the example 1llustrated in FIG. 4, video encoder 20 and/or
video decoder 30 may locate a left neighboring CU, first CU
180, when determining a predictive palette for second CU
188. In other examples, video encoder 20 and/or video
decoder 30 may locate one or more CUSs in other positions
relative to second CU 188, such as an upper CU, CU 196.

Video encoder 20 and/or video decoder 30 may determine
a CU for palette prediction based on a hierarchy. For
example, video encoder 20 and/or video decoder 30 may
initially 1dentify the left neighboring CU, first CU 180, for
palette prediction. If the left neighboring CU 1s not available
for prediction (e.g., the left neighboring CU 1s coded with a
mode other than a palette-based coding mode, such as an
intra-prediction more or intra-prediction mode, or 1s located
at the left-most edge of a picture or slice) video encoder 20
and/or video decoder 30 may 1dentify the upper neighboring
CU, CU196. Video encoder 20 and/or video decoder 30 may
continue searching for an available CU according to a
predetermined order of locations until locating a CU having,
a palette available for palette prediction. In some examples,
video encoder 20 and/or video decoder 30 may determine a
predictive palette based on multiple blocks and/or recon-
structed samples of a neighboring block.

While the example of FIG. 4 illustrates first palettes 184
as predictive palettes from a single CU, first CU 180, 1n
other examples, video encoder 20 and/or video decoder 30
may locate palettes for prediction from a combination of
neighboring CUs. For example, video encoder 20 and/or
video decoder may apply one or more formulas, functions,
rules or the like to generate a palette based on palettes of one
or a combination of a plurality of neighboring CUSs.

In still other examples, video encoder 20 and/or video
decoder 30 may construct a candidate list mncluding a
number of potential candidates for palette prediction. A
pruning process may be applied at both video encoder 20
and video decoder 30 to remove duplicated candidates 1n the
list. In such examples, video encoder 20 may encode an
index to the candidate list to indicate the candidate CU 1n the
list from which the current CU used for palette prediction 1s
selected (e.g., copies the palette). Video decoder 30 may
construct the candidate list in the same manner, decode the
index, and use the decoded index to select the palette of the
corresponding CU for use with the current CU.

In an example for purposes of illustration, video encoder
20 and video decoder 30 may construct a candidate list that
includes one CU that 1s positioned above the CU currently
being coded and one CU that 1s positioned to the left of the
CU currently being coded. In this example, video encoder 20
may encode one or more syntax elements to indicate the
candidate selection. For example, video encoder 20 may
encode a flag having a value of zero to indicate that the
palette for the current CU 1s copied from the CU positioned
to the left of the current CU. Video encoder 20 may encode

US 11,146,788 B2

43

the tlag having a value of one to indicate that the palette for
the current CU 1s copied from the CU positioned above the
current CU. Video decoder 30 decodes the flag and selects
the appropriate CU {for palette prediction.

In still other examples, video encoder 20 and/or video
decoder 30 determine the palette for the CU currently being
coded based on the frequency with which sample values
included 1n one or more other palettes occur 1n one or more
neighboring CUs. For example, video encoder 20 and/or
video decoder 30 may track the colors associated with the
most frequently used index values during coding of a
predetermined number of CUs. Video encoder 20 and/or
video decoder 30 may include the most frequently used
colors 1n the palette for the CU currently being coded.

In some examples, video encoder 20 and/or video decoder
30 may perform entry-wise based palette prediction. For
example, video encoder 20 may encode one or more syntax
clements, such as one or more flags, for each entry of a
predictive palette indicating whether the respective predic-
tive palette entries are reused i1n the current palette (e.g.,
whether pixel values 1n a palette of another CU are reused
by the current palette). In this example, video encoder 20
may encode a flag having a value equal to one for a given
entry when the entry 1s a predicted value from a predictive
palette (e.g., a corresponding entry ol a palette associated
with a neighboring CU). Video encoder 20 may encode a
flag having a value equal to zero for a particular entry to
indicate that the particular entry 1s not predicted from a
palette of another CU. In this example, video encoder 20
may also encode additional data indicating the value of the
non-predicted palette entry.

In the example of FIG. 4, second palettes 192 includes
four entries 208-214 having entry index value 1, entry index
value 2, entry index value 3, and entry index 4, respectively.
Entries 208-214 relate the index values to pixel values
including pixel value A, pixel value B, pixel value C, and
pixel value D, respectively. Video encoder 20 and/or video
decoder 30 may use any of the above-described techniques
to locate first CU 180 for purposes of palette prediction and
copy entries 1-3 of first palettes 184 to entries 1-3 of second
palettes 192 for coding second CU 188. In this way, video
encoder 20 and/or video decoder 30 may determine second
palettes 192 based on first palettes 184. In addition, video
encoder 20 and/or video decoder 30 may code data for entry
4 to be included with second palettes 192. Such information
may include the number of palette entries not predicted from
a predictor palette and the pixel values corresponding to
those palette entries.

In some examples, according to aspects of this disclosure,
one or more syntax elements may indicate whether palettes,
such as second palettes 192, are predicted entirely from a
predictive palette (shown 1n FIG. 4 as first palettes 184, but
which may be composed of entries from one or more blocks)
or whether particular entries of second palettes 192 are
predicted. For example, an 1nitial syntax element may indi-
cate whether all of the entries are predicted. I the mitial
syntax element indicates that not all of the entries are
predicted (e.g., a flag having a value of 0), one or more
additional syntax elements may indicate which entries of
second palettes 192 are predicted from the predictive palette.

