US011146468B1

a2 United States Patent 10) Patent No.: US 11,146,468 B1

Chandrasekaran et al. (45) Date of Patent: Oct. 12, 2021
(54) INTELLIGENT EXPORT OF NETWORK 2008/0279111 Al* 11/2008 Atkins HO4L 47/2425
INFORMATION | 370/252
2010/0085891 Al* 4/2010 Kindccco......... HO4L 63/1425
. o 370/253
(71) Applicant: Pensando Systems Inc., Milpitas, CA 2013/0003554 Al* 1/2013 Aybayocoo..... HO41. 43/026
(US) 370/235
2013/0010600 Al* 1/2013 Jocha HO4L 43/062
(72) Inventors: Varagur Chandrasekaran, Fremont, 370/236.2
CA (US); Swaminathan Narayanan 2013/0021906 Al1* 1/2013 Rahman HO4L 41/5019
" ” 370/235
San Jose, CA (US) 2013/0041934 A1* 2/2013 Annamalaisamico..........
HO4L 47/2483
(73) Assignee: PENSANDO SYSTEMS INC., 709/203
Milpitas, CA (US) 2013/0262703 Al* 10/2013 Dongccc......... HO4L 43/026
709/247
(*) Notice: Subject to any disclaimer, the term of this 2014/0280887 Al 9/2014 Kjendal et al.
paten‘[iS extended or adjusted under 35 2015/0319057 Al1™ 11/2015 Jochaccooneen.. HO41. 43/062
370/241.1
U.S.C. 154(b) by O days. 2016/0285771 Al* 9/2016 Kulkarni HO4L 47/215
(21) Appl. No.: 17/195,458 (Continued)
(22) Filed: Mar. 8, 2021 OTHER PUBLICATIONS
(51) Int. CL Aitken, Paul et al. “NetFlow/IPFIX Various Thoughts™, 3rd NMRG
HO4L 1226 (2006.01) Workshop on NetFlow/IPFIX Usage in Network Management, Jul.
(52) U.S. CL 201014 pes.
CPC ... HO4L 43/062 (2013.01); HO4L 43/02 (Continued)

(2013.01); HO4L 43/06 (2013.01); HO4L
43/065 (2013.01); HO4L 43/0847 (2013.01):
HO4L 43/0852 (2013.01)

(58) Field of Classification Search (57) ABSTRACT
None
See application file for complete search history.

Primary Examiner — Joshua Joo
(74) Attorney, Agent, or Firm — Loza & Loza, LLP

Methods and systems for exporting network information
from an exporter to a collector are disclosed. Embodiments

(56) References Cited of the present technology may include updating a non-key
field of a flow entry in a tlow cache that corresponds to a
U.S. PATENT DOCUMENTS flow, setting a field in a context-bitmap of the flow entry 1n

response to updating the non-key field of the tlow entry,

7,639,613 Bl 12/2009 Ghannadian et al. identifying an export policy using the context-bitmap, and

9,172,627 B2 10/2015 Kjendal et al.

0.762.537 BL* 9/2017 Eyada ... 11041 45/02 exporting nformation related to the flow to a collector
10,999,149 B2* 5/2021 Ra0 ..occovvovvren... H041 43/026 ~ according to the export policy.
2004/0015599 Al* 1/2004 Trinho..oooonal. HO04L 47/50
709/232 19 Claims, 18 Drawing Sheets
100
N
106~ POLICY & SERVICES 108~ TRAFFIC FLOW
MANAGER (PSM) 110 COLLECTOR

1({4 1?4
(s (O)

el - I NN DN SN D S N S S I BN DN D S S G A -y

|
Ly

1024~ = L-j;llfm 1028~
112A (: 1128

; HOST A

i

e —— ——— — —
L
x'i—n-n— —ap— H“___-“-#J

s
\
’

[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|

US 11,146,468 Bl
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2018/0048571 Al* 2/2018 Dharmapurikar HO4L 47/125
2018/0367364 Al* 12/2018 Johansson GOOF 11/3495
2019/0007326 Al* 1/2019 Clemm HO4L 41/0893
2019/0158591 Al 5/2019 Kjendal et al.

2019/0294249 Al* 9/2019 Martincc.n GOO6F 3/014
2020/0099630 Al* 3/2020 Stolarchuk HO4L. 43/062
2020/0366578 Al 11/2020 Punj et al.

OTHER PUBLICATIONS

Estan, Cristian et al. “Building a Better NetFlow”, SIGCOMM’04,

Aug. 30-Sep. 3, 2004, Portland, Oregon, USA, 12 pgs.

Hofstede, Rick et al. “Flow Monitoring Explained: From Packet
Capture to Data Analysis with NetFlow and IPFIX”, Article in IEEE
Communications Surveys & Tutorials, Apr. 2014, 30 pgs.

Pekar, Adrian et al. “Adaptive Aggregation of Flow Records”,
Computing and Informatics, vol. 37, 2018, pp. 142-164.

Claise, B. et al.“Specification of the IP Flow Information Export
(IPFIX) Protocol for the Exchange of Flow Information”, Request
for Comments: 7011, Sep. 2013, 76 pgs.

Trammell, B. et al. “Flow Aggregation for the IP Flow Information
Export (IPFIX) Protocol”, Request for Comments: 7015, Sep. 2013,
49 pgs.

* cited by examiner

[DIA

geIl” > T 8201

US 11,146,468 B1

i X & 5 o o o O . & R _J§ ™
.

Sheet 1 of 18

vOTl

Oct. 12, 2021

4010471100 Ot

MO1d OI44Vdl 801

U.S. Patent

& 3 & % L &% R 3§ R N N __J§

vOrl

(WSd) YIOVYNYI

S4OIAUAS B AOI10d

VEll

901

/QQH

US 11,146,468 B1

Sheet 2 of 18

Oct. 12, 2021

U.S. Patent

L44

r— """

¢ DIA
10}39]|00 XIddI 07
................................... .m S
5192 o
XI4d]]
| |
| |
furpodx3 0+7 | i
SS9004d | ! SS9204d
TR a_%mmaxm_m mmctmymz
| |
| |
| |
SpJ029Y 2je|dwa] /eleq | |
XI4dI Buneasd ot
................................... P

SpJ023Y MO

Jopodx3 XI4dI

0cc

OIC

_[~ric

S19)0e

-r

buliniden JapeaH 19oed

buidwejisawi |

UOI1}Oo9|=§ loXokd

UOLIEJIJISSE[D)

SpJ023y MoJ{ buluiejuiey

9cc

8CC

0LC

ccC
CEC

2 X4

U.S. Patent Oct. 12, 2021 Sheet 3 of 18 US 11,146,468 B1

Version Number (2) Length (2)

Export Time (4)
Sequence Number (4)

Observation Domain ID (4)

342
Set ID (2) Length (2)

Record 1
Set

Record 2

Record N

FIG. 3A

U.S. Patent Oct. 12, 2021 Sheet 4 of 18 US 11,146,468 B1

Bits 0..15 Bits 16..31
ersion = 0x000a Message Length = 64 Bytes

Export Timestamp = 2020-11-21 21:32:40

Sequence Number = 0
Observation Domain ID = 12345678
Set ID = 2 (Template) Set Length = 20 Bytes
Template ID = 256 Number Of Fields = 3
344 Typ = SourcelPv4Address Field Length = 4 Bytes
342 _Typ= Field Length = 4 Bytes
DestinationIPv4Address

Typ = PacketDeltaCount Field Length = 4 Bytes

Set ID = 256 (Data Set _
Using Template 256) Set Length = 28 Bytes

Set
Record 1, Field 1 = 192.168.0.101

Record 1, Field 2 = 192.168.0.1

346 Record 1, Field 3 = 568 Packets

Record 2, Field 1 = 192,168.0.102

Record 2, Field 2 = 192.168.0.1

Record 2, Field 3 = 997 Packets

FIG. 3B

US 11,146,468 B1

Sheet 5 of 18

Oct. 12, 2021

U.S. Patent

Sobessa
XIddI

P DId

01607 uoneJidx3

S91uU3
MO|
01607 01607

1000]0.(abessay

yodsued| XIddI oyoed
MO|4

19sJed
S19XDe

A 4 vSy 0S7?)44
$S920.d buiodx3 $S920.1d buliaop

bt et
1940dX3 XI4dI

Ocv

cSp

S}9XDe

US 11,146,468 B1

Sheet 6 of 18

Oct. 12, 2021

U.S. Patent

dol

(d1DS

'ddn ‘dJL) MoH

S9|NY ModXx3

X 10193]|0)

(10309]10D
*b'3) oym/aloym

So|ny podx3

¢ OIA

Usni3 syoed)
(Juno) 1PMed | MO|4 uonjeqidx3
'd1 152Q 'd1 32.n0g) |uonesidx3 uodn|Adusbiow3 uoneaidx3
piepueis=q] Aj@leipawiwi] | |esnieN julesisuo)

ajedwsa | 924N0S3Y Jno3aWi |
9|PI INOsWll] |AdY

Amwm_%rﬁ_mﬁyh uayM uoljelidx3

A1Ju3 ayoe) moj

sojny Wodxg | sojny Modx3 196611 podx3

2|dn -G

AR MO|

/mmm

US 11,146,468 B1

Sheet 7 of 18

Oct. 12, 2021

U.S. Patent

SobeSSa
XIddI

059

J|qe -21e|dwa | -10193]|0)

01007 Hodx3 Juabijeiu]

01607 01007
10020]0.(abessa
podsuel| XIddI

$S920.d buiodx3

44,

9 DIA

899

C99

099

059

s 9

19p0dx3 XI4dI

0c9

9|qe | -dn)007-Ad1jod-10dX3 -

01007 Jodx3 Juabi|eiu]

SOLJU
MO
paJueyul
Jas.ed
NN

§S920.d 1X2]U0)/buLIDID

44’

Y99
cS9

S}aded

879

US 11,146,468 B1

Sheet 8 of 18

Oct. 12, 2021

U.S. Patent

Sp|=l
IX3JU0) BIe(

-S]B1S-MEY

_ Pleld
dewnig-1xa3uon

sp|al4
1X21U07) RIe(]

-5]15-MEY

~ Pleld
dewlig-1xajuon

Sp|el
IX3U0?) ele(

-S1RIS-MBY

PRl
deunig-1xajuo)

SP|=l4
IX21U0) RIe(]

-5]P1G-MPY

_ Pield
dewyig-1xa3uo)

SP[al]
1X9U0") RIB(

-51P1G-MBY

Pl
dewnig-1xajuo)

Sp|el4
IX2JU0)

-51R1S-MPY

- Pleld
dewig-1xajuo)

vLL

L DIA

cLL

Spi=ly
IX3jU0)
1R (]-10.14]

Sp|el
IXU0D
P1e(]-40443

SP|9l4
1IX9JU0)
p1R(]-10.1.13

SpPiol
1X3U0)
1e(-10.J3

SPlol4
IX2JU0)
P12(]-10.J.3

spjol
IX33U0)
10443

Spiel
1X3JU0)
e1eC
-Adu]e
SPiol
1X3JU0Y
g
-Adud)e
Splel4
1X3JU0)

