12 United States Patent

Mallon et al.

USO011119741B2

US 11,119,741 B2
Sep. 14, 2021

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(86)

(87)

(65)

(30)

Dec. 20, 2017

(1)

(52)

COMPILING DEVICE AND METHOD

Applicant: KONINKLIJKE PHILIPS N.V.,

Eindhoven (IN.

)

(38) Field of Classification Search
CPC . GO6F 8/41; GO6F 40/205; GO6F 8/34; GO6F
8/433; GO6F 21/14; GO6F 8/451
See application file for complete search history.

Hindhoven

Inventors: William Charles Mallon, |

(NL); Alan Pestrin, Salzburg (AT);
Oscar Garcia Morchon, Findhoven

(NL)

Koninklijke Philips N.V., Eindhoven
(NL)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

Appl. No.: 16/955,113

PCT Filed: Dec. 19, 2018

PCT No.: PCT/EP2018/085714

§ 371 (c)(1),

(2) Date: Jun. 18, 2020

PCT Pub. No.: W02019/121831
PCT Pub. Date: Jun. 27, 2019

Prior Publication Data

US 2020/03107677 Al Oct. 1, 2020
Foreign Application Priority Data

(BP) oo 17208868

Int. CIL.
GO6F 8/41

U.S. CL
CPC

(2018.01)

GO6F 8/433 (2013.01); GOGF 8/451
(2013.01)

(56)

References Cited

U.S. PATENT DOCUMENTS

6,779,114 B1* 8/2004 Chowcccce... GO6F 21/14
713/189
10,944,545 B2* 3/2021 Wiener HO4L 9/0631
2003/0221121 A1 11/2003 Chow et al.
2009/0307500 Al 12/2009 Sato et al.
2011/0107314 A1* 5/2011 Babayan GOO6F 8/53
717/132
2011/0214179 Al 9/2011 Chow et al.
2014/0013427 Al 1/2014 Liem et al.
2015/0370560 Al* 12/2015 Tancceeennn, GOO6F 9/30058
717/148

OTHER PUBLICATTIONS

International Search Report and Written Opinion from PCT/EP2018/
085714 dated Feb. 13, 2019,

* cited by examiner

Primary Examiner — Marina Lee

(57) ABSTRACT

Some embodiments are directed to a compiler device (100)
configured to 1dentity a sub-graph (210) 1n a data flow graph
having one or more output nodes marked as encoded and one
or more output nodes marked as non-encoded, and to replace
the sub-graph by an encoded first sub-graph (210.1), and a
non-encoded second sub-graph (210.2), wherein the first
sub-graph has only encoded output nodes, and the second
sub-graph has only non-encoded output nodes.

20 Claims, 12 Drawing Sheets

U.S. Patent Sep. 14, 2021 Sheet 1 of 12 US 11,119,741 B2

100

110 120
e e e e e e i |
: 130
, 132 134 :
! |
! |
e |
| 140 |
| 1472 144 !
| |
| |
1 |

150

FIg. 1

U.S. Patent Sep. 14, 2021 Sheet 2 of 12 US 11,119,741 B2

200

222 224 226
220

210

232 234 230

Fig. 2a

U.S. Patent Sep. 14, 2021 Sheet 3 of 12 US 11,119,741 B2

201
220

210

230

Fig. 2b

U.S. Patent Sep. 14, 2021 Sheet 4 of 12 US 11,119,741 B2

202
220 -

221
223

210

231

230

Fig. 2¢

U.S. Patent Sep. 14, 2021 Sheet 5 of 12 US 11,119,741 B2

205

220

221

210.1

230

Fig. 2d

U.S. Patent Sep. 14, 2021 Sheet 6 of 12 US 11,119,741 B2

204

220

221

210.2 210.1

230

Fig. 2e

U.S. Patent Sep. 14, 2021 Sheet 7 of 12 US 11,119,741 B2

s00

Fig. 3a

U.S. Patent Sep. 14, 2021 Sheet 8 of 12 US 11,119,741 B2

301

320

321

323

310

330

Fig. 3b

U.S. Patent Sep. 14, 2021 Sheet 9 of 12 US 11,119,741 B2

400
432 462
440
472
410 450
FIg. 4
(R, +%) / - (Ro+%)
i H
i . ’
(AauE) . (AaE)

Fig. 5

U.S. Patent Sep. 14, 2021 Sheet 10 of 12 US 11,119,741 B2

000 650

610

620 670

630 F--a---- 631 680 F--a---- 681
632 682
632 682

Fig. 6a Fig. 6b

U.S. Patent Sep. 14, 2021 Sheet 11 of 12 US 11,119,741 B2

007 650
610
620
630 | -cene-- 631 |oememee 681
632 682
632 682
640

Fig. 6C

U.S. Patent Sep. 14, 2021 Sheet 12 of 12 US 11,119,741 B2

1000

Fig. 7a Fig. 7b

US 11,119,741 B2

1
COMPILING DEVICE AND METHOD

CROSS-REFERENCE TO PRIOR
APPLICATIONS

This application 1s the U.S. National Phase application
under 35 U.S.C. § 371 of International Application No.
PCT/EP2018/085714, filed on Dec. 19, 2018, which claims

the benefit of EP Patent Application No. EP 17208868 .4,
filed on Dec. 20, 2017. These applications are hereby
incorporated by reference herein.

FIELD OF THE INVENTION

The mvention relates to a compiling device, a compiler
method, and a computer readable medium.

BACKGROUND OF THE INVENTION

Data used or processed by a program can have a high
value. For instance: machine-learming algorithms that allow
implementing a given functionality use very specific
weights, e.g., of the machine-learning model, learned during
a machine learning process. Reverse engineering of the
program can reveal those weights so that an attacker can
casily replicate or improve the algorithm functionality with-
out requiring access to the data used to train the machine-
learning algorithm or computing power to realize the train-
ing process. Likewise, some applications compute with
secret data, such as secret cryptographic keys. Protecting
those keys from authorized use 1s important.

There are various ways to protect computer programs
from reverse engineering that might reveal secret informa-
tion. For example, various known obfuscation methods
make 1t hard to follow the data flow 1n a computer program.

Furthermore, encodings may be applied to the data, e.g.,
variables, on which a computer program acts. An attacker
who tries to reverse engineer such a protected program does
not know on which data the program acts. For example,
various white-box encoding may be used. For example, fully
homomorphic encryption can be used to protect the algo-
rithms. However, the automated application of these encod-
ing techniques to a program has risks. A compiler may
unwittingly create situations that may be exploited by an
attacker. These may help an attacker to defeat the encoding.
Even 1f encoding and decoding operations are inserted
manually, there 1s a risk that security problems are mserted
inadvertently.

A known compiler 1s described 1n US2003221121A1. The
known compiler protects soltware against tampering and
reverse-engineering. The data flow of the program is trans-
formed so that the observable operations are dissociated
from the intent of the original software code. The intention
1s that an attacker will find 1t hard to understand and decode
the data flow by observing the execution of the code.

SUMMARY OF THE INVENTION

The known compiler has the disadvantage that inserting
encoding and decoding operations 1n existing soltware may
create dangerous situations. This problem is addressed 1n the
compiler device and method according to the claims.

For example, a sub-graph may be identified in the data-
flow graph which has mixed outputs, e.g., encoded as well
as non-encoded outputs. Such non-homogenous sub-graphs
can lead to paths in the compiled code 1n which encoding
and decoding operations follow upon each other quickly,

10

15

20

25

30

35

40

45

50

55

60

65

2

leading to a more easily analyzable situation. This problem
1s particularly acute 11 the sub-graph 1s a so-called copy-phi

network, e.g., a part which only relates to the flow of a datum
in the program.

For example, a sub-graph may be 1dentified in which an
encoding operation 1s followed by a phi1 operation or copy
operation, rather than an operational node. This has the
disadvantage that the encoding operation cannot be merged
with the following operational node. By back-propagating
the operation through the phi or copy operation an oppor-
tunity for merging 1s created.

The improvements made to the data-flow graph may be
combined with other known techniques to amend a data-
flow graph. For example, optimization techniques known
from compiler design may be applied to the data-tflow graph.
For example, obfuscation techniques to obfuscate the data or
data tflow may be applied as well.