According to some aspects of this disclosure, certain
information associated with palette prediction may be
inferred from one or more characteristics of the data being
coded. That 1s, rather than video encoder 20 encoding syntax
clements (and video decoder 30 decoding such syntax
clements), video encoder 20 and video decoder 30 may

10

15

20

25

30

35

40

45

50

55

60

65

44

perform palette prediction based on one or more character-
istics of the data being coded.

FIG. 5 15 a conceptual diagram 1llustrating an example of
determining 1ndices to a palette for a block of pixels,
consistent with techniques of this disclosure. For example,
FIG. 5 includes a map 240 of index values (values 1, 2, and
3) that relate respective positions of pixels associated with
the index values to an entry of palettes 244. Palettes 244 may
be determined in a similar manner as first palettes 184 and
second palettes 192 described above with respect to FIG. 4.

Again, the techniques of FIG. 5 are described in the
context of video encoder 20 (FIG. 1 and FIG. 2) and video
decoder 30 (FIG. 1 and FIG. 3) and with respect to the
HEVC video coding standard for purposes of explanation.
However, 1t should be understood that the techniques of this
disclosure are not limited 1n this way, and may be applied by
other video coding processors and/or devices 1n other video
coding processes and/or standards.

While map 240 i1s illustrated 1n the example of FIG. 5 as
including an index value for each pixel position, 1t should be
understood that 1n other examples, not all pixel positions
may be associated with an index value relating the pixel
value to an entry of palettes 244. That 1s, as noted above, n
some examples, video encoder 20 may encode (and video
decoder 30 may obtain, from an encoded bitstream) an
indication of an actual pixel value (or its quantized version)
for a position 1n map 240 1f the pixel value 1s not included
in palettes 244.

In some examples, video encoder 20 and video decoder 30
may be configured to code an additional map indicating
which pixel positions are associated with index values. For
example, assume that the (1,) entry in the map corresponds
to the (1, 1) position of a CU. Video encoder 20 may encode
one or more syntax elements for each entry of the map (i.e.,
cach pixel position) indicating whether the entry has an
associated index value. For example, video encoder 20 may
encode a flag having a value of one to 1indicate that the pixel
value at the (1, 1) location 1n the CU 1is one of the values in
palettes 244. Video encoder 20 may, in such an example,
also encode a palette index (shown i1n the example of FIG.
5 as values 1-3) to indicate that pixel value 1n the palette and
to allow video decoder to reconstruct the pixel value. In
instances 1 which palettes 244 include a single entry and
associated pixel value, video encoder 20 may skip the
signaling of the index value. Video encoder 20 may encode
the flag to have a value of zero to indicate that the pixel value
at the (1, j) location 1 the CU 1s not one of the values 1n
palettes 244. In this example, video encoder 20 may also
encode an indication of the pixel value for use by video
decoder 30 1n reconstructing the pixel value. In some
instances, the pixel value may be coded 1n a lossy manner.

The value of a pixel 1n one position of a CU may provide
an 1ndication of values of one or more other pixels 1n other
positions of the CU. For example, there may be a relatively
high probability that neighboring pixel positions of a CU
will have the same pixel value or may be mapped to the same
index value (in the case of lossy coding, 1n which more than
one pixel value may be mapped to a single index value).

Accordingly, video encoder 20 may encode one or more
syntax elements indicating a number of consecutive pixels
or index values 1n a given scan order that have the same pixel
value or index value. As noted above, the string of like-
valued pixel or index values may be referred to herein as a
run. In an example for purposes of illustration, 1f two
consecutive pixels or indices 1 a given scan order have
different values, the run 1s equal to zero. If two consecutive
pixels or indices 1n a given scan order have the same value

US 11,146,788 B2

45

but the third pixel or index in the scan order has a different
value, the run 1s equal to one. For three consecutive indices
or pixels with the same value, the run 1s two, and so forth.
Video decoder 30 may obtain the syntax elements indicating

a run from an encoded bitstream and use the data to 5
determine the number of consecutive locations that have the
same pixel or index value.

The number of 1indices that may be included 1n a run may
be impacted by the scan order. For example, consider a raster
scan of lines 266, 268, and 270 of map 240. Assuming a 10
horizontal, left to right scan direction (such as a raster
scanning order), row 266 includes three index values of “1,”
two 1ndex values of “2.” and three index values of “3.” Row
268 1ncludes five index values of “1”” and three index values
of “3.” In this example, for row 266, video encoder 20 may 15
encode syntax elements indicating that the first value of row
266 (the leftmost value of the row) 1s 1 with a run of 2,
followed by an 1ndex value of 2 with a run of 1, followed by
an mdex value of 3 with a run of 2. Following the raster scan,
video encoder 20 may then begin coding row 268 with the 20
leftmost value. For example, video encoder 20 may encode
syntax elements indicating that the first value of row 268 1s
1 with a run of 4, followed by an 1ndex value of 3 with a run
of 2. Video encoder 20 may proceed in the same manner
with line 270. 25

Hence, 1n the raster scan order, the first index of a current
line may be scanned directly after the last index of a
previous line. However, in some examples, 1t may not be
desirable to scan the indices in a raster scan order. For
instance, 1t may not be desirable to scan the indices 1n a 30
raster scan order where a {first line of a block of video data
(e.g., row 266) includes a first pixel adjacent to a first edge
of the block of video data (e.g., the left most pixel of row
266, which has an index value of 1) and a last pixel adjacent
to a second edge of the block of video data (e.g., the right 35
most pixel of row 266, which has an index value of 3), a
second line of the block of video data (e.g., row 268)
includes a first pixel adjacent to the first edge of the block
of video data (e.g., the left most pixel of row 268, which has
an 1dex value of 1) and a last pixel adjacent to the second 40
edge of the block of video data (e.g., the rnght most pixel of
row 268, which has an index value of 3), the last pixel of the
first line 1s adjacent to the last pixel of the second line, and
the first edge and the second edge are parallel, and the last
pixel i the first line has the same index value as the last 45
pixel 1n the second line, but has a different index value from
the first pixel in the second line. This situation (i.e., where
the index value of last pixel 1n the first line 1s the same as the
last pixel 1n the second line, but different from the first pixel
in the second line) may occur more frequently in computer 50
generated screen content than other types of video content.

