US011144399B1

12 United States Patent

Yarimi et al.

US 11,144,399 B1
Oct. 12, 2021

(10) Patent No.:
45) Date of Patent:

(54) MANAGING STORAGE DEVICE ERRORS (56) References Cited
DURING PROCESSING OF INFLIGHT U S PATENT DOCUMENTS
INPUT/OUTPUT REQUESTS . ~
_ _ 5,551,003 A 8/1996 Mattson et al.
(71) Applicant: EMC IP Holding Company LLC, 5,764,880 A 6/1998 Gerdt et al
Hopkinton, MA (US) 6,052,799 A 4/2000 Li et al.
6,243,827 B1* 6/2001 Renner, Jr. GO6F 11/004
(72) Inventors: Michal Yarimi, Rehovot (IL); Itay | 714/6.12
Keller, Tel Aviv (IL); Yuval Miron, Tel (Continued)
Aviv-Jafla (IL); Neta Peleg, Modiin . .
(IL) FOREIGN PATENT DOCUMENTS
_ _ WO PCT/US2019/024885 1/2020
(73) Assignee: EMC IP Holding Company LLC, WO PCT/US2019/024900 1/2020
Hopkinton, MA (US)
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 Dell EMC, “Dell EMC VxRack FLEX.,” Dell EMC Product Over-
U.S.C. 154(b) by 0 days. view, 2018, 5 pages.
(Continued)
(21) Appl. No.: 16/832,763
Primary Examiner — Charles Ehne
(22) Filed: Mar. 27, 2020 (74) Attorney, Agent, or Firm — Ryan, Mason & Lewis,
LLP
(51) Int. CL
GOG6F 11/00 (2006.01) (57) ABSTRACT
Gool' 11/14 (2006.01) Techniques are provided for managing storage device errors
Gool’ 11/07 (2006.01) during processing of inflight input/output (I/0) operations. A
GO6F 12/02 (2006.01) storage control system (e.g., a software-defined storage
GOGF 12/1045 (2016.01) system) receives an I/O write request which includes data to
GO6F 11730 (2006.01) be written to at least one storage device of a plurality of
storage devices manage the storage conftrol system, an
(52) US.CL ge devices managed by the storag sy d
CPC GOGF 11/142 (2013.01); GO6F 11/0772 commences a write operation to write the data to the at least
"""" ‘ P _ one storage device. In response to a storage device 1/0 error
7 25(2)3513'0213)’1 ,f gtliF gg‘;g‘g 2(/3?)‘153'0;2)’1 g;(o)?F resulting from a failure of the write operation associated
(‘)’G O6F 2212/790](201 3 0 1) ‘ with the at least one storage device, the storage control
_ _ _ (01) system accesses a logical storage device 1n a non-volatile
(58) Field of Classification Search system memory device, and writes the data to the logical

CPC ...l GO6F 11/108; GO6F 11/1068; GO6F
11/1092; GO6F 11/2094; GO6F 11/1638;
GO6F 11/1666

See application file for complete search history.

.........

m . 5
| COMPUTE | | COMPUTE |, | COMPUTE Y
i wope] 1 wopE | i NODE 5

| MANAGEN

148

ENT |
 NODE(S) |

STORAGE .
NODE NODE NODE

STORAGE

j

Th Y Tirh

CATA STORAGE SYSTEM

e ddmder maerde taelded e e Ry sl deaie o e

storage device 1n the non-volatile system memory device to
complete the failed write operation.

20 Claims, 4 Drawing Sheets

{4

STORAGE MNODE

STOHAGE CONMTROL SYSTEM

J STORAGE VIRTUALIZATION AND |
| MANAGEMENT SERVICES MODULE |

FILE SYSTEN

172 APPLICATION PROGRAMMING
i iIMTERFACE LAYER

'EQE}‘—-"?

s NONYOLATILE J

A SYSTEM MEMORY

Al nsrla HE M. Crarty s HL L

1T4~] LOGICAL STORAGE DEVICE L.]
| AYER F 5

FILE SYSTEM LAYER

T

Rkl STORAGE DEVICE DRIVERS

ahlied Bl ekl FYTIRTRIT TN] PR ERTITRINIR Sl Bkl bl B

US 11,144,399 B1
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,941,420 B2 9/2005 Butterworth et al.
8,843,676 B2 9/2014 Rajamanickam et al.
9,372,751 B2 6/2016 McNutt
9,514,014 B2 12/2016 Webman et al.
10,445,180 B2 10/2019 Butterworth et al.
2002/0032835 Al 3/2002 Li et al.
2015/0269025 Al1* 9/2015 Krishnamurthy GO6F 3/0689

714/6.24
2018/0113640 Al 4/2018 Fernandez et al.
2018/0267893 Al 9/2018 Barzik et al.
2018/0300075 A1 10/2018 Fernandez et al.
2019/0227845 Al 7/2019 Sridhar et al.
2020/0218617 Al1* 7/2020 Knestele GO6F 9/5027

OTHER PUBLICATIONS

G. Soundararajan et al., “Dynamic Resource Allocation for Data-
base Servers Running on Virtual Storage,” FAST 2009: Proceedings

of the 7th conference on File and storage technologies, Feb. 2009,
pp. 71-84.

Dell EMC, “EMC ScalelO Basic Architecture Documentation,”
Technical White Paper, Mar. 2017, 22 pages.

EMC2, “EMC ScalelO Design Considerations and Best Practices,”
Technical White Paper, Jun. 2016, 30 pages.

I. Koltsidas et al., “SoftwAre Log-Structured Array (SALSA)—A
Unified Stack for SSDs and SMR Disks,” IBM Research Report,
Dec. 2, 2015, 12 pages.

S. M. Rumble et al., “Log-Structured Memory for DRAM-Based
Storage,” Proceedings of the 12th USENIX Conference on File and
Storage Technologies, Santa Clara, CA, Feb. 17-20, 2014, 17 pages.
Dell EMC, “Dell EMC VxFlex Family Overview,” Technical White
Paper, May 2019, 44 pages.

J. Nakano et al., “ReVivel/O: Eflicient Handling of I'O 1n Highly-
Available Rollback-Recovery Servers,” HPCA, 10.1109/2006.
1598129, pp. 200-211.

Wikipedia, “Raft (Computer Science),” https://en.wikipedia.org/
wiki/Raft (computer science), Feb. 10, 2020, 4 pages.

Wikipedia, “Paxos (Computer Science),” https://en.wikipedia.org/
wiki/Paxos_(computer_science), Dec. 6, 2019, 21 pages.
Wikipedia, “State Machine Replication,” https://en.wikipedia.org/
wiki/State_machine replication, Dec. 14, 2019, 9 pages.

U.S. Appl. No. 16/343,942 filed in the name of Yonatan Shtarkman
et al. filed Apr. 22, 2019, and entitled “Snapshot-Enabled Storage
System Implementing Algorithm for Efficient Reclamation of Snap-
shot Storage Space.”

U.S. Appl. No. 16/343,949 filed in the name of Asaf Porath et al.
filed Apr. 22, 2019, and entitled “Snapshot-Enabled Storage System
Implementing Algorithm for Efficient Reading of Data from Stored
Snapshots.”

U.S. Appl. No. 16/807,709 filed in the name of Avi Puder et al. filed
Mar. 3, 2020, and entitled “Management of Shared Resources 1n a
Software-Defined Storage Environment.”

U.S. Appl. No. 16/822,818 filed in the name of Itay Keller et al. filed
Mar. 18, 2020, and entitled “Storage System Implementing Snap-
shot Longevity Ranking for Efficient Management of Snapshots.”
U.S. Appl. No. 16/822,848 filed 1n the name of Itay Keller et al. filed
Mar. 18, 2020, and entitled “Assignment of Longevity Ranking
Values of Storage Volume Snapshots Based on Snapshot Policies.”
U.S. Appl. No. 16/823,813 filed in the name of Itay Keller et al. filed
Mar. 19, 2020, and enfitled “Managing Incompressible Data in a
Compression-Enabled Log-Structured Array Storage System.”
U.S. Appl. No. 16/830,469 filed in the name of Roi1 Tagar et al. filed
Mar. 26, 2020, and entitled “Storage Block Balancing Using Vol-
ume Part Migration.”

U.S. Appl. No. 16/830,473 filed in the name of Yugal Peleg Lieblich
et al. filed Mar. 26, 2020, and enfitled “Replicated State Cluster with
Standby Node State Assessment During Leadership Transition.”
U.S. Appl. No. 16/830,946 filed in the name of Gil BenZeev et al.
filed Mar. 26, 2020, and entitled “Storage Volume Migration Sched-
uling Based on Storage Volume Priorities and Specified Con-
straints.”

* cited by examiner

S. Patent

| i L

PR b+ A S RS g o R PP+ d 4 RERP G

COMPUTE
NODE

a a2 Fr R R 4 e R R aa
'---rl.l.‘l‘ 1 i = =

T

-
-
+
+
+*
L
3

P+ 4+ + % +PFFF 4+ 4 ++PF 4+ 4+ + +4+

*
-
+
*
+
L
L
F]
*
*
*
*
L
-
t
+
*
+
L
L
-

*
-
*
r
-
+
+
*
+
r
,
r

L oa " LR L LW aam [y
L = l'l‘--l.l.rl. -I.'I.'

