US011106586B2

12 United States Patent (10) Patent No.: US 11,106,586 B2

Shilane et al. 45) Date of Patent: *Aug. 31, 2021

(54) SYSTEMS AND METHODS FOR 0/52-58: GOGF 12/00-0692:; GOGF
REBUILDING A CACHE INDEX 12/08-0813: GOGF 12/0815-0831: GOGF
12/0833-0897: GOGF 12/10-128: GOGF

(71) Applicant: EMC 1P Holding Company LLC, 2201/00-885; GOGF 2206/00-20; GOGF
Hopkinton, MA (US) 2209/52-523: GOGF 2211/00-902: GO6F

2212/00-7211

(72) Inventors: Philip N. Shilane, Newtown, PA (US); See application file for complete search history.

Grant R. Wallace, Pennington, NJ

(US) (56) References Cited

(73) Assignee: EMC IP HOLDING COMPANY US PATENT DOCUMENTS
LLC, Hopkinton, MA (US)

4,410,946 A 10/1983 Spencer

(*) Notice: Subject to any disclaimer, the term of this 4,513,367 A 4/1985 Chan
patent 1s extended or adjusted under 35 jggg%gg i L é? iggg gﬁeley o
’ 3 uang < \
U.S.C. 154(b) by 173 days. 4,942,520 A * 7/1990 Langendorf GOG6F 9/3844
This patent 1s subject to a terminal dis- 7117123
claimer. (Continued)
(21) Appl. No.: 16/440,457 OTHER PUBLICATIONS
(22) Filed: Jun. 13, 2019 A. Arelakis and P. Stenstrom, “A Case for a Value-Aware Cache,”
in IEEE Computer Architecture Letters, vol. 13, No. 1, pp. 1-4, Jan.
(65) Prior Publication Data 21-Jun. 2014, doi: 10.1109/1.-CA.2012.31. (Year: 2014).*
US 2019/0294545 A1 Sep. 26, 2019 (Continued)
Related U.S. Application Data Primary Examiner — Daniel C. Chappell
(63) Continuation of application No. 15/196,150, filed on (74) Attorney, Agent, or Firm — Workman Nydegger
Jun. 29, 2016, now Pat. No. 10,331,561.
(57) ABSTRACT
(31) Int. CL | Systems and methods for rebuilding an index for a flash
Gool 12/00 (2006-0:) cache are provided. The 1index 1s rebult by reading headers
GO6F 12/0551 (2016-O:~) of containers stored in the cache and 1nserting information
Goor 127128 (2016.01) from the headers into the index. The index is enabled while
(52) U.S. Cl being rebuild such that lookup operations can be performed
CPC ... Goor 12/0831 (2013.01); GO6F 12/128 using the index even when the index i1s incomplete. New

(2013.01); GoOol” 2212/621 (2013.01); GOGF containers can be inserted into used or unused regions of the
2212/69 (2013.01) cache while the index 1s being rebuilt.
(58) Field of Classification Search
CPC ... GO6F 3/00; GO6F 3/06-0689; GO6F 20 Claims, 3 Drawing Sheets

Determine Cache State
402

Respond to Requests using the Index
404

Insert New Data into Cache and Update
Index
406

US 11,106,586 B2

Page 2

(56)

5,333,318
5,590,320
5,630,093
5,644,701
5,682,497
5,684,976
5,740,349
5,701,501
5,838,614
5,907,856
5,909,694
5,913,226
5,960,726
6,046,936
6,049,672
0,058,038
0,119,209
0,128,623
0,138,209
0,192,450
6,216,199
0,272,593
0,351,788
0,356,990
6,360,293
6,397,292

0,510,083
0,535,949
6,594,723
6,636,950
6,807,015
0,851,015
6,901,499
6,965,970
0,978,342
7,076,599
7,079,448
7,124,249
7,290,109
7,325,097
7,356,041
7,433,245
7,472,205
7,533,214
7,640,262
7,652,948
7,673,099
7,702,628
7,711,923
7,720,892
7,793,047
7,870,325
7,930,559
7,996,605
8,250,282
8,300,465
8,370,575
8,533,395
8,581,876
8,583,854
8,600,604
8,634,248
8,688,650
8,688,913
8,738,841
8,738,857
8,793,543
8,811,074
8,817,541
8,904,117
8,910,020
8,917,559
8,935,446
8,943,282

References Cited

U.S. PATENT DOCUMENTS

e e R e R g g g g g g gt i g

7/1994
12/1996
5/1997
7/1997
10/1997
11/1997
4/1998
6/1998
11/1998
5/1999
6/1999
6/1999
10/1999
4/2000
4/2000
5/2000
9/2000
10/2000
10/2000
2/2001
4/2001
8/2001
2/2002
3/2002
3/2002
5/2002

1/2003
3/2003
7/2003
10/2003
10/2004
2/2005
5/2005
11/2005
12/2005
7/2006
7/2006
10/2006
10/2007
1/2008
4/2008
10/2008
12/2008
5/2009
12/2009
1/201
3/201
4/201
5/201
5/201
9/201
1/2011
4/2011
8/2011
8/201
10/201
2/201
9/201
11/201
11/201
12/201
1/201
4/201
4/201
5/201
5/201
7/201
8/201
8/201
12/201

12/201
12/201
1/201
1/201

s L e e e L i

7, T R SN SN N L . S SN SN SN SN SN R B OO R OB SRS RO (S

Wolt
Maxey

Holzhammer et al.