In some examples, video encoder 20 may utilize a snake
scan order when encoding the indices of the map. For
instance, video encoder 20 may scan the last pixel of the
second line directly after the last pixel of the first line. In this 55
way, video encoder 20 may improve the efliciency of
run-length coding.

For example, as opposed to using a raster scan order,
video encoder 20 may use a snake scan order to code the
values of map 240. In an example for purposes of illustra- 60
tion, consider rows 266, 268, and 270 of map 240. Using a
snake scan order (such as a snake scanning order), video
encoder 20 may code the values of map 240 beginning with
the lett position of row 266, proceeding through to the right
most position of row 266, moving down to the left most 65
position of row 268, proceeding through to the left most
position of row 268, and moving down to the left most

46

position of row 270. For instance, video encoder 20 may
encode one or more syntax elements indicating that the first
position of row 266 1s one and that the next run of two
consecutive entries 1n the scan direction are the same as the
first position of row 266.

Video encoder 20 may encode one or more syntax ele-
ments indicating that the next position of row 266 (1.¢., the
fourth position, from leit to right) 1s two and that the next
consecutive entry in the scan direction are the same as the
fourth position of row 266. Video encoder 20 may encode
one or more syntax elements indicating that the next position
of row 266 (i.c., the sixth position) 1s three and that the next
run of five consecutive entries in the scan direction are the
same as the sixth position of row 266. Video encoder 20 may
encode one or more syntax elements indicating that the next
position 1n the scan direction (i.e., the fourth position of row
268, from right to left) of row 268 1s one and that the next
run of nine consecutive entries 1n the scan direction are the
same as the fourth position of row 268.

In this way, by using a snake scan order, video encoder 20
may encode longer length runs, which may improve coding
clliciency. For example, using the raster scan, the final run
of row 266 (for the index value 3) 1s equal to 2. Using the
snake scan, however, the final run of row 266 extends into
row 268 and is equal to 5.

Video decoder 30 may receive the syntax elements
described above and reconstruct rows 266, 268, and 270. For
example, video decoder 30 may obtain, from an encoded
bitstream, data indicating an index value for a position of
map 240 currently being coded. Video decoder 30 may also
obtain data indicating the number of consecutive positions 1n
the scan order having the same 1index value.

FIG. 6 1s a flowchart 1llustrating an example process for
decoding a block of video data using palette mode, 1n
accordance with one or more techniques of this disclosure.
The techniques of FIG. 6 may be performed by a video
decoder, such as video decoder 30 1illustrated in FIG. 1 and
FIG. 3. For purposes of illustration, the techniques of FIG.
6 are described within the context of video decoder 30 of
FIG. 1 and FIG. 3, although video decoders having configu-
rations different than that of video decoder 30 may perform
the techniques of FIG. 6.

As discussed above, 1t may be desirable to maximize the
number of bypass mode coded bins of syntax elements that
are grouped together. In accordance with one or more
techniques of this disclosure, video decoder 30 may decode,
from a coded video bitstream and using bypass mode, a
group ol syntax elements for a palette for a current block of
video data (602). For mstance, entropy decoding unit 150 of
video decoder 30 may decode, using bypass mode, bins of
one or more syntax elements that indicate a number of zeros
that precede a non-zero entry 1 an array that indicates
whether entries from a predictor palette are reused 1n the
current palette (e.g., one or more palette_predictor_run
syntax elements), a syntax element that indicates a number
ol entries 1n the current palette that are explicitly signalled
(e.g., a num_signalled_palette_entries syntax element), one
or more syntax elements that each indicate a value of a
component 1n an entry in the current palette (e.g., one or
more palette_entry syntax elements), a syntax element that
indicates whether the current block of video data includes at
least one escape coded sample (e.g., a palette_escape_val_
present_flag syntax element), a syntax element that indicates
a number of entries 1n the current palette that are explicitly
signalled or inferred (e.g., a num_palette_indices_idc syntax
clement), and one or more syntax elements that indicate
indices 1 an array of current palette entries

US 11,146,788 B2

47

(e.g., one or more palette_index_1dc syntax elements). In
some examples, to decode a group of bypass-coded syntax
clements, video decoder 30 may sequentially decode syntax
clements 1included in the group of syntax elements without
decoding any non-bypass coded bins. As discussed above,
grouping together a large number of bypass coded bins/
syntax elements may improve a CABAC throughput of
video decoder 30. In particular, the grouping of bypass-
coded syntax elements may enable video decoder 30 to
avold starting/stopping/restarting the CABAC engine. By
contrast, when the bypass-coded syntax elements are not
grouped, video decoder 30 may have to continually start the
CABAC engine to decode a non-bypass-coded bin with a
first context, stop the CABAC engine to decode a bypass-
coded bin, start the CABAC engine to decode another
non-bypass-coded bin with the first context, etc. As dis-
cussed above, the repeated toggling of the CABAC engine
may decrease the CABAC engine’s throughput.