The compiling device 1s an electronic device, for
example, the compiling device may be a computer, a server,
a desktop computer, a laptop, etc. The compiling device may
be combined with other programming tools or further com-
piling devices, e.g., a linker, eftc.

The compiler method described herein may be applied 1n
a wide range of practical applications. Such practical appli-
cations include the obfuscation of cryptographic applica-
tions, €.g., the encryption, decryption, and authentication of
digital messages. For example, the compiling method may
be applied to the obfuscation of proprietary algorithms, e.g.,
learning algorithms, 1mage processing, audio processing,
etc.

A method according to the invention may be implemented
on a computer as a computer implemented method, or 1n
dedicated hardware, or 1n a combination of both. Executable
code for a method according to the invention may be stored
on a computer program product. Examples of computer
program products include memory devices, optical storage
devices, integrated circuits, servers, online software, etc.
Preferably, the computer program product comprises non-
transitory program code stored on a computer readable
medium for performing a method according to the invention
when said program product 1s executed on a computer.

In a preferred embodiment, the computer program com-
prises computer program code adapted to perform all the
steps of a method according to the invention when the
computer program 1s run on a computer. Preferably, the
computer program 1s embodied on a computer readable
medium.

Another aspect of the invention provides a method of
making the computer program available for downloading.
This aspect 1s used when the computer program 1s uploaded
into, e.g., Apple’s App Store, Google’s Play Store, or
Microsoit’s Windows Store, and when the computer pro-
gram 1s available for downloading from such a store.

BRIEF DESCRIPTION OF THE DRAWINGS

Further details, aspects, and embodiments of the invention
will be described, by way of example only, with reference to
the drawings. Elements 1n the figures are illustrated for
simplicity and clarity and have not necessarily been drawn
to scale. In the Figures, elements which correspond to
clements already described may have the same reference
numerals. In the drawings,

FIG. 1 schematically shows an example of an embodi-
ment ol a compiling device,

FIGS. 2a-2e schematically show example of an embodi-
ment of a data flow graph,

US 11,119,741 B2

3

FIGS. 3a-3b schematically show example of an embodi-
ment of a data flow graph,

FIG. 4 schematically shows an example of an embodi-
ment of a data encryption and decryption system,

FIG. 5 schematically shows an example of an embodi-
ment of encoded software.

FIGS. 6a, 60 and 6c schematically show examples of
embodiments of a compiling method,

FIG. 7a schematically shows a computer readable
medium having a writable part comprising a computer
program according to an embodiment,

FIG. 7b schematically shows a representation of a pro-
cessor system according to an embodiment.

LIST OF REFERENCE NUMERALS IN FIGS.
1-4

100 a compiler device

110 an 1nput nterface

120 a storage

130 a parsing part

132 a dataflow parser

134 an encoding analyzer

140 a modification part

142 a datatlow analyzer

144 a datatlow amendment unit
150 a compiling unit

200-204 a datatlow graph

210 a copy-ph1 sub-graph
210.1 a copy-ph1 sub-graph
210.2 a copy-ph1 sub-graph
212-216 a copy or phi node
212.1-216.1 a copy or phi node
212.2-216.2 a copy or phi node
220 mnput nodes

221 conversion nodes

222-226 an input node

223 a conversion node

230 output nodes

231 conversion nodes

232-236 an output node

300 a dataflow graph
301 a datatlow graph
310 a copy-ph1 sub-graph
312 a phi node

314 a copy node

320 input nodes

321 conversion nodes
322,324 an mnput node
323 nodes

325 a merged node

330 output nodes

332 an output node
332.1, 332.3 a node

410 a node

420 a data generator (e.g., sensor)
422 Encode and encrypt (public key: pubK)
430 Software

432 Algorithm (evalk)

440 Hardware

450 Cloud

460 Software (secure environment)
462 Decrypt & Decode

470 Hardware

472 Secure element (private key: pk)
1000 a computer readable medium
1010 a writable part

5

10

15

20

25

30

35

40

45

50

55

60

65

4

1020 a computer program
1110 integrated circuit(s)

1120 a processing unit

1122 a memory

1124 a dedicated integrated circuit
1126 a communication element
1130 an interconnect

1140 a processor system

DETAILED DESCRIPTION OF TH.
EMBODIMENTS

(Ll

While this mvention 1s susceptible of embodiment 1n
many different forms, there are shown 1n the drawings and
will herein be described in detail one or more specific
embodiments, with the understanding that the present dis-
closure 1s to be considered as exemplary of the principles of
the invention and not intended to limit the invention to the
specific embodiments shown and described.

In the following, for the sake of understanding, elements
of embodiments are described 1n operation. However, 1t will
be apparent that the respective elements are arranged to
perform the functions being described as performed by
them.

Further, the invention 1s not limited to the embodiments,
and the invention lies 1n each and every novel feature or
combination of features described herein or recited 1n mutu-
ally different dependent claims.

As pointed out above, there may be many reasons to
protect computer software from unauthorized reverse engi-
neering. For example, the software may represent a crypto-
graphic operation, €.g., an encryption/decryption operation
or a signing operation. There 1s a desire to keep the secret
information that 1s needed for the cryptographic operation
secret. The soltware may also comprise proprietary algo-
rithms, for example, (trained) neural networks, 1image pro-
cessing algorithms, etc. There may be a desire to keep the
know-how embedded in the software secret. One approach
to doing this 1s to encode, e.g., encrypt the data that 1s used
in the software. The encoded data may be operated upon by
suitably adapted software operators. For example, logic or
arithmetic operation, etc., may be encoded as tables or as
polynomials over a finite field, etc., so that they can act on
encoded data. Such operations are known from the field of
white-box cryptography. However, these techniques can be
applied outside of cryptography as well. An example of
encoding data and using tables to operate on the encoded
data 1s given i “White-box Cryptography and an AES
Implementation™, by S. Chow, et al.

Since there 1s great potential to apply encoding of data to
various types ol software, there 1s a desire to automate the
encoding of data. However, 1t has turned out that this 1s not
so easy. Embodiments of the invention describes a system
and method to automatically determine the variables and
computations to be encoded.

During the last years, there has been a huge advance 1n
tully homomorphic schemes and encoding schemes. Using
homomorphic schemes make operations on encoded data
casier. The first fully homomorphic encryption scheme was
proposed by Gentry 1n 2009. Such a FHE scheme respects
both basic algebraic operations, namely addition and mul-
tiplication. Since then, many other schemes have been
proposed. The Simple Encrypted Arithmetic Library
(SEAL) 1s a practical library that aims at providing a
well-engineered and documented homomorphic encryption
library, with no external dependencies, that 1s easy to use
both by experts and by non-experts with little or no cryp-

US 11,119,741 B2

S

tographic background. SEAL itself uses the FV homomor-
phic encryption scheme that relies on the RLWE problem. In
any (fully) homomorphic encryption scheme, three keys are
ivolved:

The public-key that 1s used to encrypt plaintext into cipher
text.

The evaluation-key that i1s used to perform operations
(e.g., multiplication) in the encrypted domain.

The private-key that allows the user to decrypt the output.

A potential use case 1s shown 1n FIG. 4. FIG. 4 shows a
node 410, e.g., a computer, and the distribution of encoding/
decoding, encryption/decryption functions, and private/pub-
lic/evaluation keys to different software/hardware blocks.
Node 410 comprises a data generator 420, e.g., a sensor. The

data generator encrypts the data with a public key pubK.
Software 430 performs operation on the software in the
encrypted domain, using the evaluation key (evalk). The
results of the computations may be sent to software 460 that
runs 1n cloud 4350. For example, the software 460 may be
trusted to run in a secure environment. Software 460
decrypts the computation results by applying a decryption
algorithm 462. For example, the decryption may use a
private key, which 1s stored in some secure element 472.
Thus software 430 runs at least in part on encrypted data.
Another application 1s illustrated i FIG. 5. FIG. 5 sche-
matically shows a representation of operations in the
encoded domain. Encoding schemes arising from the field of
white-box cryptography have been designed in order to
make the reverse engineering of an algorithm and 1ts data
more diflicult. Encodings can be based, e.g., on (1) nibbles,
(1) residual number systems, or (i11) algebraic transforma-
tions, etc. FIG. 5 shows an abstract representation of opera-
tions realized 1n the encoded domain. Instead of an evalu-
ation function 1() over the ring of mtegers (R,+,*), the
clements 1n R are transformed by means of transformation
T() into a different domain A such that the same function
f() can be implemented based on elements represented 1mn A

and alternative operations A, 2. This implementation is
denoted as F() Such a scheme 1s to some extent similar to
(FYHE schemes in the sense that T() can represent the usage
ol a public-key to encrypt data, operations realized in F()
involve encoded operations and some type of evaluation key,
and the iverse transformation 1s equivalent to the usage of
the private key. In white-box cryptography 1s usual however
to merge the usage of the transformations T() and T~'() into
the code itself. The difliculty of extraction relies on, e.g., the
dificulty of reverse-engineering the large tables etc. that
implement them.