Takewaki
Robinson
Soheili-Arasi
Hasbun et al.
[Lubbers et al.
Estakhri et al.
Estakhr et al.
Gregor

Sato

Sokolov
Tsujikawa et al.
Shiell

Osada et al.
Bauman et al.
Mattis et al.
Krolak et al.
Bauman et al.
Dekoning et al.
Dujari
Yamazaki et al.
Aok et al.
Unno
Venkatesh

iiiiiiiiiii

See et al.
Parker
Chapman et al.
Mithal

Wong
Akahane et al.
Aasheim et al.
Mosur
Estakhr et al.
Aasheim et al.
[.econte et al.
Darcy

Horn et al.
Darcy
Venkiteswaran
Otsuka et al.
Abe

Aasheim et al.
Beaverson
Lee et al.
Beaverson
Luchangco et al.
Rogers et al.
Healey, Jr.
Asano

Joukan et al.
Beaverson
Koga
Confalonieri et al.
Jeon et al.

Eichenberger et al.

O’Connor
Wickes et al.
J1 et al.
Huber et al.
Sprouse et al.
Mutalik et al.
Benhase
Olbrich et al.
Clark

Tai

(30sS

L1

Kalekar
Frayer

Bisen

Shilane
Armangau

GOO6F 11/2069

711/113

9,026,737
9,043,517
9,053,015
9,098,420
9,116,793
9,122,584
9,135,123
9,152,496
9,171,629
9,189,402
9,189,414
9,213,603
9,213,642
9,251,063
9,274,954
9,281,063
9,313,271
9,317,218
9,405,082
9,436,403
9,442,662
9,442,670
9,524,235
9,535,856
9,542,118
9,690,507
9,690,713
9,697,267
9,703,816
9,753,660
9,811,276
9,870,830
9,921,954
9,952,769
9,959,058
10,002,073
10,037,164
10,055,150
10,055,351
10,089,025
10,146,438
10,146,851
10,169,122
10,235,397
10,243,779
10,261,704
10,318,201
10,331,561
10,353,607
10,353,820
10,379,932
10,521,123
10,585,610
10,628,066
2001/0029564
2003/0009623
2003/0009637
2003/0009639
2003/0009641
2003/0009643
2003/0217227
2004/0123270
2005/0120180
2005/0165828
2006/0015768
2006/0059171
2006/0101200
2006/0143390
2006/0179174
2006/0184744
2007/0005928
2007/0061504
2007/0156842
2007/0180328
2007/0192530
2007/0300037
2008/0046655
2008/0065809

2008/0077782

AN AN NSNS AN A AN A A AN

5/201
5/201
6/201
8/201
8/201
9/201
9/201
10/201
10/201
11/201
11/201
12/201
12/201
2/201
3/201
3/201
4/201
4/201
8/201
9/201
9/201
9/201
12/201
1/201
1/201
6/201
6/201
7/201
7/201
9/201
11/201
1/201
3/201
4/201
5/201
6/201
7/201
8/201
8/201
10/201
12/201
12/201
1/201
3/201
3/201
4/201
6/201
6/201
7/201
7/201
8/201
12/201
3/2020
4/2020
10/2001
1/2003
1/2003
1/2003
1/2003
1/2003
11/2003
6/2004
6/2005
7/2005
1/2006
3/2006
5/2006
6/2006
8/2006
8/2006
1/2007
3/2007
7/2007
8/2007
8/2007
12/2007
2/2008
3/2008

3/2008

WO OO LOOOOOOHR0HRNARNRNRNNNANNANNN~-]I~T~-1~-]~-1~-1~-1~ITANODNADNIDNADNDNONON YL h Lh Lh Lh h h Lh Lh h Lh Lh Lh

Armangau

Sprouse

Nikolay

Bulut

Kandiraju
Kandiraju et al.
Armangau

Kanade

Kokubun

Smaldone

Shim

Tiziani et al.

Chiu

Nakamura et al.
Bairavasundaram
Xlang

Venkat

Botelho
Meshchaninov et al.
Zhang

Dancho

Kruger

Sprouse

Coronado

[ercari et al.
Matthews et al.
Khermosh
Kadayam

George

Mani

Taylor

Jeon

Sabbag et al.
Badam

O’Brien

Cai

Wallace et al.

