

US011123101B2

(12) United States Patent Sgroi, Jr.

(10) Patent No.: US 11,123,101 B2

(45) Date of Patent:

Sep. 21, 2021

(54) RETAINING MECHANISMS FOR TROCAR ASSEMBLIES

(71) Applicant: Covidien LP, Mansfield, MA (US)

(72) Inventor: Anthony Sgroi, Jr., Wallingford, CT

(US)

(73) Assignee: Covidien LP, Mansfield, MA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 166 days.

(21) Appl. No.: 16/503,838

(22) Filed: Jul. 5, 2019

(65) Prior Publication Data

US 2021/0000500 A1 Jan. 7, 2021

(51) Int. Cl.

A61B 17/34 (2006.01)

(52) **U.S. Cl.**

CPC A61B 17/3421 (2013.01); A61B 17/3476 (2013.01); A61B 2017/347 (2013.01); A61B 2017/348 (2013.01); A61B 2017/3435 (2013.01)

(58) Field of Classification Search

CPC A61B 17/1155; A61B 2017/00486; A61B 17/115; A61B 17/3421; A61B 17/3476; A61B 2017/00371; A61B 2017/00384; A61B 2017/0046; A61B 2017/00473; A61B 2017/00477; A61B 2017/0053; A61B 2017/00862; A61B 2017/07257; A61B 2017/3435; A61B 2017/347; A61B 2017/348; A61B 17/3423; A61B 17/3439; A61B 17/3468; (Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

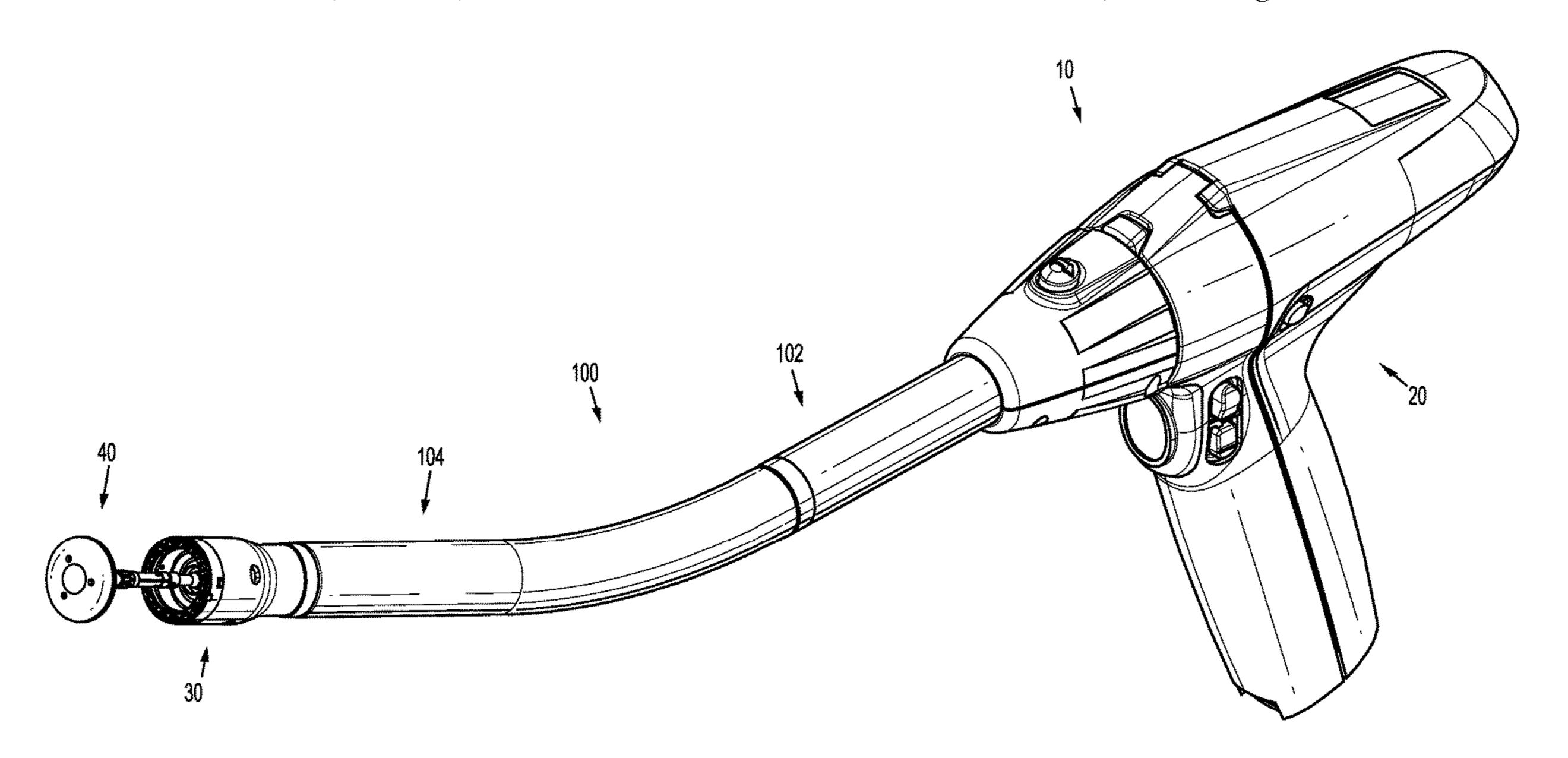
2,777,340 A 1/1957 Hettwer et al. 2,957,353 A 10/1960 Babacz 3,111,328 A 11/1963 Di Rito et al. (Continued)

FOREIGN PATENT DOCUMENTS

CA 908529 A 8/1972 CA 2451558 A1 1/2003 (Continued)

OTHER PUBLICATIONS

European Search Report dated Nov. 27, 2020, issued in corresponding EP Appln. No. 20183904, 12 pages.


(Continued)

Primary Examiner — Robert A Lynch
Assistant Examiner — Alyssa M Keane
(74) Attorney, Agent, or Firm — Carter, DeLuca & Farrell
LLP

(57) ABSTRACT

An adapter assembly includes a sleeve, a trocar assembly releasably securable within the sleeve, and a retaining mechanism configured to releasably secure the trocar assembly within the sleeve. The retaining mechanism includes a retaining block, a cam wire moveably positioned relative to the retaining block between a lock position and a release position, a retaining block extension for maintaining the cam wire relative to the retaining block, a button member in operable engagement with the cam wire, and a pair of retaining members. The button member includes a center beam moveable from an unflexed position in engagement with a stop tab of the retaining block extension to prevent movement of the button member to a flexed position out of alignment with the stop tab to permit movement of the button member.

20 Claims, 15 Drawing Sheets

US 11,123,101 B2 Page 2

(58)	Field of Cla	51B 2017/3	n Search 3443; A61B 2017/3445; A61B 2017/3482; A61B 2017/00464	5,205,459 5,221,036 5,222,963	A	6/1993	Brinkerhoff et al. Takase Brinkerhoff et al.
	See applicat		r complete search history.	5,253,793 5,261,920			Green et al. Main et al.
(5.6)		T> 6		5,271,543 5,271,544			Grant et al. Fox et al.
(56)		Referen	ces Cited	5,275,322	2 A	1/1994	Brinkerhoff et al.
	U.S	. PATENT	DOCUMENTS	5,282,810 5,285,944			Allen et al. Green et al.
	3,193,165 A	7/1965	Akhalaya et al.	5,285,945 5,292,053			Brinkerhoff et al. Bilotti et al.
	3,388,847 A 3,552,626 A		Kasulin et al. Astafiev et al.	5,301,061	. A	4/1994	Nakada et al.
	3,638,652 A	2/1972	Kelley	5,309,927 5,312,023		5/1994 5/1994	Green et al.
	3,695,058 A 3,734,515 A		Keith, Jr. Dudek	5,312,024 5,314,435			Grant et al. Green et al.
	3,759,336 A 3,771,526 A	9/1973 11/1973	Marcovitz et al. Rudie	5,314,436	A	5/1994	Wilk
	4,162,399 A	7/1979	Hudson	5,326,013 5,330,486		7/1994 7/1994	Green et al. Wilk
	4,198,982 A 4,207,898 A	4/1980 6/1980	Fortner et al. Becht	5,333,773 5,244,050		8/1994	Main et al.
	4,289,133 A	9/1981	Rothfuss	5,344,059 5,346,115			Green et al. Perouse et al.
	4,304,236 A 4,319,576 A		Conta et al. Rothfuss	5,348,259 5,350,104			Blanco et al. Main et al.
	4,350,160 A 4,351,466 A	9/1982 9/1982	Kolesov et al. Noiles	5,350,355	A	9/1994	Sklar
	4,379,457 A	4/1983	Gravener et al.	5,355,897 5,360,154		10/1994 11/1994	Pietrafitta et al. Green
	4,473,077 A 4,476,863 A		Noiles et al. Kanshin et al.	5,368,215 5,383,874			Green et al. Jackson et al.
	4,485,817 A	12/1984	Swiggett	5,383,880			Hooven
	4,488,523 A 4,505,272 A		Shichman Utyamyshev et al.	5,389,098 5,392,979			Tsuruta et al. Green et al.
	4,505,414 A 4,520,817 A	3/1985 6/1985		5,395,030) A	3/1995	Kuramoto et al.
	4,550,870 A	11/1985	Krumme et al.	5,395,033 5,400,267			Byrne et al. Denen et al.
	4,573,468 A 4,576,167 A	3/1986 3/1986	Conta et al. Noiles	5,403,333 5,404,870			Kaster et al. Brinkerhoff et al.
	4,592,354 A 4,603,693 A		Rothfuss Conta et al.	5,411,508	3 A	5/1995	Bessler et al.
	4,606,343 A	8/1986	Conta et al.	5,413,267 5,425,738			Solyntjes et al. Gustafson et al.
	4,632,290 A 4,646,745 A	12/1986 3/1987	Green et al. Noiles	5,427,087	Α	6/1995	Ito et al.
	4,665,917 A	5/1987	Clanton et al.	5,433,721 5,437,684			Hooven et al. Calabrese et al.
	4,667,673 A 4,671,445 A	5/1987 6/1987	Barker et al.	5,439,156 5,443,198			Grant et al. Viola et al.
	4,700,703 A 4,703,887 A		Resnick et al. Clanton et al.	5,447,514	A	9/1995	Gerry et al.
	4,705,038 A	11/1987	Sjostrom et al.	5,454,825 5,464,415		10/1995	Van Leeuwen et al Chen
	4,708,141 A 4,717,063 A		Inoue et al. Ebihara	5,467,911 5,470,006		11/1995 11/1995	Tsuruta et al.
	4,722,685 A 4,752,024 A		de Estrada et al. Green et al.	5,474,223	A	12/1995	Viola et al.
	4,754,909 A	7/1988	Barker et al.	5,476,379 5,487,499		12/1995 1/1996	Disel Sorrentino et al.
	4,776,506 A 4,817,847 A	10/1988 4/1989	Green Redtenbacher et al.	5,497,934	A	3/1996	Brady et al.
	4,823,807 A	4/1989	Russell et al.	5,503,635 5,518,163			Sauer et al. Hooven
	4,873,977 A 4,874,181 A	10/1989	Avant et al. Hsu	5,518,164 5,522,534			Hooven Viola et al.
	4,893,662 A 4,903,697 A		Gervasi Resnick et al.	5,526,822	2 A	6/1996	Burbank et al.
	4,907,591 A	3/1990	Vasconcellos et al.	5,529,235 5,533,661			Boiarski et al. Main et al.
	4,917,114 A 4,957,499 A		Green et al. Lipatov et al.	5,535,934 5,535,937			Boiarski et al. Boiarski et al.
	4,962,877 A 5,005,749 A	10/1990 4/1991	Hervas	5,540,375	A	7/1996	Bolanos et al.
	5,042,707 A	8/1991	Taheri	5,540,706 5,542,594			Aust et al. McKean et al.
	5,047,039 A 5,104,025 A		Avant et al. Main et al.	5,562,239	A	10/1996	Boiarski et al.
	5,119,983 A	6/1992	Green et al.	5,588,579 5,609,285			Schnut et al. Grant et al.
	5,122,156 A 5,129,118 A		Granger et al. Walmesley	5,626,587 5,626,591			Bishop et al.
	5,129,570 A 5,139,513 A		Schulze et al. Segato	5,626,591 5,632,432			Kockerling et al. Schulze et al.
	5,152,744 A	10/1992	Krause et al.	5,632,433			Grant et al.
	5,158,222 A 5,188,638 A	10/1992 2/1993	Green et al. Tzakis	5,639,008 5,641,111			Gallagher et al. Ahrens et al.
	5,193,731 A	3/1993	Aranyi	5,645,209 5,647,526			Green et al. Green et al.
	5,197,648 A 5,197,649 A		Gingold Bessler et al.	5,653,374			Young et al.

US 11,123,101 B2

Page 3

(56)		Referen	ces Cited	6,315,184 E		Whitman
	U.S.	PATENT	DOCUMENTS	6,321,855 E 6,329,778 E	31 12/2001	Culp et al.
		- (6,338,737 E		Toledano
,	58,300 A		Bito et al.	6,343,731 E 6,348,061 E		Adams et al. Whitman
,	62,662 A		Bishop et al.	6,368,324 E		Dinger
,	67,517 A 69,918 A		Hooven Balazs et al.	6,371,909 E		Hoeg et al.
,	85,474 A	11/1997		6,387,105 E		Gifford, III et al.
,	93,042 A		Boiarski et al.	6,398,795 E	6/2002	McAlister et al.
,	,		Huitema et al.	6,402,008 E		Lucas
5,7	09,335 A	1/1998	Heck	6,434,507 E		Clayton et al.
,	13,505 A		Huitema	6,439,446 E 6,443,973 E		Perry et al. Whitman
	15,987 A		Kelley et al.	6,450,390 E		Heck et al.
,	18,360 A 20,755 A	2/1998	Green et al. Dakov	6,461,372 E		Jensen et al.
,	32,872 A		Bolduc et al.	6,478,210 E	32 11/2002	Adams et al.
/	49,896 A	5/1998		6,488,197 E		Whitman
,	58,814 A		Gallagher et al.	6,491,201 E		Whitman
/	62,603 A		Thompson	6,494,877 E 6,503,259 E		Odell et al. Huxel et al.
,	79,130 A		Alesi et al.	6,517,566 E		Hovland et al.
/	82,396 A 82,397 A		Mastri et al. Koukline	6,520,398 E		Nicolo
/	92,573 A		Pitzen et al.	6,533,157 E		Whitman
,	97,536 A		Smith et al.	6,537,280 E		Dinger et al.
5,75	99,857 A	9/1998	Robertson et al.	6,551,334 E		Blatter et al.
/	14,055 A		Knodel et al.	6,578,751 E		Hartwick
,	20,009 A		Melling et al.	6,585,144 E 6,588,643 E		Adams et al. Bolduc et al.
,	33,698 A 36,503 A		Hinchliffe et al. Ehrenfels et al.	6,592,596 E		
,	39,639 A		Sauer et al.	6,601,749 E		Sullivan et al.
,	55,312 A		Toledano	6,605,078 E		Adams
/	60,581 A		Robertson et al.	6,605,098 E		Nobis et al.
,	63,159 A	1/1999		6,610,066 E		Dinger et al.
,	68,760 A		McGuckin, Jr.	6,611,793 E 6,626,921 E		Burnside et al. Blatter et al.
/	81,943 A 08,427 A	3/1999 6/1000	неск McKean et al.	6,629,630 E		
,	,		Viola et al.	6,631,837 E		
,	47,363 A		Bolduc et al.	6,632,227 E		Adams
•	51,576 A		Wakabayashi	6,632,237 E		Ben-David et al.
,	54,259 A		Viola et al.	6,645,218 E		Cassidy et al. Blatter et al.
,	57,363 A	9/1999		6,652,542 E 6,654,999 E		Stoddard et al.
,	64,774 A 93,454 A	10/1999	McKean et al.	6,659,327 E		Heck et al.
,	93,468 A		Rygaard	6,676,671 E	32 1/2004	Robertson et al.
/	10,054 A		Johnson et al.	6,681,979 E		Whitman
/	17,354 A		Culp et al.	6,685,079 E		Sharma et al.
/	24,748 A		Manzo et al.	6,695,198 E 6,695,199 E		Adams et al. Whitman
,	32,849 A 45,560 A		Mastri et al. McKean et al.	6,698,643 E		Whitman
,	50,472 A		Shibata	6,699,177 E		Wang et al.
,	53,390 A		Green et al.	6,716,222 E		McAlister et al.
/	68,636 A	5/2000	Chen	6,716,233 E		Whitman
/	83,241 A		Longo et al.	6,726,697 E		Nicholas et al. Hartwick
,	90,123 A 02,271 A		Culp et al. Longo et al.	6,743,244 E		Blatter et al.
,	17,148 A		Ravo et al.	6,763,993 E		Bolduc et al.
/	19,913 A		Adams et al.	6,769,590 E		Vresh et al.
6,1	26,058 A	10/2000	Adams et al.	6,769,594 E		Orban, III
,	26,651 A	10/2000		6,783,533 E 6,792,390 E		Green et al. Burnside et al.
,	29,547 A		Cise et al.	6,793,652 E		Whitman et al.
/	42,933 A 49,667 A		Longo et al. Hovland et al.	6,817,508 E		Racenet et al.
,	76,413 B1		Heck et al.	6,820,791 E		
/	79,195 B1		Adams et al.	6,821,282 E		Perry et al.
/	93,129 B1		Bittner et al.	6,827,246 E		Sullivan et al.
/	03,553 B1		Robertson et al.	6,830,174 E 6,840,423 E		Hillstead et al. Adams et al.
,	09,773 B1		Bolduc et al.	6,843,403 E		Whitman
/	39,732 B1 41,139 B1	5/2001 6/2001	Milliman et al.	6,846,308 E		Whitman et al.
/	41,140 B1		Adams et al.	6,846,309 E		Whitman et al.
/	53,984 B1		Heck et al.	6,849,071 E		Whitman et al.
	58,107 B1		Balazs et al.	6,852,122 E		
	64,086 B1		McGuckin, Jr.	6,860,892 E		Tanaka et al.
,	64,087 B1		Whitman	6,866,178 E		Adams et al.
,	69,997 B1 73,897 B1		Balazs et al. Dalessandro et al.	6,872,214 E 6,874,669 E		Sonnenschein et al Adams et al.
,	79,897 B1 79,809 B1	8/2001		6,884,250 E		Monassevitch et al
•	,		Adams et al.	6,899,538 E		Matoba
- 1	, _		 .	, , , = =		