Video decoder 30 may decode, using CABAC with a
context and at a position 1n the coded video bitstream that 1s
alter the group of syntax elements, a syntax element that
indicates whether a transpose process 1s applied to palette
indices of the palette for the current block of video data
(604). For instance, entropy decoding unit 150 of video
decoder 30 may decode, using CABAC with a context, the
bin of a palette_transpose_flag syntax element.

Video decoder 30 may decode, using CABAC with a
context and at a position in the coded video bitstream that 1s
alter the syntax element that indicates whether a transpose
process 1s applied to palette indices of the palette for the
current block of video data, one or more syntax elements
related to delta quantization parameter (QP) and/or chroma
QP offsets for the current block of video data (606). For
instance, entropy decoding unit 150 of video decoder 30
may decode, using CABAC with one or more contexts, bins
of a syntax elements that specifies the absolute value of a
difference between a QP (e.g., a luma QP) for the current
block of video data and a predictor of the QP for the current
block (e.g., cu_qgp_delta_abs), a syntax element that speci-
fies a sign of the difference between the QP for the current

block of video data and the predictor of the QP for the

current block (e.g., cu_qgp_delta_sign_{flag), a syntax ele-
ment that indicates whether entries 1n one or more ofiset lists
are added to a luma QP for the current block to determine
chroma QPs for the current block (e.g., cu_chroma_qp_ofl-
set_flag), and a syntax element that specifies an index of an
entry 1n each of the one or more offset lists that are added to
the luma QP for the current block to determine chroma QPs
for the current block (e.g., cu_chroma_qp_oflset_idx).

In some examples, video decoder 30 may decode the one
or more syntax elements related to delta QP and/or chroma
QP oflsets for the current block of video data based on a
value of a syntax element of the group of syntax elements
decoded using bypass mode. As one example, video decoder
30 may decode the one or more syntax elements related to
delta QP and/or chroma QP oflsets for the current block of
video data where the syntax element of the group of syntax
clements that indicates whether the current block of video
data includes at least one escape coded sample 1indicates that
the current block of video data does include at least one
escape sample. As another example, video decoder 30 may
not decode the one or more syntax elements related to delta
QP and/or chroma QP offsets for the current block of video
data where the syntax element of the group of syntax
clements that indicates whether the current block of video

10

15

20

25

30

35

40

45

50

55

60

65

48

data includes at least one escape coded sample indicates that
the current block of video data does not include at least one
escape sample.

Video decoder 30 may generate the palette for the current
block of video data based on the group of syntax elements
and the syntax element that indicates whether a transpose
process 1s applied to palette indices of the palette for the
current block of video data (608) and decode the current
block of video data based on the generated palette and the
one or more syntax elements related to delta QP and/or
chroma QP oflsets for the current block of video data (610).
For instance, palette-based decoding unit 165 may generate
the palette having entries indicating pixel values, receive
information associating at least some positions of the current
block of video data with entries in the palette, select pixel
values 1n the palette based on the information, and recon-
struct pixel values of the block based on the selected pixel
values.

FIG. 7 1s a flowchart 1llustrating an example process for
encoding a block of video data using palette mode, 1n
accordance with one or more techniques of this disclosure.
The techniques of FIG. 7 may be performed by a video
encoder, such as video encoder 20 1illustrated in FIG. 1 and
FIG. 2. For purposes of illustration, the techniques of FIG.
7 are described within the context of video encoder 20 of
FIG. 1 and FIG. 2, although video encoders having configu-
rations different than that of video encoder 20 may perform
the techniques of FIG. 7.

As discussed above, 1t may be desirable to maximize the
number of bypass mode coded bins of syntax elements that
are grouped together. In accordance with one or more
techniques of this disclosure, video encoder 20 may encode,
in a coded video bitstream and using bypass mode, a group
of syntax elements for a palette for a current block of video
data (702). For instance, entropy encoding unit 118 of video
encoder 20 may encode, using bypass mode, bins of one or
more syntax elements that indicate a number of zeros that
precede a non-zero entry in an array that indicates whether
entries from a predictor palette are reused in the current
palette (e.g., one or more palette_predictor_run syntax ele-
ments), a syntax element that indicates a number of entries
in the current palette that are explicitly signalled (e.g., a
num_signalled_palette_entries syntax element), one or more
syntax elements that each indicate a value of a component 1n
an entry in the current palette (e.g., one or more palette_en-
try syntax elements), a syntax element that indicates whether
the current block of video data includes at least one escape
coded sample (e.g., a palette_escape_val_present_1lag syn-
tax element), a syntax element that indicates a number of
entries 1n the current palette that are explicitly signalled or
inferred (e.g., a num_palette_indices_idc or a num_pal-
ette_indices_minus] syntax element), and one or more syn-
tax elements that indicate indices in an array of current
palette entries (e.g., one or more palette _index_idc syntax
clements).

Video encoder 20 may encode, using CABAC with a
context and at a position 1n the coded video bitstream that 1s
after the group of syntax elements, a syntax element that
indicates whether a transpose process 1s applied to palette
indices of the palette for the current block of video data
(704). For istance, entropy encoding umt 118 of video
encoder 20 may encode, using CABAC with a context, the
bin of a palette_transpose_tlag syntax element.