*

+

-
FIF I IR A A |

*
+ *
+ +
*
+
-
. =
T
-y 4 L
l.
.
*
#
+
+ N
K
-+
+ +
r +
LE K]
-
-+
+ k
-
u
*
+
+
*
+
+ F7
iy
L
&k 1w
e e
44+ +
+ I
+
+
+
+ +
+
o
r a
N
] T
+ 4 &
RN
+ 4+ F
+ kb A+ + o+

+ &k F Fh*

PR R LR T 4 R FEPFPF SRR A R

AOUONEN ODAOOD 0 ODUGIDNNR AOOUOL SOO0AOCN

ST Twhinfey MW ey fatitre awEntnel? ity 0 Ol et oty afaciiee ot e Bt odiehtes At a0 o monndey i itk Sy

L
A & ko kA ok kA kA h kA ko ko kA bk kA h R+ kA A

ct. 12, 2021

+ + ¥

+
+ + + F A FF o FFAFFFFFEFEFEFF AN
+ n & n & +

+ +
4+ 4 B A2 2 A 4 4 B a4 &+ & A 4 4 4 B R I 4

+

a
-
o4
[]
[
ar
r
-
[]
-
L]
1
L
-
[
L]
[]
-
-
F]

F & & 4 B B § & & 4 4 L R A 2 4 4 R R § &
- T r oa - ey - e a

hF o+ + 4+ d Pt

- op o mom oy WA
rrhl}i.i.l.l.if}-l.l.l.l.-ii-i--l.l.l.lli-l“f

-

 d b b+ o+ oA
4 ko ok b
A 4k
+ ¥ + <+

4 4 + +

+ 4 4

+ + K

+

Sheet 1 of 4

-
-
- T
. :
- L]
- Ll
+ +
- L]
:
- "-
T
d
O d
- Ll
[
- +
+
- »
:
: :
,
- H =
:
-]
L4
- L]
[}
+ Ll
*
+ +
:
- +
*f + + + ¥F * + F F =2+ F+=~F 4+ FFFFPEEF A+

p 4
-

A b+ rw r b bbb

~
N
4 4 bk ko
A 4+ o+
]
-+

+ & A 4 4+ + E
-+ + + + &

+ ¢k 4+ A 44+ F e hodFF
+ + & A h okt kA h kot kA hht kA E ot kA A
+ + =+ & 4 + + +
+ + & 4 4 +
4 + + + +
+ + =+ -

COMMUNICATIONS NETWORK

L
LI R N B
+++“I++++l‘il-i++++llb+++ +* ¥

L B I N + + F

L]
= + + +

+ + + = F
a a4 B

|
3
B
|
|
|
|
|
|
|
|

B+ + F rd o+ F o+

+ + + + ¥ b+ + + + 4

+ =+ d +

d &
* o=k
+ + +
k] [
+ + F T
- 4+ + + %
+ 4+ R § a2 a3 4
A P rFaEwpPErERE
4 =

R
LA P RN +

= r
i bk bk howrdor e p

[]
r
r
-
-
-
-
-
]
-
[]
r
+ & L
T+-'-'"'
+ r L=
- L N |
+ o
[
+ +
+
+
L
Aol

* = 4 £ F+F

4 b o+ k4 h ok ox ok F kA h ko kA A d ko kA h ok kA A+

STORAGE
NODE

+ + + % & F ¥+ + +FFF A+ FFETFTF

r
r
r
r
r
[]
[]
]
r
r
-
]
n
L]
Y
r
r
T
[]
[]
r
r

DATA STORAGE SYSTEM

+*
+ + &~ A4 + + ¥+ +
R

BN
+ + 1 4% + + + + =P

S 11,144,399 B1

LD B N LN B R I L D N O L D D L D L L D D N R L B B
+ 1 F + + F P FFFF AT FFFFNFFFFFFTEE Y

MANAGEMENT
NODE(S,

* 4 =+ + + +1FFF -1 "t -+ttt

=
l.‘l. .I'.I

+ F =
a2 =y

= F & F P 4 =B
y Low poa L Lok

-
Y

L
-

+
+

* F + d b+ b+

+ ¥
+ & d d b+ + + #
-+ + o F A+ T
4+ + + 1

+ I h o+
= +
* o+
* ¥
= F
T
r
-
[]
d &
d
+ + +
+
= 1 &
+
+ =
* +
=
[
-
L]
|]
r
-
+
L
+*
+
- 4
-
.1.-1'-.1
- =
l.'ri'i.r

*

STORAGE
NODE

F + + + + + F + + + + + 1

4 + + + ¥ b4+ F F FdAdAF R+

P+ + + + 1 1 + + + + + 1

4+ =+

E&mmmmmmﬁ

U.S. Patent Oct. 12, 2021 Sheet 2 of 4 US 11.144.399 B1

+
+* + + + F + F F F o FFFFFFEFFFAFEAFFEFEFEFEAFEFEFEFEFEFEFEFEFEAFEAFEFEFEFEFEAFEFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEAFEFEFEFEFEFEFEAFEAFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEFEAFEAFEFFEAFEFEFEFEFEEFFEFEFFEFF

+ +
+ +
+ +
+ *
+ +
+ +
+ +
+ +
+ H +
+ *
+ +
+ +
+ *
+ +
+ +
+ +
+ +
+ +
+ *
+ +
+ +
+ + + +
+ +
+
+ +
+ *
+
+ +
*
+ +
+ *
+ +
. ++ .
+ + + +
+ + + +
+ + + +
+ * * *
+ + + +
+ + + +
+ * * *
+ + + +
+ + H H d + +
+ * H * *
+ + + +
+ + + +
+ * * *
+ + + +
+ + + +
+ + + +
+ + + +
+ + + +
+ * * *
+ + + +
+ + + + +
+
+ * + * *
+
+ + + + +
+
+ + + + +
+
+ * H + * *
+
+ + + + +
+
+ + + + +
+
+ * + * *
+ d . H
+ + + + +
+
+ + + + +
+
+ * + * *
+
+ + + + +
+ :
+ + + + +
+ : H
+ * + * *
+
+ + + + +
+
+ + + + +
+
+ * + * *
+
+ + + + +
+
+ + + + +
+
+ + N o N R R N T T + +
+ + + +
+ + + +
+ * * *
+ + + +
+ + + +
+ * * *
+ + + +
+ + + 4+ + + +
+ * + * *
+ + + +
+ + + + +
+ * + * *
+ + + + +
+ + + +
+ * * *
+ + N N N N N N N N N N N N N N N NN + +
+ + + +
+
+ * * *
+
+ + + +
. . . -
+ + + +
+
+ * * *
+
+ + + +
+
+ + + +
+
+ * * *
+
+ + + +
+
+ + + +
+
+ * * *
+
+ + + +
+
+ + + +
+ +
+ * + * *
+ +
+ + + + +
+ +
+ + + + +
+ +
+ * + * *
+ +
+ + + + +
+ + +
+ + + + + +
+ +
+ * + * *
+ + +
+ + . . E H 'E . : . 4 : . + + +
+ +
+ + d + + +
+ +
+ * + * *
+ +
- " - " -
+ +
+ + + + +
+ +
+ * + * *
+ +
+ + + + +
+ +
+ + + + +
+ +
+ * + * *
+ +
+ + + + +
+ +
+ + + + + + + + + +
+ +
+ * + * *
+ o+ + Rt R R+ + +
+ + + +
+ *
+ + + +
+ +
+ * * *
+
+ + + +
+
+ + + +
+ * * * *
+ + + + + R R R R R R+ + P N N N N N N N N N N N N N N O N N N N N NN
+ + + + + + +
+ +
+ + + + + + +
+ +
+ * + * * + *
+ +
+ + + + + + +
- . . . - . . . -
+ + + + + + +
+ +
+ * - . + . * * + *
+ + + + + [+] + +
¥ + +
+ + + + + + + + + + +
+ + + 4+ + + + + + + + + + + + + ++++++++ +
+ * + + * + *
+ + +
+ + + + + + +
+ * +
+ + + + + +
+
+ * . + B D N DN NN DL NN NN * + *
+ + + + + + + + +
+ +
+ + + + + + +
+ +
+ * + * * + *
+ +
+ + + + + + +
+ +
+ + + + + + +
+ +
+ * + * * + *
+ +
+ + + + + + +
+ +
+ + + +
+
+ * * *
+
+ + + +
+
+ + + +
+
+ * * *
+
+ + + +
. . N N N N N N N NN NN + . .
+
+ * + * *
f : +
+ + + + +
+
+ + + + +
+ +
+ * + + * *
+ +
+ + + H H H : . + + +
+
+ + + + +
+ +
+ * + + * *
+
+ + + + +
H +
+ + + + +
+
+ * + * *
+
+ + + + +
+
+ + + + +
+
+ * + * *
+
+ + + . + +
+ + R R N I R R R R R R N R N N R R N R R N N N R R N N N N N R N N N N N R N N N N N N N N N NN + +
+
+ * * *
+
+ + + +
+
+ + + +
+
+ * * *
+
+ + + +
+
+ + + +
. . L A N N N N N L A o N Nk AR N N NN N NN N kN N N NN AR N N N R N N R N2 + . .
+ +
+ + + + +
+ +
+ + + + +
+ +
+ * + * *
+ +
+ + + + +
+ +
+ + + + + +
+ + +
+ * + * *
4 4 + + +
+ + + + +
+ +
+ + + + + +
+ +
+ * + * *
+ +
+ + + + +
+ H . H . H . +
+ + + + +
+ +
+ * + * *
+ +
+ + + + +
+ +
+ + + + +
+ +
+ * + * *
+ +
+ + + + +
+ +
+ + + + +
+ +
+ * + * *
+ 4+ + + + Rt R R R+ +
+ + + 4 + +
* + +
+ + + + + +
+ + +
+ * * * * *
+ + + +
+ + + + +
* +
+ + + + +
+ +
+ * * * *
+ +
+ + + . . + +
+ + + + + o E ot EF EEE EFEE + + F + + F + t Ft EF tEt EF EE Rt E + +
+
+ * * * *
+
+ + + + +
*
+ + + + +
+
+ * * * *
+
+ + + + +
. NN NN NN NN NN NN N NN NN NN NN NN NN NN NN NNNN N L N R A o R N N N A N R N N N o N R N N N N N A N A N N N N N N N N N R N N N N N R N N N NN NN NN NN N .
+
+ * *
+
+ + +
*
+ + +
+
+ * *
+
+ + +
+ +
+ + +
+ *
+ + + +
+ +
+ + +
+
+ * *
+
+ + +
+
+ + +
+
+ * *
+ +
+ + + +
+ +
+ + + +
+ +
+ * *
+
+ + + +
+
+ + +
+
+ * *
+
+ + +
+
+ + +
+
+ * *
+
+ + +
+
+ + +
+
+ * *
+
+ + +
+
+ + +
. R R R o N R N N A N N R N N A N N N R N R N N N N NN N .
+ +
+ +
+ *
+ +
+ +
+ *
+ +
+ +

U.S. Patent Oct. 12, 2021 Sheet 3 of 4 US 11,144,399 B1

| RECEIVE /O WRITE REQUEST COMPRISING
200 ~ [DESTINATION ADDRESS AND DATA TO BE
f WRITTEN TO A STORAGE DEVICE

1§ oo COMMERNCE WRITE OPERATION TO WRITE
DATA 1O CORRESPONDING PHYSICAL
LOCATION IN THE STORAGE DeViCE

SEND ROTIFICATION OF
COMPLETION OF WRITE |

=" WRITE OPERATION YES

u
» + + +
T - %
+
-
+ + b
¥ 4+
F o+
W
+
+ +
= 4
o
1
+ 4
+
+
- n o
. r b
+ - +
+ b+
++ O e
- T -
du i+
+ 4 + +
» 1
+ =
- T