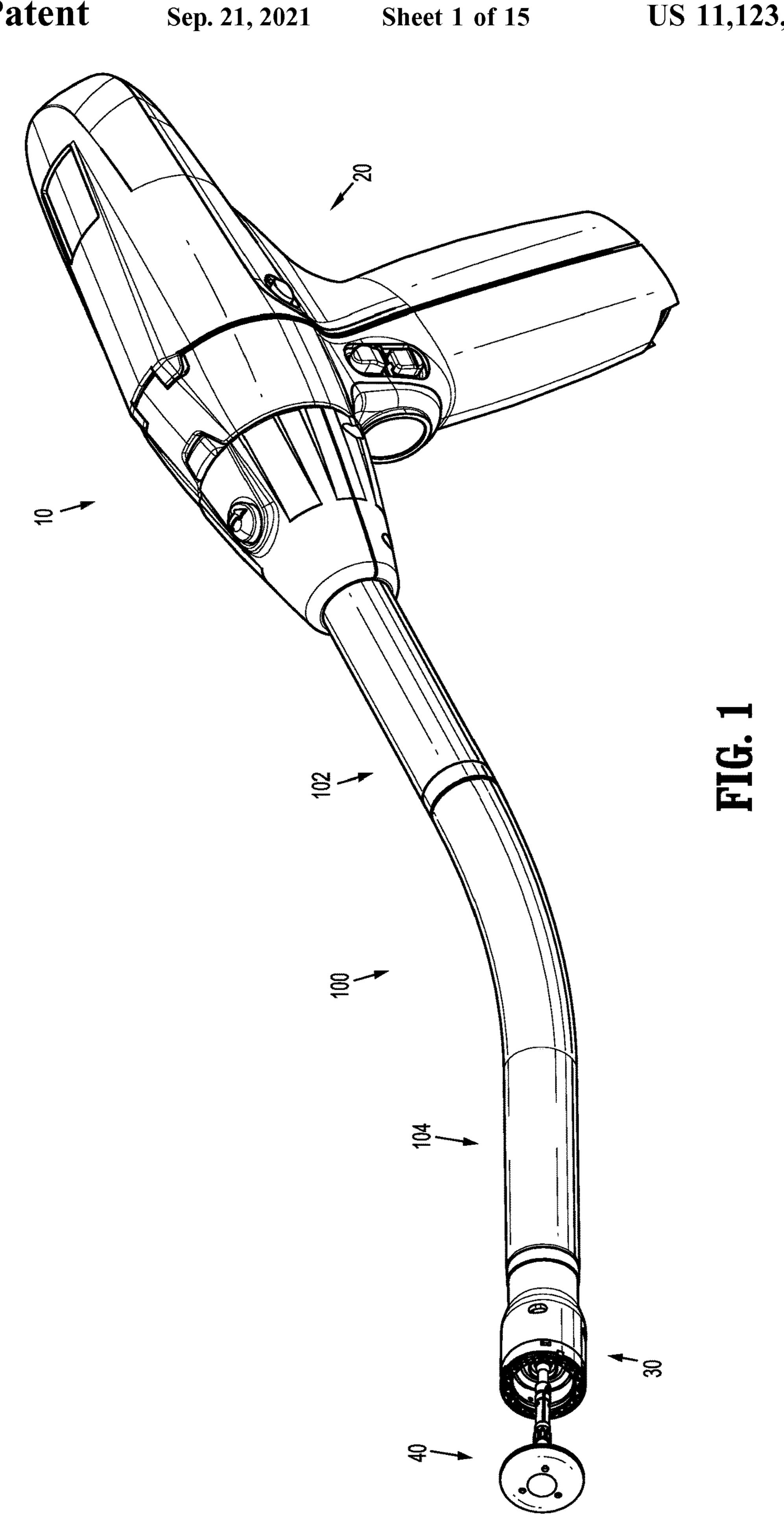
US 11,123,101 B2 Page 4

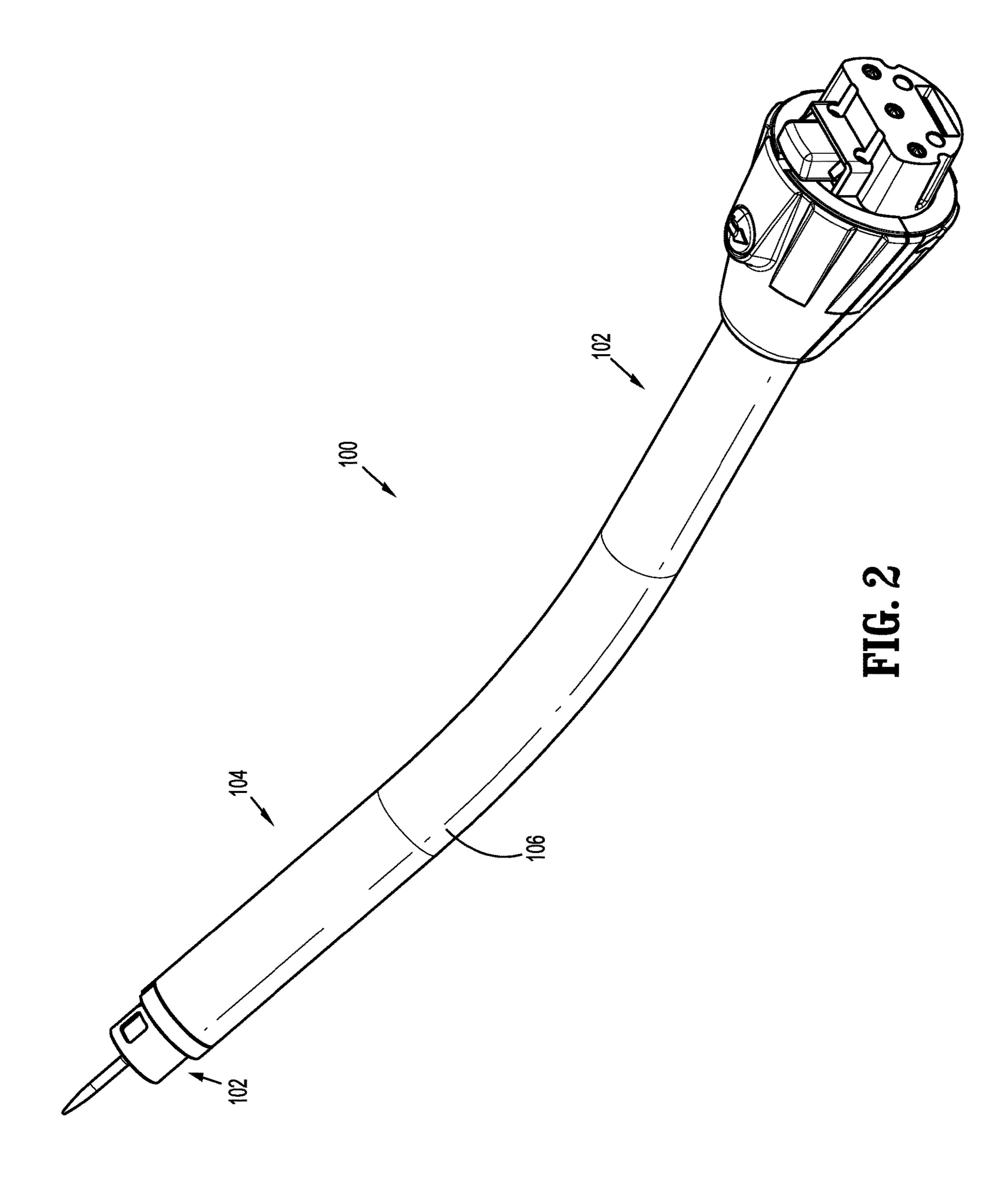
(56)		Referen	ces Cited	7,422,137 7,422,138	9/2008	Manzo Bilotti et al.
	IJS	PATENT	DOCUMENTS	7,422,138		Shelton, IV et al.
	0.5.		DOCOMENTS	7,431,189		Shelton, IV et al.
	6,905,057 B2	6/2005	Swayze et al.	7,431,191		Milliman
	6,905,504 B1		Vargas	7,438,718 7,441,684		Milliman et al.
	6,938,814 B2		Sharma et al.	7,441,084		Shelton, IV et al. Shelton, IV et al.
	6,942,675 B1 6,945,444 B2	9/2005 9/2005	Vargas Gresham et al.	7,455,676		Holsten et al.
	6,953,138 B1		Dworak et al.	7,455,682	11/2008	
	6,957,758 B2		•	7,464,846		Shelton, IV et al.
	6,959,851 B2			7,464,847		Viola et al. Shelton, IV et al.
	6,959,852 B2 6,964,363 B2		Shelton, IV et al. Wales et al.	7,481,347	1/2009	•
	6,978,922 B2		Bilotti et al.	7,481,824		Boudreaux et al.
	6,981,628 B2	1/2006		7,487,899		Shelton, IV et al.
	6,981,941 B2		Whitman et al.	7,494,038 7,506,791		Milliman Omaits et al.
	6,981,979 B2 6,986,451 B1		Nicolo Mastri et al.	7,516,877	4/2009	
	6,988,649 B2		Shelton, IV et al.	7,527,185		Harari et al.
	7,032,798 B2		Whitman et al.	7,537,602		Whitman
	RE39,152 E		Aust et al.	7,546,939 7,546,940		Adams et al. Milliman et al.
	7,055,731 B2 7,059,331 B2		Shelton, IV et al. Adams et al.	7,547,312		Bauman et al.
	7,059,508 B2		Shelton, IV et al.	7,549,564		Boudreaux
	7,059,510 B2		Orban, III	7,556,186		Milliman Sharma et al
	7,077,856 B2		Whitman	7,559,451 7,565,993		Sharma et al. Milliman et al.
	7,080,769 B2 7,086,267 B2		Vresh et al. Dworak et al.	7,568,603		Shelton, IV et al.
	7,111,769 B2		Wales et al.	7,575,144		Ortiz et al.
	7,114,642 B2		Whitman	7,585,306		Abbott et al.
	7,118,528 B1	10/2006		7,588,174 7,588,175		Holsten et al. Timm et al.
	7,122,029 B2 7,122,044 B2		Koop et al. Bolduc et al.	7,588,176		Timm et al.
	7,122,311 B2 7,128,748 B2		Mooradian et al.	7,600,663	10/2009	
	7,140,528 B2		Shelton, IV	7,611,038		Racenet et al.
	7,141,049 B2		Stern et al.	7,635,385 7,637,409		Milliman et al. Marczyk
	7,141,055 B2 7,143,923 B2		Shelton, IV et al.	7,641,093		Doll et al.
	7,143,925 B2		Shelton, IV et al.	7,644,848		Swayze et al.
	7,143,926 B2		Shelton, IV et al.	7,669,747		Weisenburgh, II et al
	7,147,138 B2		Shelton, IV	7,670,334 7,673,780		Hueil et al. Shelton, IV et al.
	7,168,604 B2 7,172,104 B2		Milliman et al. Scirica et al.	7,686,201	3/2010	,
	7,179,267 B2		Nolan et al.	7,694,864	4/2010	
	7,182,239 B1	2/2007		7,699,204 7,699,835	4/2010	Viola Lee et al.
	7,195,142 B2 7,207,168 B2		Orban, III Doepker et al.	7,708,181		Cole et al.
	7,220,103 B2 7,220,237 B2		Gannoe et al.	7,717,313		Criscuolo et al.
	7,225,964 B2		Mastri et al.	7,721,931		Shelton, IV et al.
	7,234,624 B2		Gresham et al.	7,721,932 7,726,539		Cole et al. Holsten et al.
	7,235,089 B1 7,238,021 B1		McGuckin, Jr. Johnson	7,720,333		Swayze
	7,246,734 B2		Shelton, IV	7,740,159		Shelton, IV et al.
	7,252,660 B2	8/2007		7,743,958		Orban, III
	RE39,841 E		Bilotti et al.	7,743,960 7,744,627		Whitman et al. Orban, III et al.
	7,285,125 B2 7,303,106 B2	10/2007 12/2007	Milliman et al.	7,758,613		Whitman
	7,303,100 B2 7,303,107 B2		Milliman et al.	7,766,210		Shelton, IV et al.
	7,309,341 B2		Ortiz et al.	7,770,773		Whitman et al.
	7,322,994 B2		Nicholas et al.	7,770,775 7,770,776		Shelton, IV et al. Chen et al.
	7,325,713 B2 7,328,828 B2		Aranyi Ortiz et al.	7,771,440		Ortiz et al.
	7,334,718 B2		McAlister et al.	7,776,060		Mooradian et al.
	7,335,212 B2		Edoga et al.	7,793,812 7,793,813		Moore et al. Bettuchi
	7,364,060 B2		Milliman	7,799,039		Shelton, IV et al.
	7,364,061 B2 7,380,695 B2		Swayze et al. Doll et al.	7,802,712		Milliman et al.
	7,380,696 B2		Shelton, IV et al.	7,822,458		Webster, III et al.
	7,398,908 B2		Holsten et al.	7,823,592		Bettuchi et al.
	7,399,305 B2 7,401,721 B2		Csiky et al. Holsten et al.	7,837,079 7,837,080		Holsten et al. Schwemberger
	7,401,721 B2 7,401,722 B2	7/2008		7,837,080		Holsten et al.
	7,404,508 B2		Smith et al.	7,845,534		Viola et al.
	7,407,075 B2		Holsten et al.	7,845,536		Viola et al.
	7,407,078 B2		Shelton, IV et al.	7,845,537		Shelton, IV et al.
	7,410,086 B2 7,416,101 B2		Ortiz et al. Shelton, IV et al.	7,845,538 7,857,185		
	7,410,101 B2 7,419,080 B2		ŕ	7,857,183		•
	·, ·12,000 D2	J, 2000	ZIII VI UI.	.,007,107	 12,2010	