Video encoder 20 may encode, using CABAC with a
context and at a position in the coded video bitstream that 1s
after the syntax element that indicates whether a transpose
process 1s applied to palette indices of the palette for the

US 11,146,788 B2

49

current block of video data, one or more syntax elements
related to delta quantization parameter (QP) and/or chroma
QP ofisets for the current block of video data (706). For
instance, entropy encoding unit 118 of video encoder 20 may
encode, using CABAC with one or more contexts, bins of a
syntax elements that specifies the absolute value of a dif-
ference between a luma QP for the current block of video
data and a predictor of the luma QP for the current block
(e.g., cu_qgp_delta_abs), a syntax element that specifies a
sign of the difference between the luma QP for the current
block of video data and the predictor of the luma QP for the
current block (e.g., cu_qgp_delta_sign_flag), a syntax ele-
ment that indicates whether entries in one or more oflset lists
are added to the luma QP for the current block to determine
chroma (QPs for the current block (e.g., cu_chroma_qp_ofl-
set_flag), and a syntax element that specifies an index of an
entry 1n each of the one or more offset lists that are added to
the luma QP for the current block to determine chroma QPs
for the current block (e.g., cu_chroma_qp_oflset_idx).

In some examples, video encoder 20 may encode the one
or more syntax elements related to delta QP and/or chroma
QP oflsets for the current block of video data based on a
value of a syntax element of the group of syntax elements
encoded using bypass mode. As one example, video encoder
20 may encode the one or more syntax elements related to
delta QP and/or chroma QP oflsets for the current block of
video data where the syntax element of the group of syntax
clements that indicates whether the current block of video
data includes at least one escape coded sample indicates that
the current block of video data does include at least one
escape sample. As another example, video encoder 20 may
not encode the one or more syntax elements related to delta
QP and/or chroma QP offsets for the current block of video
data where the syntax element of the group of syntax
clements that indicates whether the current block of video
data includes at least one escape coded sample indicates that
the current block of video data does not include at least one
escape sample.

It 1s to be recognized that depending on the example,
certain acts or events of any of the techniques described
herein can be performed 1n a different sequence, may be
added, merged, or left out altogether (e.g., not all described
acts or events are necessary for the practice of the tech-
niques). Moreover, 1n certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded
processing, interrupt processing, or multiple processors,
rather than sequentially. In addition, while certain aspects of
this disclosure are described as being performed by a single
module or unit for purposes of clarity, it should be under-
stood that the techniques of this disclosure may be per-
formed by a combination of units or modules associated
with a video coder.

Certain aspects of this disclosure have been described
with respect to the developing HEVC standard for purposes
of illustration. However, the techniques described in this
disclosure may be useful for other video coding processes,
including other standard or proprietary video coding pro-
cesses not yet developed.

The techmiques described above may be performed by
video encoder 20 (FIGS. 1 and 2) and/or video decoder 30
(FIGS. 1 and 3), both of which may be generally referred to
as a video coder. Likewise, video coding may refer to video
encoding or video decoding, as applicable.

While particular combinations of various aspects of the
techniques are described above, these combinations are
provided merely to 1llustrate examples of the techniques
described 1n this disclosure. Accordingly, the techmiques of

10

15

20

25

30

35

40

45

50

55

60

65

50

this disclosure should not be limited to these example
combinations and may encompass any conceivable combi-
nation of the various aspects of the techniques described in
this disclosure.

In one or more examples, the Tunctions described may be
implemented in hardware, software, firmware, or any com-
bination thereof. If implemented 1n soiftware, the functions
may be stored on or transmitted over, as one or more
istructions or code, a computer-readable medium and
executed by a hardware-based processing umt. Computer-
readable media may include computer-readable storage
media, which corresponds to a tangible medium such as data
storage media, or communication media including any
medium that facilitates transfer of a computer program from
one place to another, e.g., according to a communication
protocol. In this manner, computer-readable media generally
may correspond to (1) tangible computer-readable storage
media which 1s non-transitory or (2) a communication
medium such as a signal or carrier wave. Data storage media
may be any available media that can be accessed by one or
more computers or one or more processors to retrieve
instructions, code and/or data structures for implementation
of the techmiques described in this disclosure. A computer
program product may include a computer-readable medium.

By way of example, and not limitation, such computer-
readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection 1s properly termed a computer-readable medium.
For example, 1f instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and micro-
wave, then the coaxial cable, fiber optic cable, twisted pair,
DSL, or wireless technologies such as infrared, radio, and
microwave are included in the definition of medium. It
should be understood, however, that computer-readable stor-
age media and data storage media do not include connec-
tions, carrier waves, signals, or other transient media, but are
instead directed to non-transient, tangible storage media.
Disk and disc, as used herein, includes compact disc (CD),
laser disc, optical disc, digital versatile disc (DVD), floppy
disk and Blu-ray disc, where disks usually reproduce data
magnetically, while discs reproduce data optically with
lasers. Combinations of the above should also be included
within the scope of computer-readable media.

Instructions may be executed by one or more processors,
such as one or more digital signal processors (DSPs),
general purpose microprocessors, application specific inte-
grated circuits (ASICs), field programmable logic arrays
(FPGAs), or other equivalent integrated or discrete logic
circuitry. Accordingly, the term “processor,” as used herein
may refer to any of the foregoing structure or any other
structure suitable for implementation of the techmiques
described herein. In addition, 1n some aspects, the function-
ality described herein may be provided within dedicated
hardware and/or software modules configured for encoding
and decoding, or incorporated 1n a combined codec. Also,
the techniques could be fully implemented in one or more
circuits or logic elements.

The techniques of this disclosure may be implemented 1n
a wide variety of devices or apparatuses, including a wire-
less handset, an integrated circuit (IC) or a set of ICs (e.g.,
a chip set). Various components, modules, or units are

US 11,146,788 B2

51

described 1n this disclosure to emphasize functional aspects
of devices configured to perform the disclosed techniques,
but do not necessarily require realization by diflerent hard-
ware units. Rather, as described above, various units may be
combined 1 a codec hardware unit or provided by a col-
lection of interoperative hardware units, including one or
more processors as described above, 1n conjunction with
suitable software and/or firmware.

