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FITTING 3D MODELS OF COMPOSITE
OBJECTS

BACKGROUND

Composite objects such as human faces, people, vehicles,
amimals and others, are objects made up of more than one
class of element. In the case of a vehicle, the vehicle 1s made
up of various classes of element including a body of the
vehicle, dirt or grease on the surface of the vehicle, acces-
sories added to the vehicle such as luggage pods, cycle
racks, ski racks. A human face 1s also an object made up of
more than one class of element including but not limited to:
skin, hair, jewelry, clothing, spectacles.

Computer graphics and image processing technologies for
generating virtual 1mages ol objects typically use three-
dimensional (3D) models of the type of object being gen-
erated. The 3D model 1s typically a generic model for the
type of object. In order to use the 3D model to render images
of the object, the 3D model has to be made suitable for a
particular example of the object. One way to achieve this 1s
to capture sensor data depicting the object and use the
captured data to fit the 3D model. The process of fitting the
3D model involves computing values of parameters of the
3D model such as pose (3D position and orientation) and
shape parameters.

The embodiments described below are not limited to

implementations which solve any or all of the disadvantages
of known ways of fitting 3D models.

SUMMARY

The following presents a simplified summary of the
disclosure 1n order to provide a basic understanding to the
reader. This summary 1s not intended to 1dentify key features
or essential features of the claimed subject matter nor 1s 1t
intended to be used to limit the scope of the claimed subject
matter. Its sole purpose 1s to present a selection of concepts
disclosed herein 1n a simplified form as a prelude to the more
detailed description that 1s presented later.

In various examples there 1s a method of fitting a 3D
model to mput data. Input data comprises a 3D scan and
associated appearance mformation. The 3D scan depicts a
composite object having elements from at least two classes.
A texture model 1s available which when given an input
vector computes, for each of the classes, a texture and a
mask. A 3D model of shape of a target class 1s available. A
joint optimization 1s computed to find values of the input
vector and values of parameters of the 3D model, where the
optimization enforces that the 3D model, when instantiated
by the values of the parameters, gives a simulated texture
which agrees with the input data 1n a region specified by the
mask associated with the 3D model; such that the 3D model
1s fitted to the input data.

Many of the attendant features will be more readily
appreciated as the same becomes better understood by
reference to the following detailed description considered in
connection with the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

The present description will be better understood from the
tollowing detailed description read in light of the accompa-
nying drawings, wherein:

FIG. 1 1s a schematic diagram of a model fitter deployed
as a cloud service;
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2

FIG. 2 1s a flow diagram of a method of operation of a
model fitter;

FIG. 3 1s a schematic diagram of a texture model, textures
and masks;

FIG. 4 1s a schematic diagram of an auto encoder;

FIG. 5 1s a flow diagram of a method of training a texture
model;

FIG. 6 1s a flow diagram of using a fitted model for
various tasks; and

FIG. 7 illustrates an exemplary computing-based device
in which embodiments of a model fitter are implemented.
Like reference numerals are used to designate like parts 1n
the accompanying drawings.

DETAILED DESCRIPTION

The detailed description provided below in connection
with the appended drawings i1s intended as a description of
the present examples and 1s not intended to represent the
only forms in which the present examples are constructed or
utilized. The description sets forth the functions of the
example and the sequence of operations for constructing and
operating the example. However, the same or equivalent
functions and sequences may be accomplished by different
examples.

The term “texture” 1s a term i1n the art of computer
graphics and 1mage processing and refers to a two-dimen-
sional (2D) image depicting colour or other surface attri-
butes to be applied to a three-dimensional (3D) model of an
object.

The term UV space refers to the two axes U and V that
span a texture.

The term “mask’ 1s a term 1n the art of computer graphics
and 1mage processing and refers to a 2D 1mage of values 1n
the interval [0,1] that indicate a degree 1n which a given
image element 1s part ol a particular class or not.

Although the present examples are described and 1llus-
trated herein as being implemented 1n a model fitter used
with human faces, the system described i1s provided as an
example and not a limitation. As those skilled 1n the art will
appreciate, the present examples are suitable for application
in a variety of diflerent types of model fitting systems
including with other types of composite object including but
not limited to: people, animals, buildings, vehicles.

One of the common 1ssues when fitting a face model to a
face scan 1s that the scan might contain features that are not
part of the model. Examples of such features include facial
hair, head hair, eyebrows, glasses. Face model fitters will
often attempt to deform the model to explain those features,
resulting 1n a poor, unrealistic {it. One solution for this 1s to
manually clean every scan to remove the non-modelled
teatures, which 1s very costly. Another approach is to use a
robust fitting metric, but that introduces bias and requires
significant tuning to achieve comparable results. The same
problems arise for other types of composite object such as
people, animals, vehicles, human hands.

FIG. 1 1s a schematic diagram of a model fitter 100
deployed as a web service. The model fitter 100 comprises
a texture model 102 described 1n more detail below. The
texture model 102 enables different classes of element of
composite objects depicted 1n mput data to be segmented.
The segmentation 1s computed as part of the model fitting
process and the result 1s improved accuracy and quality of
model fitting since the different segments are treatable
differentially. In an example, the segmentation enables fea-
tures such as facial hair, eyebrows, glasses to be accommo-
dated so the model fitting process 1s improved. The model
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fitter 100 receives input data 106 comprising scan and
appearance data depicting a composite object. A non-ex-
haustive list of examples of types of scan data 1s: depth map,
point cloud, triangle mesh. A non-exhaustive list of
examples of sources of scan data 1s: laser range scanner, time
of flight camera. A non-exhaustive list ol examples of
appearance data 1s: colour video, colour 1mage, texture of a
3D mesh. The model fitter has access to one or more 3D
models for at least one class of element of a type of
composite object. In an example where the composite object
1s a face, the 3D models include 3D models of face shape.
In an example where the composite object 1s a vehicle, the
3D models include 3D models of vehicle shape. The 3D
models are parameterized where the parameters include
shape parameters. The 3D models optionally have pose
parameters and/or texture parameters. Pose parameters
include position and ornentation. Initially (before fitting),
parameters of the 3D models are set to default values or
values determined by a separate initialization process.