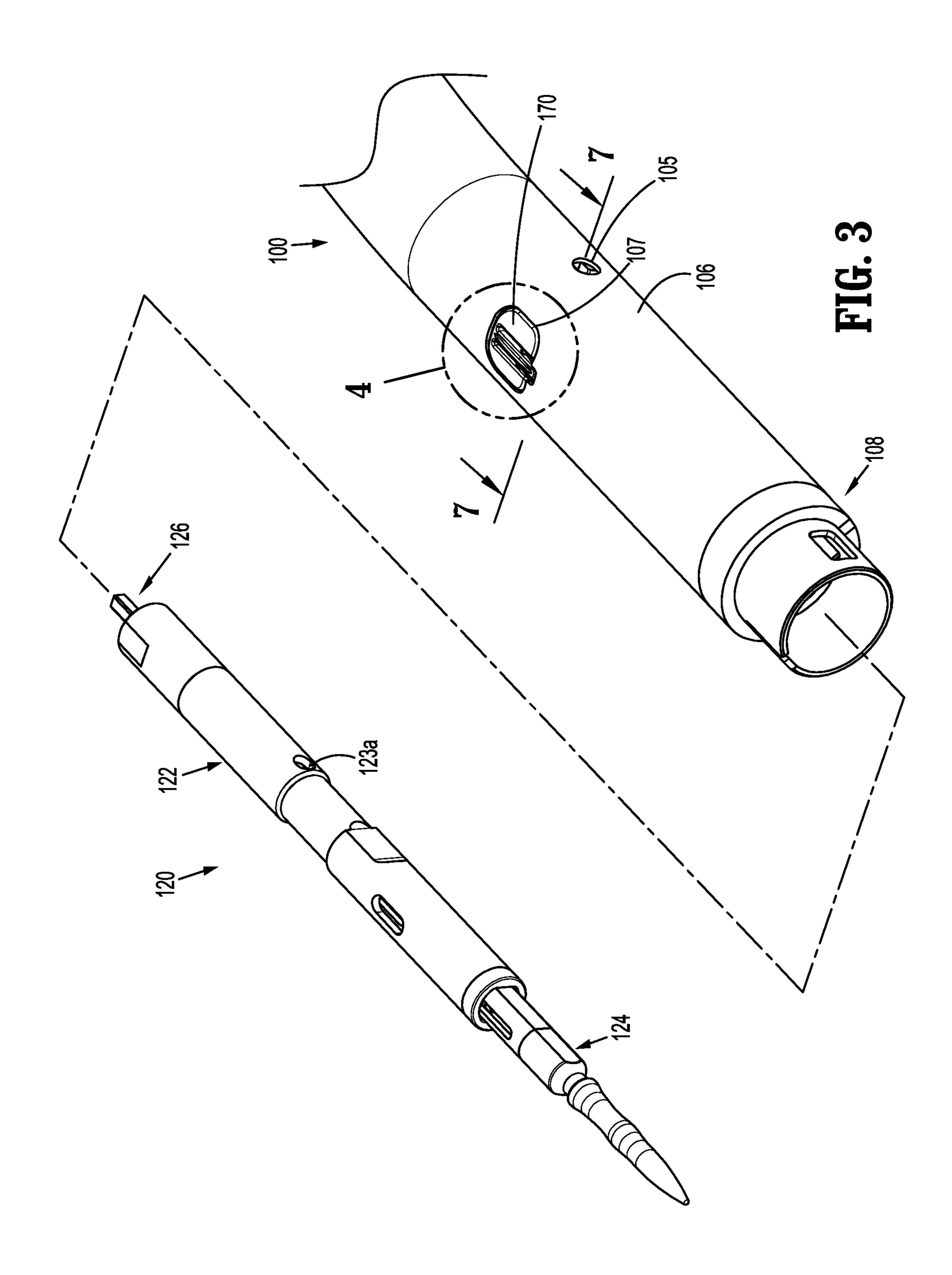
US 11,123,101 B2

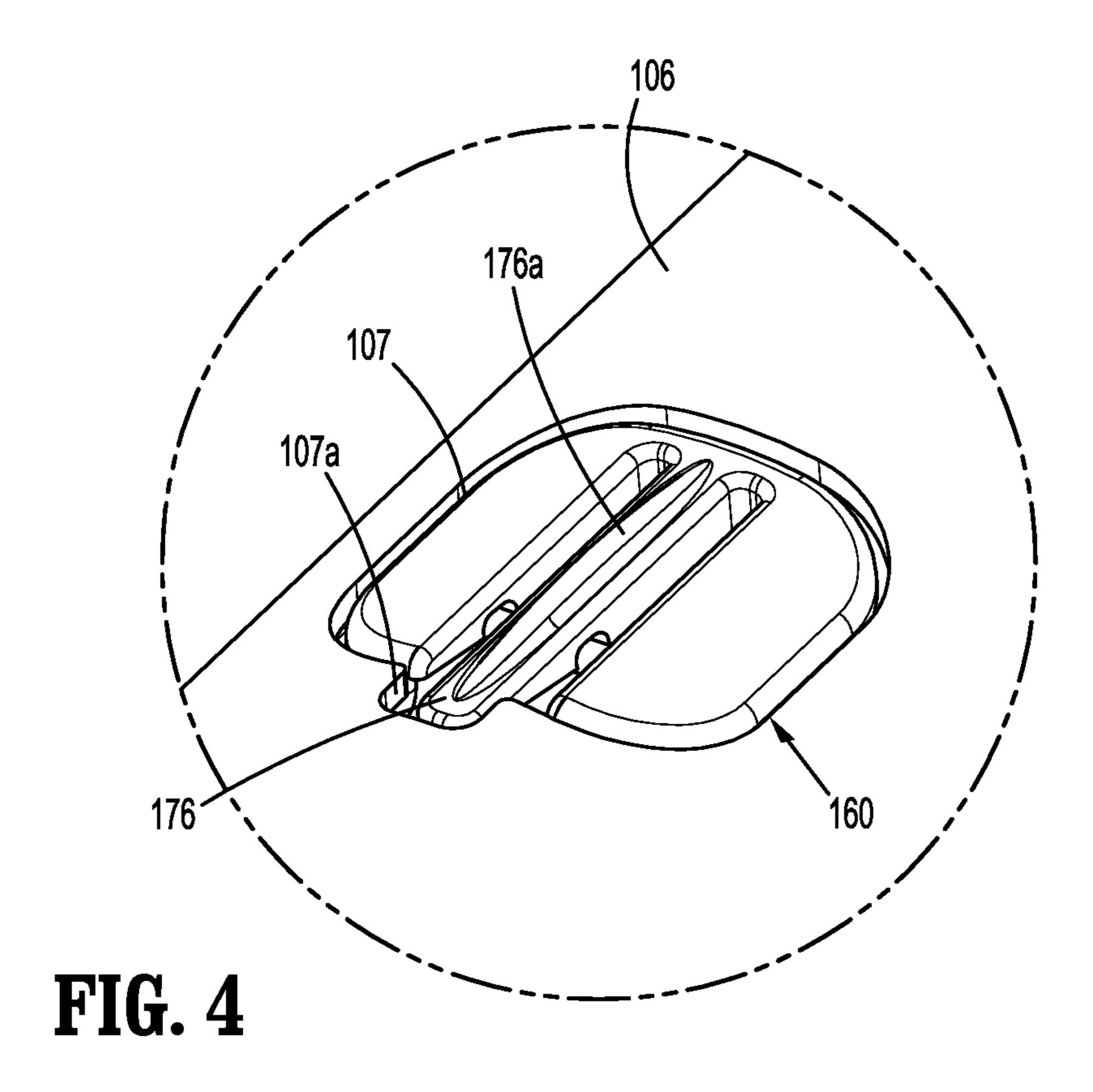
Page 5

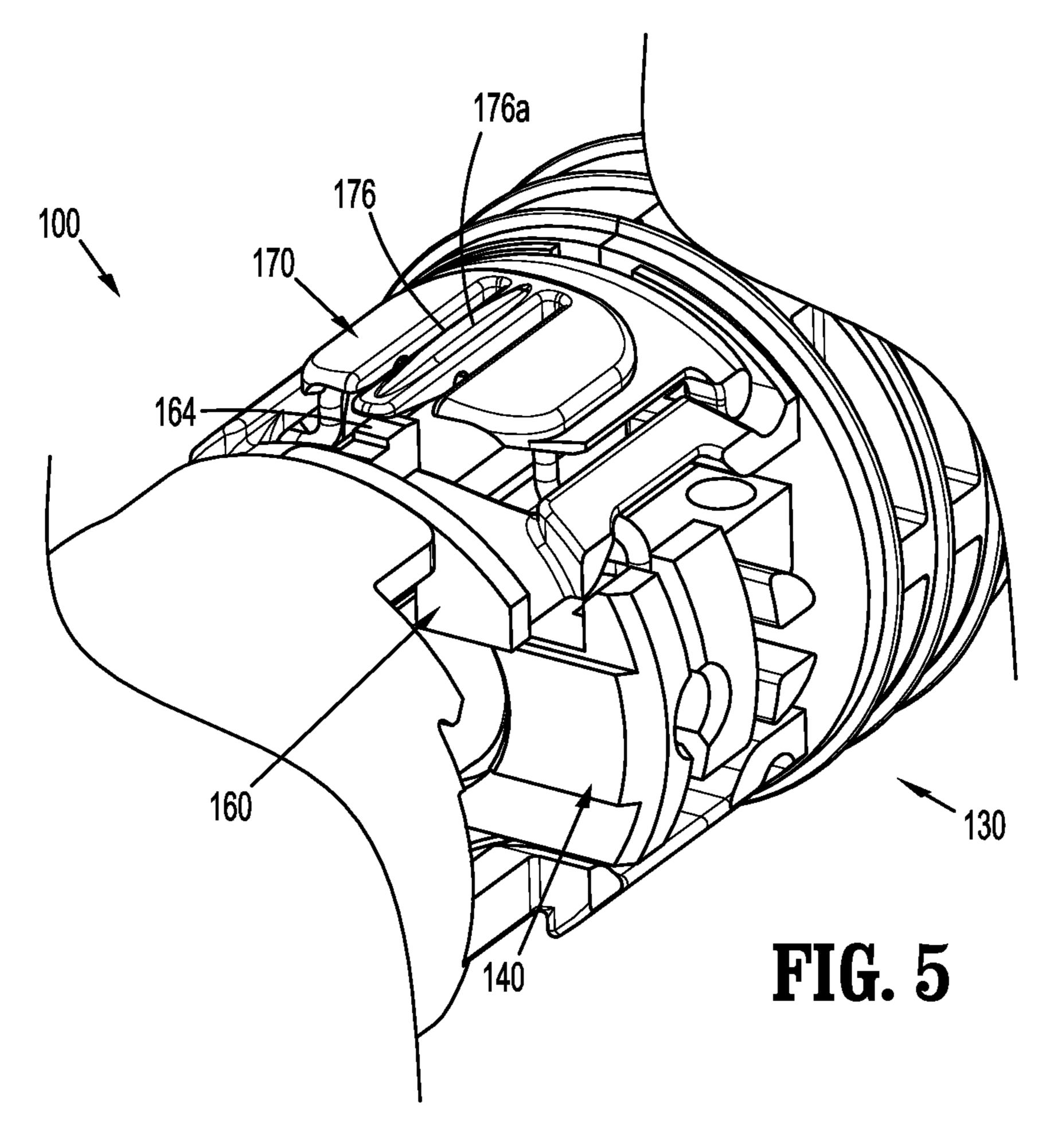
(56)	References Cited		8,201,720 8,203,782			Hessler Brueck et al.	
	U.S.	PATENT	DOCUMENTS	8,211,130		7/2012	
				8,220,367		7/2012	
	7,870,989 B2		Viola et al.	8,225,799 8,225,981			Bettuchi Criscuolo et al.
	7,886,951 B2		Hessler	8,223,981			Marczyk et al.
	7,896,215 B2 7,900,805 B2		Adams et al. Shelton, IV et al.	8,231,042			Hessler et al.
	7,900,806 B2		Chen et al.	8,235,273			Olson et al.
	7,905,897 B2	3/2011	Whitman et al.	8,241,322			Whitman et al.
	7,909,039 B2	3/2011		8,257,391 8,267,301			Orban, III et al. Milliman et al.
	7,909,219 B2 7,909,222 B2		Cole et al. Cole et al.	8,272,552			Holsten et al.
	7,909,222 B2 7,909,223 B2		Cole et al.				Whitman et al.
	7,913,892 B2		Cole et al.	8,276,802			Kostrzewski
	7,918,230 B2		Whitman et al.	8,281,975 8,286,845			Criscuolo et al. Perry et al.
	7,918,377 B2 7,922,061 B2		Measamer et al. Shelton, IV et al.	8,292,150			•
	7,922,061 B2 7,922,062 B2		Cole et al.	8,292,888			Whitman
	7,922,719 B2		Ralph et al.	8,308,045			Bettuchi et al.
	7,922,743 B2		Heinrich et al.	8,312,885 8,313,014			Bettuchi et al.
	7,931,183 B2		Orban, III	8,317,073			Milliman et al.
	7,938,307 B2 7,942,302 B2		Bettuchi Roby et al.	8,317,074			Ortiz et al.
	7,947,034 B2		Whitman	, ,			Patel et al.
	7,951,071 B2		Whitman et al.	8,328,060			Jankowski et al.
	7,951,166 B2		Orban, III et al.	8,328,062 8,328,063			Milliman et al.
	7,954,682 B2 7,959,050 B2		Giordano et al. Smith et al.	8,342,379			Whitman et al.
	7,959,051 B2		Smith et al.	8,343,185			Milliman et al.
	7,963,433 B2		Whitman et al.	8,348,130			Shah et al.
	7,967,178 B2		Scirica et al.	8,348,855 8,353,438			Hillely et al. Baxter, III et al.
	7,967,179 B2 7,967,181 B2		Olson et al. Viola et al.	8,353,439			Baxter, III et al.
	7,975,895 B2		Milliman	8,353,440	B2		Whitman et al.
	7,992,758 B2	8/2011	Whitman et al.	8,353,930			Heinrich et al.
	8,002,795 B2	8/2011		8,357,144 8,360,295			Whitman et al. Milliman et al.
	8,006,701 B2 8,006,889 B2		Bilotti et al. Adams et al.	8,365,633			Simaan et al.
	8,011,550 B2		Aranyi et al.	8,365,972			Aranyi et al.
	8,011,551 B2		Marczyk et al.	8,365,974			Milliman
	8,011,554 B2		Milliman	8,371,492 8,372,057			Aranyi et al. Cude et al.
	8,016,177 B2 8,016,178 B2		Bettuchi et al. Colson et al.	8,391,957			Carlson et al.
	8,016,178 B2 8,016,855 B2		Whitman et al.	8,403,926			Nobis et al.
	8,016,858 B2		Whitman	8,403,942			Milliman et al.
	8,020,741 B2		Cole et al.	8,408,441 8,413,870			Wenchell et al. Pastorelli et al.
	8,020,743 B2 8,025,199 B2		Shelton, IV Whitman et al.	8,413,872		4/2013	
	8,028,885 B2		Smith et al.	8,418,904	B2	4/2013	Wenchell et al.
	8,038,046 B2		Smith et al.	8,418,905			Milliman
	8,043,207 B2	10/2011		8,418,909 8,424,535			Kostrzewski Hessler et al.
	8,052,024 B2		Viola et al. Measamer et al.	8,424,739			Racenet et al.
	8,066,169 B2	11/2011		8,424,741			McGuckin, Jr. et al.
	8,070,035 B2		Holsten et al.	8,430,291			Heinrich et al.
	8,070,037 B2	12/2011		8,430,292 8,453,910			Patel et al. Bettuchi et al.
	8,096,458 B2 8,109,426 B2	1/2012	Hessier Milliman et al.	8,453,911			Milliman et al.
	8,109,427 B2		Orban, III	8,454,585	B2	6/2013	Whitman
	8,113,406 B2		Holsten et al.	8,485,414			Criscuolo et al.
	8,113,407 B2		Holsten et al.	8,490,853 8,505,802			Criscuolo et al. Viola et al.
	8,114,118 B2 8,123,103 B2		Knodel et al. Milliman	8,511,533			Viola et al.
	8,127,975 B2		Olson et al.	8,517,241			Nicholas et al.
	8,128,645 B2	3/2012	Sonnenschein et al.	8,523,043			Ullrich et al.
	8,132,703 B2		Milliman et al.	8,551,076 8,551,138			Duval et al. Orban, III et al.
	8,132,705 B2 8,136,712 B2		Viola et al. Zingman	8,561,871			Rajappa et al.
	8,146,790 B2		Milliman	8,561,874		10/2013	<i>J</i> 11
	8,146,791 B2	4/2012	Bettuchi et al.	8,567,655			Nalagatla et al.
	8,152,516 B2		Harvey et al.	8,579,178			Holsten et al.
	8,157,150 B2 8,157,151 B2		Viola et al. Ingmanson et al.	8,590,763 8,590,764			Milliman Hartwick et al.
	8,137,131 B2 8,181,838 B2		Milliman et al.	8,602,287			Yates et al.
	8,182,494 B1		Yencho et al.	8,608,047			Holsten et al.
	8,186,555 B2	5/2012	Shelton, IV et al.	, ,			Milliman et al.
	8,186,587 B2		Zmood et al.	8,616,429		12/2013	
	8,192,460 B2	6/2012	Orban, III et al.	8,622,275	B2	1/2014	Baxter, III et al.


US 11,123,101 B2


Page 6


(56)		Referen	ces Cited	2007/0175947			Ortiz et al.
	HS	PATENT	DOCUMENTS	2007/0175949 2007/0175950		8/2007 8/2007	
	0.5.	IAILIVI	DOCOMENTS	2007/0175951		8/2007	
8,623,00	00 B2	1/2014	Humayun et al.	2007/0175955			Shelton et al.
8,627,99		1/2014	Smith et al.	2007/0270784			Smith et al. Shelton et al.
8,631,99			Kostrzewski	2008/0029570 2008/0029573			Shelton et al.
8,632,46 8,636,13			Drinan et al. Hueil et al.	2008/0029574			Shelton et al.
8,636,76			Milliman et al.	2008/0029575			Shelton et al.
8,640,9		2/2014		2008/0058801			Taylor et al.
8,647,23			Aranyi et al.	2008/0109012 2008/0110958			Falco et al. McKenna et al.
8,652,17 8,657,17			Quick et al. Yates et al.	2008/0147089			Loh et al.
8,657,1			Scirica et al.	2008/0185419			Smith et al.
8,662,3		3/2014		2008/0188841			Tomasello et al.
8,663,23			Bettuchi et al.	2008/0197167 2008/0208195			Viola et al. Shores et al.
8,672,20 8,672,93			Aranyi et al. Goldboss et al.	2008/0251561			Eades et al.
8,678,20			Racenet et al.	2008/0255413			Zemlok et al.
8,684,2			Milliman	2008/0255607		10/2008	
8,684,2			Bettuchi et al.	2008/0262654 2009/0012533			Omori et al. Barbagli et al.
8,684,23 8,684,23			Rebuffat et al. Patel et al.	2009/0090763			Zemlok et al.
8,696,5			Whitman	2009/0099876			Whitman
8,708,2			Shelton, IV et al.	2009/0138006			Bales et al.
8,715,36			Faller et al.	2009/0171147 2009/0182193			Lee et al. Whitman et al.
8,733,6 8,758,39			Milliman Swayze et al.	2009/0102199			Yates et al.
8,806,9			Ross et al.	2009/0236392	A1	9/2009	Cole et al.
8,808,3			Heinrich et al.	2009/0236398			Cole et al.
8,820,60			Shelton, IV	2009/0236401 2009/0254094			Cole et al. Knapp et al.
8,851,33 8,858,57			Aranyi et al. Shelton, IV et al.	2009/0299141			Downey et al.
8,888,7			Whitman	2010/0019016		1/2010	Edoga et al.
8,899,40		12/2014	Kostrzewski et al.	2010/0023022			Zeiner et al.
, ,			Patel et al.	2010/0051668 2010/0069942			Milliman et al. Shelton, IV
8,919,63 8,931,63		12/2014	Milliman Milliman	2010/0084453		4/2010	*
8,950,64		2/2015		2010/0147923			D'Agostino et al.
8,960,5	19 B2		Whitman et al.	2010/0163598		7/2010	
8,967,4			McCuen	2010/0224668 2010/0225073			Fontayne et al. Porter et al.
8,968,2° 9,016,5			Zemlok et al. Aranyi et al.	2010/0230465			Smith et al.
9,023,0			Chowaniec et al.	2010/0258611			Smith et al.
9,033,86			Whitman et al.	2010/0264195 2010/0327041			Bettuchi Milliman et al.
9,055,94			Zemlok et al.	2010/032/041			Levine
9,072,5 9,113,8			Hall et al. Whitman et al.	2011/0077673			Grubac et al.
9,113,8			Viola et al.	2011/0114697			Baxter, III et al.
, ,			Zemlok et al.	2011/0114700 2011/0121049			Baxter, III et al. Malinouskas et al.
9,113,89 2001/00319			Garrison et al. Whitman et al.	2011/0121049			Malinouskas et al.
2001/00319			Jung et al.	2011/0139851			McCuen
2003/01115		6/2003	~	2011/0144640			Heinrich et al.
2004/01110			Whitman	2011/0147432 2011/0155783			Heinrich et al. Rajappa et al.
2004/013313 2004/015313			Sakurai Whitman	2011/0174099			Ross et al.
2004/01767			Weitzner et al.	2011/0184245			Xia et al.
2004/01931			Lee et al.	2011/0192882			Hess et al.
2005/005159			Toledano	2011/0204119 2011/0218522			McCuen Whitman
2005/01078 2005/012502			Gilete Garcia Knodel et al.	2011/0290854			Timm et al.
			Yachia et al.	2011/0295242			Spivey et al.
2006/000086			Fontayne	2011/0295269 2012/0000962			Swensgard et al. Racenet et al.
2006/001169			Okada et al. Malackowski et al.	2012/0000902			Zemlok et al.
2006/01420			Boutoussov	2012/0143002			Aranyi et al.
2006/020193	89 A1	9/2006	Ojeda	2012/0145755		6/2012	
2006/02590			Miyamoto et al.	2012/0172924 2012/0193395			Allen, IV Pastorelli et al.
2006/027863 2006/028473			Viola et al. Schmid et al.	2012/0193393			Williams et al.
2007/02347			Whitman et al.	2012/0193390			Viola et al.
2007/00274			Vresh et al.	2012/0232339		9/2012	
2007/00293		2/2007	-	2012/0253329			Zemlok et al.
2007/00609:			Roby et al.	2012/0273548			Ma et al. Malkowski et al.
2007/008489 2007/01024			Shelton et al. Shelton				Chowaniec et al.
			Gillum et al.	2012/0325220			
							•


US 11,123,101 B2 Page 7


(56)	References Cited	2014/0299647 A1 10/2014 Scirica et al. 2014/0303668 A1 10/2014 Nicholas et al.	
U.S.	PATENT DOCUMENTS	2014/0358129 A1 12/2014 Zergiebel et al.	
2013/0015232 A1	1/2013 Smith et al.	2014/0361068 A1 12/2014 Aranyi et al. 2014/0365235 A1 12/2014 DeBoer et al.	
2013/0018361 A1	1/2013 Bryant	2014/0373652 A1 12/2014 Zergiebel et al.	
2013/0020372 A1	1/2013 Jankowski et al.	2015/0014392 A1 1/2015 Williams et al.	
2013/0020373 A1	1/2013 Smith et al.	2015/0048144 A1 2/2015 Whitman	
2013/0032628 A1	2/2013 Li et al.	2015/0076205 A1 3/2015 Zergiebel 2015/0080912 A1 3/2015 Sapre	
2013/0056516 A1	3/2013 Viola 3/2013 Giacomantonio	2015/0000312 A1 3/2015 Supre 2015/0112381 A1 4/2015 Richard	
2013/0060258 A1 2013/0105544 A1	5/2013 Giacomantonio 5/2013 Mozdzierz et al.	2015/0122870 A1 5/2015 Zemlok et al.	
2013/0105511 A1 2013/0105546 A1	5/2013 Milliman et al.	2015/0133224 A1 5/2015 Whitman et al.	
2013/0105551 A1	5/2013 Zingman	2015/0133957 A1 5/2015 Kostrzewski	
2013/0126580 A1	5/2013 Smith et al.	2015/0150547 A1 6/2015 Ingmanson et al.	
2013/0153630 A1	6/2013 Miller et al.	2015/0150574 A1 6/2015 Richard et al.	
2013/0153631 A1	6/2013 Vasudevan et al.	2015/0157320 A1 6/2015 Zergiebel et al. 2015/0157321 A1 6/2015 Zergiebel et al.	
2013/0153633 A1 2013/0153634 A1	6/2013 Casasanta, Jr. et al. 6/2013 Carter et al.	2015/015/521 A1 6/2015 Zeigleber et al.	
2013/0153638 A1	6/2013 Carter et al.	2015/0201931 A1 7/2015 Zergiebel et al.	
2013/0153639 A1	6/2013 Hodgkinson et al.	2016/0361057 A1* 12/2016 Williams A	.61B 17/068
2013/0175315 A1	7/2013 Milliman		
2013/0175318 A1	7/2013 Felder et al.	FOREIGN PATENT DOCUMENTS	
2013/0175319 A1	7/2013 Felder et al.		
2013/0175320 A1 2013/0181035 A1	7/2013 Mandakolathur Vasudevan et al. 7/2013 Milliman	CA 2824590 A1 4/2014	
2013/0181035 A1	7/2013 William 7/2013 Olson et al.	CN 102247182 A 11/2011	
2013/0186930 A1	7/2013 Wenchell et al.	DE 1057729 B 5/1959	
2013/0193185 A1	8/2013 Patel	DE 3301713 A1 7/1984 DE 102008053842 A1 5/2010	
2013/0193187 A1	8/2013 Milliman	EP 0152382 A2 8/1985	
2013/0193190 A1 2013/0193191 A1	8/2013 Carter et al. 8/2013 Stevenson et al.	EP 0173451 A1 3/1986	
2013/0193191 A1 2013/0193192 A1	8/2013 Stevenson et al.	EP 0282157 A1 3/1986	
2013/0200131 A1	8/2013 Racenet et al.	EP 0190022 A2 8/1986	
2013/0206816 A1	8/2013 Penna	EP 0503689 A2 9/1992 EP 0705571 A1 4/1996	
2013/0214025 A1	8/2013 Zemlok et al.	EP 1354560 A2 10/2003	
2013/0214027 A1	8/2013 Hessler et al.	EP 1769754 A1 4/2007	
2013/0214028 A1 2013/0228609 A1	8/2013 Patel et al. 9/2013 Kostrzewski	EP 2055243 A2 5/2009	
2013/0240597 A1	9/2013 Milliman et al.	EP 2316345 A1 5/2011	
2013/0240600 A1	9/2013 Bettuchi	EP 2333509 A1 6/2011 EP 2524656 A2 11/2012	
2013/0248581 A1	9/2013 Smith et al.	EP 2524658 A1 11/2012	
2013/0274722 A1	10/2013 Kostrzewski et al.	EP 3078335 A1 10/2016	
2013/0277411 A1 2013/0277412 A1	10/2013 Hodgkinson et al. 10/2013 Gresham et al.	EP 3146905 A1 3/2017	
2013/0277412 A1 2013/0282052 A1	10/2013 Gresham et al.	EP 3412226 A1 12/2018	
2013/0284792 A1	10/2013 Ma	ES 2333509 A1 2/2010 FR 1136020 A 5/1957	
2013/0292449 A1	11/2013 Bettuchi et al.	FR 1130020 A 3/1937 FR 1461464 A 2/1966	
2013/0292451 A1	11/2013 Viola et al.	FR 1588250 A 4/1970	
2013/0299553 A1 2013/0299554 A1	11/2013 Mozdzierz 11/2013 Mozdzierz	FR 2443239 A1 7/1980	
2013/0299334 A1 2013/0306701 A1	11/2013 Mozdzierz 11/2013 Olson	GB 1185292 A 3/1970	
2013/0306707 A1	11/2013 Viola et al.	GB 2016991 A 9/1979	
2013/0313304 A1	11/2013 Shelton, IV et al.	GB 2070499 A 9/1981 JP 08038488 2/1996	
2013/0317486 A1	11/2013 Nicholas et al.	JP 2005125075 A 5/2005	
2013/0319706 A1	12/2013 Nicholas et al.	NL 7711347 A 4/1979	
2013/0324978 A1 2013/0324979 A1	12/2013 Nicholas et al. 12/2013 Nicholas et al.	SU 1509052 A1 9/1989	
2013/0324979 A1 2013/0334281 A1	12/2013 Nicholas et al. 12/2013 Williams	WO 8706448 A1 11/1987	
2014/0008413 A1	1/2014 Williams	WO 8900406 A1 1/1989	
2014/0012236 A1	1/2014 Williams et al.	WO 9006085 A1 6/1990 WO 0154594 A1 8/2001	
2014/0012237 A1	1/2014 Pribanic et al.	WO 2008107918 A1 9/2008	
2014/0012289 A1	1/2014 Snow et al.	WO 2011108840 A2 9/2011	
2014/0012317 A1 2014/0025046 A1	1/2014 Orban et al. 1/2014 Williams et al.	WO 2012/040984 A1 4/2012	
2014/0023040 A1 2014/0110455 A1	4/2014 Ingmanson et al.		
2014/0166728 A1	6/2014 Swayze et al.	OTHER PUBLICATIONS	
2014/0207125 A1	7/2014 Applegate et al.		
2014/0207182 A1	7/2014 Zergiebel et al.	European Search Report dated Mar. 1, 2021, corres	sponding to
2014/0207185 A1 2014/0236173 A1	7/2014 Goble et al. 8/2014 Scirica et al.	counterpart European Application No. 20183904.0; 11	pages.
2014/0236173 A1 2014/0236174 A1	8/2014 Schica et al. 8/2014 Williams et al.		
2014/0276932 A1	9/2014 Williams et al.	* cited by examiner	