Various examples have been described. These and other
examples are within the scope of the following claims.

What 1s claimed 1s:

1. A method of decoding video data, the method com-
prising;:

decoding, 1n accordance with a syntax table that specifies

a parsing order for a coded video bitstream and using

context adaptive binary arithmetic coding (CABAC)

with a context, a syntax element from the coded video
bitstream that indicates whether a transpose process 1s

applied to palette indices of a current palette for a

current block of video data;

decoding, in accordance with the syntax table and from

the coded video bitstream and using CABAC with a
context, one or more syntax elements related to delta
quantization parameter (QP) and/or chroma QP oflsets
for the current block of video data, wherein the syntax
table specifies that the one or more syntax elements
related to delta quantization parameter (QP) and/or
chroma QP oflsets for the current block of video data
are parsed alter the syntax element that indicates
whether the transpose process 1s applied to palette
indices of the current palette for the current block of
video data;

decoding, in accordance with the syntax table and from

the coded video bitstream, a group of syntax elements

using Bypass mode, wherein the group of syntax ele-
ments comprises:

one or more syntax elements that indicate a number of
zeros that precede a non-zero entry in an array that
indicates whether entries from a predictor palette are
reused 1n the current palette;

a syntax element that indicates a number of entries 1n
the current palette that are explicitly signalled;

one or more syntax elements that each indicate a value
of a component in an entry in the current palette;

a syntax element that indicates whether the current
block of video data includes at least one escape
coded sample;

a syntax element that indicates a number of indices 1n
the current palette that are explicitly signalled or
inferred; and

one or more syntax elements that indicate indices 1n an
array of entries of the current palette; and

decoding the current block of video data based on the

current palette for the current block of video data, the
group ol syntax elements, and the one or more syntax
clements related to delta QP and/or chroma QP ofisets
for the current block of video data.

2. The method of claim 1, wherein the syntax element that
indicates whether the transpose process 1s applied to palette
indices of the current palette of the current block of video
data comprises a palette_transpose_tlag syntax element.

3. The method of claim 1, wherein the one or more syntax
clements related to delta QP comprise one or both of a
syntax element that indicates an absolute value of a differ-
ence between a QP of the current block and a predictor of the
QP of the current block and a syntax element that indicates

10

15

20

25

30

35

40

45

50

55

60

65

52

a sign ol the difference between the QP of the current block
and the predictor of the QP of the current block.
4. The method of claim 1, wherein the one or more syntax
clements related to chroma QP oflsets comprise one or both
of a syntax element that indicates whether entries in one or
more oflset lists are added to a luma QP of the current block
to determine chroma QPs for the current block and a syntax
clement that indicates an index of an entry in each of the one
or more oflset lists that are added to the luma QP for the
current block to determine the chroma QPs for the current
block.
5. The method of claim 1, wherein one or more of:
the one or more syntax elements that indicate a number of
zeros that precede a non-zero entry in an array that
indicates whether entries from a predictor palette are
reused in the current palette comprise one or more
palette_predictor_run syntax elements,
the syntax element that indicates a number of entries 1n
the current palette that are explicitly signalled com-
prises a num_signalled_palette_entries syntax element,

the one or more syntax elements that each indicate a value
of a component in an entry in the current palette
comprise one or more palette_entry syntax elements,

the syntax element that indicates whether the current
block of video data includes at least one escape coded
sample comprises palette_escape_val_present_flag,

the syntax element that indicates a number of indices 1n
the current palette that are explicitly signalled or
inferred comprise a num_palette_indices_idc syntax
element, and

the one or more syntax elements that indicate indices 1n an

array of entries of the current palette comprise one or
more palette_index_idc syntax elements.

6. The method of claim 1, wherein the syntax table
specifies that the group of syntax elements are parsed from
the coded video bitstream before the syntax element that
indicates whether the transpose process 1s applied to palette
indices of the current palette of the current block of video
data.

7. The method of claim 1, further comprising:

decoding, 1n accordance with the syntax table and from

the coded video bitstream, a syntax element that 1ndi-
cates a last occurrence of a run type tlag within the
current block of video data, wherein the syntax table
specifies that the syntax element that indicates the last
occurrence of the run type flag within the current block
of video data 1s parsed after the group of syntax
clements coded using Bypass mode.

8. The method of claim 7, wherein decoding the syntax
clement that indicates the last occurrence of a run type flag
within the current block of video data comprises decoding
the syntax element that indicates the last occurrence of a run
type tlag within the current block of video data using context
adaptive binary arithmetic coding (CABAC) with a context.

9. A method of encoding video data, the method com-
prising;:

encoding, 1n accordance with a syntax table that specifies

a coding order for a coded video bitstream and using
context adaptive binary arithmetic coding (CABAC)
with a context, a syntax element 1n the coded video
bitstream that indicates whether a transpose process 1s
applied to palette indices of a current palette for a
current block of video data;

encoding, in accordance with the syntax table and 1n the

coded video bitstream, one or more syntax elements
related to delta quantization parameter (QP) and/or
chroma QP oflsets for the current block of video data,

"y

US 11,146,788 B2

53

wherein the syntax table specifies that the one or more
syntax elements related to delta quantization parameter