The output of the model fitter 1s a fitted 3D model which
1s the 3D model with values of the parameters which have
been computed such that the 3D model corresponds with the
input data as far as possible. The fitted 3D model 1s usetul
for a wide variety of tasks some of which are illustrated 1n
FIG. 1 and FIG. 6. The output of the model fitter also
includes the output of the texture model which 1s, for each
class of element of the composite object, a mask; and a
plurality of texture 1mages 1n UV space, one for each of the
classes of element of the composite object.

FIG. 1 shows the model fitter deployed as a web service
at one or more computing resources 1 the cloud and 1n
communication, via communications network 104 with one
or more client devices. In an example, a client device 1s a
head-worn mixed reality computing device 114 and the
model fitter 1s used as part of a process to render a virtual
image ol a face of a person 112 as part of a telepresence
function. In another example a client device 1s a game
apparatus 110 which uses the fitted model to render a virtual
object 1n a computer game. In another example a client
device 1s an object tracker 108 which tracks objects depicted
in 1mcoming sensor data such as to track the position,
orientation and shape of hands of a person to enable control
of a natural user interface. In another example, a client
device 1s a 3D model generator 116 which generates 3D
models of objects from scan data and uses the model fitter
as part of 1ts processing. In another example, a client device
1s a training data generator, which uses the fitted model to
render 1mages and generate traimng data. In another
example, the client device 1s a smart phone 120 incorporat-
ing an object tracker or telepresence function. The client
devices 1llustrated 1n FIG. 1 are examples and other types of
client device are used in other examples.

It 1s not essential to deploy the model fitter as a web
service. In some cases the model fitter 1s deployed at a client
device.

The functionality of the model fitter 1s shared between the
cloud computing resources and the client computing device
1N SOme cases.

The model fitter operates 1n an unconventional manner to
achieve the highly accurate model fitting of the disclosure.

The model fitter improves the functioning of the under-
lying computing device by computing a joint optimization of
parameters of a 3D model and a texture model.

Alternatively, or in addition, the functionality of the
model fitter 1s performed, at least in part, by one or more
hardware logic components. For example, and without limi-
tation, 1llustrative types of hardware logic components that
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are optionally used include Field-programmable Gate
Arrays (FPGAs), Application-specific Integrated Circuits
(ASICs), Application-specific Standard Products (ASSPs),
System-on-a-chip systems (SOCs), Complex Programmable
Logic Devices (CPLDs), Graphics Processing Units
(GPUs).

FIG. 2 1s a flow diagram of a method of operation at a
model fitter such as that of FIG. 1. Scan and appearance data
1s obtained 200 depicting a composite object. The scan and
appearance data 1s obtained from one or more capture
devices and examples of scan and appearance data are given
with reference to FIG. 1 above. The model fitter accesses
202, 204 a texture model and a 3D model.

The texture model has parameters comprising an vector
expressed as a vector. The vector 1s a point 1n a multi-
dimensional latent space z of an autoencoder as described
with reference to FIG. 4 below. The texture model has
already been tramned and only the decoder part of the
autoencoder 1s used during operation of the method of FIG.
2. Detail about how the texture model is trained 1s given later
in this document. When the decoder recerves an vector as
input 1t computes for each class of element of the composite
object, a UV texture image and a mask. In order to use the
decoder to generate masks and UV texture images for a
particular scan and appearance data input, the model fitter
has to decide what values to put into the vector. The model
fitter does this as part of a jomnt optimization as now
described.

The 3D model accessed at operation 204 1s a shape model
of a target class among the classes of elements that compose
an object. In an example the target class 1s skin and the
composite object 1s a human face. In another example the
target class 1s metal body and the composite object 1s a
vehicle. The 3D model has parameters comprising shape
parameters and optionally pose parameters. Any suitable
form for the 3D model 1s used such as a polygon mesh, a
smooth surface rigged 3D model, or other 3D model.

The model fitter seeks values of the parameters of the 3D
model and the parameters of the texture model which enable
the observed scan and appearance data from operation 200
to be explained. The model fitter therefore computes a joint
optimization of both the parameters of the 3D model and the
parameters of the texture model. The optimization includes
terms to enable parts of the observed scan and appearance
data which depict non-target class elements (as determined
using the masks) to be given less weight where appropriate.
In this way the accuracy of the fitted model at the end of the
process of FIG. 2 1s high since the non-target class elements
are less likely to mapproprately deform the 3D model. The

50 joint optimization 1s an iterative process which begins with
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random or default values of the parameters for both the
texture model and the 3D model. In some examples the
initial values of the parameters are set using a separate
initialization process. As the iterations proceed the values of
the parameters gradually become better at explaining the
observed data.

Fitting a model to scan data 1s formulated as an optimi-
zation problem where the texture model and 3D model
parameters are optimization variables and the optimization
function, or loss, measures how well the model can explain
the scan data. The method of FIG. 2 modifies the loss used
in model fitting to be able to 1gnore non-target classes of
clements 1n a scan and focus the fit only on the parts of the
scan that are compatible with the model. To improve read-
ability, the following paragraphs assume the non-target class
clements are hair. However, these paragraphs also apply for
other types of non-target class element.
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A loss contains a data term that penalizes differences
between the model and the scan and a regularization term
that measures how likely the model parameters are. Each of
these terms has a weight associated with 1t that indicates how
much influence 1t has on the fit.