FIG. 1 schematically shows an example of an embodi-
ment of a compiling device 100.

Compiling device 100 comprises an input interface 110
arranged to receive a computer program representation. For
example, the computer program representation may be writ-
ten 1n a high-level computer program, e.g., n C, Pascal, C#,
etc. For example, the computer program representation may
be source code. The computer program representation may
also be the output of another compiling device which may be
arranged for preprocessing computer program code, €.g., by
executing macro’s, or by parsing computer code. For
example, the computer program code representation may be
a representation of a datatlow graph of a high-level com-
puter code. The computer program representation may be
according to a compiler intermediate language.

Input mterface 110 may be a communication interface.
Compiling device 100 may communicate with other com-
puter devices over a computer network (not shown i FIG.

10

15

20

25

30

35

40

45

50

55

60

65

6

1). The computer network may be an internet, an intranet, a
LAN, a WLAN, etc. The computer network may be the
Internet. The computer network may be wholly or partly
wired, and/or wholly or partly wireless. For example, the
computer network may comprise Ethernet connections. For
example, the computer network may comprise wireless
connections, such as Wi-Fi, ZigBee, and the like. The
compiling device may comprise a connection interface
which 1s arranged to communicate with other devices as
needed, e.g., to receive the computer program representa-
tion. For example, the connection interface may comprise a
connector, €.g., a wired connector, €.g., an Ethernet connec-
tor, or a wireless connector, €.g., an antenna, e.g., a Wi-Fi,
4G or 5G antenna. The computer program representation
may be received 1n electronic form.

The execution of the compiling device 1s implemented 1n
a processor circuit, examples of which are shown herein.
FIG. 1 shows functional units that may be functional units
of the processor circuit. For example, FIG. 1 may be used as
a blueprint of a possible functional organization of the
processor circuit. The processor circuit 1s not shown separate
from the units in FIG. 1. For example, the functional units
shown 1n FIG. 1 may be wholly or partially be implemented
in computer mstructions that are stored at device 100, e.g.,
in an electronic memory of device 100, and are executable
by a microprocessor of device 100. In hybrid embodiments,
functional units are implemented partially in hardware, e.g.,
as coprocessors, and partially in software stored and
executed on device 100.

Compiling device 100 comprises a storage 120 for storing
the computer program representation, €.g., as recerved from
input interface 110. Storage 120 may also be used for storing
intermediate representations, €.g., data flow graphs and the
like.

Compiling device 100 comprises a parsing part 130, a
modification part 140 and a compiling unit 150. The parsing
part 130 comprises a datatlow parser 132 and an encoding
analyzer 134. Parsing part 130 and encoding analyzer 134
together obtain a data flow graph representation from the
computer program representation, wherein at least part of
the nodes 1n the data flow graph are marked as encoded or
as non-encoded.

For example, the data flow graph may be 1n Static Single
Assignment (SSA) form. This 1s a well-known, popular and
cilicient flow-exposed form used by software compilers as a
code representation for performing analyses and optimiza-
tions. Ellective algorithms based on Static Single Assign-
ment have been developed to address constant propagation,
redundant computation detection, dead code elimination,
induction variable elimination, and other requirements.

Efficient algorithms for obtaining a data-tflow graph, in
particular in SSA form, and to optimize and/or compile a
computer program based on a data-flow graph are known. A
preferred embodiment of the invention 1s described with
respect to static single assignment. A standard reference
which may provide background for standard compiler
design 1s “Advanced Compiler Design & Implementation™
1997 by Steven Muchnick (ISBN 1-55860-320-4).

Thus, after partial compilation, we obtain a data-flow
graph representation with the static single assignment (SSA)
property: each variable 1s assigned exactly once, and every
variable 1s defined before it 1s used. In this graph, the edges
are (temporal) variables and the nodes are operations
(+,-.,%, ...), memory accesses (*p=...), etc. An example
of a dataflow-graph i SSA form 1s shown FIG. 2a. In
practice, a data-flow graph may be much larger, 1n which
case, FIG. 2a may be regarded as a detail of a larger

US 11,119,741 B2

7

data-flow graph. The data-flow graph need not be a data-
flow graph of an entire program, but may be data-flow graph
a part, e.g., a library, a routine, a basic block, etc.

An SSA graph, in particular SSA graph 200, 1s a type of
data-flow graph that represents an intermediate form of
computer program code, €.g., of source code. An SSA graph
1s directed and acyclic. The vertices of an SSA graph (also
referred to as nodes) represent operations. The edges of an
SSA graph represent data holders, such as registers, e.g.,
including virtual registers, or memory, e.g., selected parts of
the memory. FIG. 2a shows an exemplilying SSA graph
corresponding to a computer program (fragment). Note that
the SSA graphs which are illustrated graphically herein, may
be represented as data structures 1n an electronic memory of
compiling device 100.

Two types of nodes 1n the SSA graph are special: copy
nodes and phi-nodes. The SSA graph may contain copy
nodes that distribute an incoming value to one or more
nodes. FIG. 2b shows one such copy node: copy node 214.
A phi operation 1s used to implement data selection caused
by control flow 1n the graph. For instance, z=phi(a,b) means
that when the last assignment to a 1s more recent than the last
assignment to b, then a should be assigned to z. Vice versa
for b. Example graph 200 comprises two phi-nodes: phi-
node 212 and phi-node 216

After parsing and the SSA transform (1 needed), the
resulting data flow graph may contain sub-graphs, or sub-
networks, that consist solely of phi nodes and copy nodes.
The borders of such a sub-graph are represented by nodes
with different types of statements, e.g., arithmetical opera-
tions, memory operations, etc. The latter may be referred to
as operational nodes.

A datum that 1s live during execution and which has
multiple sources and multiple targets will be visible 1n an
SSA data-flow graph as a copy-phi network. I1 the data-tlow
1s 1n SSA format we may thus identily a datum with multiple
sources and multiple targets as a copy-phi network. How-
ever, this 1s not necessary. For example, diferent types of
data-flow graphs have different ways of 1dentifying a datum
with multiple sources and multiple targets. As the pretferred
embodiment described herein uses SSA type data-tlow
graphs, we will continue to refer to copy-phi1 networks, or
copy-phi sub-graphs.

Data-flow graph 200 shows a copy-phi network 210
having 3 nodes. The other nodes in FIG. 2a may represent
other operations. For example, nodes 222 and 234 may
represent an 1increment operation, e€.g., ‘1. =j+1°. For
example, node 224 may represent a read from memory
operation. For example, node 226 may represent a parameter
input, €.g., an input from a parameter to a routine. For
example, node 236 may represent an arithmetic operation.
The nodes in the copy-phi network are marked with a
speckle pattern in FIGS. 2a-35.

The encoding analyzer 134 marks nodes in the data flow
graph as encoded or as non-encoded. For example, this may
be done 1n a compilation pass, €.g., together with parsing for
the data-flow graph. Flow control operations, such as the
copy or phi nodes need not be marked. The marking of the
nodes as encoded or not-encoded may later be used by
compilation unit 150. For example, compilation unit 150
may use native operation to act on non-encoded nodes. For
example, an increment operation can be implemented by
compiling unit 150, e.g., by a machine ‘INC’ instruction. For
encoded operation, compiling unit 150 may use encoded
operations, for example, a library may be called to perform
the operation. For example, compiling umt may call an
‘ENC_INC()” operation to perform an encoded increment.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

An encoded function receives encoded data and outputs
encoded data. For example, encoded operations may be
implemented as a table, or as a polynomial over a finite field.