(QP) and/or chroma QP offsets for the current block of

video data are encoded after the syntax element that
indicates whether the transpose process 1s applied to
palette indices of the current palette for the current

block of video data;

encoding, in accordance with the syntax table and in the

coded video bitstream, a group of syntax elements

using Bypass mode, wherein the group of syntax ele-
ments comprises:

one or more syntax elements that indicate a number of
zeros that precede a non-zero entry in an array that
indicates whether entries from a predictor palette are
reused 1n the current palette;

a syntax element that indicates a number of entries 1n
the current palette that are explicitly signalled;

one or more syntax elements that each indicate a value
of a component 1n an entry in the current palette;

a syntax element that indicates whether the current
block of video data includes at least one escape
coded sample;

a syntax element that indicates a number of indices 1n
the current palette that are explicitly signalled or
inferred; and

one or more syntax elements that indicate indices 1n an
array ol entries of the current palette; and

encoding the current block of video data based on the

current palette for the current block of video data, the
group of syntax elements, and the one or more syntax
clements related to delta QP and/or chroma QP oflsets
for the current block of video data.

10. The method of claim 9, wherein the syntax element
that indicates whether the transpose process 1s applied to
palette indices of the current palette of the current block of
video data comprises a palette_transpose_flag syntax ele-
ment.

11. The method of claim 9, wherein the one or more
syntax elements related to delta QP comprise one or both of
a syntax element that indicates an absolute value of a
difference between a QP of the current block and a predictor
of the QP of the current block and a syntax element that
indicates a sign of the difference between the QP of the
current block and the predictor of the QP of the current
block.

12. The method of claim 9, wherein the one or more
syntax elements related to chroma QP oflsets comprise one
or both of a syntax element that indicates whether entries 1n
one or more oflset lists are added to a luma QP of the current
block to determine chroma QPs for the current block and a
syntax element that indicates an index of an entry in each of
the one or more offset lists that are added to the luma QP for
the current block to determine the chroma QPs for the
current block.

13. The method of claim 9, wherein one or more of:

the one or more syntax elements that indicate a number of

zeros that precede a non-zero entry in an array that

indicates whether entries from a predictor palette are
reused 1n the current palette comprise one or more
palette_predictor_run syntax elements,

the syntax element that indicates a number of entries 1n

the current palette that are explicitly signalled com-

prises a num_signalled_palette_entries syntax element,
the one or more syntax elements that each indicate a value

of a component in an entry in the current palette

comprise one or more palette_entry syntax elements,

5

10

15

20

25

30

35

40

45

50

55

60

65

54

the syntax element that indicates whether the current
block of video data includes at least one escape coded
sample comprises palette_escape_val_present_tlag,

the syntax element that indicates a number of indices 1n
the current palette that are explicitly signalled or
inferred comprise a num_palette_indices_minus1 syn-
tax element, and

the one or more syntax elements that indicate indices 1n an

array of entries of the current palette comprise one or
more palette_index_idc syntax elements.

14. The method of claim 9, wherein the syntax table
speciflies that the group of syntax elements 1s encoded before
the syntax element that indicates whether the transpose
process 1s applied to palette indices of the current palette of
the current block of video data.

15. The method of claim 9, further comprising:

encoding, in accordance with the syntax table and 1n the

coded video bitstream, a syntax element that indicates
a last occurrence of a run type flag within the current
block of video data, wherein the syntax table specifies
that the syntax element that indicates the last occur-
rence of the run type flag within the current block of
video data 1s parsed after the group of syntax elements
coded using Bypass mode.

16. The method of claim 15, wherein encoding the syntax
clement that indicates the last occurrence of a run type flag
within the current block of video data comprises encoding
the syntax element that indicates the last occurrence of a run
type tlag within the current block of video data using context
adaptive binary arithmetic coding (CABAC) with a context.

17. A device for encoding or decoding video data, the
device comprising:

a memory configured to store video data;

one or more processors configured to:

encode or decode, 1n accordance with a syntax table that

specifies a parsing order for a coded video bitstream
and using context adaptive binary arithmetic coding
(CABAC) with a context, a syntax element via the
coded video bitstream that indicates whether a trans-
pose process 15 applied to palette indices of a current

palette for a current block of video data;
encode or decode, 1n accordance with the syntax table and

via the coded video bitstream and using CABAC with

a context, one or more syntax elements related to delta

quantization parameter (QP) and/or chroma QP oflsets

for the current block of video data, wherein the syntax

table specifies that the one or more syntax elements

related to delta quantization parameter (QP) and/or

chroma QP oflsets for the current block of video data

are parsed alter the syntax element that indicates

whether the transpose process 1s applied to palette

indices of the current palette for the current block of

video data;

encode or decode, 1n accordance with the syntax table and

via the coded wvideo bitstream, a group of syntax

clements using Bypass mode, wherein the group of

syntax elements comprises:

one or more syntax elements that indicate a number of
zeros that precede a non-zero entry in an array that
indicates whether entries from a predictor palette are
reused in the current palette;

a syntax element that indicates a number of entries 1n
the current palette that are explicitly signalled;

one or more syntax elements that each indicate a value
of a component in an entry in the current palette;

US 11,146,788 B2

3

a syntax element that indicates whether the current
block of video data includes at least one escape
coded sample;

a syntax element that indicates a number of indices 1n
the current palette that are explicitly signalled or
inferred; and

one or more syntax elements that indicate indices 1n an
array of entries of the current palette; and

encode or decode the current block of video data based on

the current palette for the current block of video data,

the group of syntax elements, and the one or more
syntax elements related to delta QP and/or chroma QP
oflsets for the current block of video data.

18. The device of claim 17, wherein the syntax element
that indicates whether the transpose process 1s applied to
palette indices of the current palette of the current block of
video data comprises a palette_transpose_flag syntax ele-
ment.