Given a mask indicating which parts of the scan texture
are hair, use this mask to modily the loss by allowing the
model to 1gnore the data 1n hair regions and instead default
to a default value of the model in those regions. This 1s
achieved, for example, by down-weighting the data terms of
the loss 1n hair regions and introducing an additional regu-
larization term that forces the model to be close to a default
in hair regions. This prevents the model fitter from deform-
ing the model into unlikely configurations due to hair and
instead fit to the default because the data term of the loss has
a low weight, while the new regularization term encourages
the loss to deform the model to fit to the template face. In
non-hair regions, the data term has a high weight while the
new regularization term has a low or zero weight and the
loss encourages the fitter to deform the model to fit to the
data.

In some examples the loss incorporates information on the
expected deformations caused by hair by only ignoring scan
data 11 1t lies within the hair mask and 1n the outward normal
directions with respect to the head surface.

The segmentation method used in the process of FIG. 2 1s
generative 1n contrast to alternative semantic face parsing
methods. During fitting, the parameters of the texture model
are optimized jointly with a shape model and as shape
improves, so does the texture estimate, which in turn
improves the estimate of the feature-separating mask. The
discriminative nature of alternative semantic face parsing
methods means that only a single estimate of the mask will
be generated and no improvements will be made during
fitting.

Moreover, the method of FIG. 2 generates a mask 1n UV
space, while semantic face parsing methods work in 1mage
space. The UV-space mask facilitates fitting to 3D data. For
example, 1f one were to use semantic face parsing to perform
segmentation on a full scan of a human head, several renders
of the scan would first need to be generated to cover all sides
of the head. The renders would then all need to be processed
by semantic face parsing, which does not return consistent
results 1 overlapping regions. The present technology uses
UV-map segmentation which simplifies this by covering the
entire space of the model 1n a single mask.

In an example two layers are output by the texture model,

cach output texture having a corresponding mask as follows:
(T°, M") and (T', M"). In this case, a final texture is obtained

ds

T=M°*T°4+(1-M"y*T! (equation 1)

because the mask M'=1-M". Both T and M parametrize
the texture of an object 1n uv-space, that is

M:[0,11°—[0,1] (equation 2)

(u,v) > M(uv), (equation 3)

where M’ (u, v) is the value of the mask at the 3D point
of the shape model with uv-coordinates (u, v). Similarly

7%:[0,11°—[0,255]° (equation 2)

(u,v) > T(u,v), (equation 3)

where T (u, v) 1s the red green blue (RGB) value of the
texture at the 3D point of the shape model with uv-coordi-
nates (u, v). The mapping from uv coordinates to 3D points
in a mesh 1s part of the shape and appearance model, 1t 1s
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6

fixed and known. Using this parametrization 1s an eflicient
way to store texture information for a 3D model because the
texture information 1s parametrized in two dimensions 1n a
uniform domain and can be stored, learned, and processed as
1mages.

A parametric shape and appearance model S(0,z) 1s speci-
fied for the class of objects of interest, where the parameters
0 control the 3D shape of the object with a function S(0) that
creates a mesh for each instance of model parameter B and
the parameter z controls its appearance by a function T(z)
that generates texture images T,T° and mask M" that param-
etrize the texture of the 3D mesh 1n uv-space. The texture
function corresponds to the decoder of the texture model
described herein, the texture parameter z to its latent space,
and M°, MT", T satisfy Equation 1.

A task 1s to fit the parametric shape and appearance model
to 3D scans described by a set of 3D points x,, . . ., X with
appearance information a,, . . ., a,. Some of these points
correspond to an object of interest, while other points
correspond to object classes that are not modelled. The base
layer T° describes the texture of the class of objects of the
parametric shape and appearance model S(0,z) and the mask
M describes where this texture model is active. As a result,
given an input scan, a fitter uses M" to determine which
points of the input scan need to be matched to the model and
T" to model the appearance of the object at each point that
corresponds to the object of interest.

Formulate the fitting as a minimization problem, where
the optimization variables are the parameters 0, z and the
correspondences between input points and the correspond-
ing points 1n the mesh model S(0,z). Use uv coordinates to
define these correspondences and associate a uv coordinate
pair (u, v,) to each mput point X, in the scan. To simplify
notation, denote the set of these coordinates as U ={(u,,
vy), ..., v )} and by S(6, u, v,) the 3D point in the mesh
S(9) with uv coordinates (u,, v,). The objective function or
loss of the optimization problem defines the goal: find the
model parameters and correspondences that best explain the
observed data. The model fitter 100 measures how well the
model fits the input data with the following loss:

"y

Z MG(”E! VI)“S(Q!' U, V.E') _Xflz + |T0(Hf" Vi) _ailz] +
=1

D (L= MOy, viD[ISE, ui, vi) = S s, vl +
i=1

T(w;, vi) — ail* | + RO, 2),

where R (0,z) 1s a regularization function that solves
indeterminations and S(0°) is a base template of the geom-
etry of the object class of interest. At points where the scan
fits well the object of interest, the mask M°(u,, v,) is close to
1 and the loss function finds model parameters that explain
the input data with the first term 1n the loss. At points where
the mask indicates that the data 1s not about the object of
interest, M"(u,, v,) is close to zero and the loss matches the
model geometry in those regions to a base template mesh
S(6°,2°) that explains in average the object of interest in
those regions and the appearance of the mput point to the
texture model T that accounts for the combined texture of

the model and other surfaces in the scene which are not the
object of interest.
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During fitting, the model fitter 100 jointly estimates the
geometry of the object, 1ts texture, and the areas that are part
of the object of interest 1n the scan by solving the following
optimization problem:

min £(6, z, U).
4.7,

Solving jointly for texture, geometry, and a mask that
determines which parts of the scan are part of the object of
interest and which parts of the scan depict regions which are
not the object of interest gives accurate results. Alternative
methods are less accurate and involve pre-computing the
mask only form the 1mput texture and do not optimize for it
using also geometry iformation, or making a generic mask
that 1s used for all input scans. In the present technology

there 1s a different mask estimated for each input scan to
better adapt to the data.