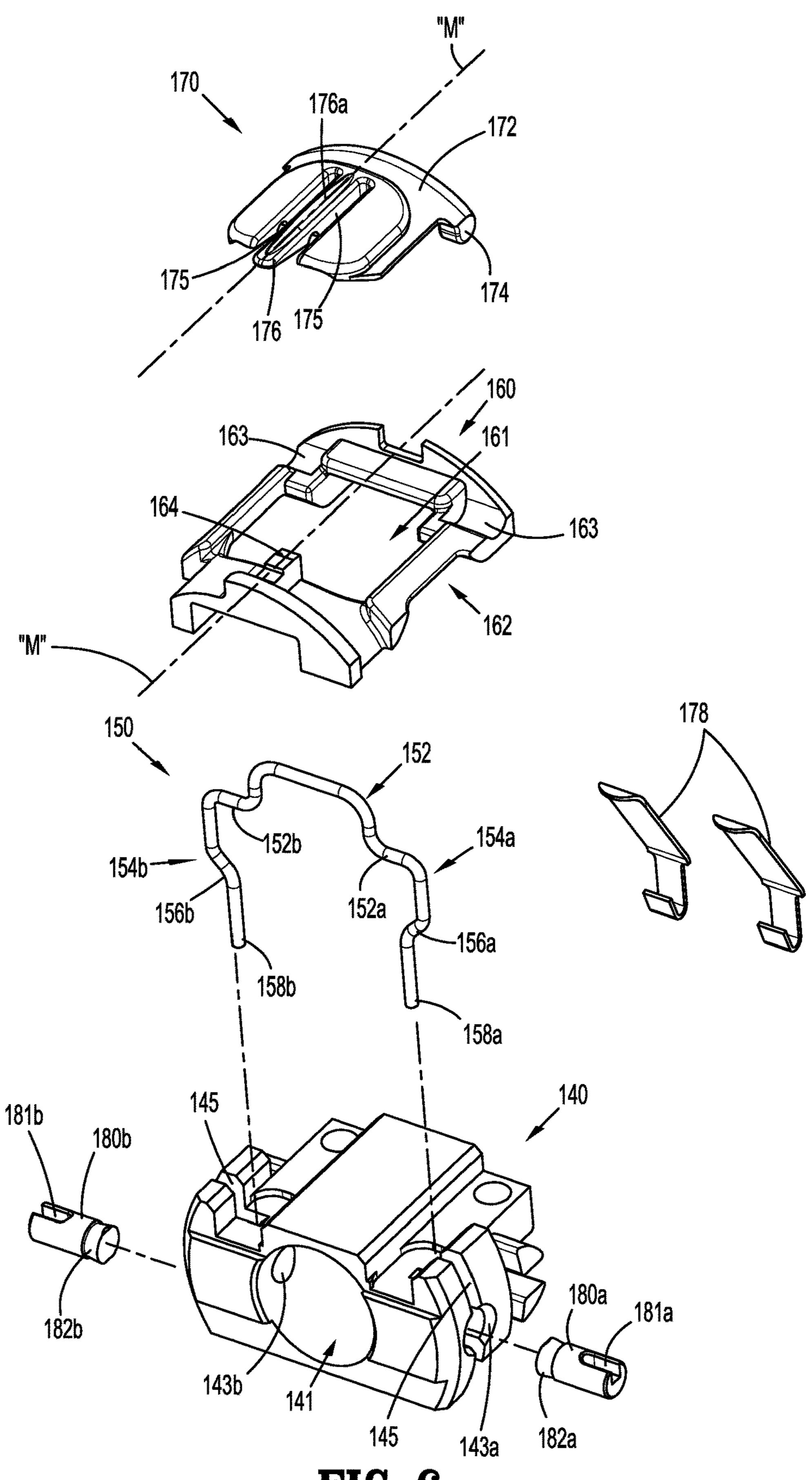


FIG. 6

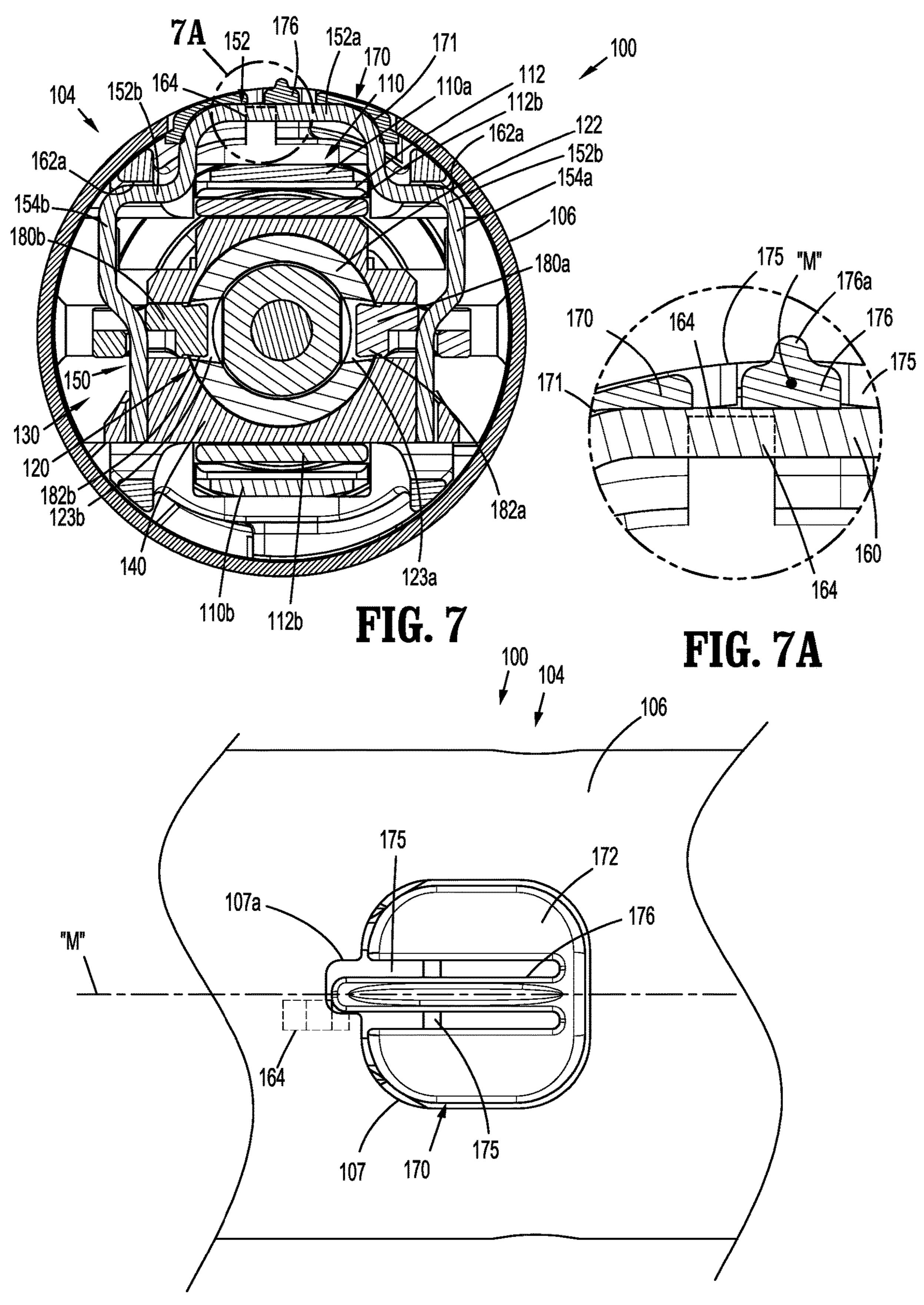
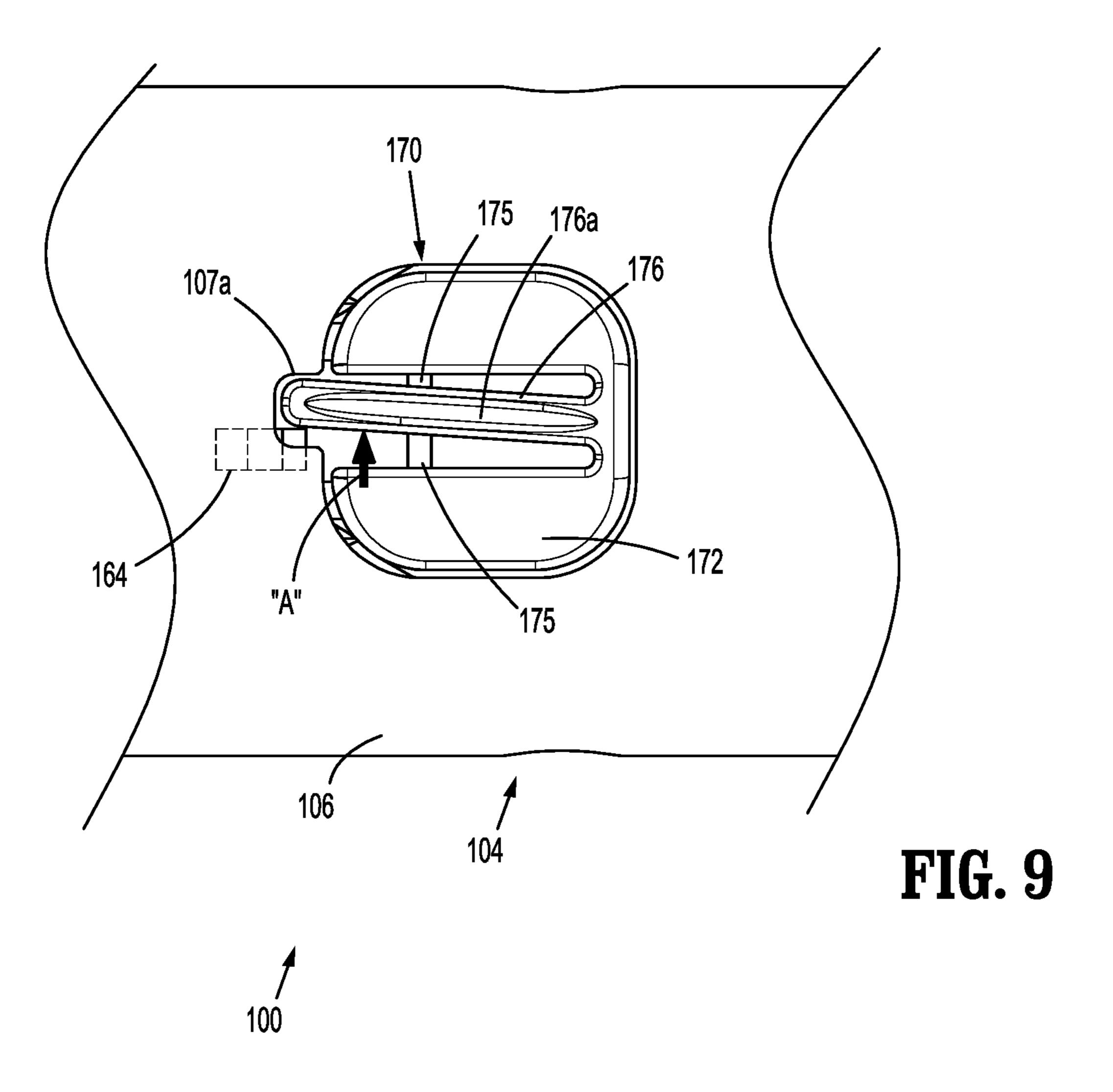



FIG. 8

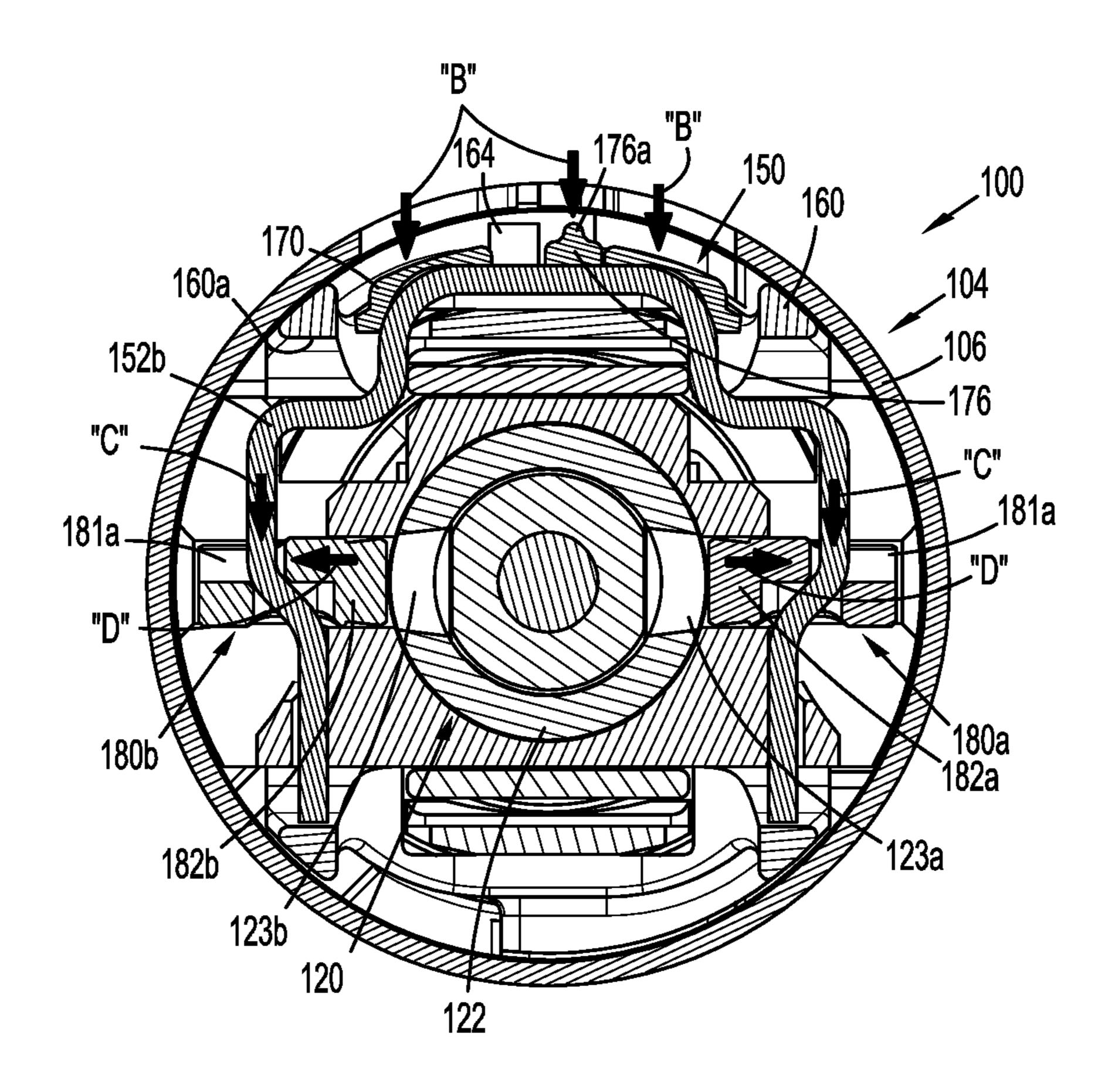


FIG. 10

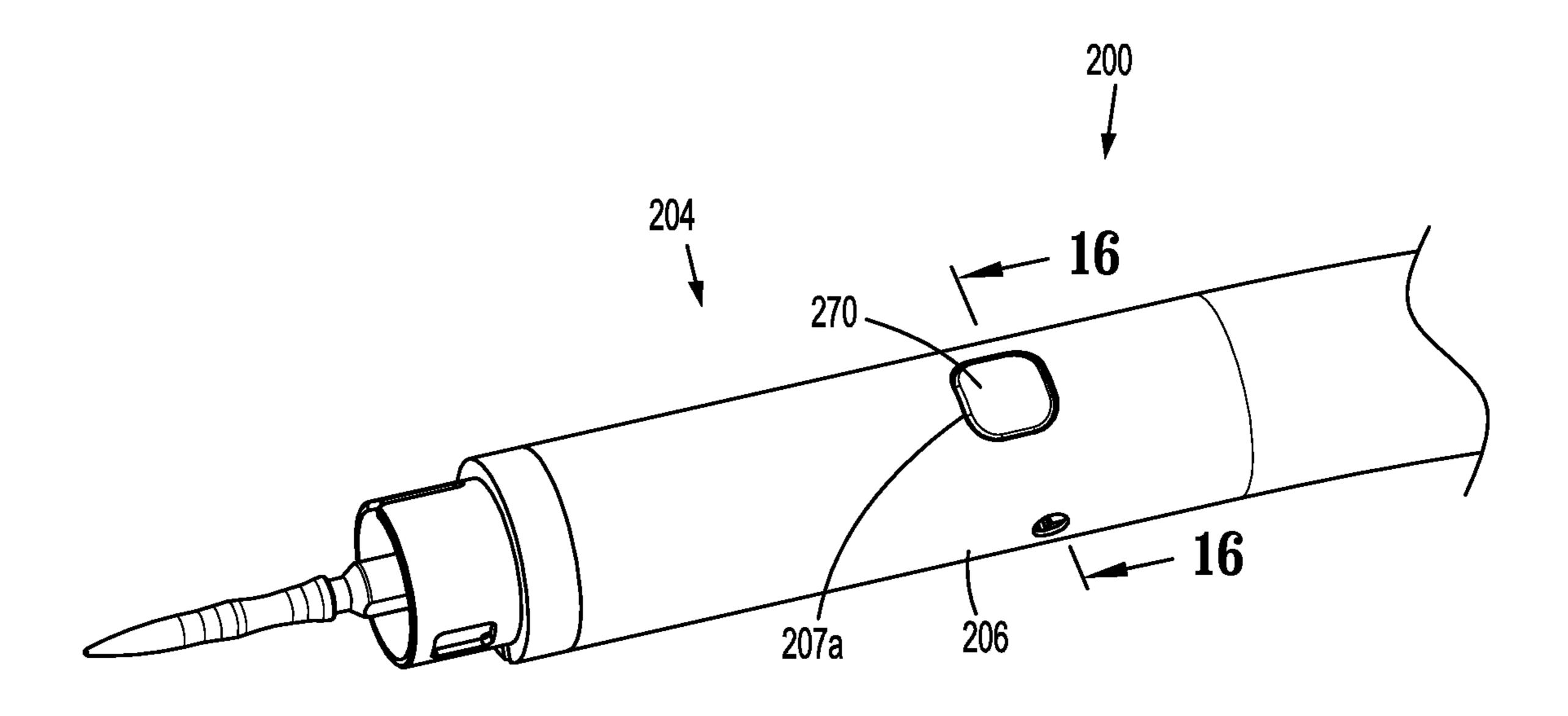
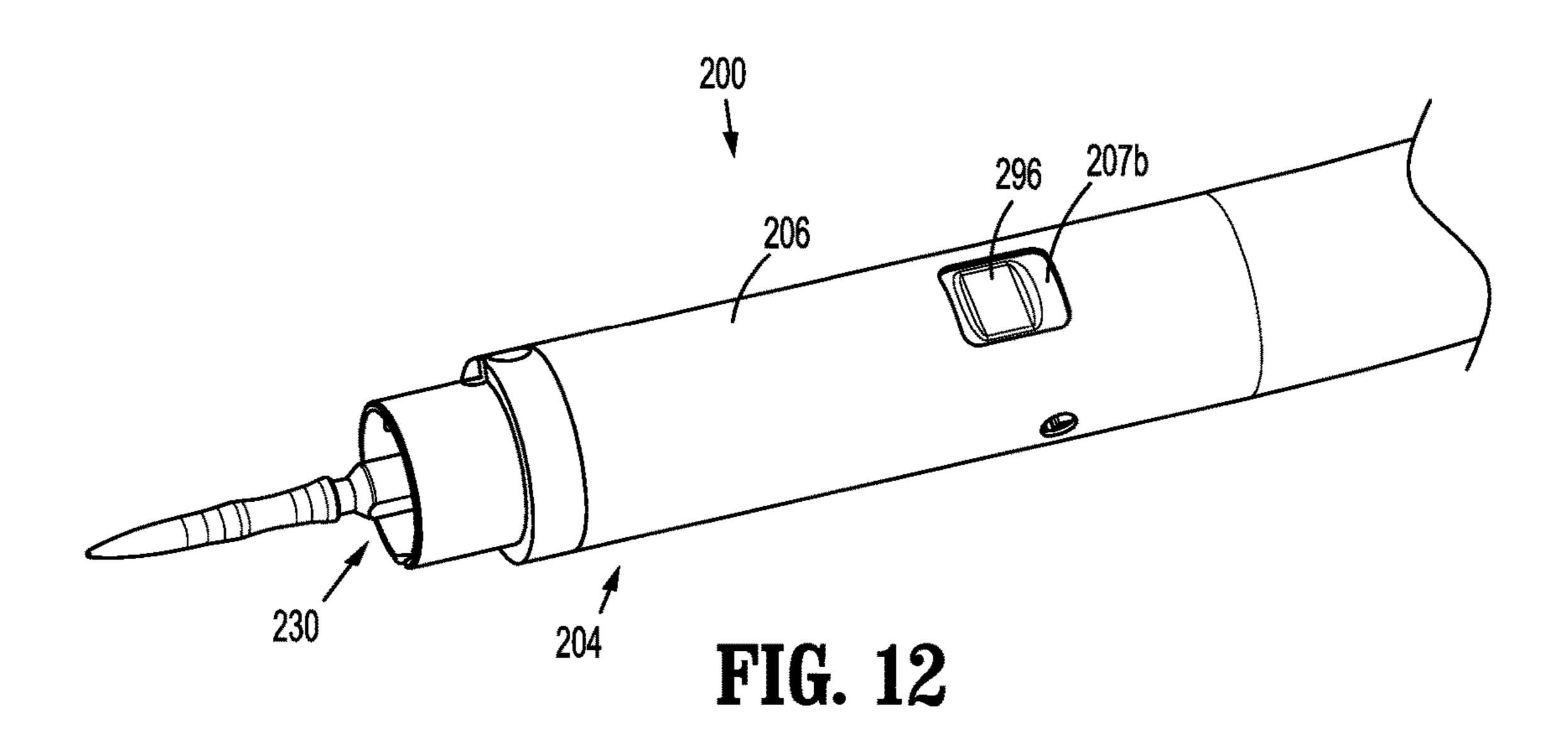