OPERATION

++

ACCESS A LOGICAL STORAGE DEVICEIN A

204, | e b
| NON-VOLATILE SYSTEM MEMORY AND AN | NOTIEY MANAGEMENT LAYEROF | . 207
: : DEVICE /0 ERROR *'

ASSOCIATED ADDRESS MAPPING TABLE

+*
+++

| COMPLETE THE FAILED WRITE OPERATION | MANAGEMENT LAYER CONFIGURES
205 | BY WRITING THE DATA TO THE LOGICAL | STORAGE ERVIRONMENT 1O 208
| STORAGE DEVICE IN THE NON-VOLATILE | PREVENT ISSUANCE OF BEWID - 1

SYSTEM MEMORY AND UPDATING THE REGQUESTS DEST?NED TO TH.E
ADDRESS MAPPING TARLE | STORAGE DEVICE FOR WHICH THE

.. | DEVICE /O ERROR WAS RETURNED

FOR EACH INFLIGHT VO WRITE REQUEST 5
- THAT IS SUBSEQUENTLY RECEIVED AND | COMMENCE RECOVERY PROCESS
206~ | DESTINED TO THE STORAGE DEVICE FOR 5
1 WHICH THE DEVICE /0 ERROR WAS
RETURNED, AUTOMATICALLY WRITE DATA
TO THE LOGICAL STORAGE DEVICE IN THE
NON-VOLATILE SYSTEM MEMORY

.
+++

o 309

U.S. Patent Oct. 12, 2021 Sheet 4 of 4 US 11.144.399 B1

+
+* + + F F FFFFFFFFFFFEFFFEFFFFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFFEFEFFEFFEFEFEFFEFEFEFEFEFEFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEEFEFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFE A FF

SERVER NODE

+
+
+
+
+
+ +
+
M g
+*
Ll I B B B B B BN N B N N
+ +
+ E
L N N N i g
+ + +
+-
+ +
+
+*
+ +
+
+*
+
+
* ok ko F ok ko kk ok ko ko kb kb ok ko k ok kb ko kb ko ko kb ko ko F .
+*
+
+
+*
+
+
+ +
+* +* +*
A+ + F + F F o+ R
. + +
+ +
. +
+* +*
+ + + + + + + + + + + + +F 4+
+ + +
+
+ + + + + + + + + + + + + + F F F F A+ FFAFFAFEAFFFEAFFAFAFFAFEAFFFEFEFEFEAFEFFEAFEFFEAFEFEFEAFEFEEAFEFEEAFEFEEFEFF i g
+ + + a
g i
+*
+
+ . .
+*
+
+
+*
+
+
+*
+ .
+
+*
+
+
+*
++++++++++++ +
; * + + F F F F FFFFFFFAFEFAFEAFFFEAFFFEAFEFEAFEFEFEAFEAFEFEAFEAFEFEFEAFEFEAFEAFEFEFEFEEFEFEEFFEF

+* + + F F FFFFFFFFEFFFEFFEFEFFFEFFEFEAFFEFEFFEFEAFFEFEFEFEFEFEFEFEAFFFEFEFEFEAFFEFEAFFEFEFEFE T

+

+
+ + + + + + + + + + + F +F F FFFFFFFFAFFAFEAFEFFEAFEFFEAFEFEAFEAFEFFEAFEFEFEAFEFEFEAFEFFEAFEFEFEAFEFEFEAFEFEEFEFEFEFEFF

VIRTUALIZATION
RESOURCES —

* ko ko ko k ok ko ko kb kb kb ok ko ko kb ko bk bk ko k bk ok k ko F

S TORAGE
RESOURCES

+ + + + ¥ + + ¥ + + ¥ ¥
+

+
+ + + + + + ¥ F F+F F FFFFFFFFFFFFF

+* + *+ + + F + + F + +F F F FFFFFEFFFEFFFEFEFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEEFEFEFEEFEFEFEEFEFEFEEFEFEFEEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFFEFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFFEFEFFEFEFEFEFEFEFEFFEFEFEFEFEFEFE S
+ + + + + + + + + + + + + + + F + + F

+ + + + + + + F FFF o FFFFFEFFFEFFEFEFEFEEFFEEFFFEFFEEFFEE R FEE A FE R FEFE A F RS

+* + + F F FFFFFFFFFFFEFFFEFFEFFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEAFEFEFEFEFEFEFFEFEAFFEFEFFEFEFFEFEFFEFEFFFEAFFEFEFEFEFEFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEFFEFEAFFEFEAFFEFEAFEFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFEFEAFFE R F

US 11,144,399 Bl

1

MANAGING STORAGE DEVICE ERRORS
DURING PROCESSING OF INFLIGHT
INPUT/OUTPUT REQUESTS

FIELD

This disclosure relates generally to data storage manage-
ment techniques and, more specifically, to techniques for
managing storage device errors 1n a data storage system.

BACKGROUND

Data storage systems typically implement various auto-
mated resource management techniques to ensure that data
1s not corrupted and remains coherent and complete. In a
distributed data storage system comprising a cluster of data
storage servers, the distributed data storage system 1s
capable of concurrently handling many inthght input/output
(I/0) requests which can spawn thousands of concurrent 1/O
threads for performing data access operations (e.g., read
operations, write operations, etc.) to access data in various
storage devices distributed over a storage network such as a
storage area network (SAN).

In certain 1nstances, a storage device 1/O error will occur
due to, e¢.g., a malfunctioning storage device, in which case
a file layer of the data storage server 1s unable to execute or
otherwise complete a given intlight I/O request (e.g., read
request or write request) when attempting to access the
malfunctioning storage device. A given I/O thread handing
the 1intlight I/O request can encounter the storage device 1/O
error 1n the middle of an open transaction, while other 1/0
threads concurrently handling other inflight I/O requests are
not aware of such error. The term “transaction” as used
herein refers to group of operations for which their execu-
tion must be either completed fully or not at all, so that data
can remain consistent and coherent. A given transaction may
include one or more I/O operations. When an 1/0 operation
ol a given transaction encounters a device I/O error and the
transaction cannot be completed, backing off from the failed
I/O operation can leave the data storage system in an
unstable state in instances where a data storage control
system does not support the rollback of other completed 1/O
operations of the given transaction. Typically, the operations
of a given transaction are executed on top of different
underlying storage mediums, such that the operations might
have different resiliencies (e.g., some operations are volatile
and some are not), and when the completion of the trans-
action 1s promised, a failure 1n one of the operations of the
given transaction must be recovered or roll backwards to
ensure consistency.

An 1ntuitive solution to address an 1/O error may be to
terminate a running process when a device I/0 error occurs.
However, this 1s not desired 1f the process 1s able to finish
ongoing operations. Another approach 1s to roll back the
operations after encountering the storage device 1/O error.
There are various problems with this approach. For example,
rolling back operations can be complicated because not all
I/O operations can be readily undone, especially when

memory allocation was mvolved, or when an acknowledge
(ACK) message had already been returned to a user. Further,
in a distributed system which executes I/O threads and
processes 1n parallel, a parallel process that 1s not aware of
the malfunction will proceed to execute operations, thereby
resulting 1n further complications and issues 1n rolling back
I/0 operations.

SUMMARY

Exemplary embodiments of the disclosure generally
include techniques for managing storage device errors dur-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing processing of inflight I/O operations. For example, one
exemplary embodiment includes a process that 1s 1mple-
mented by a storage control system (e.g., a software-defined
storage system). The storage control system receives an 1/0O
write request which includes data to be written to at least one
storage device of a plurality of storage devices managed by
the storage control system, and commences a write opera-
tion to write the data to the at least one storage device. In
response to a storage device I/O error resulting from a failure
of the write operation associated with the at least one storage
device, the storage control system accesses a logical storage
device 1n a non-volatile system memory device, and writes
the data to the logical storage device in the non-volatile
system memory device to complete the failed write opera-
tion.

Other embodiments of the disclosure include, without
limitation, server nodes, and articles of manufacture com-
prising processor-readable storage media for managing stor-
age device errors during processing of intflight I/O opera-
tions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B schematically illustrate an information
processing system comprising a data storage system which
1s configured to manage storage device errors during pro-
cessing ol inflight I/O operations, according to an exemplary
embodiment of the disclosure.

FIG. 2 1s a flow diagram of a method for managing storage
device errors during processing of inflight I/O operations,
according to an exemplary embodiment of the disclosure.

FIG. 3 schematically illustrates framework of a server
node which hosts a data storage system that 1s configured to
manage storage device errors during processing of ntlight
I/O operations, according to an exemplary embodiment of
the disclosure.

DETAILED DESCRIPTION

Exemplary embodiments will be described herein with
reference to exemplary imnformation processing systems that
implement data storage systems which are configured to
manage storage device errors during processing of intlight
I/O operations, and which implement associated computers,
servers, storage devices and other processing devices. It 1s to
be appreciated, however, that these and other exemplary
embodiments are not restricted to the particular illustrative
system and device configurations shown in the figures.
Accordingly, the term “information processing system’™ as
used herein 1s mtended to be broadly construed, so as to
encompass, for example, processing systems comprising
cloud computing and storage systems, as well as other types
ol processing systems comprising various combinations of
physical and virtual processing resources. An information
processing system may therefore comprise, for example, at
least one data center or other cloud-based system that
includes one or more clouds hosting multiple tenants that
share cloud resources. Numerous diflerent types of enter-
prise computing and storage systems are also encompassed
by the term “information processing system’™ as that term 1s
broadly used herein. FIGS. 1A and 1B schematically illus-
trate an mmformation processing system comprising a data
storage system which 1s configured to manage storage
device errors during processing of inflight I/O operations,
according to an exemplary embodiment of the disclosure.
More specifically, FIG. 1A schematically 1llustrates an infor-
mation processing system 100 which comprises a plurality

US 11,144,399 Bl

3

of compute nodes 110-1, 110-2, . . . , 110-¢ (collectively
referred to as compute nodes 110), one or more management
nodes 115, a communications network 120, and a data
storage system 130. The data storage system 130 comprises
a plurality of storage nodes 140-1, 140-2, . . . , 140-»
(collectively referred to as storage nodes 140, or each
singularly referred to as storage node 140). In the context of
the exemplary embodiments described herein, the storage
nodes 140 of the data storage system 130 implement meth-
ods for managing and recovering from storage device errors
that are encountered during processing of inflight I/O opera-
tions. FIG. 1B schematically illustrates an exemplary frame-
work of at least one or more of the storage nodes 140.