FIG. 3 15 a schematic diagram of a texture model such as
that of FIG. 1 and that used 1n FIG. 2. It comprises a decoder
312 which takes as mput a vector 314 1n a latent space z and
it computes as output a plurality of texture images T°, T*, T?
and corresponding masks M°, M', M”. In the example of
FIG. 3 there are three texture images and three masks.
However, it 1s possible to use two texture images and two
masks, or more than two texture images and masks.

To aid understanding of the technology, FIG. 3 gives
schematic representations of the texture images and the
masks. Texture images 300, 304 and 308 are on the left hand
side and corresponding masks 302, 306, 310 are on the right
hand side. In this example texture 1mage 300 depicts skin of
a person’s face, texture image 304 depicts facial hair of the
person’s face and texture image 308 depicts jewelry of the
person’s face. The mask 302 comprises values which seg-
ment the hair and jewelry and enable the facial hair and
jewelry to be removed. The mask 306 has values which
segment the hair and enable the facial hair to be removed.
The mask 310 has values which segment the jewelry.

FIG. 4 1s a schematic diagram of an autoencoder com-
prising the decoder 312 of the texture model. During training
the decoder 312 1s part of an autoencoder such as that of
FI1G. 4 and once trained, the encoder 400 1s discarded.

The auto-encoder 1s a standard auto-encoder or a varia-
tional autoencoder both of which are commercially available
types of neural network. The encoder 400 recerves as input
appearance data such as a complete texture which 1s 1n the
form of an 1mage 402. The word “complete” means that the
texture has not yet been separated into layers, one per class
of element of the composite object. The encoder 400 com-
putes an vector of the appearance data 1into a latent space z
and the vector 1s 1n the form of a vector. The decoder 312
takes the vector z as mnput and computes a mapping from the
vector to a plurality of texture images 1n UV space and a
plurality of masks. A weighted combination of the texture
images 1s computed as 1llustrated i FIG. 4 to give an output
image 404. During training an aim 1s to have the output
image 404 be as close as possible to the mput appearance
texture 1image 402.

More detail about how the autoencoder 1s trained 1s now
given with reference to FIG. 5. Training data 1s available
which 1s a plurality of complete textures where some but not
all of the complete textures have been manually divided into
layers by a human. The complete textures which have been
manually divided into layers are referred to as ground truth
complete textures.
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The traiming process takes a training instance at operation
500 where the training instance 1s a ground truth complete
texture or 1 some cases 1s a complete texture where no
separation 1nto layers 1s available 1n advance. The following
notation 1s used:

L B

I .—ground truth complete texture

-

I' ., —earound truth i-th layer

k, €{0,1}—is 1 if T,/ is available for a given T, O
otherwise

T*—texture model output, i-th layer

M’—texture model output, weighting mask for i-th layer

T—texture model output, the full texture after combining
all T’

n—number of texture layers

®—a loss function that penalizes the difference between
two textures

o—Hadamard (element-wise) product of two matrices

The training instance from operation 500 1s mput to the
autoencoder and a forward propagation 1s computed 502
through the encoder and the decoder to enable textures
(referred to as layers of a complete texture) and masks to be
computed 504.

A weighted combination 506 of the textures 1s computed
with the weights determined according to the masks. A loss
1s computed 512 and backpropagation used to update
weilghts 1n the encoder and decoder. A check 516 1s made
whether to end training and if so the decoder 1s stored 518
and the encoder discarded. The check 516 involves checking
one or more of: whether a specified number of training
instances have been used, whether the loss 1s below a
threshold, whether a specified time has elapsed. Where the
check 516 indicates that training 1s to continue, the process
returns to operation 500 for another training instance.

In an example the loss function computed at operation
512 1s expressed as:

=0

where

The loss function above 1s expressed 1n words as a loss L
1s equal to a measure of the difference between a ground
truth complete texture input and the combined weighted
texture computed from the outputs of the autoencoder
weighted by the masks, plus the sum over texture layers of
a measure of the diflerence between a ground truth texture
layer and a corresponding texture layer computed by the
decoder. A benefit of the loss function 1s that 1t enables
training both with training inputs that have ground truth
information about the corresponding layers and with ones
that do not. Since ground truth training data 1s expensive and
time consuming to obtain this i1s a significant benefit.

In an example, the loss used to train the texture model
comprises losses that force the combined output texture to
be close to the mput texture.

In an example the loss used to train the texture model also
comprises a loss that forces the target class elements (skin 1n
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the example above) to be close to a clean texture that
corresponds to the mput texture. If the mput texture does not
have a clean texture, this loss 1s not used. This loss encour-
ages the mask to separate the areas where the non-target
classes are present.

The latent space z of the texture model 1s optionally split
into a part that corresponds to the non-target class elements
and a part that corresponds to the rest of the texture. The first
part 1s used to generate a mask and non-target class element
texture. The second part of the latent space 1s used to
generate the target class texture.

This design allows for separately sampling target and
non-target class elements. This, in turn, allows for creating
combinations of those elements that have not been seen 1n
the training set. The resulting texture model can thus gen-
cralize to more combinations of target class elements and
non-target class elements. In an example this corresponds to
more combinations of hair and skin textures

FIG. 6 1s a schematic diagram of methods of using the
fitted model obtained from the process of FIG. 2.

The fitted model 600 1s used 1n some cases to render 612
an avatar 1n a game or film. Given a 3D reconstruction of a
person’s head 1t 1s often desirable to fit a deformable 3D
model to that reconstruction. Since the fitted model 1s
deformable, 1t can be used to animate the head. This 1s used
in computer games, where a famous person’s head 1is
scanned and then animated 1n the computer game.