FIG. 11

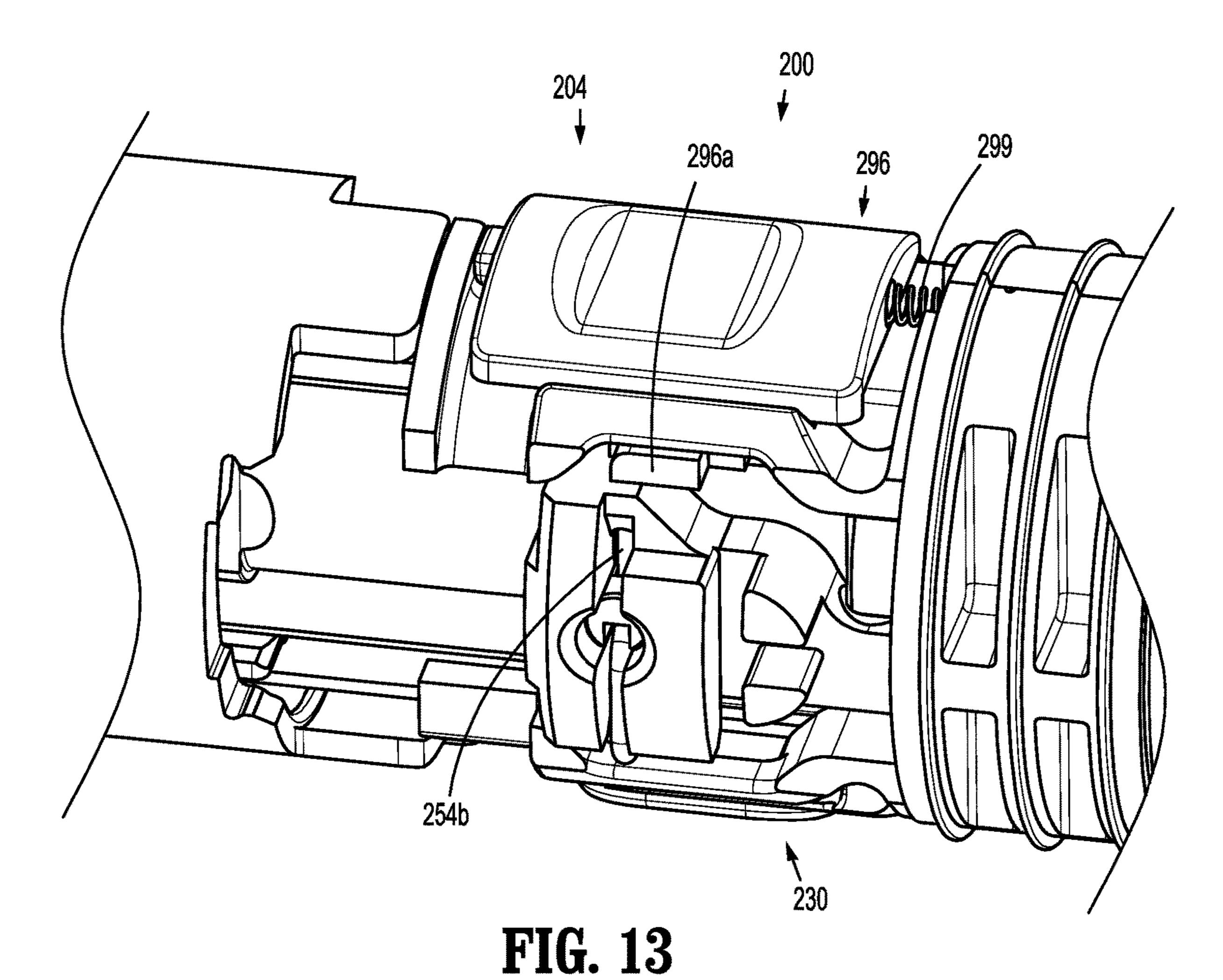


FIG. 14

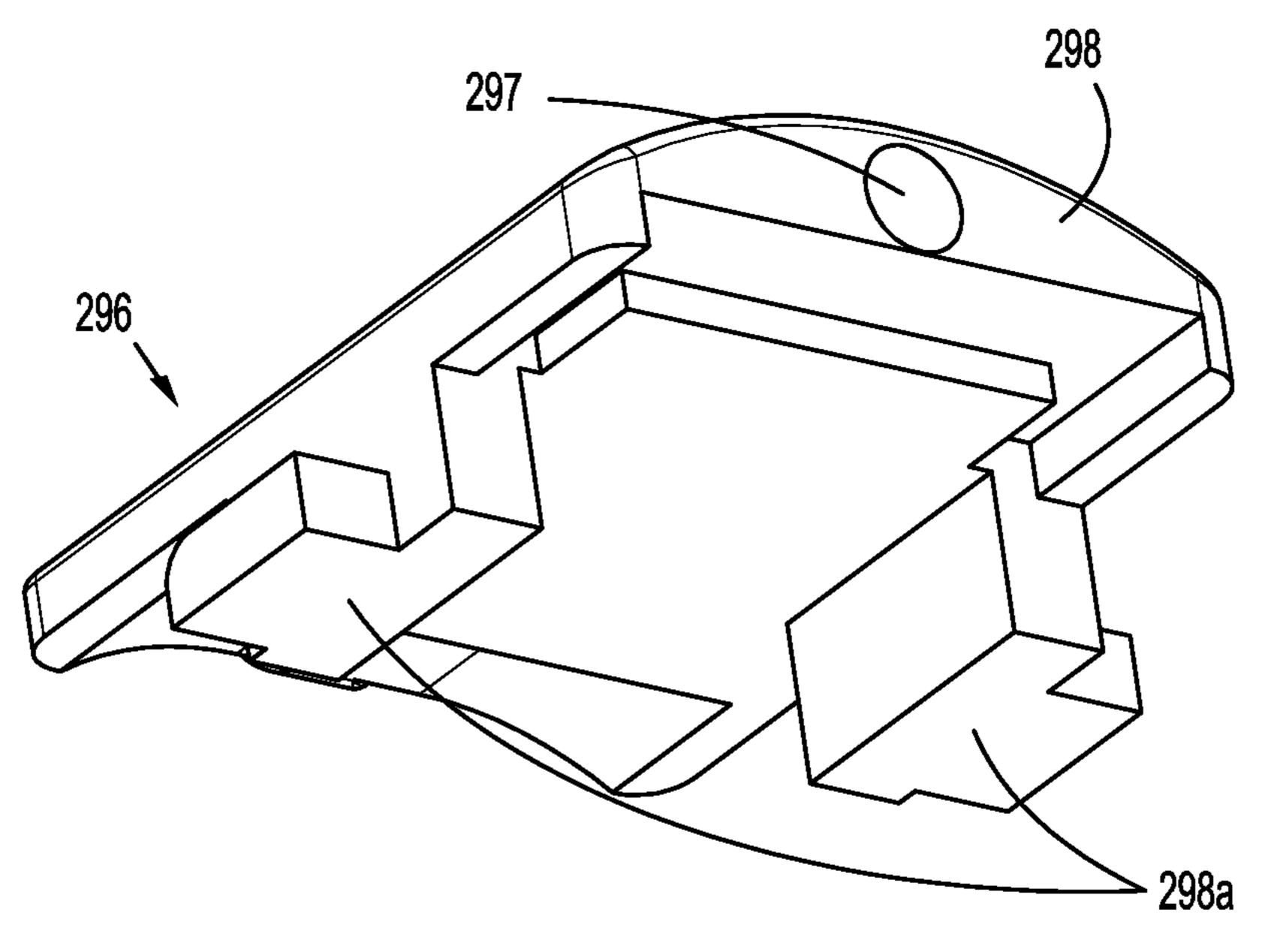


FIG. 15

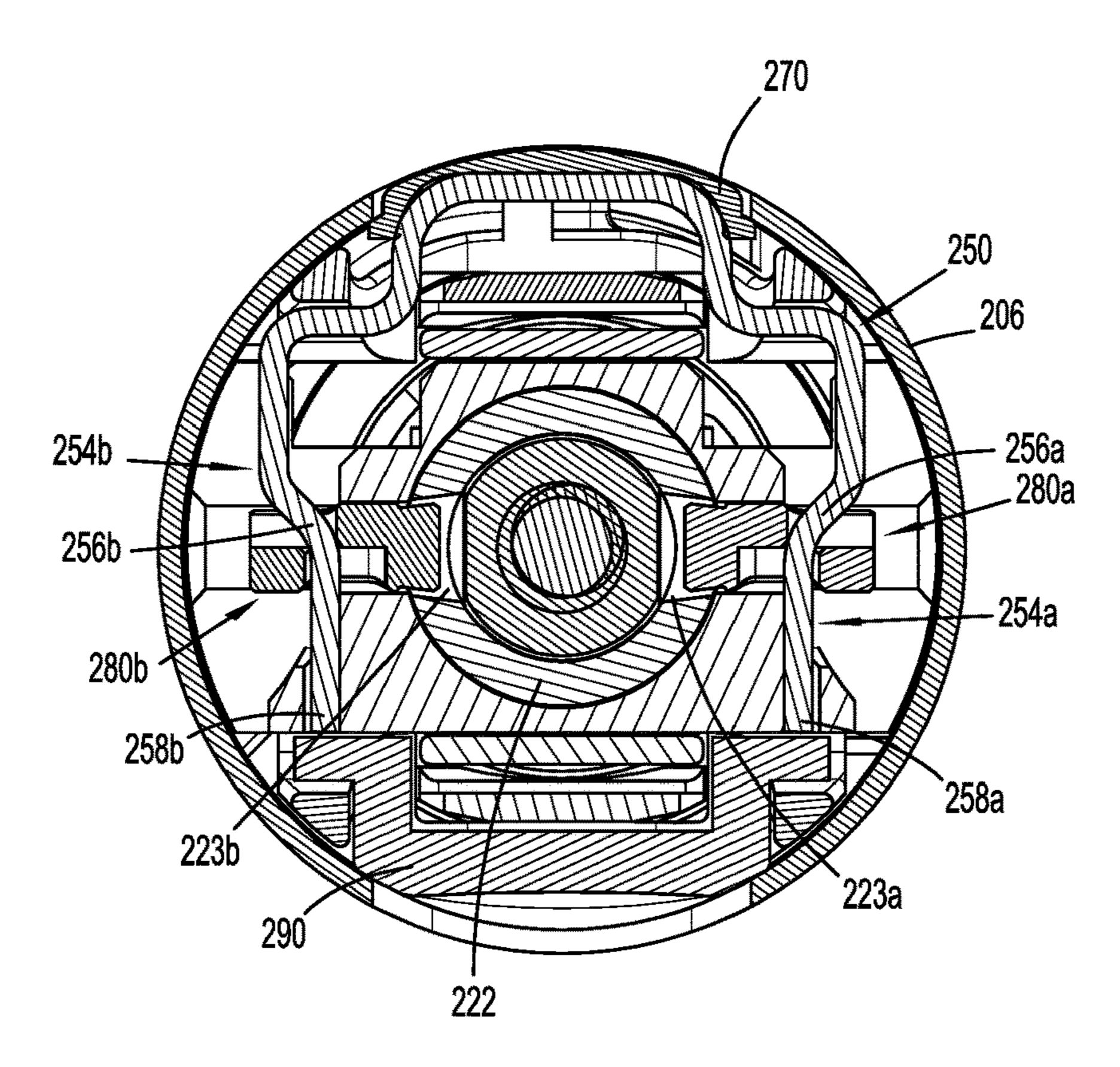


FIG. 16

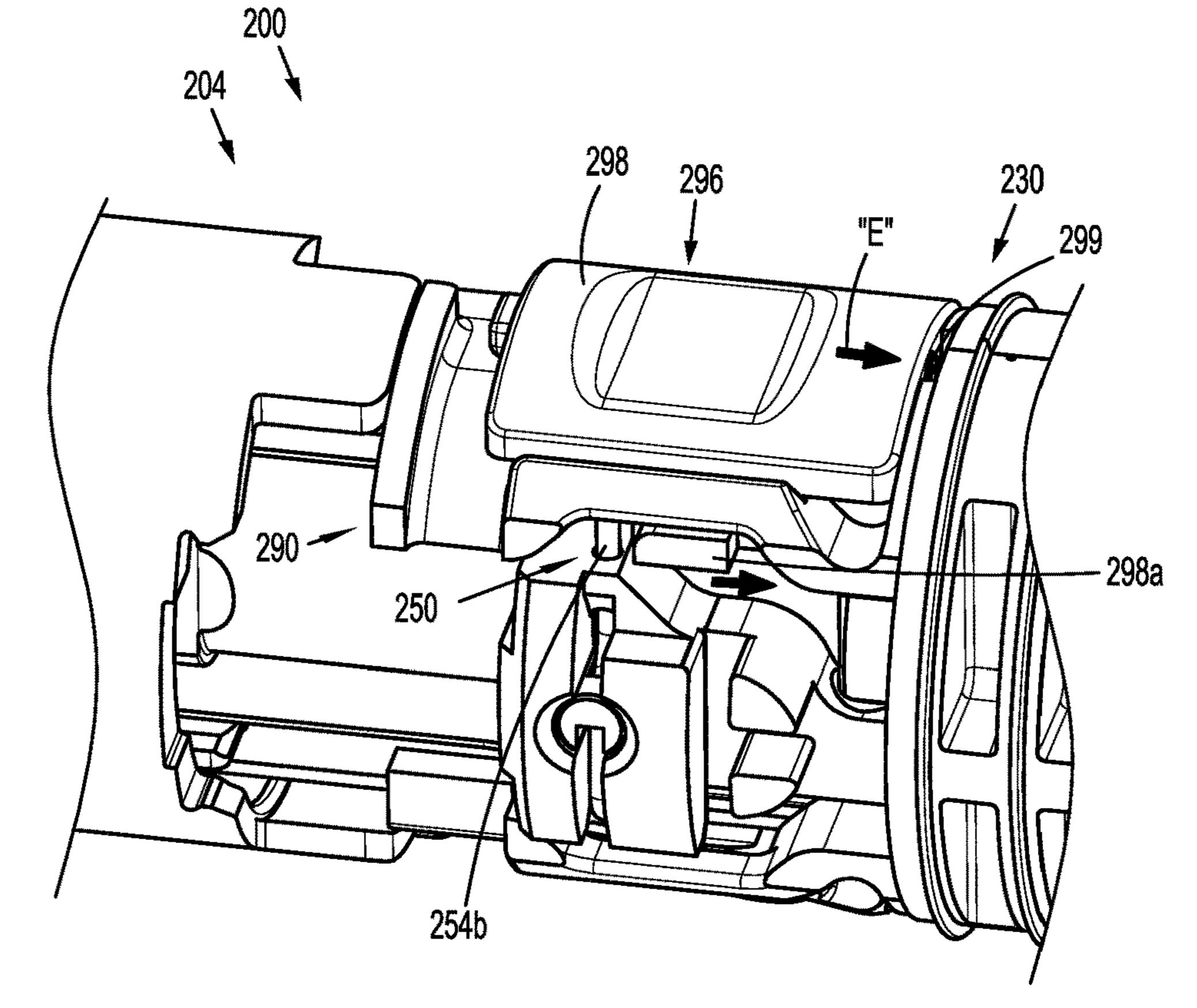


FIG. 17

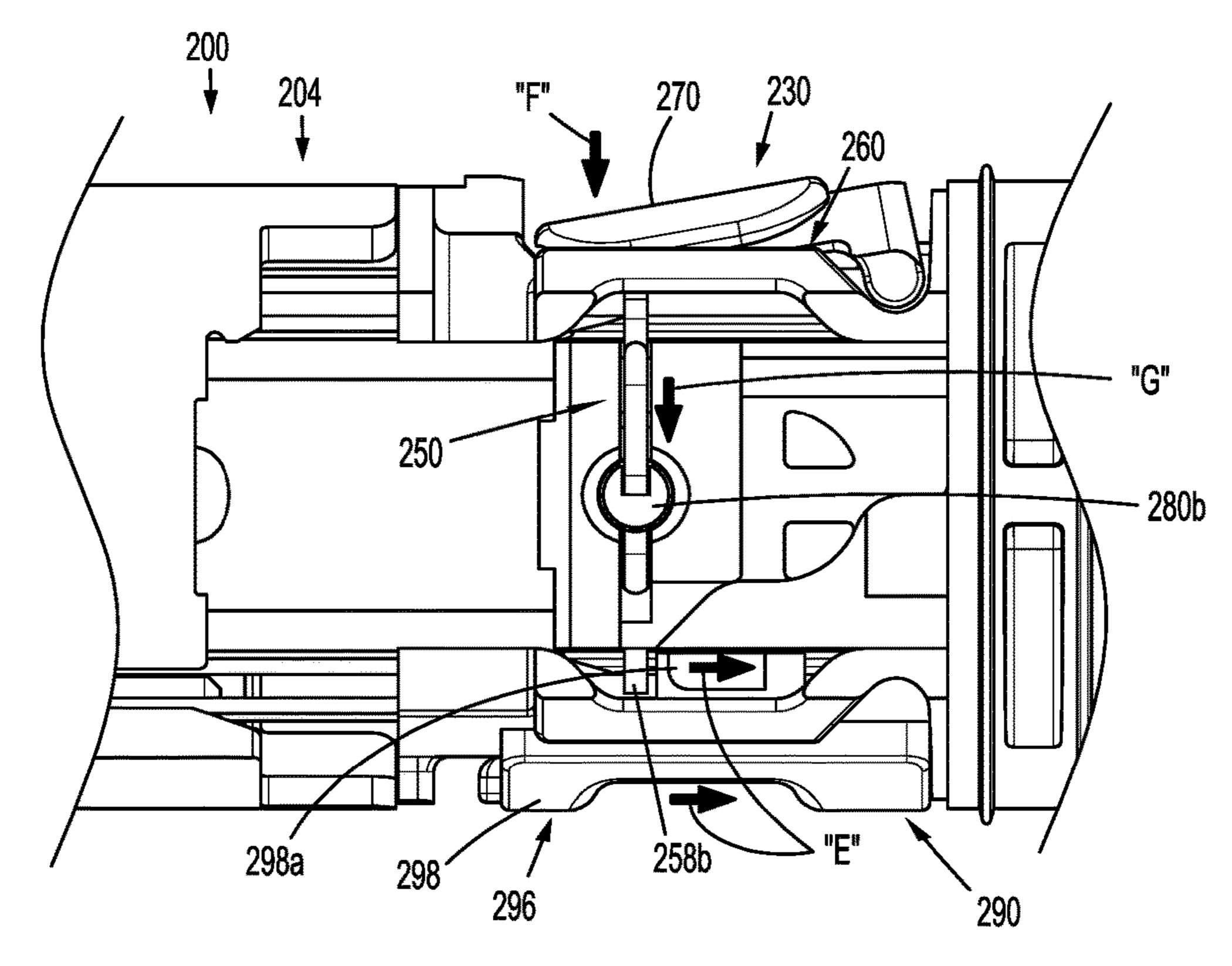


FIG. 18

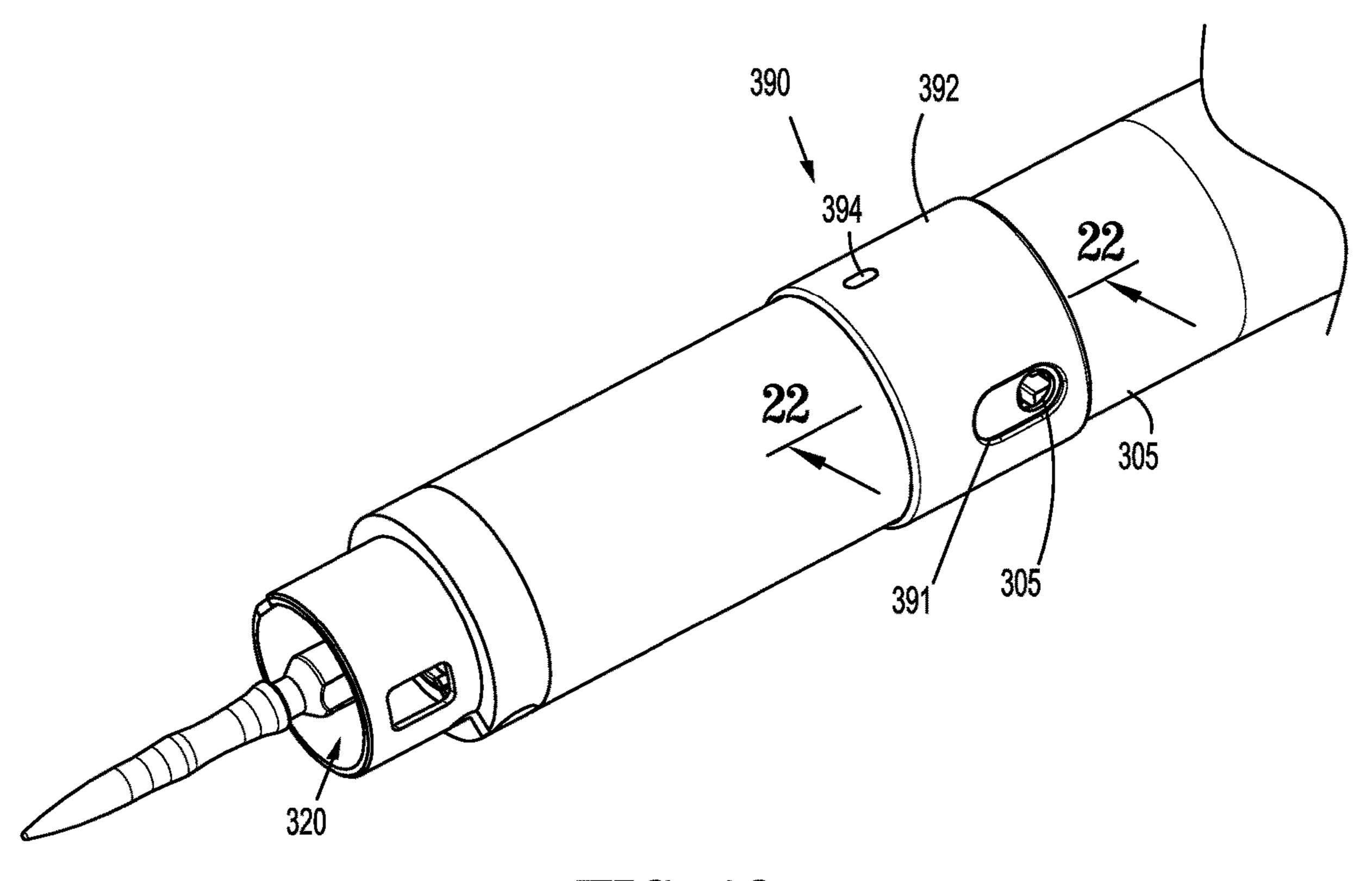
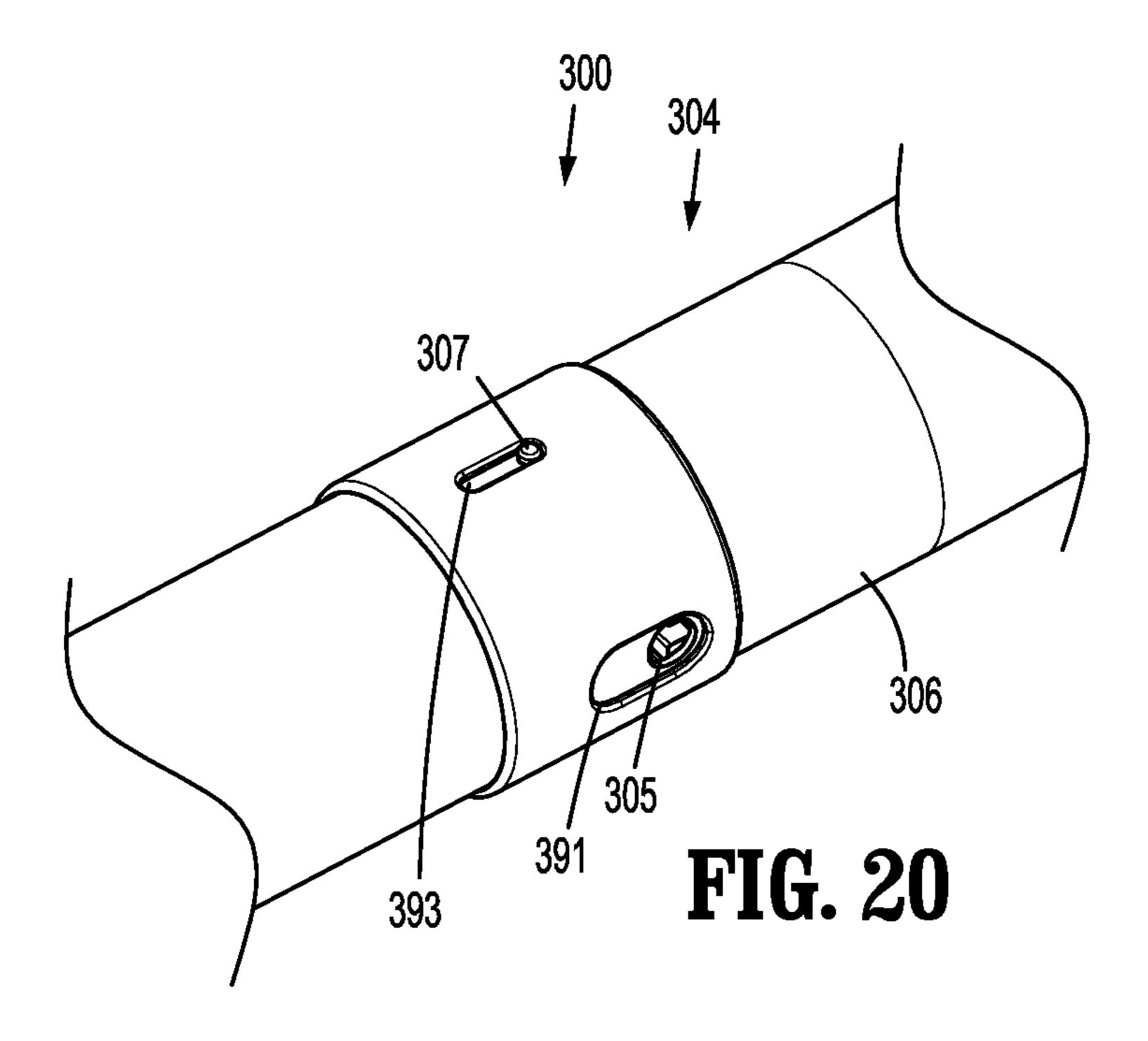