In order to protect a program, its variables and/or the
processed data, 1t 1s desirable to have a process that auto-
matically creates a program P that 1s executed in the
encrypted domain. For example, a programmer may write
programs in the plain domain and only later, the programmer
will be interested 1n executing the programs in the encrypted
domain. By automatically, or manually, or part-manual/part-
automatic marking of nodes, the compiler unit 150 has the
information needed to call the correct encoded or non-
encoded functions. Yet, development of the program could
take place without much attention to these matters.

Marking nodes as encoded or not-encoded may be done
according to encoding rules. For example, a rule base may
require some nodes to be non-encoded. For example, nodes
corresponding to memory accesses, external function calls,
and parameters may be marked non-encoded. For example,
in an embodiment, some nodes may be marked non-encoded
according to the rules, and all nodes that are leit may be
marked encoded.

For example, 1n an embodiment restrictions on encoding,
may be come from interfaces, e.g., the computer code must
interface with devices, memories, or other software that 1s
not compatible with the encoding used. Restrictions on
encoding may also come from restrictions 1n the compiling
umt or library used. For example, some operations may not
be supported 1n encoded form, e.g., operations on floating
point numbers, efc.

For example, 1n an embodiment, a two-step approach may
be used. Some nodes have to be non-encoded according to
the rules, e.g., the ones corresponding to memory accesses,
external function calls, etc. All others nodes may 1nitially be
marked as green. According to further rules, e.g., heuristics,
some nodes may be marked non-encoded even 1t they were
initially encoded. For example, after parsing 1t may turn out
that some operations cannot be performed in encrypted
form, e.g., the library does not support them. For example,
some nodes may correspond to operations on tloating point
numbers, but encoded floating point operations may not be
available. The compiling unit may output a warning or an
output log or the like, so that a programmer can verity which
operations are performed 1n encoded form and which are
not. In an embodiment, a programmer may insert compiler
directives in the computer program representation. For
example, 1 source code the programmer may indicate
which variables are to be encoded, or which variables are not
to be encoded. In an embodiment, all nodes, except copy-phi
nodes, are marked encoded or non-encoded.

Marking nodes as encoded or non-encoded 1s illustrated 1n
FIG. 2b. Shown in FIG. 26 1s the copy-phi network 210.
Also shown are nodes that provide mput to copy-phi net-
work 210: mput nodes 220; and nodes that receive mput
from the copy-phi network 210, or that copy-phi network
210 outputs to: output nodes 230. Nodes that are non-
encoded are marked dark grey: 1n this example, nodes 224,
226 and 232. Nodes that are encoded are marked light grey:
in this example, nodes 222, 234 and 236.

Compiling device 140 comprises a modification part 140.
Modification part 140 1s arranged to modily, e.g., amend, the
data-flow graph to avoid certain security problems. Prefer-
ably, the data-flow graph does not change functionally,
however the way operations are performed after the modi-
fications reduces certain security risks. In an embodiment,
modification part 140 may comprise a datatlow analyzer 142
and a datatlow amendment unit 144. Datatlow analyzer 142

US 11,119,741 B2

9

1s arranged to identity potential problems i the sub-graph.
Dataflow amendment unit 144 1s arranged to modify the
data-flow graph to mitigate the problem found by the
dataflow analyzer 142.

After deciding which nodes are encoded, and which nodes
are not, conversions may be inserted 1n the data flow graph.
Inserting the conversions has the advantage that the data
flow graph remains valid: in a datatlow graph with encoded
and/or non-encoded operations, the program may not work
properly without conversions.

FIG. 2¢ shows the data-flow graph 201 of FIG. 256, in
which nodes are marked as encoded or as non-encoded. FIG.
2¢ shows the problems that may arise 1f a compiler unit were
to naively implement the encoding/non-encoding markings
of FIG. 2b.

The naive implementation of the copy-phi networks may
lead to an encoded realization of the program in which
variables are encoded and decoded with only a few copy/phi
steps 1n-between, sometimes aiter only a single step. In FIG.

2¢, conversion nodes 221 and 231 are inserted to convert
data from the encoded domain to the non-encoded domain or
vice versa. One such inserted conversion is marked with
reference numeral 223 1 FIG. 2¢. For example, phi-node
212 needs both data as encoded or as non-encoded. Accord-
ingly, a conversion node 1s inserted between phi-node 212
and node 224 to encrypt the output of node 224. On the other
hand, node 232 needs its input as non-encoded to a conver-
sion 1s 1nserted between phi-node 214 and 232 to convert
from encoded to non-encoded. Between phi-node 216 and
input node 226 also a conversion needs to be 1serted since
otherwise phi-node 216 would receive both encoded and
non-encoded data. No conversion 1s mserted after phi-node
216 since all users of the output of phi-node 216 expect
encoded data. Conversions may be inserted where needed.
For example, in general encoded/non-encoded nodes that
receive input or produce output for a non-encoded/encoded
node may require a conversion to be inserted. For example,
phi functions or copy functions that receive data from
multiple non-homogenous input nodes, or produce output
for multiple non-homogenous output nodes may require the
isertion of conversion nodes.

Note that on the path from node 224 to node 232 data 1s
encoded and shortly thereatter decoded, 1n conversion nodes
221 and 231. Situations 1n which a single value 1s encoded
and consecutively decoded are undesirable, since then the
encryption/decryption functions, e.g., tables, are visible and
casily locatable. Moreover, an encoded value might be
propagated through the program without further modifica-
tion so that it can be “tracked”.

In any case, decryption 1s undesirable and avoiding 1t 1s an
improvement. For example, 11 (F)HE 1s used, then usage of
the private key, which 1s required to decrypt the information,
can be a security risk. The private key may not even be
available.

If a protected program 1s created from FIG. 2¢, then an
attacker can easily learn the encrypted representations of the
values since he only needs to find a value that 1t 1s going to
be encrypted without performing any computations and
observe the encrypted output. Given that value, the attacker
can dernive the encrypted representations of all other values.

For some fully homomorphic encryption schemes and
encoding schemes the situation may be worse. For example,
if we know an encrypted value E(Y), and the routine which
implements the division operation between encrypted val-
ues, then by dividing the encrypted/encoded wvalues by
themselves, we can obtain the encrypted representation of 1,
1.e., E(1)=E(Y)E(Y). From this value, we can obtain all

10

15

20

25

30

35

40

45

50

55

60

65

10

values even 1f we do not know the private key or the
encodings, e¢.g., by calling the encrypted addition function.

In an embodiment, datatlow analyzer 142 is arranged to
identify a sub-graph 1n the data flow graph having output
nodes marked as encoded and output nodes marked as
non-encoded. In other words, a sub-graph that produces both
encoded data and non-encoded data. In an embodiment, the
sub-graph 1s restricted to copy-phi1 networks. For example,
dataflow analyzer 142 may be arranged to 1dentily a copy-
ph1 network that produces both encoded data and non-
encoded data, e.g., sending data to at least one node marked
encoded and to at least one node marked non-encoded, e.g.,
having outgoing edges towards both encoded and non-
encoded nodes. The same may be done in non-SSA type
data-tlow graphs. For example, a datum may be identified
that 1s live during execution and which has multiple sources
and multiple targets, for which the multiple targets include
both encoded and non-encoded operations. In an embodi-
ment, the datatflow analyzer 142 1s arranged to identily a
sub-graph 1n which both the mputs are mixed, e.g., having
encoded and non-encoded 1nputs, and 1n which the outputs
are mixed, e.g., having both encoded and non-encoded
outputs.

Such copy-phi networks may lead to the kind of insecure
situations mentioned above. They can be avoided by dupli-
cating and/or splitting the copy-phi network to avoid encod-
ing and immediate decoding of variables and/or data. For
example, a copy-phi network 1n the graph whose mputs and
outputs are both encoded and non-encoded may be split
and/or duplicated so that the resulting networks have only
encoded or non-encoded (plain) outputs, 1.e., the outputs are
homogeneous.