In particular, as shown 1n FIG. 1B, the storage node 140
comprises a storage control system 150 comprising a storage
virtualization and management services module 160 and a
file system 170. The storage node 140 further comprises a
plurality of storage devices 180 and system memory com-
prising non-volatile system memory 190. The {file system
170 1s configured to manage how data 1s stored and orga-
nized on the storage devices 180 and to control data access
operations for writing data to and reading data from the
storage devices 180. The file system 170 comprises an
application programming interface (API) layer 172 (e.g.,
logical file system layer), a logical storage device layer 174,
a file system layer 176, and device drivers 178. As explained
in further detail below, the logical storage device layer 174
and the non-volatile system memory 190 are configured to
manage storage device errors that may occur in connection
with one or more of the storage device 180 during process-
ing ol inflight I/O operations (e.g., when performing an I/O
write operation to a storage device 180). It 1s to be noted that
the storage control system 130 may include additional
modules and other components that are typically included in
various 1mplementations of storage control systems (e.g.,
soltware-defined storage systems), although such additional
modules and other components are omitted for clarity and
simplicity of illustration.

The compute nodes 110 1llustratively comprise physical
compute nodes and/or virtual compute nodes which process
data and execute workloads. For example, the compute
nodes 110 can include one or more server nodes (e.g., bare
metal server nodes) and/or one or more virtual machines. In
some embodiments, the compute nodes 110 comprise a
cluster of physical server nodes or other types of computers
of an enterprise computer system, cloud-based computing
system or other arrangement of multiple compute nodes
associated with respective users. In some embodiments, the
compute nodes 110 include a cluster of virtual machines that
execute on one or more physical server nodes.

The compute nodes 110 are configured to process data and
execute tasks/workloads and perform computational work,
either individually, or 1n a distributed manner, to thereby
provide compute services such as execution of one or more
applications on behalf of each of one or more users associ-
ated with respective ones of the compute nodes. Such
applications illustratively 1ssue I/O requests that are pro-
cessed by a corresponding one of the storage nodes 140. The
term I/0O request as used herein refers to at least one of input
and output. For example, an I/O request may comprise a
write request and/or a read request directed to stored data of
a given one of the storage nodes 140 of the data storage
system 130.

The compute nodes 110 are configured to write data to and
read data from the storage nodes 140 1n accordance with
applications executing on those compute nodes for system
users. The compute nodes 110 communicate with the storage

10

15

20

25

30

35

40

45

50

55

60

65

4

nodes 140 over the communications network 120. While the
communications network 120 1s generically depicted 1n FIG.
1A, 1t 1s to be understood that the communications network
120 may comprise any known communication network such
as, a global computer network (e.g., the Internet), a wide
area network (WAN), a local area network (LAN), an
intranet, a satellite network, a telephone or cable network, a
cellular network, a wireless network such as Wi-F1 or
WiIMAX, a storage fabric (e.g., Ethernet storage network),
or various portions or combinations of these and other types
ol networks.

In this regard, the term “network” as used herein 1s
therefore intended to be broadly construed so as to encom-
pass a wide variety of different network arrangements,
including combinations of multiple networks possibly of
different types, which enable communication using, e.g.,
Transter Control/Internet Protocol (TCP/IP) or other com-
munication protocols such as Fibre Channel (FC), FC over
Ethernet (FCoE), Internet Small Computer System Interface
(1SCSI), Peripheral Component Interconnect express (PCle),
InfiniBand, Gigabit Ethernet, etc., to implement 1/O chan-
nels and support storage network connectivity. Numerous
alternative networking arrangements are possible 1n a given
embodiment, as will be appreciated by those skilled 1n the
art.

The data storage system 130 may comprise any type of
data storage system, or a combination of data storage
systems, including, but not limited to, a storage area network
(SAN) system, a network attached storage (NAS) system, a
direct-attached storage (DAS) system, etc., as well as other
types of data storage systems comprising software-defined
storage, clustered or distributed virtual and/or physical infra-
structure. The term *““data storage system” as used herein
should be broadly construed and not viewed as being limited
to storage systems ol any particular type or types. A storage
system 1n some embodiments can be implemented using a
combination of storage nodes and compute nodes. In some
embodiments, the storage nodes 140 comprise storage server
nodes (e.g., server node 300, shown 1 FIG. 3) having one
or more processing devices each having a processor and a
memory, possibly implementing virtual machines and/or
containers, although numerous other configurations are pos-
sible. In some embodiments, one or more of the storage
nodes 140 can additionally implement functionality of a
compute node, and vice-versa. The term “storage node” as
used herein 1s therefore mntended to be broadly construed as
a server node (e.g., physical server machine) with local
persistent storage devices (e.g., HDDs, SSDs, etc.) and a
storage control system that 1s configured to manage and
control access to the local persistence storage devices. A
storage node may comprise one or more compute nodes to
process data and execute tasks/workloads.

In some embodiments, as schematically illustrated 1n FIG.
1B, the storage node 140 1s a physical server node or storage
appliance, wherein the storage devices 180 comprise DAS
resources (1nternal and/or external storage resources) such as
hard-disk drives (HDDs), solid-state drives (SSDs), Flash
memory cards, or other types of non-volatile memory
(NVM) devices such non-volatile random access memory
(NVRAM), phase-change RAM (PC-RAM) and magnetic
RAM (MRAM). These and various combinations ol mul-
tiple different types of storage devices 180 may be imple-
mented 1n the storage node 140. In this regard, the term
“storage device” as used herein 1s intended to be broadly
construed, so as to encompass, for example, SSDs, HDDs,
flash drives, hybrid drives or other types of storage media.
The data storage devices 180 are connected to the storage

US 11,144,399 Bl

S

node 140 through any suitable host interface, e.g., a host bus
adapter, using suitable protocols such as ATA, SATA,

eSATA, NVMe, SCSI, SAS, etc. In other embodiments, the

storage node 140 can be network connected to one or more
NAS nodes over a local area network.

The storage control system 150 1s configured to manage
the storage devices 180 and control I/O access to the storage
devices 180 and/or other storage resources (e.g., DAS or
NAS resources) that are directly attached or network-con-
nected to the storage node 140. In some embodiments, the
storage control system 150 1s a component (e.g., storage data
server) ol a software-defined storage (SDS) system which
supports the virtualization of the storage devices 180 by
separating the control and management software from the
underlying hardware architecture of the storage devices 180.
The storage control system 150 runs on a server operating
system of the storage node 140 to provide storage services.
More specifically, in a software-defined storage environ-
ment, the storage control system 150 comprises a storage
data server that i1s configured to abstract storage access
services from the underlying storage hardware, and thereby
control and manage I/O requests 1ssued by the compute
nodes 110, as well as support networking and connectivity.
In this mstance, the storage control system 150 comprises a
soltware layer that 1s hosted by the storage node 140 and
deployed in the data path between the compute nodes 110
and the storage devices 180 of the storage node 140, wherein
the storage control system 150 1s configured to process 1/0O
requests from the compute nodes 110 by accessing the
storage devices 180 to store/retrieve data to/from the storage
devices 180 based on the I/O requests.

In a software-defined storage environment, the storage
control system 150 comprises a storage data server that 1s
installed on each storage node that will contribute 1ts storage
to the data storage system. The storage control system 1350
1s configured to provision, orchestrate and manage the local
storage resources (e.g., the storage devices 180) of the
storage node 140. For example, the storage control system
150 implements methods that are configured to create and
manage storage pools (e.g., virtual pools of block storage)
by aggregating capacity from the storage devices 180. The
storage control system 150 can divide a storage pool into one
or more volumes and expose the volumes to the compute
nodes 110 as virtual block devices. For example, a virtual
block device can correspond to a volume of a storage pool.
Each virtual block device comprises any number of actual
physical storage devices, wherein each block device 1s
preferably homogenous 1n terms of the type of storage
devices that make up the block device (e.g., a block device
can include only HDD devices or SSD devices, etc.).

In the software-defined storage environment, each of the
storage nodes 140 1n FIG. 1A can run an instance of the
storage control system 150 to convert the respective local
storage resources (e.g., DAS storage devices and/or NAS
storage devices) of the storage nodes 140 mto local block

storage. Fach instance of the storage control system 150
contributes some or all of 1ts local block storage (HDDs,
SSDs, PCle, NVMe and flash cards) to an aggregated pool
ol storage of a storage server node cluster (e.g., cluster of
storage nodes 140) to implement a server-based SAN (e.g.,
virtual SAN). In this configuration, each storage node 140 1s
part of a loosely coupled server cluster which enables
“scale-out” of the software-defined storage environment,
wherein each istance of the storage control system 150 that
runs on a respective one of the storage nodes 140 contributes

10

15

20

25

30

35

40

45

50

55

60

65

6

its local storage space to an aggregated virtual pool of block
storage with varying performance tiers (e.g., HDD, SSD,
ctc.) within a virtual SAN.

In some embodiments, 1n addition to the storage control
systems 150 operating as storage data servers to create and
expose volumes ol a storage layer, the soltware-defined
storage environment comprises other components such as (1)
data storage clients that consume the storage layer and (11)
metadata managers that coordinate the storage layer. More
specifically, on the client-side (e.g., compute nodes 110), an
SDS data storage client (SDC) 1s a lightweight block device
driver that 1s deployed on each node (e.g., server node) that
consumes the shared block storage volumes that are exposed
by the storage control systems 150 of the storage nodes 140.
In particular, the SDCs run on the same hosts (e.g., servers)
as the compute nodes 110 which require access to the block
devices that are exposed and managed by the storage control
systems 150 of the storage nodes 140. The SDC exposes
block devices representing the virtual storage volumes that
are currently mapped to that host. In particular, the SDC
serves as a block drniver for a client (server), wherein the
SDC 1ntercepts 1/0 requests 1ssued by a compute node 110,
and utilizes the intercepted 1/0 request to access the block
storage that 1s managed by the storage control systems 1350.
The SDC provides the operating system or hypervisor
(which runs the SDC) access to the logical block devices
(e.g., volumes).