R1e(
-Adua)eT

SPlol4
1X3jU0)

eIR(
-Aouajen

Splel
IX3U0)
Adualel

SPiol
IX2JU0D)
AdudieT

Sp|ol
1X3JU07) PIEQ
9JURULI0JID

Sp|el
1X3U0)) BIEQ
9JURWLIOLID

Sp|old
IX3U07) Ble(]
9JUBLLLIOJIR

SPlol
IX3JU0)) eIe(
3JURWLIOJSY

SP|ol4
IXOJU0)
9JUBLLLIOJA

Splol
IX93U0))
9JUPWLIOJN3Y

044

SP|al
1X3ju0)) ejeq
-AJlINJ3g

Sp|old
UuoI1D3JI(]

Xd/xL

Spi=t]
1X33U0)) eleq
-AJ1INJ3G

5P|l
ADN-MO|
a|dn]-T

SPiol4
IX2JU0) BleQ
-AJLIND9G

SYEIE
AS)-MO|
g|dn]-7

SPlold
IX3JU0D) ele(
-AJ1IN23S

Splold
AX-MO|
o|dn| -€

SPial]
1X21U0)
A)INJag

SP|ol
IX2U0D
AJINJ9S

SPI9lS
AX-m0|4

o|dN1-S

09/

09/

09/

09/

09/

09/

468 Bl

146

Sheet 9 of 18 US 11,

Oct. 12, 2021

U.S. Patent

3 DA

L & » ¢+ £ 3§ Y 8 R __§ ;B __» B __» ¢ S £ 3 & __§ R . g ¥ . % % 3 _§} __§ & & __» ¢ ¢ 3 &£ 2 ' _§ ;R __» & % £ % % ;3 % N |

L2 N] & % B ¢ ¢ % £ 3 X __§ R | L8 E L ___§F £ 3]

JUn0)-a33Ag-sdoJq-
JUN0D-Pid-5d0.(Q-
JUN0D-91Ag / JUN02-] Md-
JXaJUO))-S]1BIS-MBY d)1
sdo.Jq DAISS0XT-
SYWISURIIDY DAISSRIXT-

:IX9]U0)-10443 401
1Y dn-4ea] uoijpauuo)) abie-
1 1Y 9AIT Uoildauuo)) abue-
11y dnias uoipauuon) abie-
:IX33U0D) AdudieT 401
LI01I3SDU0D) DAISSR0XT-
LIpImpueg aAISS30XT-
21y 19M0Bd 9AISS90XT- |
3]2Y UOIJD3UUOY) SAISSIIXT-
:IX2JU0D) 9JUBWI0LR] dD1

SUO0I03UU0Y) Uad(Q 9AISSIXT-
IRy Uld/UAS-
:IX23U0D) AJINJ3S dDL

IX2U0D dAn IXaJU0) dOL
IX2JU0D-HAJ]

JUN0N-ajAg-doig-

JUN0D-Pid-do.g-
JUN0D-23Ag / JUN0I- MId-
JX2JUOD)-SIRIS-MBY ddN

sdo.4(] DAISS9IXT-
:1X23U07) J0LT dan

1Y 19)0Bd OqUIN[DAISSIIXT-
UIpImpueg 2AISSI0XT-

910} 1908 SAISSIIXT-
1X2]U0D) BIUBWLIOL3] daN

SPd pajudubel] SAISSaIXT-
S19X0ed MOUS 9AISSIIXT-

1 IX33U0D) AJLINJ3S dAn

IX3U0)

1X33U0D) MO

MO

JURLLIOQ

JUN0)-3lAg-doJ(q -
JuUno0)-Pid-doiq -
JUN02-33Ag/3UN0D-Nid -
:JX9JU0D-S1RIS-MBY dI-UON

sd0.4(] 9AISS9IXT -

11X2JU0)-10.L1T 4I-UON

21y 19)28d OQUIN([DAISSIIX] -
YIPIMpURE DAISS9IXT -

218y 1D 2AISSIIXT -
1IX2IU0D) 2DUBWIOLD] dI-UON

1S an-| |l

SPId HOUS |l wo 101S Y-
OAISSIIXF- 111 1 xa1u0) IX3U0D
IXaJU0) AJUNdaS AJINDBS

AJ1IND3g

aN ddy

dI-UON
19430

IXSOD AN
XRUOD dl | T |IX|3U0D dyv |

-UON 12410

IXSQUO)~ [-UON

1X3U0)-MO|
OAIIY __

US 11,146,468 B1

Sheet 10 of 18

Oct. 12, 2021

U.S. Patent

(ponunuo)) § ‘D14

JUN0N-2)Ag-do.i(-

Juno0)-ajAg-sdo.q- JuUNo)-Pid-doiq-
JUN0)-Pid-sdo.q- JUN0D-3)Ag / JUNOD-Id-
JUN0)-23Ag/AUN0d- | d- 1 1X3]U0D)-S1R1S-MBY d W]

- XOJUO)-51835-MEY F1-4°U10 sdo.q SAISSIIXT-

sdoJq aAISSIXT- X2JU0D-1044F dINDI

:1X3JU0)-1044] $T1-49410 L1Y dSTH/DTY AISSaIXT-
11X2]U0D) Adud1eT dIWDI

UIpimpueyg sAISS90XT- Uipimpueg aAISSa0XT-
9]y 1JoXdBd SAISS90X]- 9]y 19)Jed DAISSIIXT-
JXaJU0)) sduewlio}ed {1-1°9Y410 :JX2JU0D) JUBWLI0MH3d dIWDI

212Y-12)Ded OqUIN[SAISSIIXT-

S9|qeyoealun SAISS30XT-
sbuid 9AISSaIXT-
5102.11p3Y DAISSIIXT-

:IX3JU0) AJINIBS dWDI

o Taor

p1-49410 | dIWOI
IXaJU0)-9Ad]

BLI9JIID) 1X2IU0D)-MO|

S.IDId pajuswbel aAISS90X3-
S]9X0ed HOYS 9AISS2IXT-

:IX23uU0)) AJINI3S $1-42U10 |

1X2JU0)-MO|4

PaAI[-HOYS PaA-buo

US 11,146,468 B1

Sheet 11 of 18

Oct. 12, 2021

U.S. Patent

gduewloMad| Ajiundesg
P1-19410 7 1-9410

A11n23S | AJUINJ3S
ON diV

¢C-119 e¢-119 ¥¢-119 S¢-119

AJIN23S| SIRIS-MEY
dWOI dan

9-11d [-11d

10113 [souepwiio)iag
ddn

8-114 6-119

5]E]S-MEeY
di-uop

9¢-114

A111n29g
ddn

OF-1Id

6 DIA

20UeW.oLad
d1-UON

1013
d1-UoN

[C-1]9 8¢-11d

syeIS-mey | 1043
dol doL

11-114 Cl-119

A111N23G
dI-UON

¢-AASY | T-AASH

6¢-119 0t-1I19 TE-1Id

Aduaje |SdUBWIOLAd| AJundag
doL doL dol

¢l-119 vi-119d SI-1I9

(panunuo)) ¢ ‘OIJ

US 11,146,468 B1

- mol4 | Mmol4 MO|4 MO|{ | SsieiS-mey
= SAIDY |JUBWIOQ(PRAIT HOYS | PaAI buo | $1-48430 | #1-43U30
gl
= oT-119 /1-119 8T-1I9 6T-119 0zZ-119 Tg-1Id
v/6
dewig-1Xxajuo)d
~
&
— Mol4 | MoO|d | sieas-mey | Joug | AouajeT [SOUBLLIOLDd
m PAdI OAd]I dNDI dINOI dNDI

0-119 T1-1I9 ¢-119 ¢e-119d v-1I4d G-119

U.S. Patent

US 11,146,468 B1

Sheet 13 of 18

Oct. 12, 2021

U.S. Patent

o

m..n_:oo...\c_o..oax ..
M@.wa ._._n_tm OM man.m

1odX3
Aduanbalq-paAejeq
S9|pueH puy dn)o07
2|qel Ad1jod-Hodx3

Jeinbay | ¥1-dVIWLIg-1X3INOD
ojeipoWW]) ET-dVINLIF-1X41INQD |
paAejaq| ZT-dVIWLIG-1X3INOD
dpis| TT-dVIWLIg-LX3LINOD

SULIOLID

jeyl peadyl-vd
Aduanbal{-paAejeQ

oJelPaWW]I | OT-dVINLIF-1Xd1INOD
6-dVILIF-1X41INOD

dns

pokepa| 8-dVWLIE-IXIINOD fouanbaiy- ._w__mm%

usAuQ-|] >9|PUEH
ang-pajepuo) | £ dVWLIE-1X3INOD I puy dnx007 9)qe]
_ AJ1]0d-10dX3 SW.I0LIR

Jenbay| 9-dviWLlIg-1X3INOD 1.yl peatyl-d

Aduanba.]-Je|nboy

ds| S-dvWLIg-1X31INOD

UDALI(-

JUSAT-Pa1e|2.10) V-dVIWLIE-1Xd1INOD

Hodx3
UDALI(-JUDAT-PI]R|D.1I0))-
HodX3 21eIpoWW]-
:S9|pueH puy dn)007]
d]qe Adljod-podx3
SWLI0J3d 1.yl
pealy]-pd awll] -|eay

paAR|e(]
Je|nbay
9]eIPaILT

NOILOV

£-dVINLIE-1X41NOD
C-dVIWL1I9-1X41INQD

T-dVWLIg-1X3LNOD I

A
dVINLI9-1Xd1NOJ

AJI'10d-1d0dXd

01

9/0T

S£01

US 11,146,468 B1

Sheet 14 of 18

Oct. 12, 2021

U.S. Patent

(ponunuo)) o1 "DIA

9|qe] -91e|dwa | -10323(|0)
890T

 17430-Anu3 9[qe) VOIS -PaIRELD)

\ 0141d-A1u3 a|qel comuum_wm;nmum_wtoum
_ | 6nd-Anu3 ajge) uoidajes-pazejaLI0) m

SUON |

{1S1-A1-31Y1dW3 L} { LSTT1-QALV13HI0D}

A._.mul_uh_H:m._.in__\,_m._uvhﬁ._.m:uh_m._.ﬂmmﬂ_ouu' w‘_umu\fucm m__n_m.._. Comuum_wmumwum_wtou “

SUON !

{1S1-AI-31V1dW3 L} { 1STT-Q3LV13WI0D}
{1SN-AI-31V1dW3 L} {1STT-q3 V1IN0 } ‘ (d-Au3 31ge). UoNIAIRS-PajejaLI0)

dew)ig-1xajuo)-pale|a.io) |

“ ‘941d-Aaju3 9jge | UOIIB|9S-pale|a.lio) m

{1SN-A1-31V1dW3 L} {1ST1-a3LV134d0D}
{1SN-AI-3 1LV 1dW3LH {1STT-a3Lv130d0D }

{1S1-AI-3LV1dW3 L} {1STT-a3LV130D } '
QA

{1SN-AI-3LV1dW3 L} {1ST-Q3LV1IHI0D} v .
{1SN-QI-31V1dW3L} ' {1STT1-Q3 1Y 134400} _.