FIG. 19

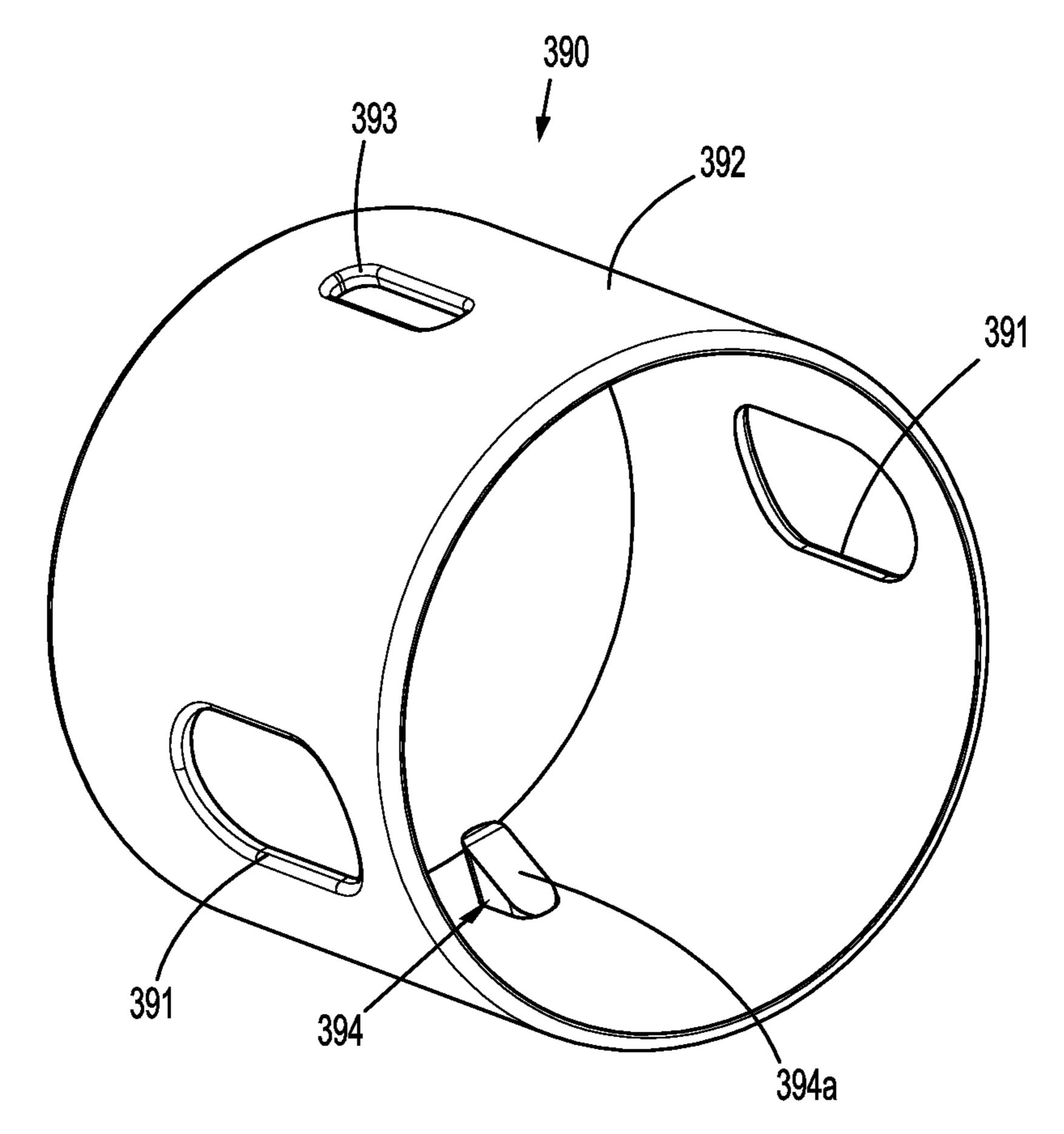


FIG. 21

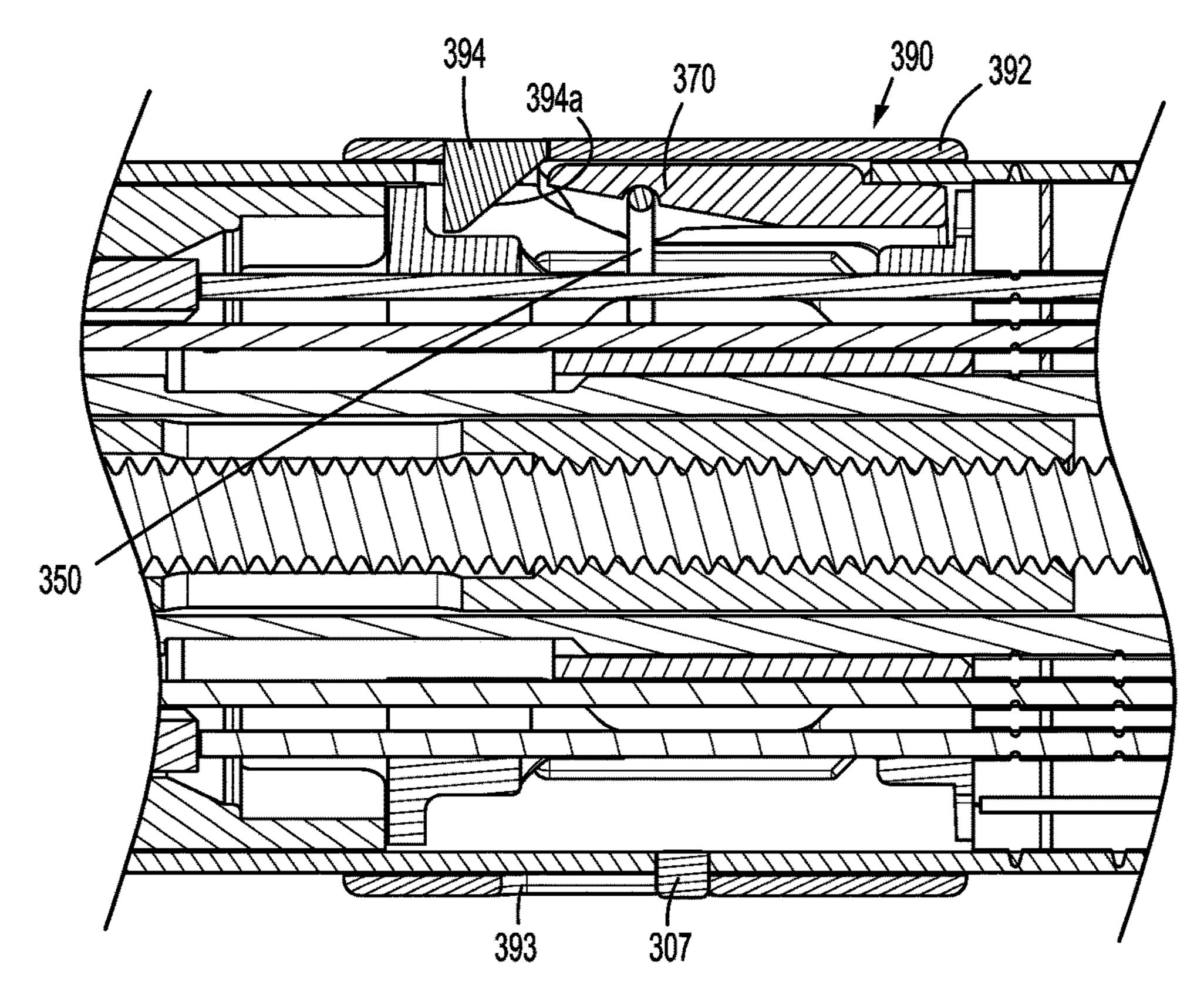


FIG. 22

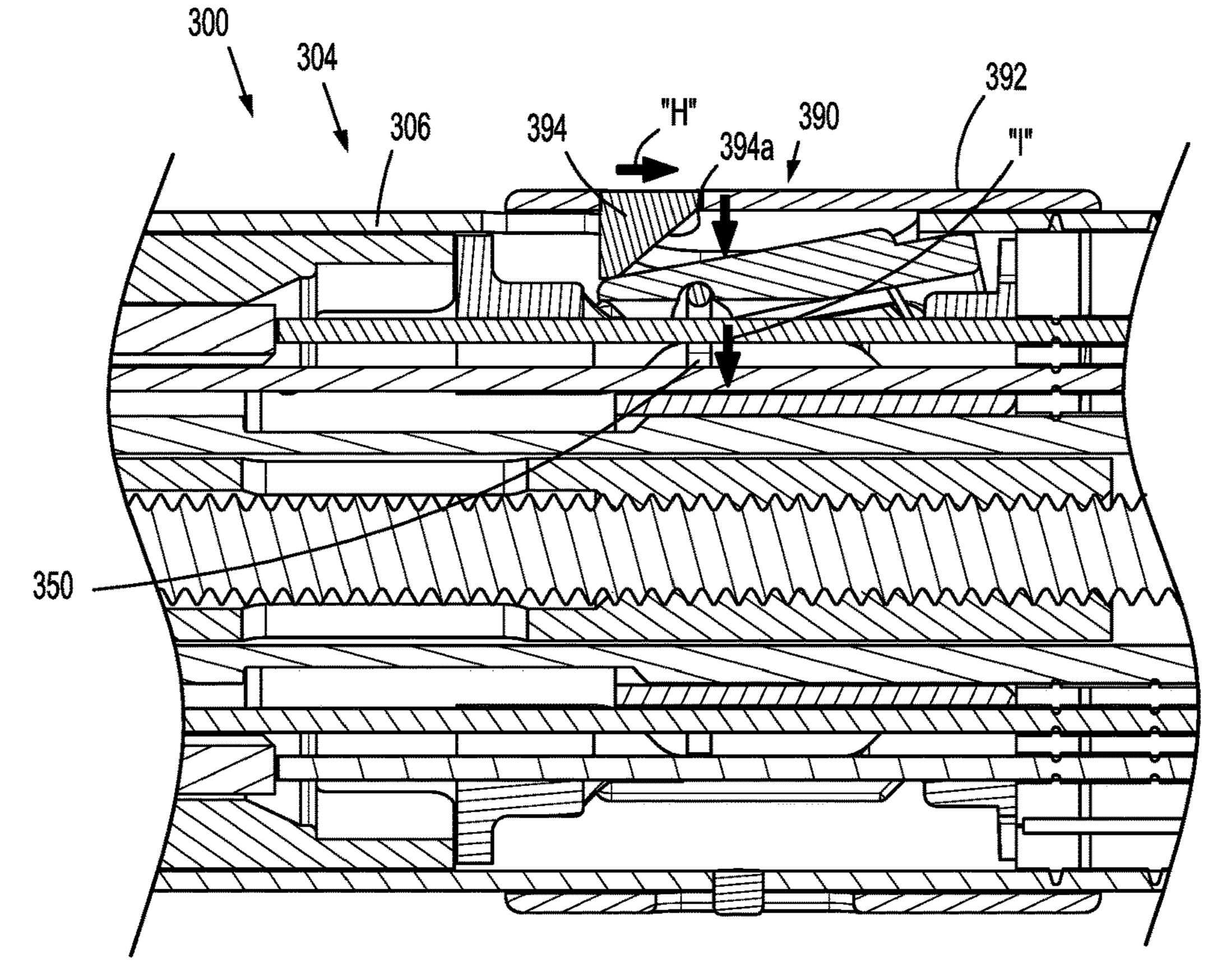
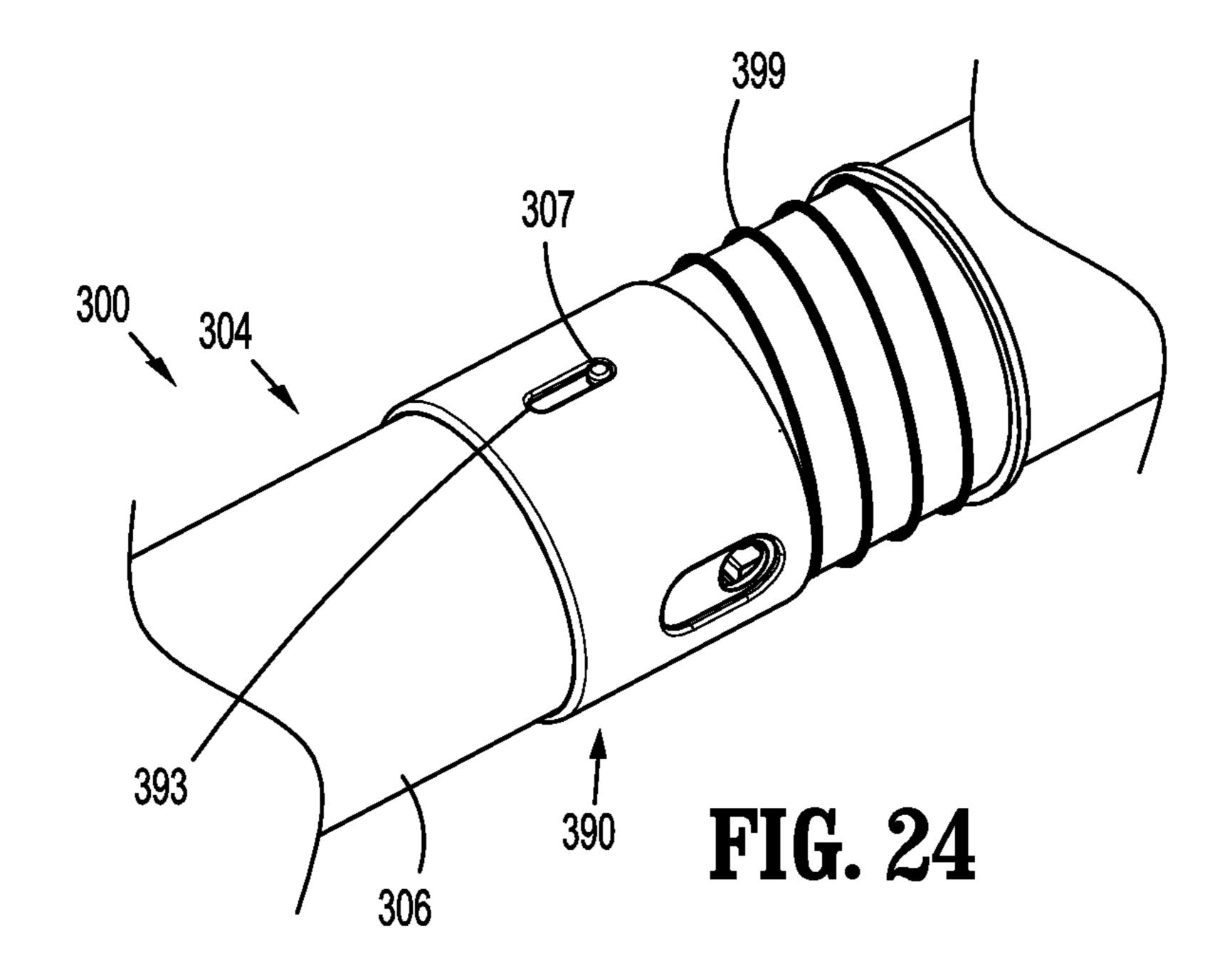



FIG. 23

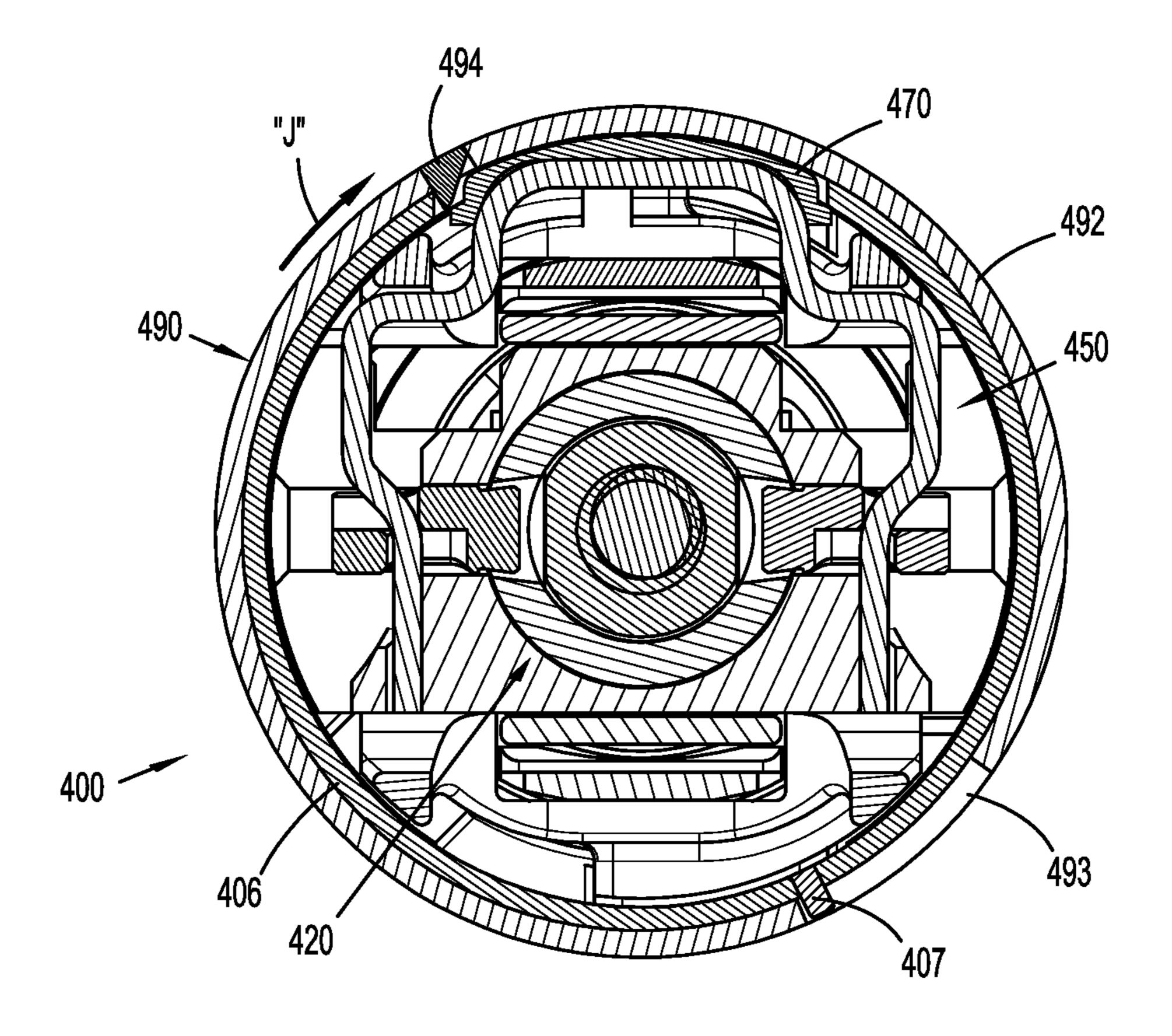


FIG. 25

RETAINING MECHANISMS FOR TROCAR **ASSEMBLIES**

FIELD

The disclosure relates to reusable adapter assemblies for surgical stapling devices. More particularly, the disclosure relates to retaining mechanisms for releasably securing removable trocar assemblies within reusable adapter assemblies.

BACKGROUND

Surgical devices for applying staples, clips, or other fasteners to tissue are well known. Typically, endoscopic 15 stapling devices include an actuation unit, i.e., a handle assembly for actuating the device, a shaft for endoscopic access to a body cavity, and a tool assembly disposed at a distal end of the shaft. In certain of these devices, the shaft includes an adapter assembly having a proximal end secur- 20 able to the handle assembly and a distal end securable to the tool assembly.

Circular stapling devices typically include a trocar assembly for supporting and positioning an attached anvil assembly in relation to a staple cartridge of the tool assembly. The 25 trocar assembly may be releasably securable within the adapter assembly to permit cleaning, sterilizing, and reuse of the adapter assembly. It would be beneficial to have a retaining mechanism for releasably securing the trocar assembly to the adapter assembly.

SUMMARY

An adapter assembly for connecting a loading unit to a handle assembly includes an outer sleeve, a trocar assembly 35 releasably securable within the outer sleeve, and a retaining mechanism configured to releasably secure the trocar assembly within the outer sleeve. The trocar assembly includes a trocar housing defining first and second openings. The retaining mechanism includes a retaining block, a cam wire 40 moveably positioned relative to the retaining block between a lock position and a release position, a retaining block extension configured to maintain the cam wire relative to the retaining block, a button member in operable engagement with the cam wire, and a pair of retaining members move- 45 able from a first position received within the first and second openings of the trocar assembly when the cam wire is in the lock position and a second position spaced from the trocar assembly when the cam wire is in the release position. The retaining block extension includes a stop tab. The button 50 member includes a center beam moveable from an unflexed position in engagement with the stop tab of the retaining block extension to prevent movement of the button member to a flexed position out of alignment with the stop tab to permit movement of the button member.

In embodiments, the button member is pivotable relative to the retaining block from a non-depressed position when the center beam is in the unflexed position and a depressed position when the center beam is in the flexed position. Depression of the button member may cause the cam wire to 60 move from the lock position to the release position.

The center beam may include a rib configured for operable engagement by a user. The button member may define a relief on either side of the center beam to permit movement of the center beam between the unflexed and flexed posi- 65 tions. The button member may define a midline. The stop member may be aligned with the midline. The center beam

may be aligned with the midline when in the unflexed position and is misaligned with the midline when in the flexed position. The retaining block may define a central opening for receiving the trocar assembly. Each of the first and second retaining members may include a wedge-shaped free end.

Another adapter assembly for connecting a loading unit to a handle assembly includes an outer sleeve, a trocar assembly releasably securable within the outer sleeve, and a retaining mechanism configured to releasably secure the trocar assembly within the outer sleeve. The trocar assembly includes a trocar housing defining first and second openings. The retaining mechanism includes a retaining block, a cam wire moveably positioned relative to the retaining block between a lock position and a release position, an upper retaining block extension configured to maintain the cam wire relative to the retaining, a button member for moving the cam wire between the lock and release positions, a pair of retaining members moveable from a first position received within the first and second openings of the trocar assembly when the cam wire is in the lock position and a second position spaced from the trocar assembly when the cam wire is in the release position, a lower retaining block extension disposed opposite the upper retaining block extension, and a sliding button moveable between a first position in engagement with the cam wire to a second position spaced from the cam wire. Movement of the sliding button member relative to the lower retaining block permits movement of 30 the cam wire from the lock position to the release position.

In embodiments, the cam wire includes first and second free ends and the sliding button member includes first and second stop members configured to engage the free ends of the cam wire to prevent movement of the cam wire to the release position. The sliding button member may be biased to the first position by a biasing member. The biasing member may be a coil spring. The sliding button member may be configured for operable engagement by a user. The button member may be pivotable relative to the upper retaining block extension.

The adapter assembly may include a collar assembly received about the outer sleeve. Movement of the collar assembly from a first position to a second position moves the button member from the non-depressed position to the depressed position. The collar assembly may move proximally from the first position to the second position. Alternatively, the collar assembly is rotated about the outer sleeve when moved from the first position to the second position. The collar assembly may be biased to the first position by a coil spring. The outer sleeve may include a pin for engagement with the collar assembly to limit movement of the collar assembly.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiments given below, serve to explain the principles of the disclosure, wherein:

FIG. 1 is a perspective view of a surgical stapling device including an handle assembly and an adapter assembly according to an exemplary embodiment of the disclosure;

FIG. 2 is a perspective view of the adapter assembly shown in FIG. 1 with a removable trocar assembly extending from a distal portion of the adapter assembly;

- FIG. 3 is a perspective view of the distal portion of the adapter assembly and the removable trocar assembly shown in FIG. 1, with the removable trocar removed from within the adapter assembly;
- FIG. 4 is an exploded view of the indicated area of detail 5 shown in FIG. 3;
- FIG. 5 is a perspective view of the distal portion of the adapter assembly shown in FIG. 2, with an outer sleeve removed to expose a retaining mechanism;
- FIG. 6 is a side perspective view of the retaining mechanism shown in FIG. 5, with components separated;
- FIG. 7 is a cross-sectional end view the adapter assembly shown in FIG. 2 taken along line 7-7 shown in FIG. 3, with the retainer mechanism in a lock position;
- FIG. 8 is a top view of a portion of the adapter assembly including a button member of the retainer mechanism shown in FIG. 5, with a center beam in a first or unflexed condition;
- FIG. 9 is the top view shown in FIG. 8 with the center beam of the button member in a second of flexed condition; 20
- FIG. 10 is the cross-sectional end view of the adapter assembly shown in FIG. 7, with the retainer mechanism in a release position;
- FIG. 11 is a first perspective view of a distal portion of an adapter assembly according to another embodiment of the 25 disclosure;
- FIG. 12 is a second perspective view of the distal portion of the adapter assembly shown in FIG. 11;
- FIG. 13 is a perspective view of the distal portion of the adapter assembly shown in FIG. 11, with an outer sleeve 30 removed to expose a retaining mechanism;