In the software-defined storage environment, the primary
data and copies of each storage volume are distributed over
the storage nodes 140, and each SDC has knowledge of
which SDS data storage server (e.g., storage control system
150) holds 1ts block data, so multipathing can be accom-
plished natively through the SDCs. In particular, each SDC
knows how to direct an I/O request to the relevant destina-
tion SDS storage data server (e.g., storage control system
150). In this regard, there 1s no central point of routing, and
cach SDC performs 1s own routing independent from any
other SDC. This implementation prevents unnecessary net-
work traflic and redundant.

SDS resource usage. Each SDC maintains peer-to-peer
connections to every storage control system 150 that man-
ages the storage pool so each SDC can communicate over
multiple pathways to all of the storage nodes 140 which

store the data. The multi-point peer-to-peer communication
tashion allows the SDCs to read and write data to and from
all points simultaneously, eliminating bottlenecks and
quickly routing around failed paths.

The management nodes 115 1 FIG. 1A implement a
management layer that 1s configured to manage and config-
ured the storage environment 100. In some embodiments,
the management nodes 115 comprise the SDS metadata
manager components, wherein the management nodes 115
comprise a tightly-coupled cluster of nodes that are config-
ured to supervise the operations of the storage cluster and
manage storage cluster configurations. The SDS metadata
managers operate outside of the data path and provide the
relevant mnformation to the SDS clients and storage servers
to allow such components to control data path operations.
The SDS metadata managers are configured to manage the
mapping of SDC data clients to the SDS data storage
servers. The SDS metadata managers manage various types
of metadata that 1s required for system operation of the SDS
environment such as configuration changes, managing the
SDS data clients and data servers, device mapping, values,
snapshots, system capacity including device allocations and/

US 11,144,399 Bl

7

or release of capacity, RAID protection, recovery Irom
errors and failures, and system rebuld tasks including
rebalancing.

As explamned 1n further detail below, the management
nodes 115 are configured to recerve notification of storage
device errors from the storage control systems 150. In
response to such notification of storage device 1/0O errors, the
management nodes 115 will proceed to perform reconfigu-
ration operations to prevent further IO requests from being,
directed to storage devices associated with the storage
device 1/O errors. In addition, the management nodes 1135
implement recovery methods to recover from such storage
device errors. In some embodiments, the management nodes
115 are implemented on nodes that are separate from the
compute nodes 110 and storage nodes 140. In other embodi-
ments, the management nodes 115 can be implemented on
the same server nodes as the compute nodes 110 and/or the
storage nodes 140.

While FIG. 1A shows an exemplary embodiment of a
two-layer deployment in which the compute nodes 110 are
separate from the storage nodes 140 and connected by the
communications network 120, in other embodiments, a
converged infrastructure (e.g., hyperconverged infrastruc-
ture) can be implemented consolidate the compute nodes
110, storage nodes 140, and network 120 together in an
engineered system. For example, in a hyperconverged
deployment, a single-layer deployment 1s implemented 1n
which the storage data clients and storage data servers (e.g.,
storage control systems 150) run on the same nodes (e.g.,
cach node deploys a storage data client and storage data
servers) such that each node 1s a data storage consumer and
a data storage supplier. In other embodiments, the system of
FIG. 1A can be mmplemented with a combination of a
single-layer and two-layer deployment.

Regardless of the specific implementation of the storage
environment, as noted above, the various modules of the
storage control system 150 of FIG. 1B collectively provide
data storage and management methods that are configured to
perform various function as follows. In particular, the stor-
age virtualization and management services module 160
implements any suitable logical volume management
(LVM) system which i1s configured to create and manage
local storage volumes by aggregating the storage devices
180 1nto one or more virtual storage pools that are thin-
provisioned for maximum capacity, and logically dividing
cach storage pool into one or more storage volumes that are
exposed as block devices (e.g., raw logical unit numbers
(LUNSs)) to the compute nodes 110 to store data. In some
embodiments, the storage pools are primarily utilized to
group storage devices based on device types and perfor-
mance. For example, SSDs are grouped into SSD pools, and
HDDs are grouped mto HDD pools. Furthermore, in some
embodiments, the storage virtualization and management
services module 160 implements methods to support various
data storage management services such as data protection,
data migration, data deduplication, replication, thin provi-
sioning, snapshots, data backups, etc.

In some embodiments, the storage devices 180 are con-
figured as block storage devices where raw volumes of
storage are created and each block can be controlled as, e.g.,
an 1ndividual disk drive by the storage control system 150.
Each block can be individually formatted with a same or
different file system as required for the given data storage
system application. The file system 170 implements meth-
ods and interfaces that execute in user space under the
control of the storage control system 150 for (1) organizing
the storage space of the storage devices 180 using one or

10

15

20

25

30

35

40

45

50

55

60

65

8

more file system formats (e.g., a structured representation of
data and a set of metadata describing the data) and (11)
controlling I/O requests for reading and writing data to the
file system.

In general, the file system 170 comprises multiple layers
that perform different functions. While FIG. 1B illustrates a
general framework of the file system 170, 1t 1s to be
understood that the number of layers of the file system 170
and the respective functions of the various file system layers
can widely vary depending on the type of file system that 1s
implemented for the given application. For example, the file
system 170 can be implemented using a global file system
framework, a clustered file system framework, a distributed
file system framework, etc., depending on the implementa-
tion. In all instances of the file system 170 implements
various layers to perform fundamental functions.

For example, the API layer 172 comprises a logical layer
that 1s configured to receive and process system calls to
manage the file system 170 and to commence file operations
such as Create, Open, Close, Read, Write, Remove, etc. In
this regard, the API layer 172 essentially provides a system
call interface to direct file structure-related system calls to an
appropriate endpoint the file system 170 for process.

In some embodiments, the file system layer 176 1imple-
ments a physical file system layer which 1s configured to
manage and control operation of the storage devices 180.
The file system layer 176 processes physical data blocks that
are being read from and written to storage. The file system
layer 176 handles buflering, caching, and memory manag-
ing, and 1s responsible for the physical placement of data
blocks 1n specific storage locations in the storage space of
the storage devices 180. The file system layer 176 interacts
with the storage device drivers 178 to drive the storage
devices 180. The device drivers 178 implement interface and
I/O control functions to communicate with the storage
devices 180 to read/wnte raw data blocks from/to the
storage devices 180.

Depending on the type of file system that 1s implemented,
the file system layer 176 comprises various layers that
perform distinct fundamental functions. For example, the
file system layer 176 comprises a basic file system layer
(e.g., block I/O layer) which communicates with the device
drivers 178 to retrieve and store raw blocks of data (irre-
spective of the content of the data blocks). In particular, the

basic file system layer comprises a block layer that organizes
the storage space imto fixed-size blocks. Depending on the
type ol block storage device (e.g., HDD, SSD, etc.), the
block storage device comprises a physical storage space
divided into a plurality of logical data blocks (e.g., fixed-size
allocation units), wherein the logical data blocks are
assigned unique block numbers (e.g., integer values starting
from O) such that each logical data block comprises a
separately addressable unit of the physical storage space
with a specified block size (e.g., allocation unit size). Each
logical data block (e.g., allocation unit) comprises a same
number of one or more physical data blocks of the under-
lying storage media. For HDDs, the allocation units com-
prise “logical data blocks™ that are separately addressed
using “logical block addresses.” For SSD, the basic alloca-
tion units comprise separately addressable pages. Given that
block storage devices store information 1n equal-sized logi-
cal data blocks (allocation units), if a given file 1s smaller
than a single logical data block, then the entire logical data
block 1s used to store the file, and the remainder of the
logical data block remains unused. If the file 1s larger than

US 11,144,399 Bl

9

the size of a logical data block, then two or more logical data
blocks, which may or may not be contiguous, are used to
store the file.

Furthermore, the file system layer 176 comprises a file
management layer which implements the file abstraction.
The file management layer implements methods and inter-
faces for organizing data blocks into files. The file manage-
ment layer generates and manages information regarding
files, the logical data blocks associated with a given file, and
mapping information for translating from logical to physical
blocks. The file management layer maintains a list of free
blocks and allocates free blocks to files. The file manage-
ment layer utilizes a data structure (e.g., inode) to maintain
file metadata (e.g., file size, file type, permissions, owner-
ship, etc.) and a data structure (e.g., linked list) to store an
ordered list, or array, of block numbers of the logical data
blocks that store the data associate with a given file. The files
are 1dentified by umque file i1dentifiers (unique file ID,
unique 1node number, etc.) The file management layer
provides higher layers of the file system with file contents
that are populated into a builer.

Moreover, the file system layer 176 comprises a directory
layer which implements methods and interfaces to name
files with human-readable names and group files 1nto direc-
tory structures which map file names to their unique file
identifiers (e.g., inode numbers). The directory layer utilizes
a filename and associated directory which contains the
filename to determine which inode stores the information
associated with the filename. An absolute pathname layer 1s
also 1included 1n the stack of layers of the file system 170 to
implement absolute path lookups to a given filename, start-
ing from root directory (i.e., an absolute pathname 1s the
location of a filesystem object (1.e., file, directory or link)
relative to the root directory).

In other embodiments, file system layer 176 may com-
prise multiple concurrent instances of different physical file
systems 1n certain applications 1n which the operating sys-
tem ol the storage node 140 must concurrently support
multiple types of file systems. In this instance, the file
system layer 176 would also include a virtual file system
layer on top of the physical file systems, wherein the virtual
file system layer comprises an abstract layer that exposes a
common interface to multiple different types of physical file
systems to enable access to the different types ol physical
file systems 1n a umiform manner.

As noted above, the logical storage device layer 174 and
the non-volatile system memory 190 are configured to
manage storage device errors that may occur 1n connection
with one or more of the storage devices 180 during process-
ing of intlight I/O operations, e.g., when performing an I/O
write operation to write a new file or updated file to one of
the storage devices 180. Under normal operating conditions,
the storage control system 150 will 1ssue system calls to the
API layer 172 of the file system 170 to process I/O requests
that are 1ssued by the compute nodes 110 (and received from
the SDCs) to read or write data to the storage devices 180.
The I/O requests are processed by the file system 170 to
access the storage devices 180 and perform the requisite 1/0
operations using known techniques.

