12 United States Patent

US011138093B2

(10) Patent No.: US 11,138,093 B2

Myers et al. 45) Date of Patent: Oct. 5, 2021
(54) IDENTIFYING DATA INCONSISTENCIES (56) References Cited
AND DATA CONTENTION BASED ON
HISTORIC DEBUGGING TRACES U.S. PATENT DOCUMENTS
(71) Applicant: Microsoft Technology Licensing, LLC, 6,405,326 BL™ 6/2002 Azagury ... G06512:’;‘3888}
Redmond, WA (US) 9,934,126 Bl 4/2018 Mola et al. |
(72) Inventors: Del Myers, Seattle, WA (US); Jackson (Continued)
Michael Davis, Carnation, WA (US);
Thomas Lai, Redmond, WA (US): OTHER PUBLICATIONS
Andrew R Sterland, Issaquah, WA
(US); Deborah Chen, Scattle, WA Cui, et al., “REPT: Reverse Debugging of Failures in Deployed
(US); Patrick Lothian Nelson, Software”, In Proceedings of the 13th USENIX Symposium on
Redmond, WA (US); Jordi Mola, Operating Systems Design and Implementation, Oct. 8, 2018, pp.
Bellevue, WA (US); Juan Carlos 17.39
Arevalo Baeza, Bellevue, WA (US); .
James M Pinkerton, Kirkland, WA (Continued)
(US); Leslie Yvette Richardson,
Seattle, WA (US); Kenneth Walter
Sykes, Oakton, VA (US) _ _
Primary Examiner — Hang Pan
(73) Assignee: Microsoft Technology Licensing, LLC, (74) Attorney, Agent, or Firm — Workman Nydegger
Redmond, WA (US)
(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 185 days. Identifying and reporting potential data inconsistencies and/
or potential data contentions based on historic debugging
(21) Appl. No.: 16/398,672 traces. Based on replay of a thread, some implementations
_ observe an mflux of a value to a memory cell, and determine
(22) Filed: Apr. 30, 2019 whether the value of the memory cell observed from the
: o influx 1s inconsistent with a prior value of the memory cell
(63) Prior Publication Data as known by the thread. It on these implementatiog can
US 2020/0349053 A1~ Nov. 5, 2020 initiate an indication of a data inconsistency. Based on
replay of a plurality of threads, other implementations
(51) Int. CL. identily a memory cell that was accessed by a first thread
GO6t 9/44 (2018.01) while a thread synchronization mechanism was active on the
GO6F 11/36 (2006.01) first thread. Then, 11 there was another access to the memory
(Continued) cell by a second thread without use of the thread synchro-
(52) US. ClL nization mechanism, these implementations might initiate an
CPC GO6F 11/3636 (2013.01); GOGF 9/4881 indication of a potential data contention.
(2013.01); GO6F 16/2365 (2019.01)
(58) Field of Classification Search

CPC . GO6F 11/3636; GO6F 16/2365; GO6F 9/4881
See application file for complete search history.

500

20 Claims, 7 Drawing Sheets

Replay A Prior Execution Of A Thread

501

l

Observe An Influx Of A Value To A Memory Cell

—502

—

Determine That The QObserved Value Is Ingonsistent With A Prior Value Of The
Memory Cell

—503

l

Initiate An Indication Of A Data Inconsistency

—504

US 11,138,093 B2

Page 2
(51) Int. CL 2014/0157039 Al* 6/2014 Peck ..ocovvcovvvenen. GOG6F 11/07
GO6l’ 16/23 (2019.01)) 714/2
GO6F 9/48 (2006.01) 2017/0126580 Al 5/2017 Lo voviiiiiiiiiiiiiiiiinen, HO4L 43/026
OTHER PUBLICATIONS
(56) References Cited

U.S. PATENT DOCUMENTS

2005/0216798 Al*

2005/0283781 Al*

2007/0168968 Al*

2010/0122073 Al*

2012/0030657 Al*

2014/0089642 Al*

9/2005

12/2005

7/2007

5/2010

2/2012

3/2014

YU oo, GOO6F 9/526
714/718
Karp ..o GO6F 11/3624
718/100
Bates GO6F 11/3632
717/124
Narayanaswamy .. GO6F 9/4812
712/244
Gao oo, GO6F 9/524
717/128
Gottschlich GOG6F 9/3851
712/220

Liu, et al., “iReplayer: In-situ and Identical Record-and-Replay for
Multithreaded Applications”, In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and

Implementation, Apr. 4, 2018, pp. 344-358.

Machado, et al., “CoopREP: Cooperative Record and Replay of
Concurrency Bugs”, In Journal of Software Testing, Verification and
Reliability vol. 28 Issue 1, Sep. 5, 2017, 27 Pages.

“International Search Report and Written Opinion Issued in PCT
Application No. PCT/US20/026052”, dated Sep. 8, 2020, 21 Pages.
Sankova, et al., “Record and Replay of Multithreaded Applica-
tions”, In Report of University of Lisboa, Jan. 1, 2015, 21 Pages.
Vilk, et al., “McFly: Time-Travel Debugging for the Web™, In the
Repository of arXiv:1810.11865v1, Oct. 28, 2018, 13 Pages.

* cited by examiner

U.S. Patent Oct. 5, 2021 Sheet 1 of 7 US 11,138,093 B2

100a

Computer System 101

Processor(s) 102 -

Processing Unit(s) 107
a -

Register(s) 1073
I

System Memory 103 I
Debugging 109’

: Tracing 110’ |

Emulation 111

)

l

Application(s) 112" -, :
| ' I I
T

FIG. 1A

U.S. Patent Oct. 5, 2021 Sheet 2 of 7 US 11,138,093 B2

Debugging 109

Trace Access 114

Trace Analysis 115

FIG. 1B

¢ Ol

US 11,138,093 B2

!
I
I
!
I
I
!
I
I
!
L

)
Rl
o~) 0L} Buioes ! 1
= | e a0
o ' UZ0z wa)sAg Jendwo) “ .
> e e L0¢ (S)JoMeN
7
a 217 (S)uoneaddy
&
7ol
Mﬂ 011 buioesy

BZ07 Wa1sAg Jandwon

U.S. Patent

101 Wa)SAS Jaindwo)

US 11,138,093 B2

Sheet 4 of 7

Oct. 5, 2021

U.S. Patent

-

o " " "

306n

“
w u
, .
e e i e - 2]

L
E
o

306a

!
u
!
]

-
i
!
l

C R R R R

e F A F AR

- F & 5 F '
R A |

L] T r "

FOF s, r
£ F L A S ‘2

& P T

= = 0= l
- ¥ ®
-
[
B e e

301b

-~

;o
&

LA

_ (O
3 &
-
<)

301a

302a

FIG. 3

U.S. Patent Oct. 5, 2021 Sheet 5 of 7 US 11,138,093 B2

4005
T
MC A B C C C
T

403¢ 403d 403h ' 403f

'l a 1‘-'- ‘:."i et . ,.I!.
R 3 26‘7‘ o 0 v
Nl - Eﬁm J

U.S. Patent Oct. 5, 2021 Sheet 6 of 7 US 11,138,093 B2

200
501
Replay A Prior Execution Of A Thread
502
Observe An Influx Of A Value To A Memory Cell
- . . . 503
Determine That The Observed Value Is Inconsistent With A Prior Value Of The
Memory Cell
504
Initiate An Indication Of A Data Inconsistency

FIG. 5

U.S. Patent Oct. 5, 2021 Sheet 7 of 7 US 11,138,093 B2

600
601
Replay A Prior Execution Of A Plurality Of Threads
602
|dentify Use Of A Thread Synchronization Mechanism On A First Thread
| | 603
|dentify A Memory Cell Accessed By The First Thread When The
Synchronization Mechanism Was Active
| | 004
|dentify An Access To The Memory Cell By A Second Thread Without Use Of
The Thread Synchronization Mechanism
605
Initiate An Indication Of A Potential Data Contention

FIG. 6

US 11,138,093 B2

1

IDENTIFYING DATA INCONSISTENCIES
AND DATA CONTENTION BASED ON
HISTORIC DEBUGGING TRACES

CROSS-REFERENCE TO RELATED
APPLICATIONS
Not Applicable.
BACKGROUND

Tracking down and correcting bugs in soiftware code
(often referred to as “debugging” code) 1s a core activity 1n
software development. Software bugs can lead to many
undesired runtime behaviors, such as execution crashes,
runtime exceptions, slow execution performance, incorrect
data results, data corruption, and the like. Many hard to
reproduce soltware bugs lead to data inconsistencies during,
code execution. Some developer mistakes leading to these
bugs include forgetting to mitialize vaniables, or introducing,
race conditions 1n which various threads modily data with-
out correctly guarding that data using thread synchroniza-
tion/locking mechanisms (e.g., through proper use of
mutexes, events, semaphores, spin locks, queue spin locks,
and the like). During code execution, these data inconsis-
tency bugs manifest as values 1n memory being read in the
context of a particular thread, when that thread did not,
itself, write the given value to memory. In the example of
uninitialized memory, a thread reads from memory that has
not written to prior. In the case of race conditions, a thread
reads a value that 1t had not previously seen in memory, or
it had not written to memory.