The fitted model can also be used for generating synthetic
training data 604 used in machine learning. The fitted model
can be rendered 602 with varying pose and expression and
very accurate ground truth annotations can be extracted from
cach frame. Such accurate 3D ground truth i1s often 1mpos-
sible to obtain through manual annotation.

The fitted model 600 is also used 1n tracking such as face
tracking. The process of FIG. 2 improves the accuracy of
fitting the model to 1mages from a depth camera, for
example the Azure Kinect (trade mark). Such fitting allows
for tracking the facial features/pose/expression of people
seen by the camera. The fitted model 1s used for hand
tracking 1n some examples. The tracking data 606 1s sent to
a natural user interface to enable control of a computing
device 1n some examples.

In some examples the fitted model 600 1s used to render
608 a hologram to display a virtual avatar 1in a telepresence
application.

Where scan data 1s available, such as from camera rigs,
the fitted model 600 1s used as part of a process 610 to
generate a 3D model of an object depicted 1n the scan data.
In an example, a person 1s able to scan themselves using a
Kinect (trade mark) camera and create a digital twin of the
person for use 1n telepresence applications.

FIG. 7 illustrates various components of an exemplary
computing-based device 700 which are implemented as any
form of a computing and/or electronic device, and 1n which
embodiments of a model fitter are 1implemented 1n some
examples.

Computing-based device 700 comprises one or more
processors 704 which are microprocessors, controllers or
any other suitable type of processors for processing coms-
puter executable mstructions to control the operation of the
device 1 order to fit a 3D model to scan data. In some
examples, for example where a system on a chip architecture
1s used, the processors 704 include one or more fixed
tfunction blocks (also referred to as accelerators) which
implement a part of the method of any of FIGS. 2 and 5 1n
hardware (rather than software or firmware). Platform soft-
ware comprising an operating system 716 or any other
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suitable platform software 1s provided at the computing-
based device to enable application software 718 to be
executed on the device such as a telepresence application,
video conferencing application, natural user interface,
machine learning training application, object tracking appli-
cation or other application. A model fitter 720 1s present at
the computing-based device such as the model fitter 720
described herein. The model fitter 720 comprises a texture
model 722.

The computer executable instructions are provided using
any computer-readable media that 1s accessible by comput-
ing based device 700. Computer-readable media includes,
for example, computer storage media such as memory 702
and commumnications media. Computer storage media, such
as memory 702, includes volatile and non-volatile, remov-
able and non-removable media implemented 1n any method
or technology for storage of information such as computer
readable instructions, data structures, program modules or
the like. Computer storage media includes, but 1s not limited
to, random access memory (RAM), read only memory
(ROM), erasable programmable read only memory
(EPROM), electronic erasable programmable read only
memory (EEPROM), flash memory or other memory tech-
nology, compact disc read only memory (CD-ROM), digital
versatile disks (DVD) or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other non-transmission
medium that 1s used to store information for access by a
computing device. In conftrast, communication media
embody computer readable instructions, data structures,
program modules, or the like 1n a modulated data signal,
such as a carrier wave, or other transport mechanism. As
defined herein, computer storage media does not include
communication media. Therefore, a computer storage
medium should not be mterpreted to be a propagating signal
per se. Although the computer storage media (memory 702)
1s shown within the computing-based device 700 1t will be
appreciated that the storage 1s, in some examples, distributed
or located remotely and accessed via a network or other
communication link (e.g. using communication interface
706).

The computing-based device 700 also comprises an input/
output controller 708 arranged to output display information
to a display device 710 which may be separate from or
integral to the computing-based device 700. The display
information may provide a graphical user interface to show
parameter values of fitted models, masks, textures or other
data. The mput/output controller 708 1s also arranged to
receive and process iput from one or more devices, such as
a user mput device 712 (e.g. a mouse, keyboard, game
console, camera, microphone or other sensor). In some
examples the user input device 712 detects voice mput, user
gestures or other user actions and provides a natural user
interface (NUI). In an embodiment the display device 710
also acts as the user input device 712 11 1t 1s a touch sensitive
display device. The mput/output controller 708 outputs data
to devices other than the display device in some examples,
¢.g. a locally connected printing device, a renderer, a com-
puter game apparatus, a telepresence apparatus.

Any of the input/output controller 708, display device 710
and the user mput device 712 may comprise natural user
interface (NUI) technology which enables a user to interact
with the computing-based device 1n a natural manner, free
from artificial constraints imposed by input devices such as
mice, keyboards, remote controls and the like. Examples of
NUI technology that are provided in some examples include
but are not limited to those relying on voice and/or speech
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recognition, touch and/or stylus recognition (touch sensitive
displays), gesture recognition both on screen and adjacent to
the screen, air gestures, head and eye tracking, voice and
speech, vision, touch, gestures, and machine intelligence.
Other examples of NUI technology that are used 1n some
examples include mtention and goal understanding systems,
motion gesture detection systems using depth cameras (such
as stereoscopic camera systems, inirared camera systems,
red green blue (rgb) camera systems and combinations of
these), motion gesture detection using accelerometers/gyro-
scopes, facial recognition, three dimensional (3D) displays,
head, eye and gaze tracking, immersive augmented reality
and virtual reality systems and technologies for sensing
brain activity using electric field sensing electrodes (electro
encephalogram (EEG) and related methods).

Alternatively or i1n addition to the other examples
described herein, examples include any combination of the
following:

A computer-implemented method of decomposing an
mput UV texture map image of a composite object coms-
posed of elements 1n a plurality of classes, into two or more
layers, each layer being a UV texture map image depicting
one of the classes, the method comprising:
inputting the UV texture map to an encoder to compute an
vector,
using a decoder to map the vector into each of the layers and
to compute, for each layer, a mask.