Fenol
Wallace
Wallace et al.
Shilane et al.
Tee et al.
Tee et al.
Shilane et al.
Tee et al.
Shilane et al.
Wallace et al.
Shilane
Wallace et al.
Wallace et al.
Tee et al.
Shilane et al.
Wallace et al.
Wu et al.
Estakhri
Arimulli
Arimill
Arimill
Arimill
Arimill
Parthasarathy
Zhuang
Schornbach
Lango

Valine
Borthakur
Doi

Kottapalli
Bockhaus
Langston
Trika

Lee
Vermeulen
Cornwell
Pedersen et al.

Rogers
Bhanoo
Eichenberger
Lataille

GOO6F 12/0864

tttttttttttttt

GO6F 12/0895

ttttttttttttttt

o s e - —

US 11,106,586 B2
Page 3

(56)

2008/0120469
2008/0147714
2008/0177700
2008/0183955
2008/0263114
2008/0266962
2008/0273400
2008/0313132
2009/0063508
2009/0216788
2009/0222626
2009/0240871
2009/0300265

201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
20

0/0023697
0/0070715
0/0082886
0/0115182
0/0165715
0/0185807
0/0199027
0/0211744
0/0229005
0/0306448
0/0332952
1/0010698
1/0022778
1/0072217
1/0138105
1/0138132
1/0153953
1/0225141
1/0264865
1/0276780
1/0276781

2011/0296110

201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201

2/0054414
2/0084484
2/0102268
2/0110247
2/0215970
2/0275466
3/0036418
3/0103911
3/0205089
3/0282964
3/0325817
3/0339576
4/0013027
4/0098619
4/0122818
4/0136762
4/0143505
4/0149401
4/0173330
4/0215129
4/0281167
4/0281824
5/0127889
5/0205722
5/0277786
5/0331807
5/0347291
5/0363285
6/0041927
6/0147669
6/0274819
7/0060439
7/0091054
8/0335948
9/0004957
9/0034100
9/0107946
9/0243565

9/0286329

AN AN A S AN AN A AN AN AAA A AAAAA A AAAAA AN A A A AN A A AN A AN AN A AN A A A AN A A AN AN A A A A A A

References Cited

5/2008
6/2008
7/2008
7/2008
10/2008
10/2008
11/2008
12/2008
3/2009
8/2009
9/2009
9/2009
12/2009
1/201
3/201
4/201
5/201
7/201
7/201
8/201
8/201
9/201
12/201
12/201
1/2011
1/2011
3/2011
6/2011
6/2011
6/2011
9/2011
10/2011
11/2011
11/2011
12/2011
3/201
4/201
4/201
5/201
8/201
11/201
2/201
4/201
8/201
10/201
12/201
12/201
1/201
4/201
5/201
5/201
5/201

5/201
6/201
7/201
9/201
9/201
5/201
7/201
10/201
11/201
12/201
12/201
2/201
5/201
9/201
3/201
3/201
11/201
1/201
1/201
4/201
8/201
9/201

COOOO OO OO0 OO

O OO OO -aI~1aohaovOhbnnthtahonton b b b bbb Db D DS DS Wb NN N

U.S. PATENT DOCUMENTS

Kornegay
Breternitz
L1

Yang
Nath

Jeon

I.a Rosa
Hao
Yamato
Rao

Ingle
Yano
Vyssotski
Kapoor
Waltermann
Kwon
Murugesan
Donze
Meng
Pucheral
Morrow
Herman
Chen
Chung
Byom
Schibilla

Hoang
Franceschini

Brueggen
Khemani

Chaudhry
Mobarak
Sengupta
Sengupta
Lilly

Tsal

Post

Smith
Eleftheriou
Shats

Bhadra
Yadappanavar

Bulut

Soerensen

Sengupta
Whitehouse

Liu

Jannyavula Venkata
Nazarian

Hayasaka
L1

Sim

Liu
Samanta

Kuzmin
Danilak

Oh

Hwang

Chiu
Rostock

Lie

Choi
Delaney
Jung

Huang

Choi
Harawasa
Delaney
Wallace et al.
Wallace et al.
Wallace et al.
Shilane et al.
Shilane et al

Wallace et al.

11/2019 Wallace et al.
11/2019 Wallace et al.
4/2020 Shilane et al.

2019/0339882 Al
2019/0340128 Al
2020/0117359 Al

OTHER PUBLICATTIONS

A comparison of adaptive radix trees and hash tables; Alvarez et al;

31st International Conference on Data Engineering, Apr. 13-17,

2015; pp. 1227-1238 (12 pages) (Year: 2015).
A Workload-Aware Adaptive Hybrid Flash Translation Layer with

an Efficient Caching Strategy; Park et al; 19th International Sym-
posium on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems; Jul. 25-27, 2011, pp. 248-255 (8
pages) (Year: 2011).

B-tree indexes and CPU caches; Graefe et al; 17th International
Conference on Data Engineering; Apr. 2-6, 2001; pp. 349-358 (10
pages) (Year: 2001).

History-aware page replacement algorithm for NAND flash-based

consumer electronics; Lin etal.; IEEE Transactions on Consumer
Electronics, vol. 62, 1ss. 1; Feb. 2016, pp. 23-39 (Year: 2016).