When an I/O operation 1s successtully completed by the
file system 170 for a given intlight I/O request, the storage
control system 150 will return a status code to the compute
node 110 which 1ssued the 1/O request to provide notification
that the I/O operation was successiully completed. On the
other hand, when an I/O write operation directed to a given
storage device 1s not successiully completed, instead of the
storage control system 150 returning notification of an I/O

10

15

20

25

30

35

40

45

50

55

60

65

10

error 1n response to an nflight I/O write request, the logical
storage device layer 174 1s configured to automatically
handle the failed I/O write operation by writing the associ-
ated data (e.g., a file) to the non-volatile system memory 190
to complete the I/O write operation. In this regard, when a
given storage device fails or 1s otherwise not accessible, the
logical storage device layer 174 and non-volatile system
memory 190 are configured to operate in manner that
logically emulates the failed storage device and facilitates
the completion of write request to the failed storage device.
A storage device I/O error can arise if one or more of the
storage devices 180 which are the target of the I/O request
suller a hardware failure (e.g., storage device 1s damage or
defective). A storage device 1/O error can occur 1f one of the
hardware device drivers are damaged or corrupted. A storage
device I/O error can occur 1if there 1s a faulty connection
(e.g., bad cable or bus) connecting the storage devices 180
to the storage node 140.

The logical storage device layer 174 exposes an API
interface that implements various methods to support the
handling of failed I/O write operations. It 1s to be understood
that the various API functions of the logical storage device
layer 174 can be implemented in the API layer 172 of the file
system 170 such that the logical storage device layer 174 and
the API layer 172 comprises an integrated API layer. For
example, the logical storage device layer 174 exposes an
API that allows the file system 170 to 1ssue a “file write”
function call to the logical storage device layer 174 when a
failed I/O write operation occurs. The “file write” function
call performs a process to write the data (e.g., file) associated
with the failed I/O write operation to the non-volatile system
memory 190.

In some embodiments, the non-volatile system memory
190 comprises a plurality of logical storage devices main-
taimned 1n respective designated regions ol the non-volatile
system memory 190, wherein each logical storage device 1s
associated with a respective one of the plurality of storage
devices 180 managed by the storage control system 150. In
addition, each logical storage device comprises a dedicated
address mapping table which 1s stored in the non-volatile
system memory 190 1n association with the logical storage
device. In some embodiments, the logical storage device
layer 174 comprises a plurality of logical storage device
layer 1nstances, wherein each instance of the logical storage
device layer 174 1s configured to manage a respective one of
the plurality of logical devices that are instantiated in the
non-volatile system memory 190.

In addition, logical storage device layer 174 implements
methods for creating/opening a file that 1s configured to store
the data associated with a failed I/O write operation to a
logical storage device in the non-volatile system memory
190. Moreover, the logical storage device layer 174 imple-
ments methods for creating and maintaining data structures
to support logical-to-physical address mapping. In particu-
lar, the logical storage device layer 174 1s configured to
maintain an address mapping table data structure (e.g., a
hash table) which 1s configured to map a logical address that
1s associated with a failed I/0 write request with a physical
address of the file that 1s written to the memory region of the
associated logical storage device 1n the non-volatile system
memory 190. In some embodiments, a separate address
mapping table structure 1s generated and maintained for each
logical storage device instance that 1s generated and main-
tamned in the non-volatile system memory 190 for each
storage device 180.

In some embodiments, the non-volatile system memory
190 1s implemented using a non-volatile random-access

US 11,144,399 Bl

11

memory (NVRAM) device, or other types of non-volatile
memory. Further, in some embodiments, the non-volatile
system memory 190 comprises a memory device that 1s
configured and utilized by the processors of the storage node
140 as system memory. In this instance, the non-volatile
system memory 190 1s configured to have a dedicated region
of memory which 1s used to maintain logical storage devices
and associated address mapping tables. The dedicated region
of memory in the non-volatile system memory 190 will have
dedicated sub-regions of memory that are allocated to
respective logical storage devices that are instantiated 1n the
non-volatile system memory 190 for respective ones of the
physical storage devices 180.

The amount of memory space that i1s allocated to the
dedicated memory region of the non-volatile system
memory 190 will vary depending on various factors such as
the expected maximum amount of potential nflight I/O
requests that can be performed concurrently by the given
storage control system 150, the number of storage devices
180 managed by the storage control system 150, etc. The
maximum amount of potential inflight I/O requests that can
be concurrently handled by the storage control system 1350
will depend on, e.g., available I/O-related resources such as
memory, I/0 thread, buflers, etc. In all instances, the amount
of memory 1n the non-volatile system memory 190 which 1s
allocated to the logical storage devices and associated
address mapping tables, and other requisite metadata, should
be suflicient to ensure that the storage control system 150
will not lose any data associated with failed I/O operations
as a result of storage device failure.

When an I/O write operation fails for a given physical
storage device, the logical storage device layer 174 wall
write a data file comprising the 1/O write data to the logical
storage device 1n the non-volatile system memory 190 which
1s associated with the given physical storage device for
which a device I/O error was returned. The logical storage
device layer 174 adds an entry into the associated address
mapping table to map the target logical address of the 1/O
write request to the physical memory address in the non-
volatile system memory 190. This mapping allows the
storage control system 150 to determine the location of the
data blocks of a given file 1n the non-volatile system memory
190 during a subsequent recovery process.

In some embodiments, the address mapping table for a
given logical storage device 1s configured as a hash table or
any other type ol mapping data structure which supports the
implementation of a dynamic address mapping scheme 1n
which entries are dynamically added to the address mapping,
table for only those logical addresses of the failed storage
device that are actually mapped into the memory of the
associated logical storage device. The dynamic address
mapping scheme 1s 1n contrast to a static address mapping,
scheme 1n which the address mapping table for the logical
storage device would include entries for an entire range of
oflsets of the associated physical storage device (which
would be a waste of memory in the non-volatile system
memory device 190).

The logical storage device layer 174 can utilize any
suitable layout architecture for storing data in the memory
regions of the logical storage devices that are instantiated in
the non-volatile system memory 190. For example, 1n some
embodiments, the logical storage device layer 174 can
organize the allocated region of memory for a given logical
storage device as a log-structured array comprising log
segments 1n which data files are sequentially written 1n free
blocks of memory as data entries in the log segments, using,
known techniques.

10

15

20

25

30

35

40

45

50

55

60

65

12

It 1s to be noted that depending on the system configu-
ration, there can be one or more additional storage devices
that depend on the defective or malfunctioming storage
device. For example, the defective or malfunctioning storage
device can be configured as a primary storage device,
wherein data written to the primary storage device 1s backed
up/replicated to one or more backup/replica storage devices
that are configured to maintain a backup/replica of the data
of the primary storage device. In this instance, when the
primary storage device has failed, a complete I/O write
operation may be achieved when (1) the I/O write data 1s
written to the logical storage device associated with the
falled primary storage device, and (11) a copy/replica of the
I/O write data 1s written to one or more secondary storage
devices which operate as backup/replica storage devices for
the primary storage device.

It 1s to be noted that 1n its role of storing data of failed I/O
write operations, the non-volatile system memory 190 dif-
fers 1in function from a “hot spare device” in the sense the
non-volatile system memory 190 does not constitute a new
storage device, or additional capacity, or a new state of the
data storage system. Rather, the non-volatile system
memory 190 serves as a virtual storage media that 1s separate
from the storage devices 180. In addition, the implementa-
tion of the logical storage device layer 174 and the non-
volatile system memory 190 does not take control of the data
storage systems, but merely provides a mechanism to facili-
tate the resilience of write operations by seamlessly allowing
the completion of failed I/O write operations to disk and,
thus, the completion of associated transactions which would
otherwise be lost as a result of storage device error. More-
over, the logical storage device layer 174 and the non-
volatile system memory 190 differ fundamentally from a
conventional write cache implementation in that the logical
storage device layer 174 and the non-volatile system
memory 190 are only utilized when a given storage device
has failed and 1s out of service.

FIG. 2 1s a flow diagram of a method for managing storage
device errors during processing of inflight I/O operations,
according to an exemplary embodiment of the disclosure.
For illustrative purposes, the process flow of FIG. 2 will be
discussed in the context of the storage control system 150 of
FIG. 1B. In this process flow, 1t 1s assumed that there 1s at
least one open transaction which comprise a plurality of
operations 1ncluding intlight I/O operations that are being
processed by the storage control system 150. Initially, the
storage control system 1350 receives an /O write request
from a given compute node (e.g., from a storage device
client) to perform an IO write operation to at least one target
storage device (block 200). The I/O write request will
include data to be written to the target storage device as well
as relevant metadata including the destination address of at
least one target storage device where the data 1s to be
written. The file system 170 processes the I/O write request
to determine the logical data blocks that correspond to the
destination address, and then communicate with the device
drivers 178 to write the data to the physical data blocks of
the target storage device, which are mapped to the logical
data blocks. A target device driver 178 will commence the
write operation to write data to the corresponding physical
location 1n the target storage device (block 201).

If the write operation 1s successiul (aflirmative result 1n
block 202), the storage control system 150 can send notifi-
cation to the requesting client that the write operation was
successiully completed (block 203). In this instance, the file
system 170 can notily the user that the write operation was
completed using an ACK message. In some instances, the

US 11,144,399 Bl

13

I/O write operation 1s part of a transaction that 1s 1imple-
mented by performing other I/O operations. In such
instances, the file system 170 can send an ACK message to
the user as a transaction completion message.

On the other hand, 11 the write operation 1s not successiul
due to a storage device 1/O error resulting from a failure of
the write operation associated with the target storage device
(negative result 1 block 202), notification of the storage
device 1/O error will be received by the API layer 172 and/or
the logical storage device layer 174. In response to the
storage device 1/0 error, the logical storage device layer 174
will execute a “file write” operation to perform the I/O write
operation using the non-volatile system memory 190. In
particular, the logical storage device layer 174 will access an
associated logical storage device 1n the non-volatile system
memory 190 and an associated address mapping table (block
204). The logical storage device layer 174 will then proceed
to complete the failed write operation by writing the data to
a file 1n the logical storage device 1n the non-volatile system
memory 190 and updating the address mapping table to
include an entry which maps the logical address (received
destination address) to the physical address 1in the non-
volatile system memory 190 where the file was stored (block
205).

In this configuration, 1f the open transaction 1s not yet
completed, the storage control system 1350 can continue to
execute any remaiming intlight I/O requests associated with
the open transaction. In particular, 1n some embodiments, all
inflight I/0 read requests that are directed to data stored 1n
the failed storage device will not be executed as such read
operations are not prioritized. On the other hand, for each
inflight I/O write request that 1s subsequently received by the
file system 170 and which 1s destined to the failed storage
device (e.g., the storage device for which the storage device
I/0 error was previously returned), the logical storage device
layer 174 will intercept the inflight I/O write request and
automatically perform a write operation to write the data to
the associated logical storage device in the non-volatile
system memory 190 and update the address mapping table
accordingly (block 206).