A computer-implemented method as described in the
previous paragraph wherein the encoder and decoder have
been trained using a loss function which encourages both
that a combination of the layers, weighted according to the
masks, corresponds to the input UV texture map image, and
the layers are the same as corresponding ground truth layers.

The computer-implemented method of either or both of
the previous two paragraphs wherein the vector 1s formed of
a plurality of parts, each part corresponding to one of the
layers.

A computer-implemented method of learming a texture
model that decomposes an input UV texture map image of
a composite object ito two or more layers, each layer being
a UV texture map image depicting the method comprising:
accessing training data comprising a plurality of textures of
composite objects composed of elements 1 a plurality of
classes, where some but not all of the textures have been
decomposed into two or more ground truth layers with one
ground truth layer per class;
training a model to map a texture to a vector and then map
the vector 1nto 1images of each of the layers, and to compute
for each layer a mask;
wherein training the model comprises using a loss function
which encourages both that a combination of the layers,
welghted according to the masks, corresponds to the input
UV texture map image, and the layers are the same as the
corresponding ground truth layers.

Clause A A computer-implemented method comprising:
accessing mput data comprising: a 3D scan and associated
appearance information, the 3D scan depicting a composite
object having elements from at least two classes;
accessing, from a memory, a texture model which, given an
input vector computes, for each of the classes, a texture and
a mask;
accessing a 3D model being a shape model for a target class
among the classes of elements that compose the object and
having an associated mask from the texture model;
computing a joint optimization to find values of the mput
vector and values of parameters of the 3D model, where the
optimization enforces that the 3D model, instantiated by the
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values of the parameters, gives a simulated texture which 1s
similar to the mput data 1n a region specified by the mask
assoclated with the 3D model; such that the 3D model 1s
fitted to the input data. In this way the 3D model 1s fitted to
the 1nput data with improved accuracy. The joint optimiza-
tion enables good masks and good model {fitting to be
computed together and the masks enable parts of the textures
to be less influential 1n order to prevent them mappropnately
deforming the 3D model.

Clause B The computer-implemented method of clause A
turther comprising using the fitted 3D model for one or more
of: generating a virtual object using a mixed-reality com-
puting device, rendering 1images of the composite object to
generate training 1mages, tracking the composite object as
part ol a natural user interface, generating a virtual object in
a computer game, generating a virtual object 1 a film,
generating a 3D model of an object. In this way useful
applications are achieved for a variety of tasks.

Clause C The computer-implemented method of any
preceding clause wherein each mask 1s a separating mask
which separates elements of one of the classes of element of
the composite object from the other classes of element. By
computing separating masks the model fitter 1s able to
control the influence of different classes of element on the
model fitting process.

Clause D The computer-implemented method of any
preceding clause wherein the joint optimization reduces the
influence of elements outside the target class according to
the masks. In this way a target class 1s fit to the 3D model
in a high quality, high accuracy manner.

Clause E The computer-implemented method of any
preceding clause wherein the joint optimization comprises
down weighting data terms of a loss 1n regions depicting
clements outside the target class according to the masks, and
introducing a regularization term which encourages the 3D
model to be close to a default 1n regions outside the target
class. Using down weighting of data terms and a regular-
ization term 1s found to be an eflicient and effective way to
implement the model fitting.

Clause F The computer-implemented method of any pre-
ceding clause wherein the joint optimization ignores the
scan data corresponding to regions identified 1n masks for
classes outside the target class. Ignoring parts of the scan
data where appropriate 1s found to improve the quality of the
fitted model.

Clause G The computer-implemented method of any
preceding clause wherein the joint optimization 1s computed
using an iterative process whereby the masks are updated as
part of the iterative process. In this way the accuracy and
quality of the masks improves over the iterations and
tacilitates the joint optimization.

Clause H The computer-implemented method of any
preceding clause wherein the texture model 1s a decoder of
an auto-encoder, where the autoencoder has been trained to
decompose UV texture map images of composite objects
into two or more layers and to compute, for each layer, a
mask. Using the decoder of an autoencoder as the texture
model 1s found to work well 1n practice and also enables the

decoder to be trammed eflectively when 1t 1s part of the
autoencoder.

Clause I The computer-implemented method of any pre-
ceding clause wherein the texture model has been trained
using a loss function which enforces both that a combination
of the layers, weighted according to the masks, corresponds
to the mput UV texture map image, and the layers are the
same as corresponding ground truth layers where available.
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Using a loss function with these characteristics 1s found to
be particularly eflective and eflicient.

Clause J The computer-implemented method of any pre-
ceding clause comprising training the texture model by
using a loss function which enforces both that a combination
of the layers, weighted according to the masks, corresponds
to the mput UV texture map image, and the layers are the
same as corresponding ground truth layers where available.
Training the texture model 1 thus way gives good results.

Clause K The computer-implemented method of clause J
wherein the texture model 1s trained using training data
comprising a plurality of textures of composite objects
composed of elements 1n a plurality of classes, where some
but not all of the textures have been decomposed 1nto two or
more ground truth layers with one ground truth layer per
class. In this way eflective training 1s enabled without
having to obtain large amounts of textures with ground truth
layers which are expensive to obtain.

Clause L The computer-implemented method of clause J
comprising training the texture model to map a texture to a
vector and then map the vector into 1mages of each of the
layers, and to compute for each layer a mask.

Clause M The computer-implemented method of any
preceding clause wherein the composite object 1s a face and
the classes of element comprise at least skin and hair. In the
case that the composite object 1s a face the method 1is
particularly effective since human faces typically comprise
many classes of object, such as facial hair, jewelry, clothing,
spectacles, which influence model fitting significantly and
which are difficult to segment away from the skin without
detriment.