A novel hot data identification mechanism for NAND flash memory;
Liu et al.; IEEE Transactions on Consumer Electronics, vol. 61, iss.
4, Nov. 2015; pp. 463-469 (Year: 2015).

Hot data 1dentification for flash-based storage systems using mul-

tiple bloom filters; Park et al.; 27th Symposium on Mass Storage
Systems and Technologies; May 23-27, 2011 (Year: 2011).

BloomFlash: Bloom Filter on Flash-Based Storage; Debnath et al.;
2011 31st International Conference on Distributed Computing Sys-

tems; Jun. 20-24, 2011; pp. 635-644 (Year: 2011).
Software Support Inside and Outside Solid-State Devices for High

Performance and High Efficiency; Chen etal.; Proceedings of the
IEEE, vol. 105, 1ss. 3; Sep. 2017; pp. 1650-1665 (Year: 2017).

A performance model and file system space allocation scheme for
SSDs; Hyun etal.; IEEE 26th Symposium on Mass Storage Systems

and Technologies; May 3-7, 2010 (Year: 2010).

A Forest-structured Bloom Filter with flash memory; Lu et al; IEEE
27th Symposium on Mass Storage Systems and Technologies; May
23-27, 2011 (6 pages).

A self-adjusting flash translation layer for resource-limited embed-
ded systems; Wu, Chin-Hsien; ACM Transactions on Embedded
Computing Systems, vol. 9, 1ss. 4, Article No. 31; Mar. 2010 (Year:
2010).

Algorithms in Java, Third Edition; Sedgewick, Robert; ISBN 0-201 -
36120-5; 2003; pp. 91-94 (4 pages).

BloomStream: Data Temperature Identification for Flash Based
Memory Storage Using Bloom Filters; Bhimani et al.; IEEE 11th
International Conference on Cloud Computing; Jul. 2-7, 2018 (Year:
2018).

CAFTL: A Content-Aware Flash Translation Layer Enhancing the
Lifespan of Flash Memory based Solid State Drives; Chen et al;
Proceedings of the 9th USENIX conference on File and stroage
technologies; Feb. 15-17, 2011; retrieved from Proceedings of the
9th USENIX conference on File and stroage technologies on Jul. 15,
2017 (14 pages).

DHash: A cache-friendly TCP lookup algorithm for fast network
processing; Zhang et al; 38th Conference on Local Computer
Networks; Oct. 21-24, 2013; pp. 484-491 (8 pages) (Year 2013).
Dysource: a high performance and scalable NANO flash controller
architecture based on source synchronous interface; Wu et al;
Proceedings of the 12th ACM International Conference on Com-
puting Frontiers, Article No. 25; May 18-21, 2015 (Year 2015).
Hardware/software architecture for flash memory storage systems;
Min et al; Proceedings of the 14th international conference on
Compilers, architectures and synthesis for embedded systems; Oct.
9-14, 2011, pp. 235-236 (Year 2011).

NAND Flash Memory: Challenges and Opportunities; L1 et al;
IEEE Computer, vol. 46, 1ss. 8; Aug. 2013; pp. 23-29 (Year 2013).
Optimal Bloom Filters and Adaptive Merging for LSM-Trees;
Dayan et al.; ACM Transactions on Database Systems (TODS)—
Best of SIGMOD 2017 Papers, vol. 43, 1ss. 4, Article No. 16; Dec.
2018 (Year: 2018).

US 11,106,586 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Sergey Hardock, Ilia Petrov, Robert Gottstein, and Alejandro Buchmann.
2017. From In-Place Updates to In-Place Appends: Revisiting
Out-of-Place Updates on Flash. ACM International Conference on
Management of Data, pp. 1571-1586 (Year: 2017).

Skip lists: a probabilistic alternative to balanced trees; Pugh, Wil-
liam; Communications of the ACM, vol. 33, 1ss. 6; Jun. 19990, pp.
668-676 (9 pages).

U.S. Appl. filed Jun. 29, 2016, Wallace et al., U.S. Appl. No.
15/196,163.

U.S. Appl. No. 15/196,110, filed Jun. 29, 2016, Wallace, et al.
U.S. Appl. No. 15/196,261, filed Jun. 29, 2016, Shilane, et al.
U.S. Appl. No. 15/196,283, filed Jun. 29, 2016, Shilane, et al.
U.S. Appl. No. 16/049,891, filed Jul. 31, 2018, Wallace, et al.
U.S. Appl. No. 16/103,499, filed Aug. 14, 2018, Wallace et al.
U.S. Appl. No. 16/146,584, filed Sep. 28, 2018, Wallace et al.
U.S. Appl. No. 16/209,054, filed Dec. 4, 2018, Shilane, et al.
U.S. Application Filed on Apr. 15, 2019, by Shilane et al., U.S.
Appl. No. 16/384,591.