One approach developers have used to debug code 1s to
use “live” debuggers. In general, a live debugger attaches to
a live process’s execution and enables a developer to moni-
tor and guide that process’s forward execution. For example,
a live debugger may enable a developer to set a breakpoint
that pauses the program’s execution when it reaches par-
ticular instruction, to set a watchpoint that pauses the
program’s execution when 1t accesses a particular memory
addresses, to single-step through lines of code as 1t executes,
etc.

An emerging form of diagnostic tools enable “historic”
debugging (also referred to as “time travel” or “reverse”
debugging), in which the execution of at least a portion of
a program’s thread(s) 1s recorded/traced into one or more
trace files (1.e., a trace). Using some tracing techniques, a
trace can contain very high-fidelity “bit-accurate™ historic
trace data, which enables the recorded portion(s) the traced
thread(s) to be virtually “replayed” at great fidelity—even
down to the granularity of individual instructions (e.g.,
machine code instructions, intermediate language code
instructions, etc.). Thus, using bit-accurate trace data, a
“historic,” “time travel,” or “reverse” debugger enables a
developer to not only monitor and guide a forward emula-
tion of traced code (e.g., via breakpoints, watchpoints,
single-stepping, etc.), but to also monitor and guide a reverse
emulation of traced code (e.g., via reverse breakpoints,
reverse watchpoints, reverse single-stepping, etc.). Thus, a
developer can momtor and guide execution of any part of a

programs prior trace.

BRIEF SUMMARY

At least some embodiments described herein identity and
report potential data inconsistencies and/or potential data
contentions based on historic debugging traces. For

10

15

20

25

30

35

40

45

50

55

60

65

2

example, embodiments might include identifying and
reporting actual data consistencies that occurred during a
program’s prior execution, and which were captured during
tracing. Thus, these embodiments are capable of 1dentifying
when reads from uninitialized memory or data race condi-
tions actually occurred and were captured during tracing. In
these embodiments, execution of a thread 1s replayed from
a historic trace. During this replay, an influx to a memory
cell 1s observed. If that 1s inconsistent with a prior value of
the memory cell as known by the thread (e.g., because the
thread was unaware of the memory cell’s value, or the
observed value 1s diflerent from a known prior value), a data
inconsistency has been observed.

Other embodiments might include identifying situations
were a data contention could occur, even if an actual data
inconsistency was not captured during tracing. Thus, these
embodiments can 1dentify situations i which data race
conditions could occur, even 1t an actual data race condition
was not captured during tracing. In these embodiments,
execution of a plurality of threads 1s replayed from a historic
trace. Memory accesses by a first thread are tracked while a
thread synchronization mechanism i1s active on the first
thread. If there 1s a memory access to a tracked memory cell
by a second thread when this thread synchronization mecha-
nism 1s not active on the second thread, a potential data
contention has been observed.

Some embodiments include methods, systems, and com-
puter program products for indicating a data inconsistency
observed during a prior execution of a thread. These
embodiments include replaying a prior execution of a thread
based on a trace representing the prior execution of the
thread. These embodiments also include, based on replaying
the prior execution of the thread, observing an influx of a
value to a memory cell. These embodiments also include
determining that the value of the memory cell observed from
the 1intlux 1s 1nconsistent with a prior value of the memory
cell as known by the thread. These embodiments also
include, based at least on the value of the memory cell
observed from the mflux being consistent with the prior
value of the memory cell, mitiating an indication of a data
inconsistency.

Other embodiments include methods, systems, and com-
puter program products for indicating a potential data con-
tention based on a trace of prior thread execution. These
embodiments include replaying prior execution of a plurality
of threads based on a trace representing the prior execution
of the plurality of threads. These embodiments also include,
based on replaying the prior execution of the plurality of
threads, i1dentifying activation of a thread synchromization
mechanism during a prior execution of a first thread of the
plurality of threads. These embodiments also include, based
on replaying the prior execution of the plurality of threads,
and based on the activation of the thread synchronization
mechanism, i1dentifying at least one memory cell that was
accessed by the first thread while the thread synchronization
mechanism was active on the first thread. These embodi-
ments also include, based on replaying the prior execution of
the plurality of threads, identifying a memory access to the
at least one memory cell, during a prior execution of a
second of the plurality of threads, without use of the thread
synchronization mechanism by the second thread. These
embodiments also include, based on 1dentilying the memory
access, initiating an indication of a potential data contention
in connection with the at least one memory cell.

This summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not

US 11,138,093 B2

3

intended to 1dentily key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used as an aid
in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner 1n which the above-recited
and other advantages and features of the invention can be
obtained, a more particular description of the invention
briefly described above will be rendered by reference to
specific embodiments thereof which are illustrated in the
appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of 1ts scope, the
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

FIG. 1A 1llustrates an example computing environment
that facilitates identitying and reporting potential data incon-
sistencies and/or potential data contentions based on historic
debugging traces;

FIG. 1B 1illustrates additional detail of a debugging of
FIG. 1A;

FIG. 2 illustrates an example 1n which the computing
environment of F1IG. 1A 1s networked with one or more other
computer systems;

FIG. 3 illustrates one example of a historic debugging
frace,

FIG. 4A illustrates an example timing diagram that
includes two timelines corresponding to execution of two
threads, as well as a timeline showing those thread’s access
to a memory cell, including a read from uninitialized
memory and a data inconsistency;

FIG. 4B illustrates an example timing diagram that
includes two timelines corresponding to execution of two
threads, as well as a timeline showing those thread’s access
to a memory cell, including use of critical sections to protect
accesses to a memory cell;

FIG. 4C 1illustrates an example timing diagram that
includes two timelines corresponding to execution ol two
threads, as well as a timeline showing those thread’s access
to a memory cell, including use of critical sections to protect
accesses to a memory cell, and including a potential data
race on the memory cell;

FIG. 5 illustrates a flowchart of an example method for
indicating a data inconsistency observed during a prior
execution of a thread: and

FIG. 6 illustrates a flowchart of an example method for
indicating a potential data contention based on a trace of
prior thread execution.

DETAILED DESCRIPTION

At least some embodiments described herein 1dentify and
report potential data inconsistencies and/or potential data
contentions based on historic debugging traces. For
example, embodiments might include identifying and
reporting actual data consistencies that occurred during a
program’s prior execution, and which were captured during
tracing. Thus, these embodiments are capable of identifying
when reads from uninitialized memory or data race condi-
tions actually occurred and were captured during tracing. In
these embodiments, execution of a thread 1s replayed from
a historic trace. During this replay, an influx to a memory
cell 1s observed. If that 1s inconsistent with a prior value of
the memory cell as known by the thread (e.g., because the
thread was unaware of the memory cell’s value, or the

10

15

20

25

30

35

40

45

50

55

60

65

4

observed value 1s diflerent from a known prior value), a data
inconsistency has been observed.

Other embodiments might include identifying situations
were a data contention could occur, even i1f an actual data
inconsistency was not captured during tracing. Thus, these
embodiments can i1dentify situations i which data race
conditions could occur, even 1f an actual data race condition
was not captured during tracing. In these embodiments,
execution of a plurality of threads 1s replayed from a historic
trace.

As will be appreciated 1n view of the disclosure herein,
use of historic debugging traces to automatically identify
data inconsistencies and data contentions can greatly
improve the speed and effectiveness of the debugging pro-
cess, and can result 1in the elimination of data inconsistencies
and data races from application code. In addition, the
embodiments described herein can provide unique debug-
ging functionality, such as automatically identifying/flag-
ging data imconsistencies and contentions 1n a trace as trace
index data, and/or automatically identifying/tflagging data
inconsistencies and contentions via user interface mecha-
nisms.

FIG. 1A illustrates an example computing environment
100q that 1dentitying and reporting potential data inconsis-
tencies and/or potential data contentions based on historic
debugging traces. as depicted, computing environment 100q
may comprise or utilize a special-purpose or general-pur-
pose computer system 101, which includes computer hard-
ware, such as, for example, one or more processors 102,
system memory 103, durable storage 104, and/or network
device(s) 105, which are communicatively coupled using
one or more communications buses 106.

Embodiments within the scope of the present invention
can include physical and other computer-readable media for
carrying or storing computer-executable nstructions and/or
data structures. Such computer-readable media can be any
available media that can be accessed by a general-purpose or
specilal-purpose computer system. Computer-readable
media that store computer-executable instructions and/or
data structures are computer storage media. Computer-
readable media that carry computer-executable instructions
and/or data structures are transmission media. Thus, by way
of example, and not limitation, embodiments of the inven-
tion can comprise at least two distinctly different kinds of
computer-readable media: computer storage media and
transmission media.

Computer storage media are physical storage media (e.g.,
system memory 103 and/or durable storage 104) that store
computer-executable 1nstructions and/or data structures.
Physical storage media include computer hardware, such as
RAM, ROM, EEPROM, solid state drives (“SSDs”), flash
memory, phase-change memory (“PCM”), optical disk stor-
age, magnetic disk storage or other magnetic storage
devices, or any other hardware storage device(s) which can
be used to store program code in the form of computer-
executable 1nstructions or data structures, which can be
accessed and executed by a general-purpose or special-
purpose computer system to implement the disclosed func-
tionality of the mvention.