G11d-A1u3g 9|ge) UONI3|9S-PaleR.I0)) |
JUON !

dewnig-1xajuo)-paje[.uo) |
'pa3d-Asjug 9jqe] uoidS[RS-pale[R.LI0D |

cJ11d-AJjug 9jge| UoII|aS-paje|a.i0) m

{1SN-AI-31V1dW3 L} {LST1-a31V13HH0D ‘ ¢41d-AJJu3 9|qe] UoIIB|S-pale.0) |
143d-AJjug 3jqe| UoI13|9S-pale|a4lio) |
_

{1S7-AI-3LV1dIW3 L} {LSTT-Q31V13¥Y0D}

SUFLINVEVd AJI'10d-1d40d X4

- V11 ‘DId

P4029Y-MO|4 U] dewg-1xajuo)-paiepdn Je3 D~z T

uoneadp

uodx3 ON

US 11,146,468 B1

¢patepdn $J0103(|07) PAUJIUOY AIOW 10 -
IX2JU0) 9UQ 0] }RQ-IXBIU0D-MO|4 B|qedljddy pusS- ~_gTTT
ON PolE|a1i0) SIA 3|qe] -aje|dwa | -10303(|00) dnN00T-
8ITI
. pealyl Andx3 peaty| Aldx3
— Jawi] -}odx3-paAepQ JaW1] -Jodx3-Je|nbay
&
- SOA SOA SOA |SOA
2
7 ¢Hodx3 JusA3 ¢Hodx3
P31e]9.107) poAe|a(
vITI CITT OITI]

~
~
o
> 2|qeL Adl0d-H0dx3
O UDALI-1X2JU07) U dny00T WIoLdd vOIT

P.I0231-MO|4 UJ dewig-1xajuo)-pajepdn 195-

DJ0D9Y-MO]4 U] eIep-mo|4 aiepdn- COTT
ele(d-Jox9Ed ulejgo-

IX3JU0D-MO|{ UJ US3S J19de

U.S. Patent

| SOA

cHodx3
9]eIpaWW]

90IT

d11 DIA

US 11,146,468 B1

23 ‘7-

N mw_m_m&m | [zbrr €oRduBl ~zprT
=
= 110dX3 } S)NS3Y d3epIjosuo)
-
3 QETT
e
¥ »,

. J330/23pII0SU0)
- dewig-3xeju0] 3y) uQ paseg 10 21e[9Y-0)/10dx3 pakeaq
o 10109][07) 340} JO BUQ 3SO0Y)) < ’
~~ . |BAIDIUT MOodXT BALIR(Q
S

OFETT PETT
1X23U07) 1003|107 IX9JU0Y) [BAIDIU] MO

3|qe | -aje|dw?a | -10323]|0D
U dnxo07 WJoJlad

OETT

U.S. Patent

N-10]09}|0D é ¢-40]39||0D)
_ Q?HH‘ OvIil ‘ OvII

¢ 9le|dwsa]

T-10129]|0)

Sa—_

1-N puy

4498

T 91ejdwa|

449

10J.3/Aoua]e

/AJIND3S /oouRWI0LR (I

OAI/YAdI/dI-UON (!
9je|dwa] /eieq Hodx3 aALR(

CETT

1X2IU0Y) MO|{RMO|4

U.S. Patent Oct. 12, 2021 Sheet 17 of 18 US 11,146,468 B1

1202 Update A Non-Key Field Of A Flow Entry In
A Flow Cache That Corresponds To A Flow

Set A Field In A Context-Bitmap Of The Flow Entry
1204 In Response To Updating The Non-key Field Of
The Flow Entry

1206~ Identity An Export Policy Using The Context-Bitmap

1208 Export Information Related To The Flow To A
Collector According To The Export Policy

F1G. 12

U.S. Patent Oct. 12, 2021 Sheet 18 of 18 US 11,146,468 B1

1512 1302

HOST HOST COMPUTING SYSTEM
COMPUTER

1314

EDGE DEVICE

e} MEMORY

1330 1331 5o,
COHERENT INTERCONNECT
1333 1334 1335
PACKET PROCESSING CPU SERVICE
CIRCUIT CORES PROCESSING
OFFLOADS
1336

PACKET BUFFER (TRAFFIC MANAGER)

NETWORK

ETHERNET
PORT
INTERFACE

- T T

1540

F1G. 13

US 11,146,468 Bl

1

INTELLIGENT EXPORT OF NETWORK
INFORMATION

BACKGROUND

In a network, such as a cloud or data center network, some
packet traflic may be monitored and information related to
the monitoring may be exported for further use. For
example, IP tflows are often monitored using the IP Flow
Information eXport (IPFIX) protocol, also referred to simply
as “IPFIX.” According to IPFIX, IP flow information 1is
metered and exported by an IPFIX exporter and then
received and processed by an IPFIX collector. Often times,
IPFIX 1s used to monitor and report packet counts and byte
counts on a per-flow basis. In some cloud or data center
networks, the IPFIX exporter 1s integrated mto a Network
Interface Card (NIC) of a host computing system, some-
times, referred to as a “SmartNIC.” Although IPFIX works
well to provide IP flow information to a collector, IPFIX 1s
not well suited to take advantage of the expanded capabili-
ties ol emerging devices, such as SmartNICs, which are
implementing IPFIX exporter functionality.

10

15

20

SUMMARY
25

Methods and systems for exporting network information
from an exporter to a collector are disclosed. Embodiments
of the present technology may include updating a non-key
field of a flow entry 1n a tlow cache that corresponds to a
flow, setting a field in a context-bitmap of the flow entry 1n
response to updating the non-key field of the flow entry,
identifying an export policy using the context-bitmap, and
exporting information related to the flow to a collector
according to the export policy.

In an embodiment, exporting information related to the
flow to a collector according to the export policy mvolves
exporting information according to the IPFIX protocol.

In an embodiment, the context-bitmap includes a set of
context-specific bits.

In an embodiment, the context-bitmap includes a set of
context-specific bits, including a short-lived context bit and
a long-lived context bit.

In an embodiment, the context-bitmap includes a set of
context-specific bits, including a dormant context bit and an
active context bit.

In an embodiment, the context-bitmap includes a set of
context-specific bits, including a security bit, a performance
bit, a latency bit, an error bit, and a raw statistics bit.

In an embodiment, the context-bitmap includes a set of
context-specific bits, including TCP context bits, UDP con- 50
text bits, and ICMP context bits.

In an embodiment, the context-bitmap includes a set of
context-specific bits, including a short-lived context bit, a
long-lived context bit, a dormant context bit, an active
context bit, a security bit, a performance bit, a latency bit, an 55
error bit, and a raw statistics bit.

In an embodiment, the context-bitmap includes a set of
context-specific bits, including a short-lived context bit, a
long-lived context bit, a dormant context bit, an active
context bit, TCP context bits, UDP context bits, and ICMP
context bits.

In an embodiment, 1dentifying an export policy using the
context-bitmap involves using the context-bitmap to search
an export policy lookup table that maps context-bitmap
values to export policies.

In an embodiment, 1dentifying an export policy using the
context-bitmap involves using the context-bitmap to search

30

35

40

45

60

65

2

an export policy lookup table that maps context-bitmap
values to export policy actions and export policy parameters,

wherein the export policy parameters include pointers to a
collector template table. In an embodiment, the method
turther mvolves 1identifying a collector and an export tem-
plate using a pointer from the export policy lookup table.

In an embodiment, the non-key field 1in the flow cache
holds information related to security of the flow and a bit in
the context-bitmap includes a security context bit that 1s set
in response to a value of the non-key field.

In an embodiment, the non-key field in the flow cache
holds information related to performance of the flow and a
bit 1n the context-bitmap includes a performance context bit
that 1s set 1n response to a value of the non-key field.

In an embodiment, the non-key field in the flow cache
holds information related to latency of the flow and a bit in
the context-bitmap includes a latency context bit that 1s set
in response to a value of the non-key field.

In an embodiment, the non-key field in the tlow cache
holds information related to an error of the flow and a bit in
the context-bitmap includes an error context bit that 1s set in
response to a value of the non-key field.

In an embodiment, updating a non-key field of a flow
entry 1n a flow cache ivolves parsing a packet to 1identity a
key field and using the key field to locate a flow entry 1n the
flow cache.

Another embodiment of a method for exporting network
information from an exporter to a collector 1s disclosed. The
method involves updating a non-key field of a tlow entry in
a flow cache that corresponds to a flow, setting a field in a
context-bitmap of the flow entry 1n response to updating the
non-key field of the flow entry, identifying an export policy
using the context-bitmap, exporting information related to
the flow to a collector according to the export policy,
wherein exporting information related to the flow to a
collector according to the export policy mvolves exporting
information according to the IPFIX protocol, wherein the
non-key field 1n the flow cache holds information related to
the flow and a bit 1n the context-bitmap includes a context
bit that 1s set in response to a value of the non-key field.

In another embodiment, a system for exporting network
information from an exporter to a collector 1s disclosed. The
system 1ncludes a processor and a computer readable
medium that stored instructions, which when executed by
the processor, implement updating a non-key field of a flow
entry 1n a flow cache that corresponds to a flow, setting a
field 1n a context-bitmap of the flow entry in response to
updating the non-key field of the tlow entry, identifying an
export policy using the context-bitmap, and exporting infor-
mation related to the flow to a collector according to the
export policy.

Other aspects in accordance with the invention will
become apparent from the following detailed description,
taken 1n conjunction with the accompanying drawings,
illustrated by way of example of the principles of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an example network architecture that
includes host computing systems, switches, a Policy and
Services Manager (PSM), and a Traflic Flow Collector,
which are all connected by a network.

FIG. 2 depicts an example of a functional block diagram
of an IPFIX exporter, which may be implemented in, for
example, NICs.

FIG. 3A depicts the frame format of an IPFIX message.

US 11,146,468 Bl

3

FIG. 3B depicts a specific example of an IPFIX message
in which the template ID 1s set to 256.

FIG. 4 1llustrates an example of an IPFIX exporter that
includes a metering process functional block and an export-
ing process functional block. d

FIG. 5 depicts a table of parameters that correspond to
conventional IPFIX export of IP flow information.

FIG. 6 illustrates an example of an IPFIX exporter that 1s
configured to implement context-directed export of tlow
information in accordance with an embodiment of the inven-
tion.

FIG. 7 depicts an example of enhanced flow cache entries
that are held 1n a flow cache 1n accordance with an embodi-
ment of the mvention.

FIG. 8 depicts a hierarchical representation of criteria that
may provide context for a flow for use 1n context-directed
IPFIX.

FIG. 9 depicts an example of a 32-bit content-bitmap in
which bits 1n the context-bitmap field correspond to different ¢
contexts of a tlow.

FIG. 10 illustrates how export polices can be i1dentified
using a context-bitmap from an enhanced flow entry n a
flow cache.

FIGS. 11A and 11B depict a process flow diagram of an 25
embodiment of the context-driven IPFIX export.

FIG. 12 1s a process flow diagram of a method for
exporting network information from an exporter to a col-
lector.

FIG. 13 depicts an example embodiment of an edge 30
device that 1s configured to implement context-directed
export as described herein.

Throughout the description, similar reference numbers
may be used to 1dentily similar elements.

10

15

35
DETAILED DESCRIPTION

It will be readily understood that the components of the
embodiments as generally described herein and illustrated 1n
the appended figures could be arranged and designed 1n a 40
wide variety of diflerent configurations. Thus, the following
more detailed description of various embodiments, as rep-
resented 1n the figures, 1s not itended to limit the scope of
the present disclosure, but 1s merely representative of vari-
ous embodiments. While the various aspects of the embodi- 45
ments are presented in drawings, the drawings are not
necessarilly drawn to scale unless specifically indicated.