US. Appl. No. 15/196,150, filed Jun. 29, 2016, Shilane, et al.
U.S. Appl. No. 16/434,470, filed Jun. 7, 2019, Wallace, et al.
U.S. Appl. No. 16/511,256, filed Jul. 15, 2019, Wallace, et al.
U.S. Appl. No. 16/511,261, filed Jul. 15, 2019, Wallace, et al.
Algorithms and data structures for flash memories; Gal et al.; ACM
Computing Surveys, vol. 37, 1ss. 2, pp. 138-163; Jun. 2005 (Year:
2005).

Design and implementation of NAND Flash files system based on
the double linked list; Wang et al.; 2011 International Conference on
Electrical and Control Engineering; Sep. 16-18, 2011 (Year: 2011).
Hydra: A Block-Mapped Parallel Flash Memory Solid-State Disk
Architecture; Seong etal.; IEEE Transactions on Computers, vol. 59,
1ss. 7, pp. 905-921; Jul. 2010 (Year: 2010).

A DRAM-flash index for native flash file systems; Ho et al.; 2013
International Conference on Hardware/Software Codesign and Sys-
tem Synthesis, pp. 1-10; Sep. 29, 2013-Oct. 4, 2013.

A sequential indexing scheme for flash-based embedded systems;
Yin et al.; Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technol-
0gy, pp. 388-599; Mar. 24-26, 20009.

FlashStore: high throughput persistent key-value store; Debnath et
al.; Proceedings of the VLDB Endowment, vol. 3, 1ss. 1-2, pp.
1414-1425; Sep. 2010.

SkimpyStash: RAM space skimpy key-value store on flash-based
storage; Debnath et al.; Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, pp. 25-36; Jun.
12-16, 2011.

A multi-level elaborate least frequently/recently used bufler cache
for flash storage systems; Noh et al.; Proceedings of the 2009
International Conference on Hybrid Information Technology , pp.
34-41; Aug. 27-29, 2009.

Implementing personal home controllers on smartphones for service-
oriented home network; Tokuda et al.; IEEE 8th International
Conference on Wireless and Mobile Computing, Networking and

Communications, pp. 769-776; Oct. 8-10, 2012 (Year: 2012).
RwHash: Rewritable Hash table for Fast Network Processing with
Dynamic Membership Updates; Song et al.: ADM/IEEE Sympo-
sium on Architectures for Networking and Communications Sys-
tems; May 18-19, 2017.

A. Berman and Y. Burk, “Integrating de-duplication and write for
increased performance and eenndduurrance of Solid-State Drives,”
2010 IEEE 26-th Convention of FElectrical and Electronics Engi-
neers 1n Israel, 2010, p. 000821-000823 (Year: 2010).

D. Wang, J. Tang, M. Jia, Z. Xu and H. Han, “Review of NAND
Flash Information Erasure Based on Overwrite Technology,” 2020
39th Chinese Control Conference (CCC), 2020, pp. 1150-1155
(Year: 2020).

K. Terazono and Y. Okada, “An extended delta compression algo-
rithm and the recovery of failed updating in embedded systems,”
Data Compression Conference, 2004. Proceedings. DCC 2004,
2004, p. 570. (Year: 2004).

S. Hardock, I. Petrovy, R. Gottstein and A. Buchmann, “Selective
In-Place Appends for Real: Reducing Erases on Wear-prone DBMS
Storage,” 2017 IEEE 33rd International Conference on Data Engi-
neering (ICDE), 2017, pp. 1375-1376. (Year: 2017).

W. Jianpo, Y. Liqun and X. Qing, “Research on hash algorithm for
retrieval of global multi-resolution terrain cache data,” 2010 Inter-
national Conference on Audio, Language and Image Processing,

2010, pp. 980-984 (Year: 2010), Jun. 30, 2021.

* cited by examiner

T 24n3I14

US 11,106,586 B2

Sheet 1 of 3

Aug. 31, 2021

U.S. Patent

AW’
23el101S

1T
lapeay

snjels ayoe)

OTT
siauIeluo)

80T
ayae) yse|4

[40))
(S)1055920.1(d

001
Wa1SAS duinndwo)

US 11,106,586 B2

Sheet 2 of 3

Aug. 31, 2021

U.S. Patent

SJuawgas e1eq e

Sluswsas e1eq |T¢

¢ 21n3i4

Q77 spealyl

0t

T

¢ AoPEoH J1oUIEIUO)

0T Jauleuo)

T

71 12UIElUO) SOL
oyoe)) yse|d

O1¢ dopPkoH JoUIElUO)

C1cC UOI11ED07]

901

Q07 uUolyesoq 90z J12111uap|

0TZ Jauuapj -

{014

[4074

US 11,106,586 B2

Sheet 3 of 3

Aug. 31, 2021

U.S. Patent

7 21n3I14

90T

Xopulj
a1epdn pue ayoe) 01Ul k1R MIN 19SU|

74017
Xapu|] ay3 duisn sisanbay o1 puodsay

40}
91815 9Yoe) auiwlialaQ

¢ 21Nn314

90¢t
suoljelad(Q dn)yooq wioliad

1482
Xapu| arepdn

[40}2
SI9peaH Jauiejuo) peay

US 11,106,586 B2

1

SYSTEMS AND METHODS FOR
REBUILDING A CACHE INDEX

FIELD OF THE INVENTION

Embodiments of the invention relate to systems and
methods for managing memory in a computing environ-
ment. More particularly, embodiments of the invention
relate to systems and methods for rebuilding an index to data
stored 1n a cache such as a flash cache.