Clause N An apparatus comprising:
at least one processor; and
a memory for storing and encoding computer executable
instructions, that, when executed by the at least one proces-
sor 15 operative to:
access 1nput data comprising: a 3D scan and associated
appearance information, the 3D scan depicting a composite
object having elements from at least two classes;
access a texture model which, given an iput vector com-
putes, for each of the classes, a texture and a mask;
access a 3D model being a shape model for a target class
among the classes of elements that compose the object and
having an associated mask from the texture model;
compute a joint optimization to find values of the put
vector and values of parameters of the 3D model, where the
optimization encourages that the 3D model, when 1nstanti-

ated by the values of the parameters, gives a simulated
texture which 1s similar to the input data 1n a region specified
by the mask associated with the 3D model; such that the 3D
model 1s fitted to the mput data.

Clause O The apparatus of clause N integral with a
mixed-reality, head-worn computing device.

Clause P The apparatus of clause N wherein the instruc-
tions are operative to render images from the fitted 3D model
to generate a hologram of the composite object.

Clause Q The apparatus of clause N wherein the nstruc-
tions are operative to render images from the fitted 3D model
as part of a renderer in a computer game.

Clause R The apparatus of clause N wherein the mnstruc-
tions are operative to render images from the fitted 3D model
as part of a natural user interface.

Clause S The apparatus of clause N wherein the nstruc-
tions are operative to render a plurality of images from the
fitted 3D model to form training data.

10

15

20

25

30

35

40

45

50

55

60

65

14

Clause T One or more device-readable media with device-
executable instructions that, when executed by a computing
system, direct the computing system to perform for perform-
Ing operations comprising;:
accessing input data comprising: a 3D scan and associated
appearance information, the 3D scan depicting a face of a
person comprising skin and hair;
accessing, from a memory, a texture model which given an
input vector computes, for each of skin and hair, a texture
and a mask;
accessing a 3D model being a shape model for a skin and
having an associated mask from the texture model;
computing a joint optimization to find values of the input
vector and values of parameters of the 3D model, where the
optimization encourages that the 3D model, when 1nstanti-
ated by the values of the parameters, gives a simulated
texture which 1s sitmilar to the input data 1n a region specified
by the mask associated with the 3D model; such that the 3D
model 1s fitted to the input data.

The term ‘computer’ or ‘computing-based device’ 1s used
herein to refer to any device with processing capability such
that 1t executes instructions. Those skilled in the art wall
realize that such processing capabilities are incorporated
into many different devices and therefore the terms ‘com-
puter’ and ‘computing-based device’ each include personal
computers (PCs), servers, mobile telephones (including
smart phones), tablet computers, set-top boxes, media play-
ers, games consoles, personal digital assistants, wearable
computers, and many other devices.

The methods described herein are performed, mn some
examples, by software in machine readable form on a
tangible storage medium e.g. 1n the form of a computer
program comprising computer program code means adapted
to perform all the operations of one or more of the methods
described herein when the program 1s run on a computer and
where the computer program may be embodied on a com-
puter readable medium. The software 1s suitable for execu-
tion on a parallel processor or a serial processor such that the
method operations may be carried out 1n any suitable order,
or simultaneously.

This acknowledges that software 1s a valuable, separately
tradable commodity. It 1s intended to encompass software,
which runs on or controls “dumb” or standard hardware, to
carry out the desired functions. It 1s also intended to encom-
pass soltware which “describes” or defines the configuration
of hardware, such as HDL (hardware description language)
software, as 1s used for designing silicon chips, or for
configuring umiversal programmable chips, to carry out
desired functions.

Those skilled 1n the art will realize that storage devices
utilized to store program instructions are optionally distrib-
uted across a network. For example, a remote computer 1s
able to store an example of the process described as soft-
ware. A local or terminal computer 1s able to access the
remote computer and download a part or all of the software
to run the program. Alternatively, the local computer may
download pieces of the software as needed, or execute some
software instructions at the local terminal and some at the
remote computer (or computer network). Those skilled 1n
the art will also realize that by utilizing conventional tech-
niques known to those skilled 1n the art that all, or a portion
of the software instructions may be carried out by a dedi-
cated circuit, such as a digital signal processor (DSP),
programmable logic array, or the like.

Any range or device value given herein may be extended
or altered without losing the eflect sought, as will be
apparent to the skilled person.
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Although the subject matter has been described 1n lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

It will be understood that the benefits and advantages
described above may relate to one embodiment or may relate
to several embodiments. The embodiments are not limited to
those that solve any or all of the stated problems or those that
have any or all of the stated benefits and advantages. It will
turther be understood that reference to ‘an’ item refers to one
or more of those 1tems.

The operations of the methods described herein may be
carried out 1n any suitable order, or simultaneously where
appropriate. Additionally, individual blocks may be deleted
from any of the methods without departing from the scope
of the subject matter described herein. Aspects of any of the
examples described above may be combined with aspects of
any ol the other examples described to form further
examples without losing the effect sought.

The term ‘comprising’ 1s used herein to mean including
the method blocks or elements identified, but that such
blocks or elements do not comprise an exclusive list and a
method or apparatus may contain additional blocks or ele-
ments.

It will be understood that the above description 1s given by
way of example only and that various modifications may be
made by those skilled in the art. The above specification,
examples and data provide a complete description of the
structure and use of exemplary embodiments. Although
various embodiments have been described above with a
certain degree of particularity, or with reference to one or
more 1individual embodiments, those skilled in the art could
make numerous alterations to the disclosed embodiments
without departing from the scope of this specification.