Transmission media can include a network and/or data
links which can be used to carry program code 1n the form
of computer-executable instructions or data structures, and
which can be accessed by a general-purpose or special-
purpose computer system. A “network™ 1s defined as one or
more data links that enable the transport of electronic data
between computer systems and/or modules and/or other
clectronic devices. When information 1s transierred or pro-

US 11,138,093 B2

S

vided over a network or another communications connection
(erither hardwired, wireless, or a combination of hardwired
or wireless) to a computer system, the computer system may
view the connection as transmission media. Combinations of
the above should also be included within the scope of
computer-readable media.

Further, upon reaching various computer system compo-
nents, program code in the form ol computer-executable
instructions or data structures can be transferred automati-
cally from transmission media to computer storage media
(or vice versa). For example, computer-executable instruc-
tions or data structures received over a network or data link
can be buflered in RAM within a network interface module
(e.g., network device(s) 105), and then eventually trans-
terred to computer system RAM (e.g., system memory 103)
and/or to less volatile computer storage media (e.g., durable
storage 104) at the computer system. Thus, 1t should be
understood that computer storage media can be included in
computer system components that also (or even primarily)
utilize transmission media.

Computer-executable mstructions comprise, for example,
instructions and data which, when executed at one or more
processors, cause a general-purpose computer system, spe-
cial-purpose computer system, or special-purpose process-
ing device to perform a certain function or group of func-
tions. Computer-executable 1nstructions may be, for
example, machine code instructions (e.g., binaries), inter-
mediate format instructions such as assembly language, or
even source code.

Those skilled 1n the art will appreciate that the invention
may be practiced 1in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
clectronics, network PCs, minicomputers, mainirame com-
puters, mobile telephones, PDAs, tablets, pagers, routers,
switches, and the like. The mvention may also be practiced
in distributed system environments where local and remote
computer systems, which are linked (either by hardwired
data links, wireless data links, or by a combination of
hardwired and wireless data links) through a network, both
perform tasks. As such, 1n a distributed system environment,
a computer system may include a plurality of constituent
computer systems. In a distributed system environment,
program modules may be located 1n both local and remote
memory storage devices.

Those skilled i the art will also appreciate that the
invention may be practiced 1n a cloud computing environ-
ment. Cloud computing environments may be distributed,
although this 1s not required. When distributed, cloud com-
puting environments may be distributed internationally
within an orgamzation and/or have components possessed
across multiple organizations. In this description and the
tollowing claims, “cloud computing” 1s defined as a model
for enabling on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services). The definition of “cloud
computing” 1s not limited to any of the other numerous
advantages that can be obtained from such a model when
properly deployed.

A cloud computing model can be composed of various
characteristics, such as on-demand self-service, broad net-
work access, resource pooling, rapid elasticity, measured
service, and so forth. A cloud computing model may also
come 1n the form of various service models such as, for
example, Software as a Service (“SaaS”), Platform as a

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Service (“PaaS”), and Infrastructure as a Service (“laaS™).
The cloud computing model may also be deployed using
different deployment models such as private cloud, commu-
nity cloud, public cloud, hybnid cloud, and so forth.

Some embodiments, such as a cloud computing environ-
ment, may comprise a system that includes one or more
hosts that are each capable of running one or more virtual
machines. During operation, virtual machines emulate an
operational computing system, supporting an operating sys-
tem and perhaps one or more other applications as well. In
some embodiments, each host includes a hypervisor that
emulates virtual resources for the virtual machines using
physical resources that are abstracted from view of the
virtual machines. The hypervisor also provides proper 1so-
lation between the virtual machines. Thus, from the per-
spective of any given virtual machine, the hypervisor pro-
vides the i1llusion that the virtual machine 1s interfacing with
a physical resource, even though the virtual machine only
interfaces with the appearance (e.g., a virtual resource) of a
physical resource. Examples of physical resources including
processing capacity, memory, disk space, network band-
width, media drives, and so forth.

As shown in FIG. 1A, each processor 102 can include
(among other things) one or more processing units 107 (e.g.,
processor cores) and one or more caches 108. Each process-
ing unit 107 loads and executes machine code instructions
via the caches 108. During execution of these machine code
istructions at one more execution units 1075, the instruc-
tions can use 1nternal processor registers 107a as temporary
storage locations and can read and write to various locations
in system memory 103 via the caches 108. In general, the
caches 108 temporarily cache portions of system memory
103; for example, caches 108 might include a “code” portion
that caches portions of system memory 103 storing appli-
cation code, and a “data” portion that caches portions of
system memory 103 storing application runtime data. I a
processing unit 107 requires data (e.g., code or application
runtime data) not already stored in the caches 108, then the
processing unit 107 can initiate a “cache miss,” causing the
needed data to be fetched from system memory 103—while
potentially “evicting” some other data from the caches 108
back to system memory 103.

As 1llustrated, the durable storage 104 can store computer-
executable instructions and/or data structures representing
executable software components; correspondingly, during
execution of this software at the processor(s) 102, one or
more portions ol these computer-executable instructions
and/or data structures can be loaded into system memory
103. For example, the durable storage 104 1s shown as
storing computer-executable instructions and/or data struc-
tures corresponding to a debugging component 109, a trac-
ing component 110, an emulation component 111, and one or
more application(s) 112. The durable storage 104 can also
store data, such as one or more trace(s) 113 that represent
one or more executions of one or more of the application(s)
112.

In general, the debugging component 109 takes one or
more of the trace(s) 113 as input and, based on analysis of
those trace(s) 113, identifies data inconsistencies and/or
potential data contentions, which might correspond to reads
from uninitialized memory and/or potential data race con-
ditions. After identitying a data inconsistency and/or poten-
tial data contention, the debugging component 109 can
initiate an indication of the inconsistency/contention, such
as by mmtiating the creation of trace index data, and/or
initiating a visual indication of the inconsistency/contention
at a debugging user interface. Thus, FIG. 1A shows that the

US 11,138,093 B2

7

debugging component 109 and the trace(s) 113 are loaded
into system memory (1.e., debugging component 109" and
trace(s) 113"), and a double-ended arrow between the debug-
ging component 109' and the trace(s) 113" indicates that the
debugging component 109' can read from, and potentially
write to, those trace(s) 113'; 11 data 1s written to trace(s) 113",
this data might also be persisted to the trace(s) 113 in durable
storage 104.

As mentioned, the debugging component 109 performs
analysis on trace(s) 113. In embodiments this analysis may
include one or both of a static analysis or a dynamic analysis.
As used herein, a static analysis comprises the debugging,
component 109 performing the analysis based on data read
from the trace(s) 113 only. A dynamic analysis, on the other
hand, can use data that 1s generated/obtained from a replay/
emulation of application(s) 112 based on those trace(s) 113.
Thus, FIG. 1A shows that the emulation component 111 may
also be loaded into system memory 103 (1.e., emulation
component 111"), and that the application(s) 112 may be
emulated by the emulation component 111' (1.¢., application
(s) 112"). A double-ended arrow between the debugging
component 109" and emulation component 111' indicates
that the debugging component 109' can request trace emu-
lation by the emulation component 111', and that the emu-
lation component 111' can provide results of that trace
emulation to the debugging component 109’

If present, the tracing component 110 can record or
“trace” execution of one or more of application(s) 112 into
the trace(s) 113. The tracing component 110 can record
execution of application(s) 112 whether that execution be on
the processor(s) 102 directly, whether that execution be on
the processor(s) 102 via a managed runtime. Thus, FIG. 1A
also shows that the tracing component 110 may be loaded
into system memory 103 (1.e., tracing component 110"). An
arrow between tracing component 110" and trace(s) 113
indicates that the tracing component 111' can record trace
data into trace(s) 113' (which might then be persisted to the
durable storage 104 as trace(s) 113).

Computer system 101 might additionally, or alternatively,
receive one or more of the trace(s) 113 from another
computer system (e.g., using network device(s) 1035). For
example, FIG. 2 1illustrates an example computing environ-
ment 200 in which computer system 101 of FIG. 1A 1s
connected to one or more other computer systems 202 (i.e.,
computer systems 202a-2027») over one or more networks
201. As shown 1n example 200, each computer system 202
includes a tracing component 110 and application(s) 112. As
such, computer system 101 may receive, over the network(s)
201, one or more trace(s) 113 of prior execution(s) of one or
more of application(s) 112 at these computer system(s) 202.

It 1s noted that, while the debugging component 109, the
tracing component 110, and/or the emulation component 111
might each be independent components or applications, they
might alternatively be integrated into the same application
(such as a debugging suite), or might be integrated into
another software component—such as an operating system
component, a hypervisor, a cloud fabric, etc. As such, those
skilled 1n the art will also appreciate that the invention may
be practiced 1 a cloud computing environment of which
computer system 101 1s a part.