The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential charac-
teristics. The described embodiments are to be considered in 50
all respects only as illustrative and not restrictive. The scope
of the invention 1s, therefore, indicated by the appended
claims rather than by this detailed description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope. 55

Reference throughout this specification to {features,
advantages, or similar language does not imply that all of the
features and advantages that may be realized with the
present invention should be or are 1n any single embodiment
of the mvention. Rather, language referring to the features 60
and advantages 1s understood to mean that a specific feature,
advantage, or characteristic described 1n connection with an
embodiment 1s imncluded 1n at least one embodiment of the
present invention. Thus, discussions of the features and
advantages, and similar language, throughout this specifi- 65
cation may, but do not necessarily, refer to the same embodi-
ment.

4

Furthermore, the described features, advantages, and
characteristics of the imvention may be combined 1n any
suitable manner 1 one or more embodiments. One skilled 1n
the relevant art will recognize, 1n light of the description
herein, that the mvention can be practiced without one or
more of the specific features or advantages of a particular
embodiment. In other instances, additional features and
advantages may be recognized 1n certain embodiments that
may not be present in all embodiments of the mvention.

Reference throughout this specification to “one embodi-
ment”, “an embodiment”, or similar language means that a
particular feature, structure, or characteristic described in
connection with the indicated embodiment 1s 1ncluded 1n at
least one embodiment of the present invention. Thus, the
phrases “in one embodiment”, “in an embodiment”, and
similar language throughout this specification may, but do
not necessarily, all refer to the same embodiment.

FIG. 1 depicts an example network architecture 100 that
includes host computing systems 102A and 102B, switches
104 (ec.g., “Top-of-Rack” (ToR) switches), a Policy and
Services Manager 106 (PSM), and a Traflic Flow Collector
108, which are all connected by a network 110. In an
embodiment, the host computing systems include a host

computer 112A and 112B and an edge device 114A and
114B, such as a Network Interface Card (NIC). The host
computer may include a storage server, a compute server, a
single processor, multiple processors, primarily compute,
and/or primarily storage.

In an embodiment, the ToR switches 104 are network
switches that are commonly used to connect servers 1n a data
center. In at least one example, at least one switch 1s placed
in a rack of servers and the servers 1n the rack are connected
to the switch by copper wire and/or fiber cables, e.g.,
Ethernet cables. Although the switches are referred to herein
as “ToR” switches, the switches may be deployed relative to
host computers (e.g., servers) 1n other ways. For example,
the switches may be “leal” switches 1n a deployment that
includes “spine” switches and leal switches. In another
example, the ToR switches may be routers or other general
intermediate systems forwarding data between hosts 1n a
global area network or other generic network.

In an embodiment, the PSM 106 1s a computing system
that manages and delivers network and security policy to the
edge devices 114 A and 114B for services implementation at
the edge. The PSM may utilize gRPC and REST1ul APIs to
communicate with the edge devices. The PSM enables
distribution of network management information such as
ACL and firewall security policies, network configuration,
encryption policies, etc. to active edge devices. In addition,
the PSM can distribute network monitoring configurations,
such as IPFIX configuration information, to the NICs.
Although a PSM 1s shown 1n the example of FIG. 1, 1n other
examples, there 1s not a PSM or there 1s some other
centralized controller.

In an embodiment, the Traflic Flow Collector 108 receives
packet traflic information, traflic related telemetry data,
and/or other data computed by the NICs from the host
computing systems 102A and 102B. The Trailic Flow Col-
lector may be configured to collect and analyze packet traflic
and other data received from the host computing systems. In
an embodiment, the Tratlic Flow Collector 1s an IPFIX
collector. Although the Traflic Flow Collector may support
IPFIX, the Trailic Flow Collector may support some other
flow mformation export protocols, such as NetFlow.

In an embodiment, the network architecture 100 1s 1mple-
mented as a data center network (DCN) that interconnects
data center resources such as compute and storage servers.

US 11,146,468 Bl

S

The DCN may utilize various data center architectures, such
as, three-tier DCN, fat tree DCN, and DCell. Although 1n

one example, the network architecture 1s a DCN, the net-

work 110 that connects the host computing systems 102A
and 102B, including the edge devices 114A and 114B may

be another type of LAN and/or WAN. Although the network

architecture shown in FIG. 1 1s one example, the technique
for exporting network information based on context-directed
export rules 1s applicable to other network architectures.
In some use cases i1n the network architecture 100
described with reference to FIG. 1, 1t may be desirable to

have the NICs 114 A and 114B perform tasks such as IP flow

monitoring, which are not directly related to forwarding
packet traflic through the network. For example, it may be
desirable to have the NICs implement IP flow monitoring
according to the IPFIX protocol to export flow related
information to the Trathc Flow Collector 108.

FIG. 2 depicts an example of a functional block diagram
of an IPFIX exporter 220, which may be implemented 1n, for
example, the NICs 114A and 114B, shown m FIG. 1. The
IPFIX exporter 1s shown relative to a network 210, an
observation point 214 (e.g., a SmartNIC), and an IPFIX
collector 208. In the example of FIG. 2, the IPFIX exporter
includes a metering process functional block 222 and an
exporting process functional block 224. Subblocks of the
metering process functional block include packet header
capturing 226, timestamping 228, packet selection 230,
classification 232, and maintaining flow records 234, and
subblocks of the exporting process functional block mclude
creating IPFIX data/template records 239, flow selection
238, and exporting 240. Some of the subblocks (e.g., packet
header capturing, maintaining flow records, creating IPFIX
data/template records, and exporting) may correspond to
core Tunctions of the IPFIX exporter while other subblocks
(e.g., timestamping, packet selection, classification, and
flow selection) may correspond to optional functions of the
IPFIX exporter. As 1llustrated 1n FI1G. 2, packets are input to
the metering process functional block, flow records are
generated by the metering process functional block, and the
flow records are provided to the exporting process functional
block. At the exporting process functional block, IPFIX
messages are generated and transmitted to the IPFIX col-
lector.

FIG. 3A depicts the frame format of an IPFIX message
342, that 1s, a message that 1s formatted according to the
IPFIX protocol. The IPFIX message includes the following
fields; version number (2-byes), message length (2-byes),
export time (4-byes), sequence number (4-byes), observa-
tion domain ID (4-byes), and one or more “sets” in which
cach set includes a set ID (2-byes), length (2-bytes), and n
records (variable number of bytes). As specified 1in the IPFIX
protocol, the sets may be template sets, data sets, or options
template sets. FIG. 3B depicts a specific example of an
IPFIX message 342 1n which the template ID 1s set to 256,
e.g., template ID=256. In the example of FIG. 3B, the packet
count for two different IP flows 1s reported. In particular, the
reported tlow information 1s provided in Table 1 below.

TABLE 1

Source IP Address Destination IP Address Number of Packets

192.168.0.101
192.168.0.102

192.16%.0.1
192.16%.0.1

568
997

As shown i FIG. 3B, the mnformation elements (IEs)
called out in the template 344 are source IP address (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

6

source]lPv4Adress), destination IP address (e.g.,
destinationIPv4 Address), and packet count or number of
packets (packetDeltaCount). In the records field 346, Record
1, Field 1, 1dentifies the source IP address (e.g.,
192.168.0.101), Record 1, Field 2, identifies the destination
IP address (e.g., 192.168.0.1), and Record 1, Field 3, 1den-
tifies the packet count (e.g., 568) of a first IP flow, and
Record 2, Field 1, identifies the source IP address (e.g.,
192.168.0.102), Record 2, Field 2, 1identifies the destination
IP address (e.g., 192.168.0.1), and Record 2, Field 3, 1den-
tifies the packet count (e.g., 997) of a second IP flow. It
should be understood that FIG. 3B 1s provided as one
example of an IPFIX message, however, other examples are
possible.

As part of the metering process, data related to IP tlows
1s stored 1n a flow cache of the IPFIX exporter on a per tlow
entry basis. That 1s, the flow cache stores information about
unmique flows that are 1dentified at the IPFIX exporter. In an
embodiment, a flow cache includes key fields and non-key
fields. The key fields are used to define a flow and a tlow key,
which 1s typically a combination of key fields, 1s used to
determine 1f a packet belongs to a particular tflow. Non-key
fields of the flow cache are not used to create or characterize
a flow, but rather represent information about the tlow that
1s collected by the IPFIX exporter. Examples of key fields
include the 5-tuple (i.e., source IP address, destination IP
address, source port number, destination port number, and
protocol) and examples of non-key fields include byte count,
packet count, start of system uptime, end of system uptime,
and next hop IP address. In conventional IPFIX implemen-
tations, flow entries (also referred to as flow records) are
maintained in the flow cache until the flows are considered
to have terminated, or “expired.” While the IPFIX protocol
does not specily exactly when or how flow entries should be
expired, the IPFIX protocol does provide some examples of
when the metering process should consider a flow entry to
have expired. Expiration of a flow entry may be based on,
for example:

1) active timeout—the tlow has been active for a specified
period of time;

2) 1dle timeout—mno packets of a flow have been 1dentified
for a specified period of time, e.g., in the range of seconds
to minutes;

3) resource constraints—e.g., algorithm-based constraints
to ensure certain resources are not overrun, €.g., cache
memory shortage;

4) natural expiration—e.g., detection of a TCP packet
with a set field for FIN or RST, which 1s an indication that
a flow has been terminated;

5) emergency expiration—e.g., expiring some number of
flow entries when the flow cache 1s full; and

6) cache flush—e.g., all cache tlow entries are expired due
to a system condition that triggers a cache flush.

In typical operation of the IPFIX protocol at an IPFIX
exporter, the expiration of an IP flow triggers the export of
flow information (e.g., IPFIX message(s)) related to the IP
flow. FI1G. 4 illustrates an example of an IPFIX exporter 420
in which the metering process functional block 422 includes
a packet parser 448, a flow cache 450, and expiration logic
452, and the exporting process functional block 424 includes
IPFIX message logic 454 and transport protocol logic 456.
In operation, packets are received at the metering process
and parsed by the packet parser to generate flow keys (e.g.,
based on the 5-tuple), to i1dentity flows, and to identify
information elements. Information about the IP flows (e.g.,
byte count and/or packet count) 1s stored in the tlow cache
as part of the tlow entries and the expiration logic determines

US 11,146,468 Bl

7

when flow entries have expired. When a tlow entry expires,
the exporting process 1s triggered for that flow and the IPFIX
message logic builds an IPFIX message that relates to the 1P
flow. Typically, the IPFIX messages include some informa-
tion elements (IEs) from the key fields of the flow cache
(e.g., source/destination IP addresses) and some IEs from the
non-key fields of the flow cache (e.g., byte count and/or
packet count). In an embodiment, the IPFIX message logic
1s configured to build all of the IPFIX messages according
to a specified template ID. In conventional IPFIX exporters,
one template ID 1s used for all exports of IPv4 flows and
another template 1D 1s used for all exports of IPv6 tlows.
Once an IPFIX message 1s generated, the IPFIX message 1s
transmitted to a collector according to a specified transport
protocol, e.g., TCP, UDP, SCIP. In conventional IPFIX
exporters, the specified transport protocol 1s configured once
and applied 1s the same for all IP flows.