BACKGROUND

Advances in computing technology has resulted in the
ability to store ever growing amounts of data. However, the
performance of data storage systems 1s often limited by hard
disk drive (HDD) latency, which has been relatively constant
for years. To improve performance, data storage systems use
caching layers. Typically, each caching layer performs better
than the lower layer.

In systems that deal with large amounts of data, flash
memory can be used as a caching layer and can be much
larger than DRAM (dynamic random access memory). In
tact, caches configured from flash memory (flash cache) may
be very large (e.g., hundreds of gigabytes to hundreds of
terabytes 1n size). Flash memory has both higher TOPS
(input output operations per second) and lower latency
compared to HDDs.

The performance of a storage system can be improved by
placing the most valuable data or metadata into the flash
cache for faster access. Unlike DRAM, flash 1s persistent
across system restarts. Consequently, content stored in the
flash cache 1s not lost when a system restarts and the
contents can be advantageously used. This 1s referred to as
a warm cache and 1s distinct from starting with a cold cache
that needs to be repopulated with data.

However, an index 1s needed to access the contents of the
flash cache. The index 1s usually stored 1n memory such as
DRAM and maps an identifier (e.g., a fingerprint, hash, key,
or the like) to a location 1n the flash cache. The data stored
in the flash cache may be data such as file blocks, content-
defined chunks, or meta-data such as directory records, file
indirect blocks, or the like. Because the index in DRAM 1s
lost across restarts, 1t 1s necessary to rebuild the index before
the content of the flash cache can be used.

The 1index could be stored 1n the flash cache instead of
memory. When the index 1s stored in the flash cache, it may
not be necessary to rebuild the index or load the index nto
memory. A drawback of this approach 1s that the index has
to be kept up-to-date 1n the tlash cache. This has the effect
of causing high churn in the flash cache and can have an
impact on the performance of the flash cache. Flash has a
limited endurance and only supports a limited number of
writes before 1t becomes read-only. As one example, con-
sider a flash device of 100 GB that only supports one full
overwrite per day for five years. That means 1t supports 100
GB times 356 days times 1 write per day times five years,
which approximately equals 178 TB of writes before 1t
becomes read-only. Frequent index updates can use up the
writes supported by the flash device. Additionally updates to
the index are usually very small, such as only a few bytes,
but flash updates are at the unit of a page, usually 4 KB,
requiring a page to be read, modified and written to a new
location for each small update.

In another example, the flash cache can be completely
scanned and the index can be rebuilt in memory from the
scan. Reading the entire cache, however, requires a lot of

10

15

20

25

30

35

40

45

50

55

60

65

2

time (depending on the size of the cache) and consumes /0O
that could be used for other purposes. This 1s expensive and
can negatively impact the performance of the flash cache.
Systems and methods are needed for building or for rebuild-
ing an mdex for a flash cache.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner 1n which at least some
aspects of this disclosure can be obtained, a more particular
description will be rendered by reference to specific embodi-
ments thereof which are illustrated in the appended draw-
ings. Understanding that these drawings depict only
example embodiments of the invention and are not therefore
to be considered to be limiting of 1ts scope, embodiments of
the mvention will be described and explained with addi-
tional specificity and detail through the use of the accom-
panying drawings, in which:

FIG. 1 illustrates an example of a computing environment
that includes an index used to access the content of a flash
cache;

FIG. 2 illustrates an example of an index stored in a
memory and illustrates a relationship between the index and
content stored in the flash cache;

FIG. 3 illustrates an example method for rebuilding an
index; and

FIG. 4 illustrates an example method for inserting data
segments mto the flash cache.

DETAILED DESCRIPTION OF SOME
EXAMPLE EMBODIMENTS

Embodiments of the invention relate to systems and
methods for managing memory in a computing system.
More particularly, embodiments of the invention relate to
systems and methods for building or rebuilding indexes used
to access content in a cache such as a tlash cache.

A computing system may include multiple or tiered
storage. The different tiers may include different types of
storage. A computing system may include DRAM, a tlash
memory cache (flash or flash cache), and storage such as
hard disk drives (HDD). The content stored in the flash
cache 1s accessed using an index that maps an i1dentifier of
the content or data to a location of the data in the cache. In
one example, the identifier may 1dentify a location of the
data 1n a container stored in the cache. A container 1s an
example of a structure to store multiple data segments.