In embodiments, the debugging component 109, the trac-
ing component 110, and/or the emulation component 111
operate on trace(s) 113 that comprise high-fidelity bait-
accurate trace data representing a prior execution of one or
more threads of an application 112, and 1n which the trace
data enables any traced portion(s) of those thread(s) to be
emulated (1.e., “replayed”) by the emulation component 111

10

15

20

25

30

35

40

45

50

55

60

65

8

down to the granularity of individual instructions (e.g.,
machine code mstructions, intermediate language code
instructions, etc.). As used herein, a “bit accurate” trace 1s a
trace that includes suflicient data to enable code of an
application 112 that was previously executed (e.g., at com-
puter system 101 and/or at one or more of computer systems
202), to be replayed via emulation by the emulation com-
ponent 111, such that the emulation component 111 simu-
lates execution of this code 1n substantially the same manner
as 1t executed prior. There are a variety of approaches that
the tracing component 110 might use to record and represent
bit-accurate trace data. Two diflerent families of approaches
that provide high levels of performance and reasonable trace
s1ze are now briefly summarized, though 1t will be appreci-
ated that the embodiments herein create and operate on
traces recorded using other approaches. Additionally, opti-
mizations could be applied to either of these families of
approaches that, for brevity, are not described herein.

A first family of approaches 1s built upon the recognition
that processor instructions (including virtual machine “vir-
tual processor” instructions) generally fall into one of three
categories: (1) istructions 1dentified as “non-deterministic”
as not producing predictable outputs because their outputs
are not fully determined by data in general registers (e.g.,
registers 107a) or a cache (e.g., cache(s) 108), (2) determin-
1stic 1nstructions whose inputs do not depend on memory
values (e.g., they depend only on processor register values,
or values defined 1n the code 1tself), and (3) deterministic
instructions whose inputs depend on reading values from
memory. Thus, 1n some embodiments, storing enough state
data to reproduce the execution of instructions can be
accomplished by addressing: (1) how to record non-deter-
ministic 1nstructions that produce output not fully deter-
mined by their mputs, (2) how to reproduce the values of
input registers for mstructions depending on registers, and
(3) how to reproduce the values of mput memory for
instructions depending on memory reads.

In some embodiments, the first approach(es) record nto
the trace(s) 113 the execution of non-deterministic mstruc-
tions that produce output not fully determined by their inputs
by storing 1nto the trace(s) 113 the side-eflects of execution
of such instructions. As used herein, “non-deterministic”
instructions can include somewhat less common instructions
that (1) produce non-deterministic output each time they are
executed (e.g., RDTSC on INTEL processors, which writes
the number of processor cycles since the last processor reset
into a register), that (11) may produce a deterministic output,
but depend on inputs not tracked during trace recording (e.g.
debug registers, timers, etc.), and/or that (11) produce pro-
cessor-specific information (e.g., CPUID on INTEL proces-
sors, which writes processor-specific data into registers).
Storing the side-eflects of execution of such instructions
may include, for example, storing register values and/or
memory values that were changed by execution of the
mstruction. In some architectures, such as from INTEL,
processor features such as those found 1n Virtual Machine
eXtensions (VMX) could be used to trap instructions for
recording their side effects into the trace(s) 113.

Addressing how to reproduce the values of input registers
for deterministic instructions (e.g., whose mputs depend
only on processor register values) 1s straightforward, as they
are the outputs of the execution of the prior 1struction(s).
Thus, the first approach(es) for recording traces can there-
fore reduce recording the execution of an entire series of
processor instructions to storing data that can be used to
reproduce the register values at the beginning of the series.
In embodiments, the trace(s) 113 may not even need store a

US 11,138,093 B2

9

record of which particular instructions executed in the series,
or the intermediary register values. This 1s because the actual
istructions are available from the application code, 1tself.
These instructions can therefore be supplied the recorded
inputs (1.e., the recorded 1nitial set of register values) during
reply, to execute in the same manner as they did during the
trace.

Finally, the first approach(es) for recording traces can
address how to reproduce the values of input memory for
deterministic instructions whose inputs depend on memory
values by recording into the trace(s) 113 the memory values
that these mstructions consumed (1.e., the reads)—irrespec-
tive of how the values that the istructions read were written
to memory. In other words, some trace(s) 113 might record
the values of memory reads, but not memory writes. For
example, although values may be written to memory by a
current thread, by another thread (including the kernel, e.g.,
as part of processing an interrupt), or by a hardware device,
it 1s just the values that the thread’s instructions read that are
needed for full replay of instructions of the thread that
performed the reads. This 1s because 1t 1s those values that
were read by the thread (and not necessarily all the values
that were written to memory) that dictated how the thread
executed.

A second family of approaches for recording bit-accurate
traces 1s built on the recognition that a processor (e.g.,
processor 102) forms a semi- or quasi-closed system. For
example, once portions of data for a process (i.e., code data
and runtime application data) are loaded into cache(s) 108,
processor 102 can run by itself—without any mmput—as a
semi- or quasi-closed system for bursts of time. In particular,
once the cache(s) 108 are loaded with data, one or more of
processing units 107 execute instructions from a code por-
tion of the cache(s) 108, using runtime data stored 1n a data
portion of the cache(s) 108 and using the registers 107a.
When a processing umt 107 needs some ntlux of informa-
tion (e.g., because an mstruction 1t 1s executing, will execute,
or may execute accesses code or runtime data not already 1n
the cache(s) 108), a “‘cache miss” occurs and that informa-
tion 1s brought into the cache(s) 108 from system memory
103. The processing unit 107 can then continue execution
using the new information in the cache(s) 108 until new
information 1s again brought into the cache(s) 108 (e.g., due
to another cache miss or an un-cached read). Thus, 1 the
second family of approaches, the tracing component 110
might record suflicient data to be able to reproduce the intlux
of mformation into the cache(s) 108 as a traced processing
unit executes.

The debugging component 109, the tracing component
110, and/or the emulation component 111 operate on trace(s)
113 created using other historic debugging techmiques as
well. For example, another class of historic debugging
technology, referred to herein as “branch trace debugging,”
relies on reconstructing at least part of an entity’s execution
based on working backwards from a dump or snapshot (e.g.,
a crash dump of a thread) that includes a processor branch
trace (1.e., which includes a record of whether or not
branches were taken). These technologies start with values
(e.g., memory and register) from this dump or snapshot and,
using the branch trace to partially determine code execution
flow, tteratively replay the entity’s code instructions and
backwards and forwards in order to reconstruct intermediary
data values (e.g., register and memory) used by this code
until those values reach a steady state. These techniques may
be limited 1n how far back they can reconstruct data values,

10

15

20

25

30

35

40

45

50

55

60

65

10

and how many data values can be reconstructed. Nonethe-
less, the reconstructed historical execution data can be used
for historic debugging.

Yet another class of historic debugging technology,
referred to herein as “snapshot and replay debugging,”
periodically record full snapshots of an entity’s memory
space and processor registers while 1t executes. If the entity
relies on data from sources other than the entity’s own
memory, or from a non-deterministic source, these technolo-
gies might also record such data along with the snapshots.
These technologies then use the data in the snapshots to
replay the execution of the entity’s code between snapshots.
Notably, 1n order to have correct replay of a process’
execution, “snapshot and replay” technologies sometimes
require that multiple threads be serialized onto a single
processing unit 107.

FIG. 3 illustrates one example of a trace 300, which might
correspond to one or more of trace(s) 113 of FIG. 1A, and
which could be created 1n accordance with one or more of
the foregoing tracing techmniques, such as the bit-accurate
tracing techniques described above. In the example of FIG.
3, trace 300 includes one or more trace data streams 301. In
FIG. 3, three trace data streams 301 are illustrated (i.e., trace
data streams 301a-301¢). In embodiments, each trace data
stream 301 represents execution of a different thread that
executed from the code of an application 112. For example,
trace data stream 301a might represent execution of a first
thread of an application 112, trace data stream 3015 might
represent execution of a second thread of an application 112,
and trace data stream 301c might represent third thread of
that application 112. As shown, each trace data stream 301
comprises a plurality of data packets 302 (1.e., data packet
3024 for data steam 301qa, data packets 3025 for data stream
3015, and data packets 302¢ for data stream 301¢). Since the
particular data logged 1n each data packet 302 might vary,
they are shown as having varying sizes. In general, when
using bit-accurate tracing technologies, each data packet 302
represents at least the mputs (e.g., register values, memory
values, cache line data, etc.) to one or more executable
instructions that executed as part of this first thread of the
application 112. As shown, the trace data streams 301 might
also include one or more key frames 303 (e.g., key frames
303a-303¢) that each represents sutlicient information, such
as a snapshot of register and/or memory values, that enables
the prior execution of the thread contaiming the key frame to
be replayed by the emulation component 111 starting at the
point of the key frame 303 forwards. In addition, trace data
stream 301 might include one or more sequencing events,
shown 1n FIG. 3 as circles numbered 1-9. While each trace
data stream 301 generally traces a given thread indepen-
dently, sequencing events represent the occurrence of events
that are orderable across the threads. These sequencing
events may correspond, for example, to events 1n which
threads interact, such as through shared memory, via func-
tion calls, etc. While, for simplicity, the order of events in
trace data streams 301 rotate through the threads a round-
robin manner, it will be appreciated that they would typically
appear 1n a less predictable manner.