Dataflow amendment unit 144 may be arranged to replace
the 1dentified sub-graph by an encoded first sub-graph, and
a non-encoded second sub-graph. The first sub-graph has
only encoded output nodes, and the second sub-graph has
only non-encoded output nodes. The first sub-graph and the
second subgraph may be obtained as further sub-graphs of
the sub-graph. Consider for example, FIG. 2e. In FIG. 2e,
the copy-phi network 210 has been replaced by a first
sub-graph 210.1 and a second sub-graph 210.2. The first
sub-graph 210.1 only produces encoded data. The second
sub-graph 210.2 only produces non-encoded data. Both
sub-graphs can be generated by taking a further subgraph
from the un-amended sub-graph. For example, first sub-
graph 210.1 corresponds to the subgraph of FIG. 26 formed
by nodes 212 and 216. For example, second sub-graph 210.2
corresponds to the subgraph of FIG. 26 formed by nodes 212
and 214. Note that these further subgraphs need not be
non-overlapping. For example, node 212 1s 1n both further
subgraphs of FIG. 2b.

Since the first sub-graph only produces encoded outputs,
it can operate using only encoded mputs. For example, the
first sub-graph may be marked as encoded, to indicate to the
compiling unit that mputs to the first sub-graph that are not
encoded need to be converted. Likewise, the second-sub-
graph only produces non-encoded outputs, 1t can operate
using only non-encoded inputs. For example, the second
sub-graph may be marked as non-encoded, to indicate to the
compiling unit that iputs to the second sub-graph that are
encoded need to be converted to be non-encoded. FIG. 2e
shows this by inserting conversion units at before and after
the first and second subgraph. Note that subgraph 210.2 only
receives non-encoded inputs while subgraph 210.1 only
receives encoded inputs.

For example, the splitting of a network may be realized by
first duplicating, e.g., cloning the network and then assign-

US 11,119,741 B2

11

ing one ol the networks as encoded and the other one as
non-encoded. After this step, the duplicated nodes i a
network that interface an input/output path with non-en-
coded variables may be marked as an unsecured path in
which the intermediate nodes must not be encoded, and
duplicated nodes 1n a network that iterface an input/output
path with encoded variables will be marked to be a secure
path in which the intermediate nodes must be encoded.

A particular eflicient way of producing the graph of FIG.
2¢ 1s 1llustrated 1n FI1G. 2d. In FI1G. 2d the entire copy-phi
network 210 1s duplicated 1n a first encoded sub-graph 210.1
and a second non-encoded sub-graph 210.2. Note that the
nodes in the sub-graphs receives inputs from the same nodes
as the original copy-phi network 210 received inputs from.
Conversions 221 are inserted between 1mput nodes 220 and
first and second copy-phi network 210.1 and 210.2 so that
the first copy-phi network 210.1 only receives encoded
input, and the second copy-ph1 network 210.2 only recerves
non-encoded inputs. That 1s the mput nodes 220 in FIG. 24
send their outputs to twice the number of nodes, because of
the duplication. That 1s, the incoming edges to the copy-phi
network, e.g., directly after the mput nodes are also dupli-
cated, one copy for each duplicated copy-phi network. At the
output side this duplication 1s not done however, encoded
output nodes remain connected only to the encoded copy-phi
network 210.1, non-encoded output nodes remain connected
only to the non-encoded copy-phi network 210.2. That 1s,
outgoing edges of the copy-phi network are not duplicated.

Interestingly, by running a standard dead-code removal
optimization on the amended sub-graph of FIG. 2d, the
nodes that are not needed are removed. In particular, nodes
216.2 and 214.1 are dead and will be removed. This pro-
duces the graph of FIG. 2e.

Finally, compiling unit 150 can use the amended data-
flow graph of FIG. 2¢ to compile the computer program
representation. It 1s possible to perform further optimiza-
tions and the like on the data-flow graph, as 1s usual 1n the
art of compiling. Furthermore, finding and resolving security
problems may be iterated on the data-tlow graph.

Thus, an embodiment may be used to automatically
determine the variables and computations that are to be
encoded, e.g., homomorphically encrypted in a program.
This may be done by looking for dangerous situations, such
as the ones described herein, in an intermediate representa-
tion of a program, e.g., with the SSA property.

In an embodiment, a datatlow analyzer 142 1s arranged to
find different potential problems and datatlow amendment
unit 144 1s arranged to resolve these. For example, 1n an
embodiment, datatlow analyzer 142 1s arranged to identily a
flow node, an encoding or decoding operating before the
flow node, and an operating node after the flow node. The
flow node may be a phi node or a copy node. We will assume
below that the flow node 1s a phi node. The analysis 1s
similar for a copy node.

This 1dentification may be done both before or after
performing the analysis illustrated with FIGS. 2a-2e.

FIG. 3a 1llustrates an example of this situation. FIG. 3a
shows an SSA data-flow graph comprising a phi-node 312,
and three operation nodes 322, 324 and 332. For example,
the latter may represent a non-flow operation, €.g., non-phi
or non-copy nodes. Again, some of the operations may be
marked non-encoded, e.g., node 324, some may be marked
encoded, e.g., node 322 and 332. A conversion 321 is
inserted between non-encoded mput node 324 and phi-node
312. Thais situation 1s not desired. Such a standalone encryp-
tion function may be applied to any input parameter;
Encoded values can be traced, etc.

10

15

20

25

30

35

40

45

50

55

60

65

12

This situation may be addressed by backwards propaga-
tion of nodes up in the SSA program flow graph, e.g.,
moving up operations past the phi-node. The goal when
doing this 1s to hide the encoding function by merging 1t with
an encoded operation.

This 1s 1llustrated 1n 3a 1n which an operation 332 that 1s
located after the phi operation in FIG. 3a 1s moved to before
the phi operation 1n FIG. 356 so that the encoding of the input
parameter can be merged with the +1 statement by the
creation ol a corresponding lookup table. At the location
where operational node 332 1s removed, a copy node 314
may be iserted.

For example, datatlow amendment unit 144 may be
configured remove the operating node 1dentified by datatlow
analyzer 142 from after phi operation 312 and inserting one
or more operating nodes before the phi operation. In this
case, the operating node 1s duplicated as many times as the
phi-node has inputs. This 1s shown 1 FIG. 3b as duplicated
operations 332.1 and 332.2. The result of the moving up 1s
that at least one of the duplicated operations 332, 1n this case
operation 332.2, and the conversion 321 become adjacent 1n
the data tlow graph. As a result, the conversion 321 may be
replaced by a single merged operation. In practice this may
be done by combining the table or polynomial, etc., that
implements the conversion with the operation 332.2. For
example, operation 332.2 may implement an encoded func-
tion F() If the conversion i1s encryption Enc(), the new
merged operation may be F(Enc(). Similarly, if the function
F() 1s an encoding of plain function 1{), then the merged
operation may be Enc(1()).

In FIG. 35 the two operations are indicated by an oval
325. Oval 325 may thus be replaced with a combined
encoding and operating node. Of course, merging may be
applied as well, 1n case a conversion operation 1s adjacent to
an operational node without back-propagation being needed.
For example, 1n case a data flow graph comprises the
subgraph, comprising the conversion node 321 and opera-
tion 332.2, then merging may be directly applied.

For example, in FIG. 2e¢, merging may be applied by
back-propagating node 232 through copy node 214.2 and
through phi node 212.2. Note that, although the operation
can be back-propagated, here 1t 1s not necessary, since the
conversion can be merged with the preceding instruction
(the encrypted operation preceding the conversion). Note
that, this would have been impossible 1f that preceding
mstruction was not encoded, which 1s the scenario in which
we need the distribution 1s most advantageous.

When a neighboring operation 1s an encoded operation,
we can usually merge. The problems arise when none of the
neighboring operations 1s encoded. (For instance, when the
ancestor 1s a non-encoded operation, and the descendant 1s
a phi-copy operation).

Backpropagation may also be used 11 a phi-node, such as
node 312 has multiple operating output nodes. This may be
resolved by first duplicating the phi-node, and 1its input
edges. Each of the operating output nodes then receives
output of a single one of the duplicates of the phi-node. After
the duplicating step, backpropagation may be used as
needed. The same holds 11 the flow node 1s a copy node with
multiple outputs. Also in this case the multiple outputs may
be reduced by duplicating the copy nodes.