19. The device of claim 17, wherein one or more of:

the one or more syntax elements that indicate a number of

zeros that precede a non-zero entry in an array that
indicates whether entries from a predictor palette are
reused 1n the current palette comprise one or more
palette_predictor_run syntax elements,

the syntax element that indicates a number of entries 1n

the current palette that are explicitly signalled com-

prises a num_signalled_palette_entries syntax element,

the one or more syntax elements that each indicate a value
of a component 1n an entry in the current palette
comprise one or more palette_entry syntax elements,

the syntax element that indicates whether the current
block of video data includes at least one escape coded
sample comprises palette_escape_val_present_flag,

the syntax element that indicates a number of entries 1n
the current palette that are explicitly signalled or
inferred comprise a num_palette_indices_minus] syn-
tax element, and

the one or more syntax elements that indicate indices 1n an

array of entries of the current palette comprise one or

more palette_index_idc syntax elements.

20. The device of claim 17, wherein the syntax table
specifies that the group of syntax elements are parsed via the
coded video bitstream before the syntax element that indi-
cates whether the transpose process 1s applied to palette
indices of the current palette of the current block of video
data.

21. The device of claim 17, wherein the one or more
processors are further configured to:

encode or decode, 1n accordance with the syntax table and

via the coded video bitstream, a syntax element that
indicates a last occurrence of a run type flag within the
current block of video data, wherein the syntax table
specifies that the syntax element that indicates the last
occurrence of the run type tlag within the current block
of video data 1s parsed after the group of syntax
clements coded using Bypass mode.

22. The device of claim 21, wherein, to encode or decode
the syntax element that indicates the last occurrence of a run
type flag within the current block of video data, the one or
more processors are configured to encode or decode the
syntax element that indicates the last occurrence of a run
type tlag within the current block of video data using context
adaptive binary arithmetic coding (CABAC) with a context.

23. A device for decoding video data, the device com-
prising:

means for parsing, in accordance with a syntax table that

specifies a parsing order for a coded video bitstream

5

10

15

20

25

30

35

40

45

50

55

60

65

56

and using context adaptive binary arithmetic coding
(CABAC) with a context, a syntax element from the
coded video bitstream that indicates whether a trans-
pose process 1s applied to palette indices of a current
palette for a current block of video data;

means for parsing, in accordance with the syntax table and

from the coded video bitstream and using CABAC with

a context, one or more syntax elements related to delta

quantization parameter (QP) and/or chroma QP oflsets

for the current block of video data, wherein the syntax
table specifies that the one or more syntax elements
related to delta quantization parameter (QP) and/or
chroma QP oflsets for the current block of video data
are parsed alter the syntax element that indicates
whether the transpose process 1s applied to palette
indices of the current palette for the current block of
video data;

means for parsing, in accordance with the syntax table and
from the coded video bitstream, a group of syntax
clements using Bypass mode, wherein the group of
syntax elements comprises:

one or more syntax elements that indicate a number of
zeros that precede a non-zero entry in an array that
indicates whether entries from a predictor palette are
reused 1n the current palette;

a syntax element that indicates a number of entries 1n
the current palette that are explicitly signalled;

one or more syntax elements that each indicate a value
of a component in an entry in the current palette;

a syntax element that indicates whether the current
block of video data includes at least one escape
coded sample;

a syntax element that indicates a number of 1ndices 1n
the current palette that are explicitly signalled or
inferred; and

one or more syntax elements that indicate indices 1n an
array of entries of the current palette; and

means for decoding the current block of video data based
on the current palette for the current block of video
data, the group of syntax elements, and the one or more
syntax elements related to delta QP and/or chroma QP
offsets for the current block of video data.

24. A non-transitory computer-readable storage medium
storing at least a portion of a coded video bitstream that,
when processed by a video decoding device 1n accordance
with a syntax table, cause one or more processors of the
video decoding device to:

determine whether a transpose process 1s applied to
palette indices of a current palette for a current block of
video data;

generate the current palette for the current block of video
data based on:
one or more syntax elements that indicate a number of

zeros that precede a non-zero entry in an array that
indicates whether entries from a predictor palette are
reused 1n the current palette;

a syntax element that indicates a number of entries 1n
the current palette that are explicitly signalled;

one or more syntax elements that each indicate a value
of a component in an entry in the current palette;

a syntax element that indicates whether the current
block of video data includes at least one escape
coded sample;

a syntax element that indicates a number of 1indices 1n
the current palette that are explicitly signalled or

inferred; and

US 11,146,788 B2
S7

one or more syntax elements that indicate indices 1n an
array ol entries of the current palette; and
decode the current block of the video data based on the
current palette for the current block of video data and
a delta quantization parameter (QP) and one or more 5
chroma QP oflsets for the current block of video data,
wherein one or more syntax elements related to the delta
QP and one or more syntax elements related to the one
or more chroma QP oflsets for the current block of
video data are located at a position 1n the syntax table 10
that 1s after a syntax element that indicates whether the
transpose process 1s applied to palette indices of the
current palette for the current block of video data,
wherein the syntax element that indicates whether the
transpose process 1s applied to palette idices of the 15
current palette for the current block of video data 1s
decoded using context adaptive binary arithmetic cod-
ing (CABAC) with a context, wherein at least one of
the one or more syntax elements related to the delta QP
and one or more syntax elements related to the one or 20
more chroma QP offsets 1s decoded using CABAC with
a context, and wherein the group of syntax elements are
decoded using Bypass mode.

% ex *H & o

58

	Front Page
	Drawings
	Specification
	Claims