In embodiments, a trace 113 might also include the actual
code that was executed. Thus, i FIG. 3, each data packet
302 1s shown as including a non-shaded data inputs portion
304 (i.e., data mputs portion 304a for data packets 302aq,
data inputs portion 3045 for data packets 3025, and data
inputs portion 304¢ for data packets 302¢) and a shaded code
portion 305 (1.e., code portion 305a for data packets 302a,
code portion 3055 for data packets 3025, and code portion
305¢ for data packets 302¢). In embodiments, the code

US 11,138,093 B2

11

portion 303 in the packets 302 might include the executable
instructions that executed based on the corresponding data
inputs. In other embodiments, however, a trace 113 might
omit the actual code that was executed, instead relying on
having separate access to the code of the application 112
(c.g., from durable storage 104). In these other embodi-
ments, each data packet may, for example, specily an
address or oflset to the appropriate executable mstruction(s).
As shown, a trace 113 might include any number of addi-
tional data streams 306 (1.e., data streams 306a-306#), which
can store any type of additional trace data. This additional
trace data may include, for example, indexing data such as
occasional memory snapshots, reverse-lookup data struc-
tures for quickly locating memory addresses/values 1n the
trace data streams 301, etc.

FIG. 1B 1llustrates an example 1005 that provides addi-
tional detail of the debugging component 109 of FIG. 1A.
The depicted debugging component 109 in FIG. 1B includes
a variety ol sub-components (e.g., trace access 114, trace
analysis 115, output 116, etc.) that represent various func-
tionalities that the debugging component 109 might imple-
ment 1n accordance with various embodiments described
heremn. It will be appreciated that the depicted compo-
nents—including theiwr 1dentity, sub-components, and
arrangement—are presented merely as an aid 1n describing
various embodiments of the debugging component 109, and
that these components/sub-components are non-limiting to
how software and/or hardware might implement various
embodiments of the debugging component 109, or of the
particular functionality thereof.

The trace access component 114 accesses at least one of
the trace(s) 113. This could mean accessing trace(s) 113
from durable storage 104, and/or accessing trace(s) 113 from
another computer system (e.g., one or more ol computer
systems 202). In embodiments, accessing a trace 113 causes
that trace to be loaded, at least 1n part, into system memory
103 (1.e., as shown by trace(s) 113").

The trace analysis component 1135 performs one or more
types of analysis on the accessed trace(s) 113 to identify
actual, or potential, reads from uninitialized memory and/or
data race conditions. As shown, the trace analysis compo-
nent 115 might include a data inconsistency analysis com-
ponent 1154 which identifies, from a trace 113, situations
when a traced thread read a value from a memory cell that
1s 1nconsistent with that thread’s knowledge of the memory
cell’s prior value (e.g., because the thread had no knowledge
of the memory cell’s prior value, or because the thread
previously read or wrote that prior value to the memory
cell). These situations could correspond to a read from
uninitialized memory (i.e., when the thread had no knowl-
edge of the memory cell’s prior value), or could correspond
to a data race that was actually captured 1n the trace 113 (1.¢.,
when the value read from the memory cell 1s 1mnconsistent
with a value that the thread previously read from or wrote to
the memory cell). Thus, the data inconsistency analysis
component 1154 can identily reads from uninitialized
memory and/or potential data races that actually occurred
during tracing.

To 1illustrate these concepts, FIG. 4A shows an example
timing diagram 400q that includes two timelines (1.e., T1
and T2) corresponding to execution of two threads, as well
as a timeline (1.e., MC) showing those thread’s access to a
memory cell. Timing diagram 400a could, for example,
correspond to execution of two threads whose prior execu-
tion 1s represented 1n one or more accessed traces 113. Based
on timeline 400q, the data inconsistency analysis component
115a might 1dentity a read from umnitialized memory (1.e.,

10

15

20

25

30

35

40

45

50

55

60

65

12

at arrow 401a). In particular, the first interaction with the
memory cell by thread T1 was at arrow 401a, where thread
T1 read the value A. Since this read was thread T1’s first
interaction with to the memory cell, the thread had no prior
knowledge of the value of the memory cell. For instance,
thread T1 made no prior write to the memory cell, which
would place a known value 1n the memory cell. Thus, when
thread T1 read the value A from the memory cell at arrow
401a, this read value (i.e., A) was likely an unminitialized
value of the memory cell.

In addition, based on timing diagram 400aq, the data
inconsistency analysis component 1154 might i1dentily a
read that was a potential data race (1.e., at arrow 4014d). In
particular, timing diagram 400a shows that, after this first
read, thread T1 wrote the value B to the memory cell (1.e.,
at arrow 4015) and then read the value B from the memory
cell (1.e., at arrow 401c¢). Since the value read at arrow 401c¢
(1.e., B) was consistent with thread T1’s prior knowledge of
the memory cell’s value (1.e., B, which was written at arrow
401b), there was no data inconsistency. However, as shown,
at arrow 401e thread 12 later wrote the value C to the
memory cell, and thread T1 then read this same value at
arrow 401d. Here, the value read at arrow 4014 (1.e., C) was
consistent with thread T1’s prior knowledge of the memory
cell’s value (1.e., B, which was read at arrow 401c¢). As such,
there was a data inconsistency at arrow 4014, which could
have been a data race.

Notably, the data inconsistency analysis component 115¢a
might also analyze thread T2 for data inconsistencies and
find none. For example, the first interaction with the memory
cell by thread T2 was at arrow 401e, where thread T2 wrote
the value C. Since this first interaction was a write, this could
not have been a read from uninitialized memory. Later,
thread T2 read that same value at arrow 401/. Since the value
read at arrow 401/ was consistent with the value written at
arrow 401e, there was no data inconsistency at arrow 401f.

As mentioned, “snapshot and replay” technologies might
require that multiple threads be serialized onto a single
processing unmt 107. If this 1s the case, the data inconsistency
analysis component 115a might be limited to detecting
accesses to uninitialized data, but not other data inconsis-
tencies (1.e., since thread serialization would force consis-
tency).

Additionally, or alternatively, the trace analysis compo-
nent 115 might include a data contention analysis compo-
nent 1154 which 1dentifies, from a trace 113, situations 1n
which (1) one traced thread protected access to a memory
cell using a thread synchromization mechanism, in which (11)
another traced thread accessed that memory cell without
taking control of that same thread synchronization mecha-
nism, and i which (111) at least one of the threads’ access to
the memory cell was a write. In these situations, a data race
could be possible, even 11 one was not actually captured 1n
the trace 113. Thus, the data contention analysis component
1155 can 1dentify situations 1n which a data race/contention
could occur.

As will be appreciated by one of ordinary skill 1n the art,
thread synchronization mechanisms (sometimes referred to
as thread synchronization primitives, thread locking mecha-
nisms, thread locking primitives, and the like) are techniques
that create “critical sections” in a thread’s execution to
protect shared memory during multithreaded execution.
Some thread synchronization mechanisms are pessimistic,
while others are optimistic. In general, pessimistic thread
synchronization mechanisms assume that a race condition
will probably occur i1if multiple threads interact with the
same memory location(s) concurrently, and thus prevent

US 11,138,093 B2

13

critical sections on different threads from executing concur-
rently (1.e., when the threads could concurrently access the
same memory location(s)). Examples of pessimistic thread
synchronization mechanisms include spinlocks, mutexes,
and semaphores.

A spinlock causes a thread trying to acquire 1t to wait 1n
a loop (1.e., to “spin”) while repeatedly checking 1f a lock 1s
available. Once acquired, spinlocks are usually be held by a
thread until they are explicitly released by the thread,
although 1n some implementations they may be automati-
cally released if the thread being waited on (the one which
holds the lock) blocks. A mutex grants exclusive access to
the shared resource to only one thread. If a first thread
acquires a mutex, a second thread that wants to acquire that
mutex 1s suspended until the first thread releases the mutex.
A semaphore controls access to a resource, and 1s created
with a maximum count and 1n 1nitial count. This count 1s
decremented each time a thread enters the semaphore, and 1s
incremented when a thread releases the semaphore. When
the count 1s zero, subsequent requests block until other
threads release the semaphore. When all threads have
released the semaphore, the count i1s at the maximum value
specified when the semaphore was created.

Optimistic thread synchromization mechanisms, on the
other hand, let the critical sections on different threads
execute concurrently and monitor the memory location(s)
accessed during the critical sections to determine 1f a data
race occurred; i1f a race does occur, these mechanisms ““roll
back™ these threads’ execution by rolling back their side-
ellects (e.g., register and memory values changed by their
execution) and then re-execute the critical sections single-
threaded. Examples of optimistic thread synchromization
mechanisms include hardware or solftware-implemented
transactional memory (e.g., the TSX-NI extensions to the
x86 1nstruction set architecture (ISA)).