Note that in an encoding based approach, merging the
tables that implement the computational operations, which
have been moved backwards 1n the program tlow graph, and
the encoding tables, makes the reverse engineering of the
program much harder since an attacker first needs to guess

US 11,119,741 B2

13

the implemented functionality and from there use it to
reverse engineer the encodings.

Thus, given a SSA data flow graph, 1t may be improved
by scanning for the data-tlow graph for dangerous situations.
For example, a dangerous situation 1s defined as a network
that has both encoded and non-encoded outputs. Next, a
check 1s made 1f any of the available techmiques can be
applied to mitigate the identified dangerous situations. For
example, code may be duplicated, split, and operations may
be back-propagated. If so, the solution 1s applied. If no
technique 1s available, the network 1s marked as unprotected
and problematic, which has the advantage that a program-
mer can pay special attention to this part of the code. Finally,
encoding, e.g., encryption may be assigned to each network
that requires encryption, each network comprising a number
ol variables protected under the same encryption. Finally, a
protected program 1s obtained with reduced exposure of
encoding/decoding functions.

In an embodiment, the compiler device 1s configured
specifically to identify a sub-graph by identifying in the
amended or un-amended data flow graph: a phi node (312),
an encoding or decoding operating belfore the phi node
(321), and an operating node (332) after the phi node; and
to mitigate this problem by removing the operating node
from after phi1 operation and inserting one or more operating
nodes before the phi operation, and merging an inserted
operating node with the encoding or decoding operation. For
example, this may be done independent from making sub-
graphs more homogenous as shown in FIGS. 2a-2e. How-
ever, 1n an embodiment both functions are performed. For
example, a compiling device may identily a problem and
select an appropriate solution as needed. For example, a
compiling device may first identily non-homogenous copy-
phi networks, and aifter resolving these, apply backpropa-
gation as needed.

In the various embodiments of compiling device 100, the
input nterface 110 may be selected from various alterna-
tives. For example, the interface may be a network interface
to a local or wide area network, e.g., the Internet, a storage
interface to an internal or external data storage, a keyboard,
an application interface (API), etc. For example, a computer
program representation may be received from an internal or
external computer program representation storage. For
example, a computer program representation may be
received from a keyboard, etc.

The compiling device may have a user interface, which
may include well-known elements such as one or more
buttons, a keyboard, display, touch screen, etc. The user
interface may be arranged for accommodating user interac-
tion for inputting a computer program representation, per-
forming a compilation, etc.

Storage 120 may be implemented as an electronic
memory, say a tlash memory, or magnetic memory, say hard
disk or the like. Storage 120 may comprise multiple discrete
memories together making up Storage 120. Storage 120 may
also be a temporary memory, say a RAM.

Typically, the compiling device 100 comprises a micro-
processor (not separately shown 1n FIG. 1) which executes
appropriate soltware stored at the device 100; for example,
that software may have been downloaded and/or stored in a
corresponding memory, €.g., a volatile memory such as
RAM or a non-volatile memory such as Flash (not sepa-
rately shown). Alternatively, the compiling device 100 may,
in whole or 1n part, be implemented 1n programmable logic,
¢.g., as field-programmable gate array (FPGA). Device 100
may be implemented, in whole or in part, as a so-called
application-specific itegrated circuit (ASIC), 1.e. an 1nte-

10

15

20

25

30

35

40

45

50

55

60

65

14

grated circuit (IC) customized for their particular use. For
example, the circuits may be implemented 1n CMOS, e.g.,

using a hardware description language such as Verilog,
VHDL etc.
In an embodiment, the compiling device comprises a
communication mterface circuit, a storage circuit, a datatlow
parser circuit, an encoding analyzer circuit, a dataflow
analyzer circuit, a datatflow amendment unit circuit, a com-
piling unit circuit. The compiling device may comprise
additional circuits. The circuits implement the correspond-
ing units described herein. The circuits may be a processor
circuit and storage circuit, the processor circuit executing
instructions represented electronically in the storage circuits.
A processor circuit may be implemented 1n a distributed
fashion, e.g., as multiple sub-processor circuits. A storage
may be distributed over multiple distributed sub-storages.
Part or all of the memory may be an electronic memory,
magnetic memory, etc. For example, the storage may have
volatile and a non-volatile part. Part of the storage may be
read-only.
FIG. 6a schematically shows an example of an embodi-
ment of a compiler method 600. Method 600 comprises
recerving (610) a computer program representation,
obtaining (620) a data tlow graph (201) representation
from the computer program representation, at least part of
the nodes 1n the data flow graph being marked as encoded or
as non-encoded,
amending (630) the data flow graph by
identifying (631) a sub-graph (210) in the data flow graph
having one or more output nodes marked as encoded
and one or more output nodes marked as non-encoded,

replacing (632) the sub-graph by an encoded first sub-
graph (210.1), and a non-encoded second sub-graph
(210.2), wherein the first sub-graph has only encoded
output nodes, and the second sub-graph has only non-
encoded output nodes, the first sub-graph and the
second subgraph being obtained as further sub-graphs
of the sub-graph, and

inserting (633) one or more nodes (221) representing an

encoding operation before the first sub-graph, so that
the first sub-graph operates only on encoded data,
and/or 1nserting one or more nodes representing a

decoding operation before the second sub-graph, so
that the second sub-graph operates only on non-en-
coded data, and
obtaining (640) a compilation of the computer program
representation from at least said amended data flow graph.
FIG. 65 schematically shows an example of an embodi-
ment of a compiler method 650. Method 650 comprises
recerving (660) a computer program representation,
obtaining (670) a data tlow graph (201) representation
from the computer program representation, at least part of
the nodes 1n the data flow graph being marked as encoded or
as non-encoded,
amending (680) the data flow graph by
identity (681) in the amended or un-amended data flow
graph: a ph1 node (312), an encoding or decoding
operating before the phi node (321), and an operating
node (332) after the phi node,
removing (682) the operating node from aiter phi opera-
tion and 1nserting one or more operating nodes before
the phi operation, and
merging (683) an 1nserted operating node with the encod-
ing or decoding operation, and
obtain (690) a compilation of the computer program
representation from at least said amended data tflow graph.

US 11,119,741 B2

15

Both methods may be comprised, e.g., as 1n the following
embodiment of the compiling method. FIG. 6c¢ schemati-
cally shows an example of an embodiment of a compiler
method 601. Compiler method 601 comprises

receiving (610, 660) a computer program representation,

obtaining (620, 670) a data flow graph (201) representa-
tion from the computer program representation, at least part
of the nodes 1n the data flow graph being marked as encoded
or as non-encoded,

amending (630, 680) the data flow graph by

identifying (631) a sub-graph (210) 1n the data flow graph

having one or more output nodes marked as encoded
and one or more output nodes marked as non-encoded,
or 1dentify (681) 1n the amended or un-amended data
flow graph: a phi1 node (312), an encoding or decoding,
operating before the phi node (321), and an operating
node (332) after the phi node,

in the first case

replacing (632) the sub-graph by an encoded first
sub-graph (210.1), and a non-encoded second sub-
graph (210.2), wherein the first sub-graph has only
encoded output nodes, and the second sub-graph has
only non-encoded output nodes, the first sub-graph
and the second subgraph being obtained as further
sub-graphs of the sub-graph, and

iserting (633) one or more nodes (221) representing an
encoding operation before the first sub-graph, so that
the first sub-graph operates only on encoded data,
and/or inserting one or more nodes representing a
decoding operation before the second sub-graph, so
that the second sub-graph operates only on non-
encoded data, and

in the second case
removing (681) the operating node from after phi
operation and 1nserting one or more operating nodes
before the phi operation, and
merging (682) an inserted operating node with the
encoding or decoding operation, and

obtaining (640,690) a compilation of the computer pro-
gram representation from at least said amended data flow
graph.

The amending step 630 may be repeated multiple times,
¢.g., until no further subgraphs are identified.