FIG. 5 depicts a table 558 of parameters that correspond
to conventional IPFIX export of IP flow information. The
table includes a flow key column, a flow cache entry
expiration column, and export rules columns, including
when, what (e.g., template ID), where/who (e.g., collector
name/address), and how (e.g., TCP, UDP, SCTP). As shown
in the table of FIG. 5, the flow key 1s typically a 5-tuple (e.g.,
source IP address, destination IP address, source port num-
ber, destination port number, and protocol) and the export of
IP flow information 1s triggered by the expiration of a tlow
cache entry. As explained above, expiration of a flow cache
entry 1s typically as a result of an active timeout, an 1dle
timeout, a resource constraint, a natural expiration (e.g., a
TCP FIN/RST flag set), an emergency expiration (e.g., flow
cache 1s full), or a flow cache flush. Once a tlow cache entry
for a particular IP tlow expires, the export process begins
immediately and an IPFIX message 1s sent to a particular
collector (e.g., collector X) via a designated protocol (e.g.,
TCP). Additionally, the same set of export rules 1s typically
applied to every flow that 1s tracked in the flow cache. In
some cases, the particular export rule applied to an IP flow
may be customized for a particular IP flow, but the IP flows
are still identified solely by their 3-tuple and exported
immediately upon expiration of the corresponding tlow
cache entry. While the conventional approach to flow moni-
toring works well, the flexibility of flow information export
through convention IPFIX 1s somewhat limited.

In accordance with an embodiment of the invention, a
technique for exporting network information from an
exporter to a collector involves updating a non-key field of
a flow entry in a flow cache that corresponds to a flow,
setting a field in a context-bitmap of the flow entry 1in
response to updating the non-key field of the flow entry,
identifying an export policy using the context-bitmap, and
exporting information related to the flow to a collector
according to the export policy. In an embodiment, the
information 1s exported according to the IPFIX protocol. In
an embodiment, the context-bitmap includes bits that cor-
respond to some aspect of the flow beyond simply the
S-tuple of the flow and a packet/byte count, such as security
context, performance context, latency context, error context,
whether the flow 1s dormant or active, and/or whether the
flow 1s short-lived or long-lived and export rules are 1den-
tified 1n view of the tlow context. Thus, using the context-
bitmap one export rule can be applied to a flow that 1s
identified as a short-lived flow while a diflerent export rule
can be applied to a flow that 1s 1dentified as a long-lived tlow.
For example, a flow deemed to be short-lived can trigger an
immediate export of flow mformation while a flow deemed
to be long-lived can trigger a more opportunistic export of

10

15

20

25

30

35

40

45

50

55

60

65

8

flow information, or a flow deemed to be dormant can
trigger no export of flow mmformation while a flow deemed
to be active can trigger a scheduled export of tlow informa-
tion. By maintaining a context-bitmap according to context
intelligence and 1dentifying an export rule using the context-
bitmap, context-directed export of tlow information can be
accomplished. Context-directed export of tlow information
can provide a more intelligent way of exporting flow infor-
mation than 1s currently provided by conventional flow
information export techniques that are directed by the expi-
ration of flow cache entries. In an embodiment, the context-
directed export can be implemented 1n the data plane of a
SmartNIC to handle a large volume of flows at line rate.
FIG. 6 1llustrates an example of an IPFIX exporter 620
that 1s configured to implement context-directed export of
flow information 1n accordance with an embodiment of the
invention. The IPFIX exporter depicted 1in FIG. 6 1s similar
to the IPFIX exporter depicted in FIG. 4, but the IPFIX

exporter includes a flow cache 650 with enhanced flow
entries 660 and intelligent export logic 6352 that 1s configured
to 1implement context-directed export of flow information.
As depicted 1n FIG. 6, the exporter includes a metering/
context process functional block 622 that includes a packet
parser 648, a flow cache 6350, and the intelligent export logic
652, and the exporting process functional block 624 includes
IPFIX message logic 654, transport protocol logic 656, and
intelligent export logic 662. In an embodiment, the IPFIX
exporter 1s implemented 1n the data plane of a SmartNIC. In
operation, packets are recerved at the metering/context pro-
cess and the packets are parsed to generate tlow keys, to
identify flows, and to identily information elements. In an
embodiment, a flow corresponds to an entry maintained 1n
the tlow cache. Entries in the flow cache are commonly
tracked by flow keys that have unique 3-tuples (e.g., a
unique combination of source IP addressed, destination IP
address, source port number, destination port number, and
protocol), however, entries 1n the flow cache may be 1den-
tified by other criteria. Examples of flows and corresponding
flow keys include:

1) A Single-Client-Server-Connection-flow originating,
from a client to a server to access a specific service on the
concerned server via a single connection using a transport
protocol 1n Transmit (Ix) and Receive (Rx) directions:
Flow-key=T%, Rx, protocol, client-1p, server-ip, client-port-
num, server-portnum;

2) An Aggregated-Client-Server-Connection-tlow origi-
nating from a client to a server to access a specific service
on the concerned server via multiple connections using a
transport protocol in Transmit (Tx) and Receive (Rx) direc-
tions: Flow-key=T1x, Rx, protocol, client-1p, server-ip,
server-portnum;

3) An Aggregated-All-Services-Client-Server-Connec-
tion-flow originating from a client to a server to access all
kinds of possible services made available on the concerned
server via multiple connections using a transport protocol 1n
Tx/Rx: Flow-key=T1x, Rx, protocol, client-1p, server-ip;

4) An Aggregated-All-Servers-Client-Connection-flow
originating from a client to all the servers to access all kinds
ol possible services made available on the concerned servers
via multiple connections using a transport protocol in
Tx/Rx: Flow-key=T1x, Rx, protocol, client-ip;

5) An Aggregated-All-Clients-All-Servers-Connection-
flow originating from all clients to all the servers to access
all kinds of possible services made available on the con-
cerned servers via multiple connections using a transport
protocol 1n Tx/Rx: Flow-key=Tx, Rx, protocol;

US 11,146,468 Bl

9

6) An Aggregated-Device-Connection-flow originating
from all clients to all the servers to access all kinds of
possible services made available on the concerned servers
via multiple connections using all kinds of transport proto-
cols mn Tx/Rx: Flow-key=T%, Rx.

Information about IP flows 1s stored 1n the flow cache 650
as enhanced flow entries 660 and the intelligent export logic
652 of the metering/context process functional block 622 1s
configured to implement context-directed export of tlow
information according to context-directed export rules that
are configured within the IPFIX exporter. In the embodiment
of FIG. 6, the mtelligent export logic includes an export-
policy-lookup-table 664 that maps context-bitmap keys to
export policies. Once the intelligent export logic determines
that an export of information 1s triggered, the information to
be exported 1s provided to the exporting process functional
block 624. The IPFIX message logic 654 builds an IPFIX
message for the flow according to the intelligent export logic
662. In the embodiment of FIG. 6, the imtelligent export
logic includes a collector-template-table 668 that maps tlow
context to export rules. In an embodiment, the IPFIX
message logic 1s configured to select template IDs on a
per-tlow basis based on an understanding of the context of
cach flow that extends beyond simply the IP version of the
flow, which 1s 1n contrast to conventional techniques that
apply the same template ID to each IPv4 flow and the same
template ID to each IPv6 flow. Once an IPFIX message 1s
generated, the IPFIX message 1s transmitted by the transport
protocol logic 656 according to a desired transport protocol,
c.g., TCP, UDP, SCTP, as determined by the intelligent
export logic 662.

As mentioned above, the flow cache 650 includes
enhanced flow entries 660. FIG. 7 depicts an example of
enhanced tlow cache entries 760 that are held 1n a flow cache
in accordance with an embodiment of the mvention. In the
embodiment of FIG. 7, the enhanced flow entries include
key fields 770 and non-key fields 772. The key fields for
cach tflow cache entry may include, for example, 5-tuple
flow key fields, 4-tuple flow key fields, 3-tuple flow key
fields, 2-tuple flow key fields, 1-tuple tflow key fields, and
Tx/Rx direction fields as described above. The non-key
fields for each tlow cache entry include various context
fields and a context-bitmap. Information that may be held 1n
the context fields of a flow entry 1s described 1n more detail
with reference to FIG. 8 and information that may be held
in the context-bitmap field of a flow entry 1s described 1n
more detail with reference to FIG. 9. In an embodiment, the
flow cache 1s stored in high speed memory, such as RAM
and/or Content Addressable Memory (CAM).

With reference to FIG. 8, criteria that may provide context
for a flow 1s graphically represented in a hierarchical man-
ner. In one example, the context of a flow may be charac-
terized 1n terms of whether the flow 1s an active flow, a
dormant tlow, a long-lived flow, or a short-lived flow. In
another example, the context of a flow may be characterized
in terms of whether the flow 1s IP-based flow (e.g., IPv4 or
IPv6) or a non-1P-based tlow. With regard to IP-based tlows,
the context of a flow may be characterized in terms of
whether the flow has TCP context, UDP context, ICMP
context, or other Layer 4 (L4) context. With respect to TCP
context, the context of a flow may be characterized 1n terms
of TCP security context, TCP performance context, TCP
latency context, TCP error context, and TCP raw statistics
context. For example, the security context may include
information related to a SYN/FIN attack or excessive open
connections, the TCP performance context may include
information related to an excessive connection rate, an

10

15

20

25

30

35

40

45

50

55

60

65

10

excessive packet rate, and excessive bandwidth, and/or
excessive congestion, the TCP latency context may include
information related to a large connection setup round-trip-
time (RTT), a large connection live RTT, and/or a large
connection tear-down RTT, the TCP error context may
include excessive retransmissions and/or excessive drops,
and the TCP raw statistics context may include packet
count/byte count, dropped packet count, and/or dropped byte
count.

With respect to UDP context, the context of a tlow may be
characterized in terms of UDP security context, UDP per-
formance context, UDP error context, and UDP raw statis-
tics context. For example, the UDP security context may
include information related to excessive short packets and/or
excessive fragmented packets, the UDP performance con-
text may 1nclude information related to an excessive packet
rate, an excessive bandwidth, and/or an excessive jumbo
packet rate, the UDP error context may include excessive
drops, and the UDP raw statistics context may include
packet count/byte count, dropped packet count, and/or
dropped byte count.

With respect to ICMP context, the context of a flow may
be characterized in terms of ICMP security context, ICMP
performance context, ICMP latency context, ICMP error
context, and ICMP raw statistics context. For example, the
ICMP security context may include information related to
excessive redirects, excessive pings, or excessive unreach-
able destinations, the ICMP performance context may
include information related to an excessive packet rate
and/or excessive bandwidth, the ICMP latency context may
include information related to excessive drops, and the
ICMP raw statistics context may include packet count/byte
count, dropped packet count, and/or dropped byte count.

With respect to other L4 context, the context of a flow
may be characterized in terms of other L4 security context,
other L4 performance context, other .4 error context, and
other L4 raw statistics context. For example, the other L4
security context may include information related to exces-
sive short packets and/or excessive fragmented packets, the
other L4 performance context may include information
related to excessive packet rate, an excessive bandwidth,
and/or excessive jumbo packet rate, the other L4 error
context may include excessive drops, and the other-L.4 raw
statistics context may include packet count/byte count,
dropped packet count, and/or dropped byte count.

With respect to non-IP-based flows, the non-IP context of
a flow may be characterized in terms of whether the flow has
ARP context, ND context, or other non-IP context. With
respect to the ARP context, the context of a flow may be
characterized in terms of ARP security context. For example,
the ARP security context may include information related to
an ARP storm. With respect to the ND context, the context
of a flow may be characterized 1n terms of ND security
context. For example, the ND security context may include
information related to an ND storm. With respect to the other
non-IP context, the context of a flow may be characterized
in terms of other non-IP security context. For example, the
other non-IP security context may include information
related to an excessive number of short packets.