To 1llustrate the concepts of thread synchronization, FIG.
4B shows an example timing diagram 4006 that includes
two timelines (1.e., T1 and T2) corresponding to execution of
two threads, as well as a timeline (1.e., MC) showing those
thread’s access to a memory cell. Timing diagram 4005
could, for example, correspond to execution of two threads
whose prior execution 1s represented in one or more
accessed traces 113. Each thread in timing diagram 40056
might execute from the same code, and are shown as
repeatedly executing a ““critical section” in that code (1.e.,
sections 402a-402f 1n the execution of threads T1 and T2)
created by some thread synchronization mechanism. As
shown using ellipses in FIG. 4B, one thread enters the
critical section by using locking techniques (e.g., a mutex)
when 1t needs to access the shared resource and other thread
has to wait to get its turn to enter into the critical section.
This prevents contentions when these threads access the
same memory cells. As shown by the arrows 403a-403/, 1n
FIG. 4B, each thread accesses (reads from and/or writes to)
the memory cell only during the critical sections, and thus
the critical sections protect against data races on the memory
cell. FIG. 4C, on the other hand, includes additional arrows
4032 and 403/, showing accesses to the memory cell (e.g.,
cach corresponding to a read from and/or a write to the
memory cell) without use of the critical section. Since these
accesses were performed without the use of a critical sec-
tion, they could potentially cause a data race on the memory
cell. The data contention analysis component 1155 can
identily such memory accesses as potential contentions.

In embodiments, the data contention analysis component
1155 may treat accesses (e.g., the one at arrow 403¢g) to a
memory location that occur prior to an initial synchroniza-

"y

10

15

20

25

30

35

40

45

50

55

60

65

14

tion primitive protected access (e.g., the one at arrow 403a),
differently than 1t does later accesses (e.g., the ones at arrows
403d, 4035, 403e, 403¢, 403/, and 403¢g). In doing so, the
data contention analysis component 1155 may reduce false-
positives, such as those that could occur when the traced
code mitializes complex data structures that are only later
protected by the synchronization primitive. Thus, for
example, the data contention analysis component 1155
might determine that the access at arrow 403/ 1s a potential
contention, while 1t might determine that access at arrow
4032 1s not a potential contention. Alternatively, the data
contention analysis component 1155 might determine that
access at arrow 403g has a lower probability of being a
potential contention than the access at arrow 403/.

The output component 116 produces output indicative of
any data inconsistency identified by the data inconsistency
analysis component 1154 and/or of any data contention
identified by the data contention analysis component 1155.
In embodiments, the output component 116 might produce
an output by writing data to a trace {ile, or causing data to
be written to a trace file (e.g., one of trace(s) 113). For
example, the output component 116 might write (or cause to
be written) 1index data that supplements the accessed trace
113 (e.g., as part of one of additional data streams 306) to
indicate one or more execution times represented in the trace
113 where a data inconsistency and/or contention occurred,
to 1ndicate one or more code elements associated with the
data inconsistency/contention, and the like. In embodiments,
the output component 116 might produce an output by
sending output data and/or signal(s) to another software
component (e.g., via an API call). In embodiments, the
output component 116 might produce an output by display-
ing data at a user interface, or causing data to be displayed
at a user interface (e.g., a debugger user interface). For
example, the output component 116 might cause a debugger
user interface to display a visual indication a visual indica-
tion along an execution timeline that indicates when the data
inconsistency/contention occurred, to display a visual 1ndi-
cation of one or more code elements associated with the data
inconsistency/contention, and the like.

The following discussion new refers to a number of
methods and method acts that may be performed by com-
puter system 101. Although the method acts may be dis-
cussed 1n a certain orders or may be 1llustrated 1n a flow chart
as occurring 1n a particular order, no particular ordering 1s
required unless specifically stated, or required because an act
1s dependent on another act being completed prior to the act
being performed.

In order to better understand at least the analysis by the
data inconsistency analysis component 115q, FIG. 5 1llus-
trates a flowchart of an example method 500 for indicating
a data 1iconsistency observed during a prior execution of a
thread. Method 500 1s now described with reference to
FIGS. 1A, 1B, 3, 4A, and 5.

As shown, method 500 includes an act 301 of replaying
a prior execution of a thread. In some 1implementations, act
501 comprises replaying a prior execution of a thread based
on a trace representing the prior execution of the thread. For
example, the emulation component 111 can replay a prior
execution of thread T1, for which a timeline of execution 1s
represented 1 FIG. 4A. In embodiments, this emulation
might be performed at the request of the data inconsistency
analysis component 1154, however 1t might alternatively be
performed for some other reason—such as for general
debugging of application 112 at a debugger. As part of this
emulation, the emulation component 111 can replay one or
more of the memory accesses to the memory cell repre-

US 11,138,093 B2

15

sented 1n FIG. 4A, such as one or more of the memory

accesses represented at arrows 401a-401¢ and 4014.
Method 500 also includes an act 502 of observing an

influx of a value to a memory cell. In some implementations,

act 502 comprises, based on replaying the prior execution of >

the thread, observing an influx of a value to a memory cell.
For example, based on the emulation by the emulation
component 111, the data inconsistency analysis component
115a might observe an 1intlux of the value A at the execution
time point corresponding to arrow 401q, an nflux of the
value B at the execution time point corresponding to arrow
401¢, and/or and influx of the value Cat the execution time

point corresponding to arrow 401d.

Method 500 also includes an act 503 of determining that
the observed value 1s 1nconsistent with a prior value of the
memory cell. In some implementations, act 303 comprises
determining that the value of the memory cell observed from
the 1ntlux 1s 1nconsistent with a prior value of the memory
cell as known by the thread. For example, for each influx 1s
observed, the data inconsistency analysis component 115a
can determine whether or not the observed influx 1s consis-
tent with a prior known value of the memory cell to which
the influx corresponds. As will be appreciated, observing the
influx of the value to the memory cell could comprise
processing a trace data packet (e.g., one of data packets
302a) indicating that the memory cell stores the value.

For instance, if the observed influx 1s the value A at the
execution time point corresponding to arrow 4014, the data
inconsistency analysis component 115¢ might determine
that the influx 1s inconsistent with a prior value of the
memory cell as known by the thread. This i1s because the
thread knew no prior value of the memory cell. In this case,
the mflux at the execution time point corresponding to arrow
401a might be a read from uninitialized memory.

In situations such as the influx at arrow 401a (e.g., a read
from unimitialized memory), 1t will be appreciated that,
when determining that the value of the memory cell
observed from the mflux 1s mconsistent with the prior value
of the memory cell as known by the thread in act 503,
implementations of act 503 could comprise determining that
the prior value of the memory cell 1s not known to the thread,
based at least on the thread having not previously written to
the memory cell.

Alternatively, 1 the observed influx 1s the value C at the
execution time point corresponding to arrow 4014, the data
inconsistency analysis component 115¢ might determine
that the influx 1s inconsistent with a prior value of the
memory cell as known by the thread. The data inconsistency
analysis component 1154 might make this determination
based on the read by thread 11 of the value B to the memory
cell at the execution time point corresponding to arrow 401 ¢
(which read may have been replayed by the emulation
component 111 i act 501). Since thread T1 most recently
read the value B from the memory cell, and since the value
read at the execution time point corresponding to arrow
4014 was the value C, this value 1s inconsistent with the
thread’s prior knowledge of the memory cell’s value. In this
case, the mflux at the execution time point corresponding to
arrow 4014 might be a data race (1.e., against a write by
thread T2 at the execution time point corresponding to arrow
401e). As will be appreciated, the write of the value C by
thread T2 might be traced (e.g., because execution of thread
12 was also traced as being related to thread T1), or 1t might
not be traced (e.g., because execution of thread T2 was not
traced as not being selected for tracing and/or as not being,
related to thread T1). If execution of thread 12 was traced,

10

15

20

25

30

35

40

45

50

55

60

65

16

method 500 might also imnclude an analysis of thread T2 that
determines when the thread 12 wrote the value to the
memory cell.

In situations such as the influx at arrow 401d (e.g., a
potential race condition), 1t will be appreciated that, when
determining that the value of the memory cell observed from
the intlux i1s mconsistent with the prior value of the memory
cell as known by the thread in act 503, implementations of
act 503 could comprise first determining that the prior value
of the memory cell 1s known to the thread based on at least
one of (1) the thread having previously read the prior value
from the memory cell, or (1) the thread having previously
written the prior value to the memory cell, and then deter-
mining that the value of the memory cell observed from the
influx 1s different from the prior value of the memory cell.

Although not expressly shown 1n FIG. 5, the data incon-
sistency analysis component 1154 might determine that the
influx of the value B at the execution time point correspond-
ing to arrow 401c¢ 1s consistent with a prior value of the
memory cell as known by the thread. The data inconsistency
analysis component 1154 might make this determination
based on the write by thread T1 of the value B to the memory
cell at the execution time point corresponding to arrow 4015
(which write may have been replayed by the emulation
component 111 1n act 501). Since, at the execution time point
corresponding to arrow 401c¢, thread T1 most recently wrote
the value B to the memory cell (1.e., arrow 4015), and since
the value read at the execution time point corresponding to
arrow 401¢ was also the value B, this value 1s consistent with
the thread’s prior knowledge of the memory cell’s value.