- FIG. 14 is a side perspective view of the retaining mechanism shown in FIG. 13, with components separated, and a cam wire, an upper retaining member, and a button member removed;
- FIG. 15 is a perspective view of a lower retaining block extension of the retaining mechanism shown in FIG. 13;
- FIG. 16 is a cross-sectional end view of the adapter assembly shown in FIG. 11 taken along line 16-16 of FIG. 11;
- FIG. 17 is the perspective view of the distal portion of the adapter assembly shown in FIG. 13, with a sliding button member of the retaining mechanism shown in FIG. 13 in a proximal position;
- FIG. 18 is a side view of the retaining mechanism shown 45 in FIG. 17, with the sliding button member in the proximal position and the button member in a depressed condition;
- FIG. 19 is a distal portion of an adapter assembly according to another exemplary embodiment of the disclosure including a collar assembly;
- FIG. 20 is another perspective side view of a portion of the distal portion of the adapter assembly shown in FIG. 19;
- FIG. 21 is a perspective side view of the collar assembly shown in FIG. 19;
- FIG. 22 is a cross-sectional side view of the adapter 55 assembly taken along line 22-22 of FIG. 19, with the collar assembly in a distal position;
- FIG. 23 is the cross-sectional side view shown in FIG. 22, with the collar assembly in a proximal position;
- according to yet another exemplary embodiment of the disclosure including a collar assembly and a biasing member for maintaining the collar assembly in a proximal position; and
- FIG. 25 is a cross-sectional end view of an adapter 65 assembly according to another exemplary embodiment of the disclosure including a collar assembly.

DETAILED DESCRIPTION

Embodiments of the disclosed adapter assembly including a retaining mechanism for securing a removable trocar assembly therein will now be described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As is common in the art, the term "proximal" refers to that part or component closer to the user or operator, i.e. surgeon or clinician, while the term "distal" refers to that part or component further away from the user.

Referring initially to FIG. 1, an adapter assembly according to an embodiment of the disclosure, shown generally as adapter assembly 100, is a component of a surgical stapling 15 device 10. The surgical stapling device 10 further includes a powered handle assembly 20 for actuating a loading unit 30, and an anvil assembly 40 supported relative to the loading unit 30. The loading unit 30 and the anvil assembly 40 form a tool assembly of the surgical stapling device 10. Although shown and described with reference to surgical stapling device 10, aspects of the disclosure may be modified for use with manual surgical stapling devices having various configurations, and with powered surgical stapling devices having alternative configurations. For a detailed description of exemplary surgical stapling devices, please refer to U.S. Pat. Nos. 9,023,014 and 9,055,943. With reference to FIG. 2, the adapter assembly 100 includes a proximal portion 102 configured for operable connection to the handle assembly 20 (FIG. 1) and a distal portion 104 configured for operable connection to the loading unit 30 (FIG. 1) and to the anvil assembly 40 (FIG. 1). Although shown and described as forming an integral unit, it is envisioned that the proximal and distal portions 102, 104 may be formed as separate units that are releasably securable 35 to one another.

The adapter assembly 100 will only be described to the extent necessary to fully disclose the aspects of the disclosure. For a detailed description of an exemplary adapter assembly, please refer to U.S. Pat. No. 10,226,254 ("the '254 40 patent").

With additional reference to FIGS. 3 and 4, the adapter assembly 100 includes an outer sleeve 106, and a connector housing 108 secured to a distal end of the outer sleeve 106. The connector housing 108 is configured to releasably secure a loading unit, e.g., the loading unit 30 (FIG. 1), to the adapter assembly 100. The outer sleeve 106 defines a flush port 105 (FIG. 3) and an opening 107 through which a button member 170 of a trocar retaining mechanism 130 is operably disposed. As will be described in further detail below, the outer sleeve **106** further includes an asymmetric cutout **107***a* (FIG. 4) in communication with the opening 107.

With additional reference to FIG. 5, the adapter assembly 100 further includes a trocar assembly 120 (FIG. 3), and a retaining mechanism 130 releasably securing the trocar assembly 120 relative to the outer sleeve 106 (FIG. 3) of the adapter assembly 100. The trocar assembly 120 will only be described to the extent necessary to fully describe the aspects of the disclosure. For a detailed description of the structure and function of an exemplary trocar assembly, FIG. 24 is a perspective side view of an adapter assembly 60 please refer to the '254 patent. With particular reference to FIG. 3, the trocar assembly 120 of the adapter assembly 100 (FIG. 2) includes a trocar housing 122, a trocar member 124 slidably disposed within the trocar housing 122, and a drive screw 126 operably received within the trocar member 124 for axially moving the trocar member 124 relative to the trocar housing 122. The trocar housing 122 defines first and second locking openings 123a, 123b (FIG. 7) for receiving

respective locking portions 182a, 182b of first and second retainer members 180a, 180b (FIG. 6) of a retaining mechanism 130 of the adapter assembly 100.

Turning briefly to FIG. 7, the retaining mechanism 130 of the adapter assembly 100 is disposed between first and 5 second drive members 110a, 110b, 112a, 112b of respective inner and outer drive assemblies 110, 112. The first and second drive assemblies 110, 112 are operably connected to first and second drive shafts (not shown) in a proximal portion 102 of the adapter assembly 100 for effecting 10 operation of a loading unit, e.g., the loading unit 30 (FIG. 1), to perform first and second functions. More particularly, the first and second drive members 110a, 110b, 112a, 112b of the respective first and second drive assemblies 110, 112 are configured for longitudinal movement within the distal 15 portion 104 of the adapter assembly 100. In embodiments, advancement of the first drive assembly 110 effects tissue stapling, and advancement of the second drive assembly 112 effects tissue cutting.

The first and second drive assemblies 110, 112 will only 20 be described to the extent necessary to fully disclose the aspects of the disclosure. For a detailed description of exemplary drive assemblies, please refer to the '254 patent. With reference now to FIGS. 5 and 6, the retaining mechanism 130 of the adapter assembly 100 includes a retaining 25 block 140, a cam wire 150 (FIG. 6) supported by the retaining block 140, a retaining block extension 160 for maintaining the cam wire 150 relative to the retaining block 140, a button member 170 in operable engagement with the cam wire 150 and pivotally supported relative to the retaining block 140, and first and second retainer members 180a, **180***b* (FIG. 6) supported by the cam wire **150** within the retaining block 140.

With particular reference to FIG. 6, the retaining block ing 141 for receiving the trocar assembly 120 (FIG. 3), first and second opposed cylindrical openings 143a, 143b in communication with the central opening 141 for receiving the respective first and second retainer members 180a, 180b, and a channel or slot 145 extending about a perimeter of the 40 retaining block 140 and through the first and second cylindrical openings 143a, 143b in the retaining block 140 for receiving the cam wire 150. The first and second retainer members 180a, 180b of the retaining mechanism 130 are supported within the first and second cylindrical openings 45 143a, 143b of the retaining block 140 by the cam wire 150 and are configured to be received within first and second locking openings 123a, 123b of the trocar housing 122 of the trocar assembly 120 when the trocar assembly 120 is fully received within the distal portion 104 (FIG. 2) of the adapter 50 assembly 100.