With respect to the ARP context, the ND context, and the
other non-IP context, the context of a flow may be charac-
terized 1n terms of non-IP performance context, non-IP error
context, and non-IP raw statistics context. For example, the
non-IP performance context may include information related
to an excessive packet rate, an excessive bandwidth, and/or
an excessive jumbo packet rate, the non-IP error context may
include excessive drops, and the non-IP raw statistics con-

US 11,146,468 Bl

11

text may include packet count/byte count, dropped packet
count, and/or dropped byte count.

Although graphically represented in a hierarchical man-
ner, the tlow contexts may be visualized 1n other manners
that may not reflect any type of hierarchy.

Referring back to FIG. 7, an enhanced flow entry 760 in
the flow cache may include information related to one or
more of the contexts described with reference to FIG. 8. In
addition to the key fields 770, the non-key fields 772 may
include fields that are used to provide context to a flow. For
example, the non-key fields of the enhanced flow cache
entriecs may 1include security context fields, performance
context fields, latency context fields, error context fields, and
raw statistics context fields that are used to hold correspond-
ing security, performance, latency, error, and raw statistics
information. In an embodiment, the non-key fields include
fields to hold information corresponding to the security,
performance, latency, error, and raw data context as
described with reference to FIG. 8.

With respect to the security context fields, the security
context fields may include fields to store data corresponding
to any of the secunty contexts described with reference to
FIG. 8. For example, the security context ficlds may include
fields to store a count of SYN/FIN flags and/or a count of
open connections (TCP security context), a count of short
packets and/or a count of fragmented packets (UDP security
context), a count of redirects, a count of pings, and/or a
count of unreachables (ICMP security context), a count of
short packets and/or a count of fragmented packets (other-
L4 security context), a count of ARP requests (ARP security
context), a count of Neighbor Discovery (ND) requests (ND
security context), and a count of short packets (other non-IP
security context). In an embodiment, ND 1n IPv6 serves a
similar function as ARPs 1n IPv4.

With respect to the performance context fields, the per-
formance context fields may include fields to store data
corresponding to any of the performance contexts described
with reference to FIG. 8. For example, the performance
context fields may include fields to store a count of connec-
tion rates, packet rates, bandwidth, and or congestion (TCP
performance context), packet rates, bandwidth, and/or
mumbo packet rates (UDP performance context), packet rates
and/or bandwidth (ICMP performance context), packet
rates, bandwidth, and/or jumbo packet rates (other-L4 per-
formance context), packet rates, bandwidth, and/or jumbo
packet rates (ARP performance context, ND performance
context, and/or other non-IP performance context).

With respect to the latency context fields, the latency
context fields may include fields to store data corresponding
to any of the latency contexts described with reference to
FIG. 8. For example, the latency context fields may include
fields to store a connection setup RTT, a connection live
RTT, and a connection tear-down RTT (TCP latency con-
text), and a count of request/response RTT (ICMP latency
context).

With respect to the error context fields, the error context
fields may include fields to store data corresponding to any
of the error contexts described with reference to FIG. 8. For
example, the error context fields may include fields to store
a count of retransmission and/or drops (TCP error context),
a count of drops (UDP error context), a count ol drops
(ICMP error context), a count of drops (other-LL4 error
context), a count of drops (ARP security, ND security, and/or
other non-IP security context).

With respect to the raw statistics context fields, the raw
statistics context fields may include fields to store data
corresponding to any of the statistics contexts described with

10

15

20

25

30

35

40

45

50

55

60

65

12

reference to FIG. 8. For example, the statistics context fields
may include fields to store a packet count, a byte count, a
dropped packet count, and/or a dropped byte count (TCP raw
statistics context), a packet count, a byte count, a dropped
packet count, and/or a dropped byte count (UDP raw sta-
tistics context), a packet count, a byte count, a dropped
packet count, and/or a dropped byte count (ICMP raw
statistics context), a packet count, a byte count, a dropped
packet count, and/or a dropped byte count (other-L4 raw
statistics context), and a packet count, a byte count, a
dropped packet count, and/or a dropped byte count (non-IP
raw statistics context, and/or ARP security, ND security,
other non-IP security context).

The non-key fields may also include various timestamps
related to received packets to determine, for example, active/
dormant and/or long-lived/short-lived. Additionally, the
non-key fields may include other fields to hold information
related to other flow-related contexts.

As shown in FIG. 7, the non-key fields 772 of the
enhanced flow entries 760 of the flow cache also include a
context-bitmap field 774 to store a context-bitmap that
includes a set of context-specific bits. FIG. 9 depicts an
example of a 32-bit content-bitmap 974 1n which bits in the
context-bitmap field correspond to different contexts of a
flow. In the example of FIG. 9, each bit in the context-bitmap
corresponds to a particular flow context as:

Bit-0: IPv4 tlow

Bit-1: IPv6 tlow

Bit-2: ICMP raw-stats

Bit-3: ICMP error

Bit-4: ICMP latency

Bit-5: ICMP performance

Bit-6: ICMP security

Bit-7: UDP raw-stats

Bit-8: UDP error

Bit-9: UDP performance

Bit-10: UDP security

Bit-11: TCP raw-stats

Bit-12: TCP error

Bit-13: TCP latency

Bit-14: TCP performance

Bit-15: TCP security

Bit-16: active flow

Bi1t-17: dormant tlow

Bi1t-18: short-lived tlow

Bi1t-19: long-lived flow

Bi1t-20: other-L.4 raw-stats

Bit-21: other-L4 error

Bit-22: other-LL4 performance

Bi1t-23: other-L4 security

Bit-24: ND security

Bit-25: ARP security

Bi1t-26: non-IP raw-stats

Bi1t-27: non-IP error

Bi1t-28: non-IP performance

B1t-29: non-IP security

Bit-30: RSVD-2

Bit-31: RSVD-1

Although the context-bitmap 974 depicted in FIG. 9 1s
provided as an example, the context-bitmap may include
other combinations of bits. For example, the context-bitmap
may not include all of the bits shown i FIG. 9, the
context-bitmap may include some bits that are different than
those shown 1n FIG. 9, or the context-bitmap may include a
larger set of bits. In an embodiment, a bit of the context
bitmap 1s “set” by tlipping the bit from “0” to *“1” or thpping
the bit from “1” to “0.”

US 11,146,468 Bl

13

Referring back to FIG. 6, in operation, as packets are
received by the IPFIX exporter 620, packet headers are
parsed by the packet parser 648 to 1dentily a flow, or flows,
to which the packets belong. For example, the packet
headers are parsed to identily flow keys as 1s known 1n the
field. Additionally, the flow entries corresponding to parsed
packets are updated in response to received packets. For
example, any of the data that corresponds to the contexts
described with reference to FIG. 8 may be updated in the
corresponding fields of the corresponding flow entries.

In an embodiment, updating of an enhanced flow entry in
the flow cache involves updating a non-key field, or fields,
in an enhanced flow entry and setting a bit, or bits, in the
context-bitmap based on context-based logic/intelligence
that 1s implemented by the IPFIX exporter. For example,
operations of the IPFIX exporter are implemented 1n a data
plane of the edge device, using for example, a P4 pipeline.
In an embodiment, the bits in the context-bitmap are set
(also referred to as “dirtied”) based on some evaluation of
data stored 1n a non-key field relative to some criteria. For
example, with respect to a particular tflow 1n the TCP context
(see FIG. 8, TCP context), the intelligent export logic may
execute logic related to the TCP security context, the TCP
performance context, the TCP latency context, the TCP error
context, and/or the TCP raw-statistics context. Specifically,
with respect to the TCP security context, the intelligent
export logic may compare a count of SYN/FIN flags that 1s
held 1n the enhanced flow entry to a SYN/FIN flag threshold

to determine 1f the corresponding flow may be under a
SYN/FIN attack. If the count of SYN/FIN flags exceeds the
SYN/FIN flag threshold, then the TCP security bit (e.g.,
bit-15) of the context-bitmap 1n the enhanced flow entry 1s
set (e.g., changed from “0” to “17). Likewise, the intelligent
export logic may compare a count of open connections that
1s held 1n the enhanced flow entry to an open connection
threshold to determine if the corresponding flow may be a
security risk. If the count of open connections exceeds the
open connection threshold, then the TCP security bit (e.g.,
bit-15) of the context-bitmap 1s set.

Similarly, with respect to the TCP performance context,
the intelligent export logic may compare a connection rate
held 1n the enhanced flow entry to a connection rate thresh-
old to determine 1 the corresponding tlow exceeds a pre-
defined rate threshold. If the connection rate exceeds the
predetermined rate threshold, then the TCP performance bit
(e.g., bit-14) of the context-bitmap held in the enhanced flow
entry 1s set (e.g., changed from “0” to *“1”). Likewise, the
intelligent export logic may compare a count ol open
connections held 1n the enhanced flow entry to an open
connection threshold to determine 1f the flow 1s having
performance 1ssues. If the count of open connections
exceeds the open connection threshold, then the TCP secu-
rity bit (e.g., bit-14) of the context-bitmap 1s set.

Similarly, with respect to the TCP latency context, the
intelligent export logic may compare a connection setup
RTT that 1s held 1n the enhanced flow entry with a connec-
tion setup RTT threshold to determine 11 the corresponding
flow 1s exceeding a predefined connection setup RTT thresh-
old, may compare a connection live RTT that 1s held 1n the
enhanced flow entry with a connection live RTT threshold,
and/or may compare a connection tear-down RT'T that is
held 1 the enhanced flow entry with a connection tear-up
RTT threshold. If the connection setup RTT exceeds the
connection setup R1T threshold, 1f the connection live RTT
exceeds the connection live R1T threshold, and/or it the
connection tear-down RT'T exceeds the connection tear-up

10

15

20

25

30

35

40

45

50

55

60

65

14

RTT threshold, then the TCP latency bit (e.g., bit-13) of the
context-bitmap 1s set (e.g., changed from “0” to “17).

Similarly, with respect to the TCP error context, the
intelligent export logic may compare a count of retransmis-
sions held 1n the enhanced flow entry with a retransmission
threshold and/or a count of drops held 1n the enhanced flow
entry with a drop threshold. If the count of retransmission
exceeds the retransmission threshold and/or if the count of
drops exceeds the drop threshold, then the TCP error bit
(e.g., bit-12) of the context-bitmap 1s set (e.g., changed from
“0” to “17).

Similarly, with respect to the TCP raw statistics context,
the intelligent export logic may compare a packet count held
in the enhanced tlow entry to a byte count threshold, a byte
count held in the enhanced flow entry to a byte count
threshold, a dropped packet count held 1n the enhanced flow
entry to a dropped packet count threshold, and/or a dropped
byte count held 1n the enhanced flow entry to a dropped byte
count threshold to determine 1f the flow 1s exceeding a
dropped byte count threshold. If the packet count exceeds
the packet count threshold, 1f the byte count exceeds the byte
count threshold, if the dropped packet count exceeds the
dropped packet count threshold, and/or 11 the dropped byte
count exceeds the dropped byte count threshold, then the
TCP raw statistics bit (e.g., bit-11) of the context-bitmap 1s
set (e.g., changed from “0” to “17).