Method 500 also includes an act 504 of imitiating an
indication of a data inconsistency. In some implementations,
act 504 comprises, based at least on the value of the memory
cell observed from the influx being consistent with the prior
value of the memory cell, mitiating an indication of a data
inconsistency. For example, based on having i1dentified an
inconsistency in connection with the intluxes at arrow 401qa
and/or arrow 401d, the output component 116 can 1nitiate
one or more indications of those inconsistencies. These
indications could be at a user interface (e.g., using the user
interface generation component 116a), 1n a trace file (e.g.,
using the trace indexing component 1165), and/or to some
other software component. Depending on the type of incon-
sistency 1dentified 1 act 503, the indication of the data
inconsistency might indicate that the data inconsistency
corresponds to at least one of (1) a read from uninitialized
memory, or (11) a potential race condition.

Thus, 1n 1implementations of act 504, mitiating the 1ndi-
cation of the data inconsistency could comprise at least one
of (1) mitiating the creation of trace index data that indicates
the data inconsistency (e.g., as part of an additional data
stream 306 1n a trace 113), or (1) mitiating a visual indica-
tion of the data inconsistency at a debugging user interface.
If act 504 1ncludes 1nitiating the creation of trace index data,
the trace index data could include, for example, one or more
execution times represented in the trace 113 where a data
inconsistency and/or contention occurred, one or more code
clements associated with the data inconsistency/contention,
and the like. If act 504 includes mitiating the visual 1indica-
tion of the data inconsistency at the debugging user inter-
face, the visual indication could include, for example, at
least one of (1) a visual indication along an execution
timeline that indicates when the data inconsistency occurred,
or (11) a visual indication of one or more code elements
associated with the data inconsistency. These code elements
(e.g., variables, data structures, commands, 1nstructions,
etc.) might be accessed on thread T1 (e.g., one or more code

US 11,138,093 B2

17

clements relating to the reads at arrows 104a and/or 1044),
and/or might be part of thread T2 (e.g., one or more code
clements relating to the write at arrow 104e, which caused
a data inconsistency in thread T1). Thus, in act 504, the
thread could comprise a first thread, and the one or more
code elements associated with the data inconsistency could
include one or more of (1) a first code element from the first
thread, or (11) a second code element from a second thread
whose prior execution 1s also traced.

While method 500 has been described primarily 1n con-
nection with an analysis of thread T1, 1t will be appreciated
that method 500 could also be applied to perform a similar
data inconsistency analysis of thread 12. However, method
500 might not actually identify any data inconsistencies
within thread T2.

In order to better understand at least the analysis by the
data contention analysis component 11355, FIG. 6 illustrates
a flowchart of an example method 600 for indicating a
potential data contention based on a trace representing prior
thread execution. Method 1s now described with reference to
FIGS. 1A, 1B, 3, 4C, and 6.

As shown, method 600 includes an act 601 of replaying
a prior execution of a plurality of threads. In some 1mple-
mentations, act 601 comprises replaying prior execution of
a plurality of threads based on a trace representing the prior
execution of the plurality of threads. For example, the
emulation component 111 can replay a prior execution of
threads T1 and 12, for which timelines of execution are
represented 1 FIG. 4C. In embodiments, this emulation
might be performed at the request of the data contention
analysis component 1155, however 1t might alternatively be
performed for some other reason—such as for general
debugging of application 112 at a debugger. As part of this
emulation, the emulation component 111 can replay one or
more of the memory accesses (1.e., one or more of the
memory accesses at the execution time points corresponding,
to arrows 403a-403/2) to the memory cell represented 1n FIG.
4C. This could include, for example, replaying the memory
access(es) at arrow 403a and the memory access(es) at
arrow 4034,

Method 600 also includes an act 602 of 1dentitying use of
a thread synchronization mechanism of a first thread. In
some 1mplementations, act 602 comprises, based on replay-
ing the prior execution of the plurality of threads, identifying
activation of a thread synchronization mechanism during a
prior execution of a first thread of the plurality of threads.
For example, based on replay of thread T1 by the emulation
component 111, the data contention analysis component
1155 maght identily entry of critical section 402a on thread
T1. This entry could include, for example, thread 11 calling
a function, setting a variable, etc. that nitiates entry or
activation of a spinlock, a mutex, a semaphore, a transaction,
or some other thread synchronization mechanism.

Method 600 also includes an act 603 of identifying a
memory cell accessed by the first thread when the synchro-
nization mechanism was active. In some 1mplementations,
act 603 comprises, based on replaying the prior execution of
the plurality of threads, and based on the activation of the
thread synchronization mechanism, identifying at least one
memory cell that was accessed by the first thread while the
thread synchronization mechanism was active on the first
thread. For example, based on the memory access(es) rep-
resented by arrow 403a during critical section 4024, the data
contention analysis component 1156 might identily the
memory cell represented i FIG. 4C as being accessed
during a critical section, and as therefore being protected by
the critical section. Notably, the data contention analysis

10

15

20

25

30

35

40

45

50

55

60

65

18

component 11556 might additionally, or alternatively, use one
or more of the memory access(es) at arrows 4035 and/or
403 ¢ to 1dentily the memory cell, since these accesses to the
memory cell were also performed during critical sections
4026 and 402c.

Method 600 also includes an act 604 of identifying access
to the memory cell by a second thread without use of the
thread synchronization mechanism. In some 1mplementa-
tions, act 604 comprises, based on replaying the prior
execution of the plurality of threads, identifying a memory
access to the at least one memory cell, during a prior
execution of a second of the plurality of threads, without use
of the thread synchronization mechanism by the second
thread. For example, the data contention analysis component
1155 might 1dentity the memory access(es) at arrow 403/ as
having been performed by thread T2 outside of a critical
section, and that they are therefore a data race risk.

Notably, the data contention analysis component 1155
might also recognize one or more of the memory access(es)
to the memory cell at arrows 4024-4027, but determine that
they were part of critical sections 402d-402f and that they
therefore present no data race risk. In embodiments, such
access within a synchronization-primitive protected region
may cause an indication to be stored of increased probability
that the accessed memory cell requires future access to also
be protected by the same primitive(s). This tracking state
may, 1in some implementations, be reset upon de-allocation
of the associated memory cell (e.g., if tracked the cell as
allocated via a call to malloc(), this tracking state may be
removed upon the cell’s allocation being free’d via a call to
free()). In embodiments, tracking state for a memory cell
might be a binary value (e.g., a “0” 1f there were no accesses
within a synchronization-primitive protected region, or a “1”
if there was), though 1t could alternatively be something
more granular (e.g., a value that 1s imncremented with each
synchronization-primitive protected access, where a larger
value indicates a greater probability).

Method 600 also includes an act 605 of imitiating an
indication of a potential data contention. In some implemen-
tations, act 605 comprises, based on 1dentifying the memory
access, initiating an 1ndication of a potential data contention
in connection with the at least one memory cell. For
example, based on having identified the data race risk 1n
connection with the memory access(es) at arrow 4037, the
output component 116 can 1nitiate one or more indications of
a potential data contention. Similar to the embodiments
described 1n connection with method 500, these indications
could be at a user interface (e.g., using the user interface
generation component 116a), 1n a trace file (e.g., using the
trace indexing component 1165), and/or to some other
soltware component.

Thus, 1n 1implementations of act 605, mitiating the 1ndi-
cation of the potential data contention could comprises at
least one of (1) mmitiating the creation of trace index data that
indicates the potential data contention (e.g., as part of an
additional data stream 306 1n a trace 113), or (1) mitiating
a visual indication of the potential data contention at a
debugging user interface. If act 605 includes initiating the
creation of trace index data, the trace index data could
include, for example, one or more execution times repre-
sented 1n the trace 113 where a potential data contention
occurred, one or more code elements associated with the
potential data contention, and the like. If act 6035 includes
initiating the visual indication of the potential data conten-
tion at the debugging user interface the visual indication
could include, for example, at least one of (1) a visual
indication along an execution timeline that indicates when

US 11,138,093 B2

19

the potential data contention occurred, or (1) a visual
indication of one or more code elements associated with the
potential data contention. These code elements (e.g., vari-
ables, data structures, commands, instructions, etc.) might
be part of thread T1 (e.g., one or more code elements relating
to the accesses at arrows 403a-403¢), and/or might be part
of thread T2 (e.g., one or more code elements relating to the
access at arrow 403/, which caused the potential data con-
tention. Thus, 1n act 605, the thread could comprise a first
thread, and the one or more code elements associated with
the data contention could include one or more of (1) a first
code element from the first thread, or (11) a second code
clement from a second thread whose prior execution 1s also
traced.