Unlike DRAM, flash 1s persistent across system restarts,
so when a storage system restarts, the content 1n the flash
cache can be used. This allows the storage system to start
with a warm cache instead of starting from a cold cache that
has to be repopulated. However, the imndex to the cache,
which was stored in memory, 1s typically lost and must be
rebuilt.

Embodiments of the invention relate to systems and
methods for rebuilding or reconstructing the index when the
flash cache i1s loaded. In one example, the process of
rebuilding the cache 1s improved by managing the manner in
which content 1s stored in the cache. More specifically, the
data may be arranged or stored 1n containers. Each container
includes a header that includes enough metadata to index the
content of the container. As a result, the process of rebuild-
ing the mdex 1s improved because 1t 1s only necessary to read
the headers of the containers when rebuilding the cache. In
addition, the container headers in the flash cache can be read
using multiple parallel threads. The order of reading from
the flash cache has little impact on the index because the

US 11,106,586 B2

3

index stores relationships between an 1dentifier of the data (a
data segment) and a location of the data segment 1n the flash
cache and more specifically to a location of the data segment
in a container 1n the cache. The index may also store other
data or metadata. Even 11 the flash cache includes multiple
flash devices, one or more threads can be created to read
from each device independently and add entries to the index.

Further, multiple threads can be used to read from a single
flash device when the flash device supports multiple out-
standing 1/0s. Each thread, for example, may be configured
to read a distinct set of container identifiers (IDs). Reading,
the flash cache using multiple threads can shorten the time
required to rebuild the index. When rebuilding the flash
cache using multiple threads, the index or subregions of the
index may be locked as necessary to avoid conflicting
updates.

Traditionally, a cache 1s not available until the index 1s
tully reconstructed. Embodiments of the invention, how-
ever, allow access to the cache even when the index 1s not
tully reconstructed. In this scenario, some requests to the
index may fail to find data that 1s actually located 1n the flash
cache. However, more of the data becomes available over
time as the index 1s built. In addition, content can be inserted
into the flash cache while the index 1s being rebuilt. Inser-
tions are simply added to the index.

To facilitate the process of rebuilding the cache, an overall
cache state may be stored 1n a reserved region of the flash
cache. The cache state may be referred to as a cache status
header. The cache status header may include the highest
contaimner ID stored to flash as well as an allocation table
indicating which regions of flash cache have containers and
which regions of the flash cache are unused. When a client
iserts new content into the flash cache, the content 1s
packed mto a new container (or multiple containers if
necessary), the container’s header 1s created representing the
container, a new container ID 1s created, the container 1s
written to flash, and the content 1s added to the index. The
content 1s added to the index by adding at least an 1dentifier
(e.g., a key, a hash or partial identifier of the content) and a
location of the data segment. The location may specily the
container plus an offset within the container where the
content or data segment 1s stored.

During the rebuild process, the location 1n the flash cache
in which the container 1s written can be selected 1n different
ways. If unused regions are available 1n the flash cache, the
container may be written to an unused region. I a region of
the flash cache 1s used but not yet indexed, this region can
be selected for replacement without reading the container’s
header and without removing entries from the index. If a
region that 1s used and indexed 1s selected, the region can be
selected for replacement.

Various policies can be used to manage the content in the
cache. Least recently used (LRU) 1s an example of a policy
for evicting content from the cache. Thus, content can be
added to the cache 1n parallel with the reconstruction of the
index.

FIG. 1 illustrates an example of a computing system 100.
The computing system 100 may be implemented as an
integrated device or may include multiple devices that are
connected together using a network, bus, or other suitable
connection (wired and/or wireless). The computing system
100 may be configured to perform a special purpose. For
example, the computing system 100 may be configured to
perform data protection operations. Example data protection
operations include, but are not limited to, backing up data
from one or more clients, restoring data to one or more
clients, de-duplicating data backed up in the computing

10

15

20

25

30

35

40

45

50

55

60

65

4

system, indexing data stored in the computing system,
optimizing the data stored in the computing system, reading
a cache, writing to a cache, rebuilding an index to a cache,
or the like or combination thereof.

The computing system 100 may include a processor 102
(or multiple processors), a memory 104, a flash cache 108
(or other suitable memory type), and storage 114. The
memory 104 and the flash cache 108 may both be configured
as a cache. The memory 104, for example, may be DRAM
or the like. The memory 104 1s typically faster and smaller
than the flash cache 108. The tlash cache 108 is typically
smaller and faster than the storage 114. The storage 114 may
include multiple HDDs or other storage type.

The memory 104, flash cache 108, and storage 114 are
arranged to improve performance of the computing system
100. Over time, by way of example, data that 1s requested
more frequently tends to reside 1n the flash cache 108.