The process of updating the non-key fields of enhanced
flow entries 1n the tlow cache 1s implemented on a continu-
ous basis for all of the context fields (see FIG. 8) and for all
of the bits 1n the context-bitmap. For example, the data held
in the context data fields of the enhanced flow entries is
updated for all flows held 1n the flow cache. In an embodi-
ment, counters that hold information related to the contexts
of FIG. 8 are updated upon receipt of packets. The intelligent
export logic then compares the data held 1n the “information/
statistics” portion of the enhanced flow entries (e.g., the
non-key fields other than the context-bitmap) with the
corresponding context thresholds to determine 11 the state of
bits 1n the context-bitmap should be changed. In an embodi-
ment, there are default thresholds that can be prepro-
grammed 1nto the mtelligent export logic. Additionally, 1n an
embodiment, default thresholds can be customized on a
global basis or on a per-flow basis, or combination thereof
for different contexts. Further, certain profiles can be estab-
lished that enumerate a set of thresholds for different cat-
egories or classes of flows. In an embodiment, the intelligent
export logic (e.g., as executed 1n a P4 pipeline of the data
plane) compares mformation/statistics held in the non-key
field(s) of an enhanced flow entry immediately upon on
update of the corresponding information/statistic.

The context-bitmap portion of an enhanced tlow entry 1s
used as a key to lookup an export policy. For example, the
32-bit context-bitmap 1s used as a key to lookup an export
policy 1 an export policy lookup table (e.g., export-policy-
lookup-table 664, FIG. 6). In an embodiment, the export
policies include an action element and a parameters element.
The action element indicates when to implement an export
operation and the parameters element indicates where an
export should be directed (e.g., a collector or collectors) and
what to export (e.g., an IPFIX template). With respect to the
action element of the export policy lookup table, the action
clement may specily, for example, immediate export, regu-
lar frequency export, delayed frequency export, correlated
event driven export, or skip export. With respect to the
parameters element of the export policy table, the param-
cters element may specity the collector, or collectors, that
are the target of the export and the template (e.g., 1n the form

US 11,146,468 Bl

15

ol a template ID) that specifies the content and format of the
information that 1s to be exported. In an embodiment, the
action element directly i1dentifies an action for the export
while the parameters element 1s a pointer to a collector
template table (e.g., collector-template-table 668, FIG. 6).

FIG. 10 illustrates how export polices can be i1dentified
using a context-bitmap from an enhanced flow entry n a
flow cache. In particular, FIG. 10 shows an export-policy-
lookup-table 1064 that maps context-bitmap keys to export
policies, e.g., in the form of export policy actions and export
policy parameters, where the export policy parameters are in
the form of pointers to a collector/template table. In an
embodiment, the export-policy-lookup-table 1064 can be
implemented as the export-policy-lookup-table 664 1n FIG.
6 and the collector-template-table 1068 can be implemented
as the collector-template-table 668 in FIG. 6. With reference
to FIG. 10, 1if a context-bitmap (also referred to as a
context-bitmap key) for a tflow matches “context-bitmap-1~
in the export policy lookup table, then the corresponding
export policy action 1s “immediate” and the export policy
parameters 1s a pointer (e.g., Table Entry-ptrl) to the col-
lector/template table. The pointer to the collector/template
table points to a particular entry 1n the collector/template
table as indicated in FIG. 10. If a context-bitmap (also
referred to as a context-bitmap key) for a flow matches
“context-bitmap-2 in the export policy lookup table, then
the corresponding export policy action i1s “regular-fre-
quency’ and the export policy parameters 1s a pointer (e.g.,
Table Entry-ptr2) to the collector/template table. Again, the
pointer to the collector/template table points to a particular
entry 1n the collector/template table as indicated 1n FIG. 10.

In addition to the export policy lookup table and the
collector template table, FIG. 10 illustrates different threads
that drive lookups 1n the export policy lookup table. In the
example of FIG. 10, three different threads include 1) a
real-time P4-thread 1075 that performs export policy lookup
table lookups and handles immediate export and correlated
event driven exports, 2) a regular-frequency P4-thread 1076
that performs export policy lookup table lookups and
handles regular frequency export, and 3) a delayed-fre-
quency P4-thread 1077 that performs export policy lookup
table lookups and handles delayed frequency export. In an
embodiment, a “P4-thread” refers to a thread that 1s 1mple-
mented 1n the data plane of the edge device. For example, a
P4 packet processing pipeline of an edge device such as a
SmartNIC may be implemented at least 1n part via a packet
processing circuit as described below with reference to FIG.
13.

FIGS. 11A and 11B depict a process flow diagram of an
embodiment of the context-driven IPFIX export. At element
1102, data related to a packet, which has been 1dentified as
corresponding to the corresponding enhanced flow entry 1n
a flow cache, 1s obtammed. For example, timestamp data
corresponding to the packet may be obtained and/or data
corresponding to the contexts described above with refer-
ence to FIGS. 7 and 8 may be extracted from the packet. The
data related to the packet 1s used to update the non-key data
portion of an enhanced flow entry. Additionally, fields 1n the
context-bitmap of the enhanced flow entry may be updated.
For example, a field in the context-bitmap may need to be
updated 1n response to an update in a field of the non-key
data portion of the enhanced flow entry. In one example, 1t
may be that the non-key data field 1s a count of SYN/FIN
flags that 1s incremented in response to a packet from the
flow with a SYN flag and the incremented count SYN/FIN
flags 1n the non-key data field may transition from not
exceeding a SYN/FIN flag threshold to now exceeding the

10

15

20

25

30

35

40

45

50

55

60

65

16

SYN/FIN flag threshold. In response to the count of SYN/
FIN flags exceeding the SYN/FIN flags threshold, the “TCP

security”” bit in the context-bitmap 1s set. In an embodiment,
an update of information/statistics 1n the non-key fields of
the context-bitmap triggers the intelligent export logic to
evaluate the updated information relative to some threshold/
standard to determine 11 a corresponding bit in the context
bitmap should be set.

Once the context-bitmap of a flow 1s updated, at element
1104 the context-bitmap of the flow 1s used to perform a
lookup 1n the export policy lookup table. As described with
reference to FIG. 10, the export-policy-lookup table 1064
maps values of the context-bitmap to export policies that
include an export policy action and export policy param-
cters. Depending on the result of the export policy lookup,
the process proceeds to an immediate export (element 1106),
a regular export (element 1108), a delayed export (1110), a

correlated event export (1112), or a skip export (element

1114).

If the export policy calls for immediate export as indi-
cated by a *“yes” at decision point 1106, then the process
proceeds to element 1116. Operations associated with ele-
ment 1116 are described 1n more detail below with reference
to FIG. 11B.

I1 the export policy calls for regular export as indicated by
a “yes’ at decision point 1108, then the process proceeds to
a “regular export” thread. In an embodiment, the regular
export thread involves triggering an export of an IPFIX
message at a regular interval. For example, the export of
IPFIX messages 1s triggered at the expiration of a “regular
interval” timer, e.g., a timer of a standard interval such as 30
seconds or 60 seconds, or between about 30-60 seconds.
Although certain intervals are described, other intervals are
possible.

If the export policy calls for delayed export as imndicated
by a “yes” at decision point 1110, then the process proceeds
to a “delayed export” thread. In an embodiment, the delayed
export thread involves triggering an export of an IPFIX
message at a delayed interval, e.g., delayed relative to the
regular interval. For example, the export of IPFIX messages
1s triggered at the expiration of a “delayed interval” timer,
¢.g., a timer of some interval greater than the “regular” or
standard interval such as 5 times the standard timer interval,
¢.g., 150 seconds or 300 seconds, or between about 150-300
seconds. Although certain intervals are described, other
intervals are possible.

If the export policy calls for correlated event export as
indicated by a “yes™ at decision point 1112, then the process
proceeds to a “correlated event export” thread. In an
embodiment, the correlated event export thread involves
triggering an export of an IPFIX message upon the update of
a correlated context. For example, a correlated event may
involve a first threshold for a packet rate for an application
and a second threshold for an overall bandwidth for the
application or for a link utilization. In an embodiment, an
export 1s triggered 11 both conditions are met. For example,
the first condition 1s met (e.g., the first threshold 1s exceeded)
at time, t0, and the second condition 1s met (e.g., the second
threshold 1s exceeded) at time, t1, and as long as the flow that
meets the first condition 1s still active at time, t1, when the
second condition 1s met (e.g., correlated events), an IPFIX
export 1s triggered. At element 1118, 1f the correlated con-
text, or contexts, has not been updated, then no export
operation 1s conducted (element 1120). If, however, a cor-
related context has been updated, then the process proceeds
to element 1116.

US 11,146,468 Bl

17

If the export policy calls for export to be skipped as
indicated by a “yes” at decision point 1114, then the process
proceeds to element 1122. At element 1122, the context-
bitmap of the enhanced flow entry 1s cleared. For example,
all “set” bits 1n the context-bitmap are unset, e.g., “1” bits
are reset to “0” bats.

Whether upon determination of an immediate export,
upon expiration of a regular export timer, upon the expira-
tion of a delayed export timer, or upon update of a correlated
context, the process proceeds to element 1116. At element
1116, the pointer obtained from the export-policy-lookup-
table 1s used to access the collector-template-table 1068,
FIG. 10 (collector-template-table 668, FIG. 6). The element
in the collector-template-table that 1s accessed with the
pointer identifies the collector (or collectors) that 1s the
target of the export and the template that 1s to be used for the
data that 1s to be exported. For example, the collector 1s
identified as an IP address or a name (in which case an IP
address 1s resolved from the name) and the template is
identified as a template ID. The collector-template-table may
also 1dentily the export protocol (e.g., TCP, UDP, or SCTP).

FI1G. 11B 1llustrates operations associated with the export-
ing process. At element 1130, the pointer from the export
policy lookup table 1s used to access an entry in the
collector-template-table (e.g., collector-template-table 1068,
FIG. 10). From the accessed entry 1n the collector-template-
table, the intelligent export logic 1s able to derive the data
and/or template for export (element 1132), to denive the
export interval (element 1134), and to derive the collector
(element 1136). Once aspects of the export are derived, the
process proceeds to results consolidation and export (ele-
ment 1138). Results may be consolidated and exported to
certain collectors (elements 11140) according to specified
templates (elements 1142). In an embodiment, the timing for
examinming the context bitmaps 1s a function of threads, such
as the real-time P4 thread 1075, the regular-frequency P4
thread 1076, and the delayed-irequency P4 thread shown in
FIG. 10. In an embodiment, each Set ID/template may have
its own 1nterval to scan the enhanced flow entries 1n the tlow
cache for all flows related to a context that 1s being set. In
an embodiment, this consolidates all the relevant details in
that interval, selects the collector that 1s to be exported to,
and then exports the IPFIX message(s).

FIG. 12 1s a process tlow diagram of a method ifor
exporting network information from an exporter to a col-
lector. At block 1202, a non-key field of a flow entry 1n a
flow cache that corresponds to a flow 1s updated. At block
1204, a field 1n a context-bitmap of the flow entry 1s set 1n
response to updating the non-key field of the flow entry. At
block 1206, an export policy 1s 1dentified using the context-
bitmap. At block 1208, information related to the flow 1s
exported to a collector according to the export policy.