Notably, different thread synchronization mechanisms
might enforce diflerent requirements as to whether all
memory reads and/or writes must be performed within
critical sections, or whether some of those reads and/or
writes might be permissible outside of a critical section. In
other words, a reading thread and a writing thread might
have different requirements. Thus, prior to initiating the
indication of the potential data contention, the data conten-
tion analysis component 1156 might determine whether or
not the memory access(es) at arrow 403/ actually violated
the requirements of the thread synchronization mechanism
that was used. Accordingly, prior to act 605, method 600
might include an act (not depicted) of determining 1t the
access by the second thread violated the thread synchromni-
zation mechanism. In implementations, this act might com-
prise determiming whether or not the memory access to the
at least one memory cell by the second thread violated a
memory access restriction of the thread synchronization
mechanism used by the first thread. Thus, method 600 might
initiate the indication of the potential data contention 1n act
6035 based on having determined that the memory access did
violate the memory access restriction. Accordingly, method
600 mught filter out possible “false positives” prior to
initiating an indication of a potential data contention.

For example, a hardware transaction might require that
threads performing writes utilize critical sections, but might
permit threads performing reads to do so without critical
sections. Accordingly, the memory access(es) at arrow 403/
might actually only be a potential data contention it they
include one or more writes. Thus, in method 600, 1t the
thread synchronization mechanism comprises a hardware
transaction, then determining whether or not the memory
access to the at least one memory cell by the second thread
violated a memory access restriction of the thread synchro-
nization mechanism used by the first thread might comprise
determining that the memory access was a write that didn’t
use the hardware transaction.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the
described features or acts described above, or the order of
the acts described above. Rather, the described features and
acts are disclosed as example forms of implementing the
claims.

The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as illustrative and not restrictive. The scope
of the invention 1s, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope. When

10

15

20

25

30

35

40

45

50

55

60

65

20

introducing elements 1n the appended claims, the articles
“a,” “an,” “the,” and “said” are intended to mean there are
one or more of the elements. The terms “comprising,”
“including,” and “having” are intended to be inclusive and
mean that there may be additional elements other than the

listed elements.

What 1s claimed:

1. A method, implemented at a computer system that
includes one or more processors, for indicating a data
inconsistency observed during a prior execution of a thread,
the method comprising:

replaying a prior execution of a thread based on a trace

representing the prior execution of the thread;
based on replaying the prior execution of the thread,
observing an influx of a value of a memory cell, the
influx comprising an iteraction between the thread and
the value of the memory cell at an execution time point
in the replaying of the prior execution of the thread;

determining that the value of the memory cell observed
from the influx 1s mnconsistent with a prior value of the
memory cell as known by the thread at the execution
time point 1n the replaying of the prior execution of the
thread; and

based at least on the value of the memory cell observed

from the mflux being inconsistent with the prior value
of the memory cell, mitiating an indication of a data
inconsistency.
2. The method of claim 1, wherein determining that the
value of the memory cell observed from the influx 1s
inconsistent with the prior value of the memory cell as
known by the thread comprises:
determining that the prior value of the memory cell 1s
known to the thread based on at least one of (1) the
thread having previously read the prior value from the
memory cell, or (11) the thread having previously writ-
ten the prior value to the memory cell; and

determining that the value of the memory cell observed
from the influx 1s different from the prior value of the
memory cell.

3. The method of claim 2, wherein imitiating the indication
of the data inconsistency comprises initiating an indication
ol a potential race condition.

4. The method of claim 1, wherein determining that the
value of the memory cell observed from the influx 1s
inconsistent with the prior value of the memory cell as
known by the thread comprises determining that the prior
value of the memory cell 1s not known to the thread, based
at least on the thread having not previously written to the
memory cell.

5. The method of claim 4, wherein initiating the indication
of the data imnconsistency comprises 1nitiating an indication
of a read from uninitialized memory.

6. The method of claim 1, wherein observing the influx of
the value to the memory cell comprises processing a trace
data packet indicating that the memory cell stores the value.

7. The method of claim 1, wherein the thread comprises
a first thread, and wherein the value was written to the
memory cell by a second thread during a prior execution of
the second thread.

8. The method of claim 7, wherein the prior execution of
the second thread 1s also traced, and wherein the method
turther comprises determining when the second thread wrote
the value to the memory cell.

9. The method of claim 1, wherein initiating the indication
of the data inconsistency comprises at least one of (1)
initiating the creation of trace index data that indicates the

US 11,138,093 B2

21

data inconsistency, or (1) initiating a visual indication of the
data inconsistency at a debugging user interface.

10. The method of claim 1, wherein mitiating the indica-
tion of the data inconsistency comprises imtiating a visual
indication of the data inconsistency at a debugging user
interface, and wherein the wvisual indication of the data
inconsistency at the debugging user interface includes at
least one of (1) a visual indication along an execution
timeline that indicates when the data inconsistency occurred,
or (11) a visual indication of one or more code elements
associated with the data inconsistency.

11. The method of claim 1, wherein the thread comprises
a first thread, and wherein initiating the indication of the data
inconsistency comprises initiating an indication one or more
code elements associated with the data inconsistency, the
one or more code elements including one or more of (1) a
first code element from the first thread, or (1) a second code
clement from a second thread whose prior execution 1s also
traced.

12. The method of claim 1, wherein the indication of the
data inconsistency indicates that the data inconsistency
corresponds to at least one of (1) a read from uninitialized
memory, or (11) a potential race condition.

13. A method, implemented at a computer system that
includes one or more processors, for indicating a potential
data contention based on a trace representing prior thread
execution, the method comprising:

replaying prior execution of a plurality of threads based
on a trace representing the prior execution of the
plurality of threads;

based on replaying the prior execution of the plurality of
threads,

identifying activation of a thread synchromization

mechanism on a first thread of the plurality of
threads during a prior execution of the first thread of
the plurality of threads;
based on the activation of the thread synchromzation
mechanism on the first thread, identifying at least
one memory cell that was accessed by the first thread
while the thread synchronization mechanism was
active on the first thread; and
identifying a memory access to the at least one memory
cell by a second thread of the plurality of threads,
during a prior execution of a second of the plurality
ol threads, without use of the thread synchronization
mechanism by the second thread; and
based on 1dentifying the memory access to the at least one
memory cell by the second thread without use of the
thread synchronmization mechanism by the second
thread, imtiating an indication of a potential data con-
tention 1n connection with the at least one memory cell.

14. The method of claim 13, further comprising deter-
mimng whether or not the memory access to the at least one
memory cell by the second thread violated a memory access
restriction of the thread synchronization mechanism used by
the first thread, and wherein the method initiates the indi-
cation of the potential data contention based on having
determined that the memory access did violate the memory
access restriction.

15. The method of claim 14, wherein the thread synchro-
nization mechanism comprises a hardware transaction, and
wherein determining whether or not the memory access to
the at least one memory cell by the second thread violated
a memory access restriction of the thread synchronization

10

15

20

25

30

35

40

45

50

55

60

22

mechanism used by the first thread comprises determining
that the memory access was a write that didn’t use the
hardware transaction.

16. The method of claim 13, wherein the thread synchro-
nization mechanism comprises one ol a spin lock, a sema-
phore, or a mutex.

17. The method of claim 13, wherein mitiating the indi-
cation of the potential data contention comprises at least one
of (1) mitiating the creation of trace index data that indicates
the potential data contention, or (1) mmitiating a visual
indication of the potential data contention at a debugging
user interface.

18. The method of claim 13, wherein mitiating the indi-
cation of the potential data contention comprises nitiating a
visual indication of the potential data contention at a debug-
ging user iterface, and wherein the visual indication of the
potential data contention at the debugging user interface
includes at least one of (1) a visual indication along an
execution timeline that indicates when the potential data
contention occurred, or (11) a visual indication of one or

more code elements associated with the potential data con-
tention.

19. A computer system comprising:
at least one processor; and
at least one computer-readable media having stored
thereon computer-executable instructions that are
executable by the at least one processor to cause the
computer system to indicate a potential data contention
based on a trace representing prior thread execution, the
computer-executable 1nstructions including 1nstruc-
tions that are executable by the at least one processor to
at least:
replay prior execution of a plurality of threads based on a
trace representing the prior execution of the plurality of
threads;
based on replaying the prior execution of the plurality of
threads,
identily activation of a thread synchronization mecha-
nism on a first thread of the plurality of threads
during a prior execution of the first thread of the
plurality of threads;
based on the activation of the thread synchromization
mechanism on the first thread, identify at least one
memory cell that was accessed by the first thread
while the thread synchronization mechanism was
active on the first thread; and
identily a memory access to the at least one memory
cell, during a prior execution of a second of the
plurality of threads, without use of the thread syn-
chronization mechanism by the second thread; and
based on 1dentitying the memory access to the at least one
memory cell by the second thread without use of the
thread synchronization mechanism by the second
thread, iitiate an 1ndication of a potential data conten-
tion 1n connection with the at least one memory cell.
20. The computer system of claim 19, wherein the com-
puter-executable instructions also include instructions that
are executable by the at least one processor determine
whether or not the memory access to the at least one memory
cell by the second thread violated a memory access restric-
tion of the thread synchronization mechanism used by the
first thread, and wherein the computer system 1nitiates the
indication of the potential data contention based on having
determined that the memory access did violate the memory

access restriction.

	Front Page
	Drawings
	Specification
	Claims