In this instance, the failure or malfunction of a given
storage device does not result 1n the abrupt termination of an
ongoing process or transaction. Instead, the implementation
of the logical storage device layer 174 and the non-volatile
system memory 190 to handle inflight I/O write operations
provides a mechanism for the open transaction and related
processes to proceed without being terminated, and further
allows other related or unrelated processes or transactions to
complete before commencing a recovery operation or roll-
back. This allows the storage system to reach a stable and
coherent state across all the storage devices and, thereby,
tacilitate a gracetul shutdown and recovery process. In other
embodiments, the one or more operations of an open trans-
action which encounter the storage device error can be rolled
back 1if the system state would result 1n consistency or data
coherency upon the rollback.

Furthermore, referring back to the determination block
202 of FIG. 2, when the write operation 1s unsuccessiul and
the storage device /O error 1s returned (negative result in
block 202), the storage control system 150 will provide
notification to the management layer (e.g., management
nodes 115) of the storage device 1I/O error that was returned
for the given storage device (block 207). As noted above,
there are many reasons that a storage device I/O error may
occur such as a storage device hardware malfunction, a
faulty connection, power failure of the storage device, etc. In
response to the notification of the storage device 1/O error,

5

10

15

20

25

30

35

40

45

50

55

60

65

14

the management layer will perform certain operations to
reconfigure the storage environment to prevent the clients
(e.g., compute nodes 110, SDCs, etc.) from 1ssuing new 1/O
requests for new transactions which are destined to the
storage device for which the device 1/0O error was returned
(block 208).

For example, the storage management layer can recon-
figure the mapping metadata of the storage environment so
that the clients direct new I/O requests to another storage
control system (of another storage node 140) which com-
prises a storage device that has a backup or replica of the
data stored in the failed storage device (e.g., the manage-
ment nodes 115 direct the SDCs to another storage data
server (e.g., storage control system) on another storage node
140). In this system configuration, all inthght I/O requests
(e.g., mflight write requests) that are destined to the “failed”
storage device for which the device 1/0O error was returned
will be handled by the logical storage device layer 174 and
the associated logical storage device in the non-volatile
system memory 190 until such time that the management
layer has successtully reconfigured the storage environment
so that no further I/O requests will be directed to the failed
storage device.

Once the open transaction 1s completed and the system 1s
stabilized (e.g., all inflight I/O write requests have been
performed, or otherwise rolled back such that the data
storage system 1s 1n a coherent state), a recovery process can
be commenced by a user and/or the management layer
(block 209). A recovery process can be performed 1n various
manners. For example, if the storage device I/0O error 1s the
result of a device hardware failure or malfunction, the failed
storage device can be removed and replaced with a new
storage device, and the internal structure of the storage layer
will recover the data from another storage device. In par-
ticular, the new storage device can be repopulated with the
data of the failed storage device by using a backup copy or
replica copy of the data from another storage device. In this
instance, the backup or replica storage devices may also
have a copy of the data that was written to the logical storage
device associated with the failed storage device, it the
backup/replication operations were previously and success-
tully performed following the device I/O error.

In some embodiments, the management layer can com-
mence a recovery process which involves re-attaching the
storage device 1n the storage environment and recovering
data from the associated logical storage device in the non-
volatile system memory 190. For example, 1f the storage
device /O error 1s the result of a bad network connection, a
power supply problem, or some other type of problem that
1s fixable (e.g., not related to a hardware failure or malfunc-
tion of the storage device itsell), the problem can be fixed
and the storage device can be re-attached in the recovery
process. In this process, the data (e.g., delta data) stored in
the associated logical storage device in the non-volatile
system memory 190 can be copied to the re-attached storage
device.

FIG. 3 schematically illustrates framework of a server
node which hosts a data storage system that 1s configured to
manage storage device errors during processing of an
inflight I/O operations, according to an exemplary embodi-
ment of the disclosure. More specifically, FIG. 3 schemati-
cally 1illustrates framework of a server node 300 (e.g.,
storage node 140, FIGS. 1A and 1B) which can be imple-
mented for hosting a storage control system (e.g., the storage
control system 150, FIG. 1B), according to an exemplary
embodiment of the disclosure. The server node 300 com-
prises processors 302, storage interface circuitry 304, net-

US 11,144,399 Bl

15

work interface circuitry 306, virtualization resources 308,
system memory 310, and storage resources 316. The system
memory 310 comprises volatile memory 312 and non-
volatile memory 314.

The processors 302 comprise one or more types ol 5

hardware processors that are configured to process program
instructions and data to execute a native operating system
(OS) and applications that run on the server node 300. For
example, the processors 302 may comprise one or more
CPUs, microprocessors, microcontrollers, application spe-
cific integrated circuits (ASICs), field programmable gate
arrays (FPGAs), and other types of processors, as well as
portions or combinations of such processors. The term
“processor”’ as used herein 1s mtended to be broadly con-
strued so as to include any type of processor that performs
processing functions based on software, hardware, firmware,
ctc. For example, a “processor” 1s broadly construed so as to
encompass all types of hardware processors including, for
example, (1) general purpose processors which comprise
“performance cores” (e.g., low latency cores), and (11)
workload-optimized processors, which comprise any pos-
sible combination of multiple “throughput cores” and/or
multiple hardware-based accelerators. Examples of work-
load-optimized processors include, for example, graphics
processing units (GPUs), digital signal processors (DSPs),
system-on-chip (SoC), tensor processing umts (IPUs),
image processing units (IPUs), deep learning accelerators
(DLAs), artificial intelligence (Al) accelerators, and other
types of specialized processors or coprocessors that are
configured to execute one or more fixed functions.

The storage interface circuitry 304 enables the processors
302 to interface and communicate with the system memory
310, the storage resources 316, and other local storage and
ofl-infrastructure storage media, using one or more standard
communication and/or storage control protocols to read data
from or write data to volatile and non-volatile memory/
storage devices. Such protocols include, but are not limited
to, non-volatile memory express (NVMe), peripheral com-
ponent interconnect express (PCle), Parallel ATA (PATA),
Serial ATA (SATA), Serial Attached SCSI (SAS), Fibre
Channel, etc. The network interface circuitry 306 enables
the server node 300 to interface and communicate with a
network and other system components. The network inter-
tace circuitry 306 comprises network controllers such as
network cards and resources (e.g., network interface con-
trollers (NICs) (e.g., SmartNICs, RDMA-enabled NICs),
Host Bus Adapter (HBA) cards, Host Channel Adapter
(HCA) cards, I/O adaptors, converged Ethernet adaptors,
etc.) to support communication protocols and interfaces
including, but not limited to, PCle, DMA and RDMA data
transier protocols, etc.

The virtualization resources 308 can be instantiated to
execute one or more services or functions which are hosted
by the server node 300. For example, the virtualization
resources 308 can be configured to implement the various
modules and functionalities of the storage control system
150 as shown in FIG. 1B as discussed herein. In one
embodiment, the virtualization resources 308 comprise vir-
tual machines that are implemented using a hypervisor
platform which executes on the server node 300, wherein
one or more virtual machines can be instantiated to execute
functions of the server node 300. As 1s known 1n the art,
virtual machines are logical processing elements that may be
instantiated on one or more physical processing elements
(e.g., servers, computers, or other processing devices). That
1s, a “virtual machine” generally refers to a software imple-
mentation of a machine (1.e., a computer) that executes

10

15

20

25

30

35

40

45

50

55

60

65

16

programs in a manner similar to that of a physical machine.
Thus, different virtual machines can run different operating
systems and multiple applications on the same physical
computer.

A hypervisor 1s an example of what 1s more generally
referred to as “virtualization inirastructure.” The hypervisor
runs on physical infrastructure, e.g., CPUs and/or storage
devices, of the server node 300, and emulates the CPUs,
memory, hard disk, network and other hardware resources of
the host system, enabling multiple virtual machines to share
the resources. The hypervisor can emulate multiple virtual
hardware platforms that are 1solated from each other, allow-
ing virtual machines to run, e.g., Linux and Windows Server
operating systems on the same underlying physical host. The
underlying physical infrastructure may comprise one or
more commercially available distributed processing plat-
forms which are suitable for the target application.

In another embodiment, the virtualization resources 308
comprise containers such as Docker containers or other
types of Linux containers (LXCs). As 1s known 1n the art, in
a container-based application framework, each application
container comprises a separate application and associated
dependencies and other components to provide a complete
filesystem, but shares the kernel functions of a host operat-
ing system with the other application containers. Each
application container executes as an 1solated process 1n user
space of a host operating system. In particular, a container
system utilizes an underlying operating system that provides
the basic services to all containerized applications using
virtual-memory support for 1solation. One or more contain-
ers can be instantiated to execute one or more applications
or functions of the server node 300 as well execute one or
more ol the various modules and functionalities of the
storage control system 150 of FIG. 1B as discussed herein.
In yet another embodiment, containers may be used 1n
combination with other virtualization infrastructure such as
virtual machines implemented using a hypervisor, wherein
Docker containers or other types of LXCs are configured to
run on virtual machines 1n a multi-tenant environment.

In some embodiments, the various components, systems,
and modules of the storage control system 150 and file
system 170 comprise program code that 1s loaded into the
system memory 310 (e.g., volatile memory 312), and
executed by the processors 302 to perform respective func-
tions as described herein. In this regard, the system memory
310, the storage resources 316, and other memory or storage
resources as described herein, which have program code and
data tangibly embodied thereon, are examples of what 1s
more generally referred to herein as “processor-readable
storage media” that store executable program code of one or
more software programs. Articles ol manufacture compris-
ing such processor-readable storage media are considered
embodiments of the disclosure. An article of manufacture
may comprise, for example, a storage device such as a
storage disk, a storage array or an integrated circuit con-
taining memory. The term “article of manufacture™ as used
herein should be understood to exclude transitory, propa-
gating signals.