Many different ways ol executing the method are pos-
sible, as will be apparent to a person skilled 1n the art. For
example, the order of the steps can be varied or some steps
may be executed in parallel. Moreover, 1n between steps
other method steps may be mserted. The 1nserted steps may
represent refinements of the method such as described
herein, or may be unrelated to the method. Moreover, a
given step may not have finished completely before a next
step 1s started.

A method according to the mmvention may be executed
using soitware, which comprises mstructions for causing a
processor system to perform method 600, 601, or 650.
Software may only include those steps taken by a particular
sub-entity of the system. The software may be stored 1n a
suitable storage medium, such as a hard disk, a floppy, a
memory, an optical disc, etc. The software may be sent as a
signal along a wire, or wireless, or using a data network, e.g.,
the Internet. The software may be made available for down-
load and/or for remote usage on a server. A method accord-
ing to the invention may be executed using a bitstream
arranged to configure programmable logic, e.g., a field-
programmable gate array (FPGA), to perform the method.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

The following numbered clauses include embodiments
that are contemplated and nonlimiting;:
1. A compiler device (100) comprising
an mput mterface (110) arranged to receive a computer
program representation,
a processor circuit configured to
obtain a data flow graph (201) representation from the
computer program representation, at least part of the
nodes in the data tlow graph being marked as encoded
or as non-encoded,
amend the data flow graph by
identifying a sub-graph (210) in the data flow graph
having one or more output nodes marked as encoded
and one or more output nodes marked as non-
encoded,
replacing the sub-graph by an encoded first sub-graph
(210.1), and a nomn-encoded second sub-graph
(210.2), wherein the first sub-graph has only encoded
output nodes, and the second sub-graph has only
non-encoded output nodes, the first sub-graph and
the second subgraph being obtained as further sub-
graphs of the sub-graph, and
mserting one or more nodes (221) representing an
encoding operation before the first sub-graph, so that
the first sub-graph operates only on encoded data,
and/or 1nserting one or more nodes representing a
decoding operation before the second sub-graph, so
that the second sub-graph operates only on non-
encoded data, and
obtain a compilation of the computer program represen-
tation from at least said amended data flow graph.
2. A compiler device comprising
an mmput interface (110) arranged to receive a computer
program representation,
a processor circuit configured to
obtain a data flow graph (201) representation from the
computer program representation, at least part of the
nodes in the data tlow graph being marked as encoded
or as non-encoded.,
identity in the amended or un-amended data flow graph:
a flow node (312), an encoding or decoding operating,
betore the flow node (321), and an operating node (332)
after the tlow node, wherein the flow node (312) 1s a
copy node or a phi node,
amend the data flow graph by
removing the operating node from after flow node and
inserting one or more operating nodes before the
flow node, and
merging an mserted operating node with the encoding
or decoding operation, and
obtain a compilation of the computer program represen-
tation from at least said amended data flow graph.
3. A compiler method (600) comprising
recerving (610) a computer program representation,
obtaining (620) a data tlow graph (201) representation
from the computer program representation, at least part of
the nodes 1n the data flow graph being marked as encoded or
as non-encoded,
amending (630) the data flow graph by
identifying (631) a sub-graph (210) in the data flow graph
having one or more output nodes marked as encoded
and one or more output nodes marked as non-encoded,
replacing (632) the sub-graph by an encoded first sub-
graph (210.1), and a non-encoded second sub-graph
(210.2), wherein the first sub-graph has only encoded
output nodes, and the second sub-graph has only non-

US 11,119,741 B2

17

encoded output nodes, the first sub-graph and the
second subgraph being obtained as further sub-graphs
of the sub-graph, and
inserting (633) one or more nodes (221) representing an
encoding operation before the first sub-graph, so that
the first sub-graph operates only on encoded data,
and/or 1nserting one or more nodes representing a
decoding operation before the second sub-graph, so
that the second sub-graph operates only on non-en-
coded data, and
obtaining (640) a compilation of the computer program
representation from at least said amended data flow graph.
4. A compiler method (650) comprising
receiving (660) a computer program representation,
obtaining (670) a data flow graph (201) representation
from the computer program representation, at least part of
the nodes 1n the data flow graph being marked as encoded or
as non-encoded,
amending (680) the data flow graph by
identily 1n the amended or un-amended data flow graph:
a flow node (312), an encoding or decoding operating
betore the tlow node (321), and an operating node (332)
aiter the tlow node, wherein the tflow node i1s a copy
node or phi node,
removing (681) the operating node from after the flow
node and 1nserting one or more operating nodes before
the flow node, and
merging (682) an mserted operating node with the encod-
ing or decoding operation, and
obtamn (690) a compilation of the computer program
representation from at least said amended data flow graph.
It will be appreciated that the invention also extends to
computer programs, particularly computer programs on or 1n
a carrier, adapted for putting the mvention into practice. The
program may be 1n the form of source code, object code, a
code intermediate source, and object code such as partially
compiled form, or in any other form suitable for use 1n the
implementation of the method according to the mvention.
An embodiment relating to a computer program product
comprises computer executable instructions corresponding
to each of the processing steps of at least one of the methods
set forth. These instructions may be subdivided into sub-
routines and/or be stored in one or more files that may be
linked statically or dynamically. Another embodiment relat-
ing to a computer program product comprises computer
executable instructions corresponding to each of the means
of at least one of the systems and/or products set forth.
FI1G. 7a shows a computer readable medium 1000 having
a writable part 1010 comprising a computer program 1020,
the computer program 1020 comprising instructions for
causing a processor system to perform a compiling method,
according to an embodiment. The computer program 1020
may be embodied on the computer readable medium 1000 as
physical marks or by means of magnetization of the com-
puter readable medium 1000. However, any other suitable
embodiment 1s conceilvable as well. Furthermore, 1t will be
appreciated that, although the computer readable medium
1000 1s shown here as an optical disc, the computer readable
medium 1000 may be any suitable computer readable
medium, such as a hard disk, solid state memory, flash
memory, etc., and may be non-recordable or recordable. The
computer program 1020 comprises nstructions for causing
a processor system to perform said compiling method.
FIG. 7b shows 1n a schematic representation of a proces-
sor system 1140 according to an embodiment of a compiling
device. The processor system comprises one or more inte-
grated circuits 1110. The architecture of the one or more

10

15

20

25

30

35

40

45

50

55

60

65

18

integrated circuits 1110 1s schematically shown 1n FIG. 75.
Circuit 1110 comprises a processing unit 1120, e.g., a CPU,
for running computer program components to execute a
method according to an embodiment and/or implement its
modules or units. Circuit 1110 comprises a memory 1122 for
storing programming code, data, etc. Part of memory 1122
may be read-only. Circuit 1110 may comprise a communi-
cation element 1126, ¢.g., an antenna, connectors or both,
and the like. Circuit 1110 may comprise a dedicated inte-
grated circuit 1124 for performing part or all of the process-
ing defined 1n the method. Processor 1120, memory 1122,
dedicated IC 1124 and communication element 1126 may be
connected to each other via an interconnect 1130, say a bus.
The processor system 1110 may be arranged for contact
and/or contact-less communication, using an antenna and/or
connectors, respectively.

For example, in an embodiment, the compiling device
may comprise a processor circuit and a memory circuit, the
processor being arranged to execute soltware stored in the
memory circuit. For example, the processor circuit may be
an Intel Core 17 processor, ARM Cortex-R8, etc. In an
embodiment, the processor circuit may be ARM Cortex M0.
The memory circuit may be an ROM circuit, or a non-
volatile memory, e.g., a flash memory. The memory circuit
may be a volatile memory, e.g., an SRAM memory. In the
latter case, the device may comprise a non-volatile software
interface, e.g., a hard drive, a network interface, etc.,
arranged for providing the software.

It should be noted that the above-mentioned embodiments
illustrate rather than limit the invention, and that those
skilled 1n the art will be able to design many alternative
embodiments.

In the claims, any reference signs placed between paren-
theses shall not be construed as limiting the claim. Use of the
verb ‘comprise’ and 1ts conjugations does not exclude the
presence of elements or steps other than those stated 1n a
claim. The article ‘a’ or ‘an’ preceding an element does not
exclude the presence of a plurality of such elements. The
invention may be implemented by means of hardware com-
prising several distinct elements, and by means of a suitably
programmed computer. In the device claim enumerating
several means, several of these means may be embodied by
one and the same 1tem of hardware. The mere fact that
certain measures are recited in mutually different dependent
claims does not indicate that a combination of these mea-
sures cannot be used to advantage.