The methods herein, which involve the observation of
people 1n their daily lives, may and should be enacted with
utmost respect for personal privacy. Accordingly, the meth-
ods presented herein are tully compatible with opt-in par-
ticipation of the persons being observed. In embodiments
where personal data 1s collected on a local system and
transmitted to a remote system for processing, that data can
be anonymized in a known manner. In other embodiments,
personal data may be confined to a local system, and only
non-personal, summary data transmitted to a remote system.

What 1s claimed 1s:

1. A computer-implemented method comprising:

accessing 1nput data comprising: a three-dimensional

(3D) scan and associated appearance information, the
3D scan depicting a composite object having elements
from at least two classes;

accessing, from a memory, a texture model which given

an input vector computes, for each of the classes, a
texture and a mask;

accessing a 3D model being a shape model for a target

class among the classes of elements that compose the
object and having an associated mask from the texture
model; and

computing a joint optimization to {ind values of the input

vector and values of parameters of the 3D model, where
the optimization encourages that the 3D model, instan-
tiated by the values of the parameters, gives a simulated
texture which 1s similar to the input data in a region
specified by the mask associated with the 3D model;
such that the 3D model 1s fitted to the input data.
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2. The computer-implemented method of claim 1 turther
comprising using the 3D model, instantiated by the values of
the parameters, for one or more of:

generating a virtual object using a mixed-reality comput-

ing device, rendering 1images of the composite object to
generate training 1images, tracking the composite object
as part of a natural user interface, generating a virtual
object 1n a computer game, generating a virtual object
in a film, generating a 3D model of an object.

3. The computer-implemented method of claim 1 wherein
cach mask 1s a separating mask which separates elements of
one of the classes of element of the composite object from
the other classes of element.

4. The computer-implemented method of claim 1 wherein
the joint optimization reduces influence of elements outside
the target class according to the masks.

5. The computer-implemented method of claim 1 wherein
the joint optimization comprises down weighting data terms
of a loss 1n regions depicting elements outside the target
class according to the masks, and introducing a regulariza-
tion term which encourages the 3D model to be close to a
default 1n regions outside the target class.

6. The computer-implemented method of claim 1 wherein
the joint optimization 1gnores parts of the 3D scan corre-
sponding to regions 1dentified in masks for classes outside
the target class.

7. The computer-implemented method of claim 1 wherein
the joint optimization 1s computed using an iterative process
whereby the masks are updated as part of the iterative
process.

8. The computer-implemented method of claim 1 wherein
the texture model 1s a decoder of an autoencoder, where the
autoencoder has been trained to decompose UV texture map
images of composite objects 1into two or more layers and to
compute, for each layer, a mask.

9. The computer-implemented method of claim 8 wherein
the texture model has been trained using a loss function
which enforces both that a combination of the layers,
weighted according to the masks, corresponds to the input
UV texture map image, and the layers are the same as
corresponding ground truth layers.

10. The computer-implemented method of claim 8 com-
prising training the texture model by using a loss function
which enforces both that a combination of the layers,
weilghted according to the masks, corresponds to the input
UV texture map image, and the layers are the same as
corresponding ground truth layers.

11. The computer-implemented method of claim 10
wherein the texture model 1s trained using training data
comprising a plurality of textures of composite objects
composed of elements 1n a plurality of classes, where some
but not all of the textures have been decomposed 1nto two or
more ground truth layers with one ground truth layer per
class.

12. The computer-implemented method of claim 10 com-
prising training the texture model to map a texture to a
vector and then map the vector into 1mages of each of the
layers, and to compute for each layer a mask.

13. The computer-implemented method of claim 1
wherein the composite object 1s a face and the classes of
clement comprise at least skin and harr.

14. An apparatus comprising:

at least one processor; and

a memory for storing and encoding computer executable

instructions, that, when executed by the at least one
processor 1s operative to:




US 11,127,225 Bl

17

access mput data comprising: a three-dimensional (3D)
scan and associated appearance information, the 3D
scan depicting a composite object having elements
from at least two classes;

access a texture model which, given an input vector,
computes, for each of the classes, a texture and a
mask;

access a 3D model being a shape model for a target
class among the classes of elements that compose the
object and having an associated mask from the
texture model; and

compute a joint optimization to find values of the input
vector and values of parameters of the 3D model,
where the optimization encourages that the 3D
model, instantiated by the values of the parameters,
gives a simulated texture which agrees with the input
data 1n a region speciflied by the mask associated
with the 3D model; such that the 3D model 1s fitted

to the mnput data.
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18. The apparatus of claim 14 wherein the mstructions are
operative to render 1mages from the 3D model instantiated
with the values of the parameters as part of a natural user
interface.
19. The apparatus of claim 14 wherein the istructions are
operative to render a plurality of 1mages from the fitted 3D
model to form traiming data.
20. One or more computer storage media having com-
puter executable instructions that, when executed by a
computing system, direct the computing system to perform
operations comprising;:
accessing input data comprising: a 3D scan and associated
appearance iformation, the 3D scan depicting a face of
a person comprising skin and hair;

accessing, from a memory, a texture model which, given
an nput vector, computes, for each of skin and hair, a
texture and a mask:

accessing a 3D model being a shape model for a skin and

15. The apparatus of claim 14 integral with a mixed-
reality, head-worn computing device.

16. The apparatus of claim 14 wherein the istructions are
operative to render 1mages from the 3D model instantiated
with the values of the parameters to generate a hologram of
the composite object.

17. The apparatus of claim 14 wherein the instructions are
operative to render 1images from the 3D model instantiated
with the values of the parameters as part of a renderer 1n a
computer game.
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having an associated mask from the texture model; and

computing a joint optimization to find values of the input

vector and values of parameters of the 3D model, where
the optimization computes that the 3D model, 1nstan-
tiated by the values of the parameters, gives a simulated
texture which agrees with the input data in a region
specified by the mask associated with the 3D model;
such that the 3D model 1s fitted to the input data.
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