In an embodiment, an IPFIX exporter as described above
with reference to FIGS. 6-12 1s implemented within an edge
device, such as a NIC or “SmartNIC.” FIG. 13 depicts an
example embodiment of an edge device 1314 that 1s con-
figured to implement context-directed export as described
herein. The edge device 1s shown relative to a host computer
1312, 1n which the edge device and host computer form a
host computing system 1302. In the embodiment of FIG. 13,
the edge device 1s a NIC (also referred to as a “SmartNIC”)
that 1s configured to operate within the host computing
system 1n which the host computer provides storage and/or
compute resources. In other embodiments, the edge device
may be single IC device, such as packet processor IC device,
in which case the edge device may not include certain
clements such as physical layer (PHY) elements (e.g., PHY

10

15

20

25

30

35

40

45

50

55

60

65

18

transmitters/receivers and port connectors), additional
memory, power management etc., which are typically part of
a NIC. In another embodiment, the edge device can be a
network node or switch, separated from the host, but directly
(e.g., via a ToR switch) or indirectly (e.g., via some other
switch or router in the network in the vicinity of the host)
attached to the host through a network interface (e.g., an
Ethernet interface) and the network.

In the example of FIG. 13, the edge device 1314 includes
a host interface 1330 and a network interface 1340 along
with a memory 1331, a coherent interconnect 1332, a packet
processing circuit 1333, CPU cores 1334, service processing
offloads 1335, and a packet bufler 1336. Although an
example architecture of the edge device 1s described with
reference to FIG. 13, other architectures of the edge device
are possible.

In an embodiment, the host interface 1330 of the edge
device 1314 1s a PCle interface that provides a high speed
connection to the host computer 1312 and the network
interface 1340 includes multiple ports, such as Ethernet
ports 1338, that enable the edge device to communicate with
other computing systems via network connections. In an
embodiment in which the edge device 1s a NIC, the PCle
interface may include a PCle port with a physical layer
(PHY) interface and connector, and the Ethernet ports may
include physical layer Ethernet ports and connectors, which
may be, for example, optical PHY ports and/or twisted-pair
PHY ports. In an embodiment in which the edge device 1s a
single IC device, the host interface may include pins on the
IC device that correspond to a PCle physical interface and
the network mterface may include pins on the IC device that
correspond to MAC level Ethernet communications.

The memory 1331 of the edge device 1314 can include
memory for running Linux or some other operating system,
memory for storing data structures such as the flow cache,
statistics, and other analytics, and memory for providing
buflering resources for advanced features including TCP
termination and proxy, deep packet mspection, and storage
offloads. The memory may include a high bandwidth module
(HBM) that may support, for example, 4 GB capacity, 8 GB
capacity, or some other capacity depending on package and
HBM. Memory transactions in the edge device, including
host memory, on board memory, and registers may be
connected via the coherent interconnect 1332. In one non-
limiting example, the coherent interconnect can be provided
by a network on a chup (NOC) “IP core”. Semiconductor
chip designers may license and use prequalified IP cores
within their designs. Prequalified IP cores may be available
from third parties for inclusion 1 IC devices produced using
certain semiconductor fabrication processes.

In an embodiment, the packet processing circuit 1333
implements a programmable packet processing pipeline that
1s programmable using a domain-specific language. For
example, the concept of a domain-specific language for
programming protocol-independent packet processors,
known simply as “P4,” has developed as a way to provide
some flexibility at the data plane of an edge device. The P4
domain-specific language for programming the data plane of
network appliances 1s currently defined in the “P416 Lan-
guage Specification,” version 1.2.0, as published by the P4
Language Consortium on Oct. 23, 2019, which 1s incorpo-
rated by reference herein. P4 (also referred to herein as the
“P4 specification,” and the “P4 language™) 1s designed to be
implementable on a large variety of targets including pro-
grammable NICs, software switches, hardware switches,
FPGAs, and ASICs. As described 1n the P4 specification, the

primary abstractions provided by the P4 language relate to

US 11,146,468 Bl

19

header types, parsers, tables, actions, match-action units,
control flow, extern objects, user-defined metadata, and
intrinsic metadata. The packet processing pipeline 1n the
edge device may include an arbiter, a parser, a match-action
pipeline, a deparser, and a demux/queue that constitute a P4
programmable NIC, a P4 programmable packet processor IC
device, or some other architecture. The arbiter can act as an
ingress unit receiving packets from RX-MACs and can also
receive packets from a control plane via a control plane
packet input. The arbiter can also receive packets that are
recirculated to 1t by the demux/queue. The demux/queue can
act as an egress umt and can also be configured to send
packets to a drop port (the packets thereby disappear), to the
arbiter via recirculation, and to the control plane via an
output CPU port or via the coherent interconnect 1332. The
control plane 1s often referred to as a CPU (central process-
ing unit) although, 1n practice, control planes often executes
on multiple CPU cores and other elements. The arbiter and
the demux/queue can be configured through the domain-
specific language (e.g., P4).

In an embodiment, the CPU cores 1334 are general
purpose processor cores, such as ARM processor cores,
Microprocessor without Interlocked Pipeline Stages (MIPS)
processor cores, and/or x86 processor cores, as 1s known in
the field. In an embodiment, each CPU core includes a
memory interface, an ALU, a register bank, an instruction
fetch unit, and an 1nstruction decoder, which are configured
to execute instructions independently of the other CPU
cores. In an embodiment, the CPU cores are Reduced
Instruction Set Computers (RISC) CPU cores that are pro-
grammable using a general-purpose programming language
such as C.

The service processing offloads 13335 are specialized
hardware modules purposely optimized to handle specific
tasks at wire speed, such as cryptographic functions, com-
pression/decompression, efc.

The packet bufler 1336 can act as a central on-chip packet
switch that delivers packets from the network interfaces
1340 to packet processing elements of the edge device 1314
and vice-versa.

In an embodiment, operations described above with ref-
erence to FIGS. 6-13 are implemented 1n the packet pro-
cessing circuit 1333 and the flow cache 1s held in the
memory 1331. In other embodiments, the operations
described above with reference to FIGS. 6-13 are imple-
mented by the CPU cores 1334 or a combination of the
packet processing circuit and the CPU cores.

Although the operations of the method(s) herein are
shown and described 1n a particular order, the order of the
operations of each method may be altered so that certain
operations may be performed 1n an 1mnverse order or so that
certain operations may be performed, at least 1n part, con-
currently with other operations. In another embodiment,
instructions or sub-operations of distinct operations may be
implemented 1n an mtermittent and/or alternating manner.

It should also be noted that at least some of the operations
tor the methods described herein may be implemented using
soltware instructions stored on a computer useable storage
medium for execution by a computer. As an example, an
embodiment of a computer program product includes a
computer useable storage medium to store a computer
readable program.

The computer-useable or computer-readable storage
medium can be an electronic, magnetic, optical, electromag-
netic, inirared, or semiconductor system (or apparatus or
device). Examples of non-transitory computer-useable and
computer-readable storage media include a semiconductor

10

15

20

25

30

35

40

45

50

55

60

65

20

or solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only
memory (ROM), a rigid magnetic disk, and an optical disk.
Current examples of optical disks include a compact disk
with read only memory (CD-ROM), a compact disk with
read/write (CD-R/W), and a digital video disk (DVD).
Although specific embodiments of the imvention have
been described and illustrated, the invention i1s not to be
limited to the specific forms or arrangements of parts so
described and illustrated. The scope of the mnvention 1s to be
defined by the claims appended hereto and their equivalents.

What 1s claimed 1s:

1. A method for exporting network information from an
exporter to a collector, the method comprising;:

updating a non-key field of a flow entry 1n a tlow cache

that corresponds to a flow;

setting a field 1n a context-bitmap of the flow entry in

response to updating the non-key field of the flow
entry; and

identifying an export policy using the context-bitmap; and

exporting information related to the flow to a collector

according to the export policy.

2. The method of claim 1, wherein exporting information
related to the tlow to a collector according to the export
policy mmvolves exporting information according to the Inter-
net Protocol Flow Information eXport (IPFIX) protocol.

3. The method of claim 1, wherein the context-bitmap
includes a set of context-specific bits.

4. The method of claim 1, wherein the context-bitmap
includes a set of context-specific bits, including a short-lived
context bit and a long-lived context bit.

5. The method of claim 1, wherein the context-bitmap
includes a set of context-specific bits, including a dormant
context bit and an active context bit.

6. The method of claim 1, wherein the context-bitmap
includes a set of context-specific bits, including a security
bit, a performance bit, a latency bit, an error bit, and a raw
statistics bit.

7. The method of claim 1, wherein the context-bitmap
includes a set of context-specific bits, including TCP context
bits, UDP context bits, and ICMP context bits.

8. The method of claim 1, wherein the context-bitmap
includes a set of context-specific bits, including a short-lived
context bit, a long-lived context bit, a dormant context bat,
an active context bit, a security bit, a performance bit, a
latency bit, an error bit, and a raw statistics bit.

9. The method of claim 1, wherein the context-bitmap
includes a set of context-specific bits, including a short-lived
context bit, a long-lived context bit, a dormant context bat,
an active context bit, TCP context bits, UDP context bits,
and ICMP context bits.

10. The method of claim 1, wherein identifying an export
policy using the context-bitmap involves using the context-
bitmap to search an export policy lookup table that maps
context-bitmap values to export policies.

11. The method of claim 1, wherein identifying an export
policy using the context-bitmap involves using the context-
bitmap to search an export policy lookup table that maps
context-bitmap values to export policy actions and export
policy parameters, wherein the export policy parameters
include pointers to a collector template table.

12. The method of claim 11, further comprising 1dentify-
ing a collector and an export template using a pointer from
the export policy lookup table.

13. The method of claim 1, wherein the non-key field in
the flow cache holds information related to security of the

US 11,146,468 Bl

21

flow and a bit in the context-bitmap includes a security
context bit that 1s set 1n response to a value of the non-key

field.
14. The method of claim 1, wherein the non-key field 1n

the flow and a bit 1n the context-bitmap includes a perior-
mance context bit that 1s set in response to a value of the
non-key field.

15. The method of claim 1, wherein the non-key field 1n
the flow cache holds information related to latency of the
flow and a bit 1n the context-bitmap includes a latency
context bit that 1s set 1n response to a value of the non-key
field.

16. The method of claim 1, wherein the non-key field 1n
the flow cache holds information related to an error of the
flow and a b1t 1n the context-bitmap includes an error context
bit that 1s set in response to a value of the non-key field.

17. The method of claim 1, wherein updating a non-key
field of a flow entry 1n a flow cache involves parsing a packet
to 1dentily a key field and using the key field to locate a flow
entry 1n the flow cache.

18. A method for exporting network information from an
exporter to a collector, the method comprising:
updating a non-key field of a flow entry in a tlow cache

that corresponds to a flow;
setting a field in a context-bitmap of the flow entry 1n

response to updating the non-key field of the flow
entry; and

the tlow cache holds information related to performance of 4

10

15

20

25

22

identifying an export policy using the context-bitmap; and
exporting information related to the flow to a collector
according to the export policy, wherein exporting infor-
mation related to the flow to a collector according to the
export policy mnvolves exporting information according

to the Internet Protocol Flow Information eXport (IP-
FIX) protocol;

wherein the non-key field 1n the flow cache holds infor-

mation related to the flow and a bit in the context-
bitmap 1ncludes a context bit that i1s set in response to
a value of the non-key field.

19. A system for exporting network information from an
exporter to a collector, the system comprising:

d Processor, and

a computer readable medium that stored instructions,
which when executed by the processor, implement:

updating a non-key field of a flow entry 1n a tlow cache
that corresponds to a flow;

setting a field 1n a context-bitmap of the flow entry in
response to updating the non-key field of the flow
entry;

identifying an export policy using the context-bitmap; and

exporting information related to the flow to a collector
according to the export policy.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