In the claims references 1n parentheses refer to reference
signs 1 drawings of exemplifying embodiments or to for-
mulas of embodiments, thus increasing the intelligibility of
the claim. These references shall not be construed as limiting,
the claim.

The mmvention claimed 1s:

1. A compiler device comprising:

an input interface circuit, wherein the mput interface

circuit 1s arranged to receive a computer program
representation; and

a processor circuit,

wherein the processor circuit 1s arranged to obtain a
data flow graph representation from the computer
program representation,

wherein the data flow graph comprises nodes,

wherein at least a portion of the nodes 1n the data flow
graph are marked as encoded or as non-encoded,

wherein an encoded node represents an operation on
encoded data,

wherein a non-encoded node represents an operation on
non-encoded data,

US 11,119,741 B2

19

wherein the processor circuit 1s arranged to amend the
data flow graph by identifying a sub-graph 1n the data
flow graph, wherein the sub-graph has at least one
output nodes marked as encoded and at least one output
nodes marked as non-encoded,

wherein the processor circuit 1s arranged to replace the

sub graph by an encoded first sub-graph and a non-
encoded second sub-graph,

wherein the encoded first sub-graph has only encoded

output nodes, and the non-encoded second sub-graph
has only non-encoded output nodes,

wherein the encoded first sub-graph and the non-encoded

second sub-graph are selected from the sub-graph as
further sub-graphs,

wherein the processor circuit 1s arranged to insert at least

one insert nodes into the data flow graph, wherein the
isert nodes represent an encoding operation before the
encoded first sub-graph such that the encoded first
sub-graph operates only on encoded data, and/or the
isert nodes represent a decoding operation before the
non-encoded second sub-graph such that the non-en-
coded second sub-graph operates only on non-encoded
data,

wherein the processor circuit i1s arranged to obtain a

compilation of the computer program representation
from at least the amended data flow graph.

2. The compiler device as in claim 1, wherein at least an
input node of the sub-graph 1s duplicated 1n the encoded first
sub-graph and the non-encoded second sub-graph.

3. The compiler device as 1n claim 1, wherein the encoded
first sub-graph and the non-encoded second sub-graph are a
duplication of the sub-graph.

4. The compiler device as 1 claim 3, wherein the com-
piler device performs a dead-code removal optimization on
the amended sub-graph.

5. The compiler device as 1n claim 1,
wherein the encoded first sub-graph comprises first nodes,
wherein the first nodes are marked encoded,
wherein the non-encoded second sub-graph comprises

second nodes,

wherein the second nodes are marked non-encoded.

6. The compiler device as 1n claim 1, wherein the data
flow graph 1s a static single assignment graph.

7. The compiler device as in claim 1 wherein the sub-
graph consists of phi and copy nodes.

8. The compiler device as 1n claim 1 wherein the encoding
1s a homomorphic encryption.

9. The compiler device as 1n claim 1,

wherein the computer program representation identifies at
least one nodes in the data flow graph as marked
encoded or as non-encoded.

10. The compiler device as 1n claim 1,

wherein the sub-graph indicates a datum,

wherein the datum has multiple sources and multiple
targets.

11. The compiler device as in claim 1, wherein the
sub-graph 1n the data flow graph has at least one inputs
nodes marked as encoded and at least one imput nodes
marked as non-encoded.

12. The compiler device as 1in claim 1,

wherein the processor circuit 1s arranged to 1dentily a flow

node 1n the amended or un-amended data flow graph,
wherein the processor circuit 1s arranged to i1dentily an
operating node before the flow node,

wherein the processor circuit 1s arranged to i1dentily an

operating node after the tlow node,

wherein the flow node 1s a phi node or a copy node,

10

15

20

25

30

35

40

45

50

55

60

65

20

wherein the processor circuit 1s arranged to remove the
operating node from after the flow node,

wherein the processor circuit 1s arranged to insert at least
one operating nodes before the flow node,

wherein the processor circuit 1s arranged to merge an
inserted operating node with an encoding or decoding
operation.

13. A compiler device comprising:

an input interface circuit, wherein the iput interface
circuit 1s arranged to receive a computer program
representation; and

a Processor circuit,

wherein the processor circuit 1s arranged to obtain a
data flow graph representation from the computer
program representation,

wherein the data flow graph comprises nodes,

wherein at least a portion of the nodes 1n the data flow
graph 1s marked as encoded or as non-encoded,

wherein the processor circuit 1s arranged to 1dentily a
flow node 1n the amended or un-amended data flow
graph,

wherein the processor circuit 1s arranged to 1dentify an
operating node before the flow node,

wherein the processor circuit 1s arranged to identify an
operating node after the flow node,

wherein the flow node 1s selected from the group con-
sisting of a copy node or a phi node,

wherein the copy node distributes an incoming value to at
least one further nodes,

wherein the processor circuit 1s arranged to amend the
data flow graph by:
removing the operating node from after the flow node

and 1nserting at least one operating nodes before the
flow node: and

merging the operation represented by an inserted oper-
ating node with the encoding or decoding operation,
and

wherein the processor circuit 1s arranged to obtain a
compilation of the computer program representation
from at least the amended data tflow graph.

14. A compiler method comprising:
recerving a computer program representation;

obtaining a data tlow graph representation from the com-
puter program representation,

wherein the data tflow graph comprises nodes,

wherein at least part of the nodes 1n the data flow graph
are marked as encoded or as non-encoded:;

amending the data flow graph by 1dentifying a sub-graph
in the data flow graph,

wherein the data flow graph has at least one output nodes
marked as encoded and at least one or more output
nodes marked as non-encoded,

wherein an encoded node represents an operation on
encoded data,

wherein a non-encoded node represents an operation on
non-encoded data:

replacing the sub-graph by an encoded first sub-graph,
and a non-encoded second sub graph,

wherein the encoded first sub-graph has only encoded
output nodes,

wherein the non-encoded second sub-graph has only
non-encoded output nodes,

US 11,119,741 B2

21

wherein the encoded first sub-graph and the non-encoded
second subgraph are selected from the sub-graphs as
further sub-graphs;

iserting at least one insert nodes

wherein the at least one insert nodes represent an encod-
ing operation before the encoded first sub-graph such
that the encoded first sub-graph operates only on
encoded data, and/or inserting at least one nodes rep-

resenting a decoding operation before the non-encoded
second sub-graph such that the non-encoded second

sub-graph operates only on non-encoded data; and
obtaining a compilation of the computer program repre-

sentation from at least the amended data tlow graph.
15. A compiler method comprising;:
receiving a computer program representation;
obtaining a data flow graph representation from the com-
puter program representation, wherein at least a portion
of the nodes 1n the data flow graph are marked as
encoded or as non-encoded;
amending the data flow graph by identifying in the
amended or un-amended data tlow graph a flow node,
an operating node before the flow node, and an oper-
ating node after the flow node,
herein the flow node 1s a copy node or phi node,
herein the copy node distributes an incoming value to at
least one further nodes;

g =

10

15

20

22

removing the operating node from after the flow node;
inserting at least one operating nodes before the flow
node;
merging the operation represented by an inserted operat-
ing node with the encoding or decoding operation; and
obtaining a compilation of the computer program repre-
sentation from at least the amended data flow graph.
16. A computer program stored on a non-transitory
medium, wherein the computer program when executed on
a processor performs the method as claimed 1n claim 14.
17. A computer program stored on a non-transitory
medium, wherein the computer program when executed on
a processor performs the method as claimed in claim 15.
18. The compiler device as 1n claim 1,
wherein the processor circuit 1s arranged to apply encod-
ing rules to mark some nodes as non-encoded and
marking the remaining nodes as encoded.
19. The method as 1n claim 14, wherein at least an input
node of the sub-graph 1s duplicated 1n the encoded first
sub-graph and the non-encoded second sub-graph.

20. The method as 1n claim 135, wherein at least an 1nput
node of the sub-graph 1s duplicated in the encoded first
sub-graph and the non-encoded second sub-graph.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