The system memory 310 comprises various types of
memory such as volatile RAM, NVRAM, or other types of
memory, 1n any combination. The volatile memory 312 may
be a dynamic random-access memory (DRAM) (e.g.,
DRAM DIMM (Dual In-line Memory Module), or other
forms of volatile RAM. The non-volatile memory 314 may
comprise one or more of a NAND Flash storage device, an
SSD device, or other types of next generation non-volatile
memory (NGNVM) devices. The system memory 310 can

US 11,144,399 Bl

17

be implemented using a hierarchical memory tier structure
wherein the volatile system memory 312 1s configured as the
highest-level memory tier, and the non-volatile system
memory 314 (and other additional non-volatile memory
devices which comprise storage-class memory) 1s config-
ured as a lower level memory tier which 1s utilized as a
high-speed load/store non-volatile memory device on a
processor memory bus (1.e., data 1s accessed with loads and
stores, 1nstead of with I/O reads and writes). In an exemplary
embodiment, non-volatile memory 314 comprises the non-
volatile system memory 190 shown i FIG. 1B.

The term “memory” or “system memory” as used herein
refers to volatile and/or non-volatile system memory which
1s utilized to store application program instructions that are
read and processed by the processors 302 to execute a native
operating system and one or more applications or processes
hosted by the server node 300, and to temporarily store data
that 1s utilized and/or generated by the native OS and
application programs and processes running on the server
node 300. The storage resources 316 can include one or
more HDDs, SSD storage devices, etc. In an exemplary
embodiment, the storage resources 316 include the storage
devices 180 shown in FIG. 1B.

It 1s to be understood that the above-described embodi-
ments of the disclosure are presented for purposes of illus-
tration only. Many variations may be made 1n the particular
arrangements shown. For example, although described 1n the
context of particular system and device configurations, the
techniques are applicable to a wide variety of other types of
information processing systems, computing systems, data
storage systems, processing devices and distributed virtual
infrastructure arrangements. In addition, any simplifying
assumptions made above 1n the course of describing the
illustrative embodiments should also be viewed as exem-
plary rather than as requirements or limitations of such
embodiments. Numerous other alternative embodiments
within the scope of the appended claims will be readily
apparent to those skilled in the art.

What 1s claimed 1s:
1. A method, comprising:
managing, by a storage control system, a plurality of
storage devices ol a storage node;
instantiating, by the storage control system, one or more
logical storage devices, wherein each logical storage
device 1s associated with a respective storage device of
the plurality of storage devices, and wherein the one or
more logical storage devices are maintaimned by the
storage control system 1n a non-volatile memory device
of system memory of the storage node;
receiving, by the storage control system, an input/output
(I/0) write request comprising data to be written to at
least one storage device of the plurality of storage
devices managed by the storage control system:;
commencing, by the storage control system, a write
operation to write the data to the at least one storage
device; and
in response to a storage device I/O error resulting from a
failure of the write operation associated with the at least
one storage device, the storage control system:
accessing a logical storage device 1n the non-volatile
memory device of the system memory, which 1is
associated with the at least one storage device for
which the storage device I/O error was returned; and
writing the data to the accessed logical storage device
in the non-volatile memory device to complete the
talled write operation.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

2. The method of claim 1, wherein accessing the logical
storage device in the non-volatile memory device of the
system memory Comprises:

accessing a designated region of memory in the non-

volatile memory device which 1s associated with the
logical storage device; and

updating an address mapping table for the logical storage

device, wherein the address mapping table 1s config-
ured to map a logical address to a physical address 1n
the designated region of memory in the non-volatile
memory device which 1s associated with the logical
storage device.

3. The method of claim 2, wherein updating the address
mapping table for the logical storage device comprises
updating the address mapping table to map a destination
address of the at least one storage device, as provided with
the I/0 write request, to a physical address 1n the designated
region ol memory 1n the non-volatile memory device where
the data 1s stored 1n the logical storage device.

4. The method of claim 1, wherein the one or more logical
storage devices are maintained 1n respective designated
regions of the non-volatile memory device, and wherein
cach logical storage device comprises a dedicated address
mapping table which is stored 1n the non-volatile memory
device 1n association with the logical storage device.

5. The method of claim 1, further comprising:

receiving, by the storage control system, a second 1/0

write request; and

in response to determining, by the storage control system,

that the second 1I/O write request 1s directed to the at
least one storage device associated with the storage
device 1/O error, automatically writing data associated
with the second I/O request to the associated logical
storage device 1n the non-volatile memory device.

6. The method of claim 1, further comprising sending, by
the storage control system, a notification of the storage
device I/O error to a management node to enable the
management node to reconfigure a storage environment to
prevent at least one client node from issuing a new 1/O
request destined to the at least one storage device associated
with the storage device 1/O error.

7. The method of claim 1, further comprising performing,
by the storage control system, a recovery process to recover
from the storage device I/O error, wherein the recovery
process comprises recovering data stored in the logical
storage device 1n the non-volatile memory device.

8. An article of manufacture comprising a non-transitory
processor-readable storage medium having stored therein
program code of one or more soltware programs, wherein
the program code 1s executable by one or more processors to
implement a method comprising:

managing, by a storage control system, a plurality of

storage devices of a storage node;
instantiating, by the storage control system, one or more
logical storage devices, wherein each logical storage
device 1s associated with a respective storage device of
the plurality of storage devices, and wherein the one or
more logical storage devices are maintained by the
storage control system 1n a non-volatile memory device
of system memory of the storage node;
recerving, by the storage control system, an input/output
(I/0) write request comprising data to be written to at
least one storage device of the plurality of storage
devices managed by the storage control system;

commencing, by the storage control system, a write
operation to write the data to the at least one storage
device; and

US 11,144,399 Bl

19

in response to a storage device I/O error resulting from a
failure of the write operation associated with the at least
one storage device, the storage control system:
accessing a logical storage device 1n the non-volatile
memory device of the system memory, which 1s
associated with the at least one storage device for
which the storage device I/O error was returned; and

writing the data to the accessed logical storage device
in the non-volatile memory device to complete the
falled write operation.

9. The article of manufacture of claim 8, wherein the
program code for accessing the logical storage device 1n the
non-volatile system memory device of the system memory
comprises program code that 1s executable by the one or
more process to implement a process which comprises:

accessing a designated region of memory in the non-
volatile memory device which 1s associated with the
logical storage device; and

updating an address mapping table for the logical storage
device, wherein the address mapping table 1s config-
ured to map a logical address to a physical address in
the designated region of memory in the non-volatile
system memory device which 1s associated with the
logical storage device.

10. The article of manufacture of claim 9, wherein the
program code for updating the address mapping table for the
logical storage device comprises program code that 1is
executable by the one or more process to implement a
process which comprises updating the address mapping
table to map a destination address of the at least one storage
device, as provided with the I/O write request, to a physical
address 1n the designated region of memory in the non-
volatile system memory device where the data 1s stored in
the logical storage device.

11. The article of manufacture of claim 8, wherein the one
or more logical storage devices are maintained in respective
designated regions of the non-volatile memory device, and
wherein each logical storage device comprises a dedicated
address mapping table which 1s stored in the non-volatile
system memory device i association with the logical stor-
age device.

12. The article of manufacture of claim 8, further com-
prising program code that 1s executable by the one or more
process to implement a process which comprises:

receiving, by the storage control system, a second 1I/O
write request; and

in response to determining, by the storage control system,
that the second 1I/O write request 1s directed to the at
least one storage device associated with the storage
device 1I/O error, automatically writing data associated
with the second I/O request to the associated logical
storage device 1n the non-volatile memory device.

13. The article of manufacture of claim 8, further com-
prising program code that 1s executable by the one or more
process to implement a process which comprises sending, by
the storage control system, a noftification of the storage
device I/O error to a management node to enable the
management node to reconfigure a storage environment to
prevent at least one client node from i1ssuing a new 1/O
request destined to the at least one storage device associated
with the storage device I/O error.

14. The article of manufacture of claim 8, further com-
prising program code that 1s executable by the one or more
process to implement a process which comprises perform-
ing, by the storage control system, a recovery process to
recover from the storage device 1/O error, wherein the

10

15

20

25

30

35

40

45

50

55

60

65

20

recovery process comprises recovering data stored i the
logical storage device in the non-volatile memory device.

15. An apparatus, comprising:

at least one processor; and

a system memory configured to store program code,

wherein the program code 1s executable by the at least
one processor to implement a storage control system
which 1s configured to:

manage a plurality of storage devices of a storage node;

instantiate one or more logical storage devices, wherein

cach logical storage device 1s associated with a respec-
tive storage device of the plurality of storage devices,
and wherein the one or more logical storage devices are
maintained by the storage control system 1n a non-
volatile memory device of system memory of the
storage node;

recerve an input/output (I/O) write request comprising

data to be written to at least one storage device of the
plurality of storage devices managed by the storage
control system;

commence a write operation to write the data to the at

least one storage device; and

in response to a storage device I/0O error resulting from a

failure of the write operation associated with the at least

one storage device, the storage control system 1s con-

figured to:

access a logical storage device in the non-volatile
memory device of the system memory, which 1s
associated with the at least one storage device for
which the storage device I/O error was returned; and

write the data to the accessed logical storage device n
the non-volatile memory device to complete the
falled write operation.

16. The apparatus of claim 15, wherein 1n accessing the
logical storage device 1n the non-volatile memory device of
the system memory, the storage control system 1s configured
to:

access a designated region of memory in the non-volatile

system memory device which 1s associated with the
logical storage device; and

update an address mapping table for the logical storage

device, wherein the address mapping table 1s config-
ured to map a logical address to a physical address 1n
the designated region of memory in the non-volatile
memory device which 1s associated with the logical
storage device.

17. The apparatus of claim 15, wherein 1n updating the
address mapping table for the logical storage device, the
storage control system 1s configured to update the address
mapping table to map a destination address of the at least
one storage device, as provided with the I/O write request,
to a physical address in the designated region of memory in
the non-volatile system memory device where the data 1s
stored 1n the logical storage device.

18. The apparatus of claim 15, wherein the one or more
logical storage devices are maintained 1n respective desig-
nated regions of the non-volatile system memory device,
and wherein each logical storage device comprises a dedi-
cated address mapping table which 1s stored in the non-
volatile memory device in association with the logical
storage device.

19. The apparatus of claim 15, wherein the storage control
system 1s further configured to send a notification of the
storage device I/O error to a management node to enable the
management node to reconfigure a storage environment to
prevent at least one client node from issuing a new 1/O

US 11,144,399 Bl
21

request destined to the at least one storage device associated
with the storage device 1/O error.

20. The apparatus of claim 15, wherein the storage control
system 1s further configured to perform a recovery process
to recover from the storage device I/O error, wherein the 5
recovery process comprises recovering data stored in the
logical storage device in the non-volatile memory device.

¥ ¥ e ¥ ¥

22

	Front Page
	Drawings
	Specification
	Claims