The cam wire 150 of the retaining mechanism 130 includes a substantially U-shaped member having a backspan 152, and first and second legs 154a, 154b extending from the backspan **152**. The backspan **152** includes a button 55 engagement portion 152a and a pair of shoulders portions 152b on either side of the button engagement portion 152a. Each of the first and second legs 154a, 154b includes an opposed angled section 156a, 156b. The cam wire 150 is received within the channel **145** of the retaining block **140**. 60 As will be described in further detail below, the cam wire 150 is moveable between a first or lock position (FIG. 8) when the button member 170 is in an initial or nondepressed position, and a second or release position when the button member 170 is depressed.

With continued reference to FIG. 6, the retaining block extension 160 includes a substantially rectangular frame 162

defining an opening 161 and a pair semi-cylindrical recesses 163. First and second pivot portions 174 (only one shown) of the button member 170 are pivotally supported within the semi-cylindrical recesses 163 in the frame 162 and a body portion 172 of the button member is disposed within the opening 161 in the frame 162. The frame 162 includes a pair of stop surfaces 162a (FIG. 7) for engaging the shoulder portions 152b of the backspan 152 of the cam wire 150, and a stop member, e.g., a stop tab 164, along a midline "m" of the frame 162 for inhibiting depression of the button member 170.

The button member 170 of the retaining mechanism 130 of the adapter assembly 100 (FIG. 2) includes the body portion 172 configured for operable engagement by a user, and the pair of pivot portions 174 configured for reception within the pair of semi-cylindrical recesses 163 of the retaining block extension 160. The button member 170 is configured to engage the engagement portion 152a of the backspan 152 of the cam wire 150. In embodiments, the backspan 152 of the cam wire 150 is secured to the button member 170. For example, and as shown, the body portion 172 of the button member 170 defines a cavity 171 (FIG. 7A) in with the engagement portion 152a of the back span 152 is retained through friction fit. Alternatively, the backspan 152 is secured within the cavity 171 with mechanical fasteners, bonding, welding, adhesives, or in any other suitable manner. The retaining mechanism 130 may include a biasing member, e.g., leaf springs 178 (FIG. 6) for biasing the cam wire 150 outwardly to the first position, and/or the button member 170 outwardly to the non-depressed position (FIG. 7).

The button member 170 of the trocar retaining mechanism 130 further includes a center beam 176, and defines a relief 175 on either side of the center beam 176. The center beam 140 of the retaining mechanism 130 defines a central open- 35 176 includes a rib 176a, or is otherwise configured for engagement by a user. The center beam 176 and reliefs 175 are configured such that the center beam 176 may be flexed away from a midline "M" of the button member 170. More particularly, the center beam 176 of the button member 170 is configured to align with the stop tab **164** of the retaining block extension 160 when the center beam 176 is in an initial or unflexed condition. In this manner, the center beam 176 of the button member 170 prevents the button member 170 from being depressed. As will be described in further detail below, flexing of the center beam 176 away from the midline "M" of the button member 170 moves the center beam 176 out of alignment with the stop tab **164** of the retaining block extension 160, thereby permitting depression of the button member 170. The reliefs 175 in the button member 170 may also facilitate flushing and cleaning of the adapter assembly **100** (FIG. **2**)

> The first and second retaining members **180***a*, **180***b* of the retaining mechanism 130 form substantially cylindrical bodies 182a, 182b and are supported on the angled portions 156a, 156b of the respective first and second legs 154a, 154b of the cam wire 150. In embodiments, the first and second retaining members 180a, 180b form a wedge-shaped configuration to be received within wedge-shaped first and second locking openings 123a, 123b in the trocar housing 122 of the trocar assembly 120. The first and second retaining members 180a, 180b may include an inclined inner surface (not shown) to facilitate receipt of the trocar assembly 120 through the retaining block 140.

The first and second retaining members 180a, 180b each 65 define a stepped opening **181***a*, **181***b* through which the respective angled portion 156a, 156b of the cam wire 150 is received. The cam wire 150 and the stepped openings 181a,

181b of the respective first and second retaining members **180***a*, **180***b* are configured such that when the cam wire **150** is in the first position, the first and second retaining members **180***a*, **180***b* extend from within the retaining block **140** into the central passage 141. In this manner, when a trocar 5 assembly 120 is fully seated within the distal portion 104 (FIG. 2) of the adapter assembly 100, the first and second retaining members 180a, 180b are received within the respective first and second locking openings 123a, 123b (FIG. 7) of the trocar housing 122 of the trocar assembly 10 **120**. Conversely, when the cam wire **150** is in the second or release position, the first and second retainer members 180a, **180***b* are retracted from within the central opening **141** of the retaining block 140 to permit insertion and/or removal of the trocar assembly 120 from the distal portion 104 of the 15 adapter assembly 100.

With reference now to FIGS. 7 and 8, the retaining mechanism 130 of the adapter assembly 100 is shown in a first or lock configuration, with the trocar assembly 120 securely received within the distal portion 104 of the adapter assembly 100. In the lock configuration, the cam wire 150 of the retaining mechanism 130, which is secured to the button member 170, is biased to the first position by the leaf springs 178 (FIG. 6). In the first position, the shoulder portions 152b of the backspan 152 of the cam wire 150 engage the stop 25 surface 162a of the retaining block extension 160. As noted above, when the cam wire 150 is in the first position and the trocar assembly 120 is fully seated within the distal portion 104 (FIG. 2) of the adapter assembly 100, the first and second retainer members 180a, 180b are received within the respective first and second locking openings 123a, 123b in the trocar housing 122 of the trocar assembly 120.

The center beam 176 of the button member 170 of the retaining mechanism 130 is shown in the first or unflexed position. In the unflexed position, the center beam 176 aligns 35 with the midline "M" of the button member 170. When aligned with the midline "M", the center beam 176 engages the stop tab 164 of the retaining block extension 160 which is also aligned with the midline "M" of the button member 170, thereby preventing the button member 170 from being 40 depressed.

Turning to FIG. 9, following use of the adapter assembly 100, or to otherwise remove the trocar assembly 120 from the distal portion 104 of the adapter assembly 100, the rib 176a of the center beam 176 of the button member 170 of 45 the retaining mechanism 130 is moved off-center, or away from the midline "M" of the button member 170, to the flexed position, as indicated by arrow "A", to move the center beam 176 of the button member 170 out of alignment with the stop tab 164 of the retaining block extension 160. 50 As noted above, when the center beam 176 of the button member 170 is misaligned with the stop tab 164 of the retaining block extension 160, the stop tab 164 no longer obstructs or inhibits the button member 170 from being depressed.

With reference to FIG. 10, with the center beam 176 of the button member 170 is in the flexed position, the button member 170 is able to be depressed, as indicated by arrows "B". Depression of the button member 170 causes the cam wire 150 to move from its first position (FIG. 7) to its second 60 position, as indicated by arrows "C". As the cam wire 150 moves to the second position, engagement of the angled portions 156a, 156b of the first and second legs 154a, 154b, respectively, with the respective first and second retainer members 180a, 180b cause the first and second retainer 65 members 180a, 180b to move radially outward, as indicated by arrows "D". Radial outward movement of the first and

8

second retaining members 180a, 180b withdraws the first and second retaining members 180a, 180b from within the respective first and second locking openings 123a, 123b of the trocar housing 122 of the trocar assembly 120 to permit removal of the trocar assembly 120 from within the distal portion 104 of the adapter assembly 100 (FIG. 2).

FIGS. 11-18 illustrate another embodiment of a retaining mechanism according to the disclosure shown generally as retaining mechanism 230 (FIG. 13). The retaining mechanism 130 described hereinabove and will only be described in detail with regards to the differences therebetween. The retaining mechanism 230 releasably secures a trocar assembly 220 within a distal portion 204 of an adapter assembly 200. The trocar assembly 220 includes a trocar housing 222 (FIG. 16) defining first and second locking openings 223a, 223b for receiving retaining members 280a, 280b (FIG. 16), respectively, of the retaining mechanism 230.

With particular reference to FIGS. 13 and 14, the retaining mechanism 230 of the access assembly 200 includes a retaining block 240 (FIG. 13), a cam wire 250 (FIG. 16) moveably positioned relative to the retaining block 240, an upper retaining block extension 260 securing the cam wire 250 relative to the retaining block 240, a button member 270 pivotally supported by the upper retaining block 260 and in operable engagement with the cam wire 250, first and second retaining members 280a, 280b in operable engagement with the cam wire 250 and moveably disposed within the retaining block 230, a lower retaining block extension 290 disposed opposite the upper retaining block 260 in engagement with the retaining block 240, and a sliding button member 296 slidably supported on the lower retaining block extension 290.

The retaining block 240, cam wire 250, and first and second retaining members 280a, 280b of the retaining mechanism 230 of the access assembly 200 are substantially similar to the retaining block 140, cam wire 150, and first and second retaining members 180a, 180b described above. The upper retaining block extension 260 and the button member 270 are also substantially similar to the retaining block extension 160 and the button member 170. The button member 270 of the retaining mechanism 230 is accessible through a first opening 207 (FIG. 11) in an outer sleeve 206 of the adapter assembly 200. The sliding button member 296 is accessible through a second opening 207b (FIG. 12) in the outer sleeve 206.

FIGS. 14 and 15 illustrate the lower retaining block extension 290 of the retaining mechanism 230 which includes a substantially rectangular frame 292 defining an opening 291 for receiving the sliding button member 296. A pair of cutouts 293 in the frame 292 support a pair of stop members 298a of the sliding button member 296. The lower retaining block extension 290 is received within the outer sleeve 206 (FIG. 16) of the adapter assembly in engagement with the retaining block 240 and opposite the upper retaining block extension 260.

The sliding button member 296 of the retaining mechanism 290 includes a body portion 298 configured for operable engagement by a user, and the pair of stop members 298a extending outwardly from the body portion 298. The stop members 298a ride within the cutouts 293 of the lower retaining block extension 290. The sliding button member 296 is moveable between a first or distal position (FIG. 13) in which the stop members 298a of the sliding button member 296 are aligned with free ends 258a, 258b (FIG. 16) of legs 254a, 254b, respectively, of the cam wire 250 and a second or proximal position (FIG. 17) in which the stop

members 298a are spaced from the free ends 258a, 258b of the legs 254a, 254b, respectively, of the cam wire 250.

A cylindrical recess 297 (FIG. 15) in an end of the sliding button member 296 of the retaining assembly 230 is configured to receive a biasing member, e.g., a coil spring 299 (FIG. 14) for biasing the sliding button member 296 in a first direction, e.g., distally, as shown, to the distal position. The sliding button member 296 is accessible through the second opening 207b (FIG. 12) in the outer sleeve 206 of the adapter assembly 200.

FIG. 16 illustrates the retaining mechanism 230 in a first or lock position with the cam wire 250 in a first position and the sliding button member 296 in the distal position. The sliding button member 296 is maintained in the distal position by the coil spring 299. As described above, when 15 the sliding button member 296 of the retaining mechanism 230 is in the proximal position, the stop members 298a of the sliding button member **298** are aligned with the free ends **258***a*, **258***b* of the legs **254***a*, **254***b*, respectively, of the cam wire 250 to prevent movement of the cam wire 250 to the 20 second position.

FIGS. 17 and 18 illustrate the method for removal of the trocar assembly 230 from the adaptor assembly 200. When the trocar assembly 230 is removed from the distal portion **204** of the adapter assembly **200**, the sliding button member 25 296 is moved proximally, against the bias of the coil spring **299**, as indicated by arrows "E". Proximal movement of the sliding button member 296 moves the stop members 298a of the sliding button member 296 out of engagement with the free ends 258a, 258b (FIG. 16) of the legs 254a, 254b, 30 respectively, of the cam wire 250. With the stop members **298***a* of the sliding button member **296** no longer preventing movement of the cam wire 250 to the second position, the button member 270 may be depressed, as indicated by arrow "F" to cause the cam wire 250 to move to the second 35 position, as indicated by arrows "G". As discussed in detail above with respect to retaining mechanism 130, as the cam wire 250 moves to the second position, the retaining members 280a, 280b (FIG. 16) move radially outward from within first and second locking openings 223a, 223b of a 40 trocar housing 232 of the trocar assembly 230 to release the trocar assembly 230 from within the distal portion 204 of the adapter assembly 200, and permit removal of the trocar assembly 230 from within the adapter assembly 200.

FIGS. 19-25 illustrate a release mechanism according to 45 another exemplary embodiment of the disclosure. The release mechanism is shown generally as collar assembly **390**. The collar assembly **390** is configured to depress a button member 370 of a trocar retaining mechanism 320. More particularly, collar assembly **390** includes an annular 50 member 392 receivable about a distal portion 304 of an adapter assembly 300. The annular member 392 includes a cam lug 394 extending from an inner surface of the annular member 392 and having an inclined surface 394. The cam lug 394 is configured to engage and depress the button 55 and described. member 370 during proximal movement of the collar assembly 390 relative to the outer sleeve 306 of the adapter assembly 300.

The annular member 392 defines a pair of flush ports 391 (FIG. 21), and a slot 393 for receiving a pin 307 extending 60 from an outer sleeve 306 of the adapter assembly 300. The flush ports 391 align with a flush port 305 on the outer sleeve 306 of the adapter assembly 300. The pin 307 limits travel of the collar assembly 390 relative to the adapter assembly **300**.

With particular reference to FIG. 22, the collar assembly **390** is shown in a first or distal position. In the distal **10**

position, the cam lug **394** is spaced from the button member 370. In this manner, the button member 370 is in a first or undepressed position. When the collar assembly **390** is in the distal position, the annular member 392 covers the button member 370 to prevent accidental depression of the button member 370. In embodiments, the collar assembly 390 may be maintained in the distal position by a biasing member, e.g., coil spring 399 (FIG. 24), received about the outer sleeve 306 of the adapter assembly 300 proximal of the 10 collar assembly **390**. It is envisioned that the collar assembly 390 may be biased distally using a pneumatic cylinder, or in any other suitable manner.

FIG. 23 illustrates the collar assembly 390 as it is moved proximally as indicated by arrows "H". When the collar assembly 390 is moved proximally, as indicated by arrows "H", the inclined surface 394a of the cam lug 394 of the collar assembly 390 engages the button member 370, causing the button member 370 to be depressed, as indicated by arrow "I". As the button member 370 is depressed, the cam wire 350 is moved to a second position to cause the release of trocar assembly 320 as described above with reference to retaining mechanism 130 and trocar assembly 120. As noted above, the pin 307 (FIG. 24) extending from the outer sleeve 306 of the adapter assembly 300 limits travel of the collar assembly 390.

With reference to FIG. 25, in an alternative embodiment, a collar assembly **490** is configured to be rotated relative to the outer sleeve 406 of the adapter assembly 400 to effect depression of a button member 470 of the retaining assembly 430. The collar assembly 490 includes an annular member 492 and a cam lug 494 extending from an inner surface of the annular member 492. The cam lug 494 is configured to engage the button member 470 and defines a slot 493 for receiving a pin 407. The pin 407 extends from the outer sleeve 406 for limiting movement of the collar assembly 490.

During use, the collar assembly **490** is rotated about the outer sleeve 406 of the adapter assembly 400, as indicated by arrow "J". When the cam lug **496** of the collar assembly 490 engages the button member 496, the button member 496 is depressed, causing a wire cam 450 to move to a second or release position, thereby unlocking a trocar assembly 420 received within the adapter assembly 400.

Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown

What is claimed is:

- 1. An adapter assembly for connecting a loading unit to a handle assembly, the adapter assembly comprising:
 - an outer sleeve;
 - a trocar assembly releasably securable within the outer sleeve, the trocar assembly including a trocar housing defining first and second openings; and
 - a retaining mechanism configured to releasably secure the trocar assembly within the outer sleeve, the retaining mechanism including a retaining block, a cam wire moveably positioned relative to the retaining block between a lock position and a release position, a

retaining block extension configured to maintain the cam wire relative to the retaining block, a button member in operable engagement with the cam wire, and a pair of retaining members moveable from a first position received within the first and second openings of the trocar assembly when the cam wire is in the lock position and a second position spaced from the trocar assembly when the cam wire is in the release position, the retaining block extension including a stop tab, wherein the button member includes a center beam moveable from an unflexed position in engagement with the stop tab of the retaining block extension to prevent movement of the button member to a flexed position out of alignment with the stop tab to permit movement of the button member.

- 2. The adapter assembly of claim 1, wherein the button member is pivotable relative to the retaining block from a non-depressed position when the center beam is in the unflexed position and a depressed position when the center beam is in the flexed position.
- 3. The adapter assembly of claim 2, wherein depression of the button member causes the cam wire to move from the lock position to the release position.
- 4. The adapter assembly of claim 2, wherein the center beam includes a rib configured for operable engagement by 25 a user.
- 5. The adapter assembly of claim 2, wherein the button member defines a relief on either side of the center beam to permit movement of the center beam between the unflexed and flexed positions.
- 6. The adapter assembly of claim 2, wherein the button member defines a midline, the stop tab being aligned with the midline.
- 7. The adapter assembly of claim 6, wherein the center beam is aligned with the midline when in the unflexed position and is misaligned with the midline when in the flexed position.
- 8. The adapter assembly of claim 1, wherein the retaining block defines a central opening for receiving the trocar assembly.
- 9. The adapter assembly of claim 1, wherein each retaining member of the pair of retaining members include a wedge-shaped free end.
- 10. The adapter assembly of claim 1, wherein the retaining block defines a central opening for receiving the trocar 45 assembly.
- 11. An adapter assembly for connecting a loading unit to a handle assembly, the adapter assembly comprising:

an outer sleeve; and

a retaining mechanism configured to releasably secure a trocar assembly within the outer sleeve, the retaining mechanism including a retaining block defining a longitudinal passage for receipt of the trocar assembly, a cam wire moveably positioned relative to the retaining block between a lock position and a release position, a retaining block extension configured to maintain the cam wire relative to the retaining block, a button member in operable engagement with the cam wire, and at least one retaining member moveable from a first position extending into the longitudinal passage when the cam wire is in the lock position and a second position clear of the longitudinal passage when the cam

12

wire is in the release position, the retaining block extension including a stop member, wherein the button member includes a flexible portion moveable from an unflexed position in engagement with the stop member of the retaining block extension to prevent movement of the button member to a flexed position out of alignment with the stop member to permit movement of the button member.

- 12. The adapter assembly of claim 11, wherein the button member is pivotable relative to the retaining block from a non-depressed position when the flexible portion is in the unflexed position to a depressed position when the center beam is in the flexed position.
- 13. The adapter assembly of claim 12, wherein depression of the button member causes the cam wire to move from the lock position to the release position.
 - 14. The adapter assembly of claim 12, wherein the flexible portion includes a rib configured for operable engagement by a user.
 - 15. The adapter assembly of claim 12, wherein the button member defines a relief on either side of the flexible portion to permit movement of the flexible portion between the unflexed and flexed positions.
 - 16. The adapter assembly of claim 12, wherein the button member defines a midline, the stop member being aligned with the midline.
- 17. The adapter assembly of claim 16, wherein the flexible portion is aligned with the midline when in the unflexed position and the flexible portion is misaligned with the midline when in the flexed position.
 - 18. The adapter assembly of claim 11, wherein the retaining block defines a central opening for receiving the trocar assembly.
 - 19. The adapter assembly of claim 11, wherein each retaining member of the pair of retaining members include a wedge-shaped free end.
 - 20. An adapter assembly for connecting a loading unit to a handle assembly, the adapter assembly comprising: an outer sleeve; and
 - a retaining mechanism configured to releasably secure a trocar assembly within the outer sleeve, the retaining mechanism including a retaining block, a cam wire moveably positioned relative to the retaining block between a lock position and a release position, a retaining block extension configured to maintain the cam wire relative to the retaining block, a button member in operable engagement with the cam wire, and a pair of retaining members moveable from a first position engageable with the trocar assembly when the trocar assembly is received within the outer sleeve and the cam wire is in the lock position, and a second position spaced from the trocar assembly when the trocar assembly is received within the sleeve and the cam wire is in the release position, the retaining block extension including a stop member, wherein the button member includes a center beam moveable from an unflexed position in engagement with the stop member of the retaining block extension to prevent movement of the button member to a flexed position out of alignment with the stop member to permit movement of the button member.

* * * *