In the computing system 100, an index 106 1s maintained
in the memory 104. The index 106 includes multiple entries
and each entry corresponds to data or content stored 1n the
flash cache 108. In one example, the index 106 may be
implemented as a hash index. The hash 1n an entry of the
index 1s an identifier of content in the flash cache 10
corresponding to the entry. In one example, the index 106
may not store the complete 1dentifier. The index 106 may
include 1dentifiers of data or content stored 1n the flash cache
108. Each entry in the index 106 may also store other
information or metadata such as a segment size, segment
type, or the like or other combination thereof. In another
example, the metadata 1n the index may be a logical block
address or file handle and offset within a file.

The content 1n the flash cache 108 may be stored in
containers 110. Each of the containers 110 may include a
container header. The container header contains enough
metadata to index the content stored in the corresponding
container. Fach container may include multiple segments.
When rebuilding the index, the container headers may be
read and entries 1 the index 106 may be generated from the
metadata 1n the contamner header. More specifically, each
container may include multiple data segments. The con-
tainer header may include the identifier and location of each
data segment 1n the container. The container header may also
identily a segment type and a segment size for each data
segment. By reading the container headers, all information
needed to index each of the data segments can be obtained
without having to read or process the data segments them-
selves.

A cache status header 112 may also be stored in the flash
cache 108. The cache status header 112 may be stored at a
known location such that information contained therein can
be extracted across restarts without having to search for the
cache status header.

The cache status header 112 may 1include information that
can be used at least when the index 1s being rebuilt. For
example, the cache status header 112 may identity the
highest container identifier included in the containers 110.
When rebuilding the index, the container headers can be
read 1n parallel using multiple threads. Knowing the highest
container identifier allows the computing system to know
when all container headers have been read and allows the
computing system to allocate a range of container headers to
different threads. This eliminates redundancy when reading
the container headers such that container headers are only
read once.

The cache status header 112 may also identily regions of
the flash cache 108 that are unused and/or regions that are
used and/or regions recommended for replacement. This

US 11,106,586 B2

S

provides tlexibility when inserting new content 1into the tlash
cache 108 while the index 1s being rebuilt.

FI1G. 2 illustrates the process of rebuilding an index 1n the
computing system 100. In FIG. 2, the index 106 1s rebuilt
using threads 226 (e.g., the thread 228 and the thread 230,
which represent multiple threads) or other suitable execut-
able or process.

More specifically, the flash cache 108 includes, by way of
example a container 214 and a container 220. In practice, the
flash cache 108 includes a large number of containers. The
container 214 includes a container header 216 and data
segments 218. The container header 216 includes metadata
that allows the data segments 218 to be indexed without
having to read the data segments 218. The metadata includes
information such as the identifiers the data segments and
locations of the data segments 1n the container. This meta-
data can be used to rebuild the index. The container 220
similarly includes a container header 222 and corresponding
data segments 224.

In one embodiments, the container headers can be read
using multiple threads 226. In this example, the thread 228
reads the container header 216 and the thread 230 reads the
container header 222. After reading the container headers
216 and 222, the threads 226 insert the metadata into the
index 106.

The thread 228 1s reading the container header 216 and the
thread 230 1s reading the container header 222. After reading,
the container header 216, at least an identifier 206 (e.g., a
key, hash or fingerprint or partial identifier of the corre-
sponding segment) and a location 208 1s written to the entry
202 of the index 106. The location stored in the mndex 106
may be represented in different ways. The location 208, for
example, may point to the container 214 and include an
oflset to the relevant segment. Alternatively, the location 208
could point directly to a particular segment. Similarly, an
identifier 210 and a location 212 are written to the entry 204
of the index 106. Once this 1s completed, the containers 214
and 220 are indexed. The containers can be read 1n a parallel
manner. A lock may be applied to the index 106 as necessary
during index updates.

Until all of the containers have been indexed in this
manner, the index 106 1s only partially rebuilt. However,
embodiments of the invention allow the 1ndex to be used 1n
a partially reconstructed state. This allows the computing
system to be used more quickly compared to waiting for the
index to be completely rebuilt.

FIG. 3 illustrates an example of a method for rebuilding
an index. The method 300 begins by reading container
headers 1n box 302. Multiple threads may be used to read the
container headers such that the container headers are read 1n
parallel. When reading the container headers, the cache
status header may be used to i1dentity the number of con-
tainer headers to be read. Further, different container iden-
tifiers are allocated to diflerent threads. In this manner, the
container headers can be read in parallel and, 1n one
example, 1n sequence. Each thread may read a range of
container headers.

In box 304, the index 1s updated by the threads. Because
multiple threads are reading the container headers, the index
or portions of the index may be locked during an update.
This ensures that the mn-memory index 1s locked as neces-
sary. In one example, the index may include index buckets.
Locking the index or locking a specific bucket can ensure
that the updates are performed appropriately without differ-
ent threads interfering with each others writes and poten-
tially creating invalid index entries. Each index bucket may
include multiple entries.

10

15

20

25

30

35

40

45

50

55

60

65

6

After a container has been indexed, the data segments
associated with the container can be accessed via the cache.
Thus, lookup operations can be performed i box 306.
Stated differently, a request for a data segment that has been
indexed allows the data segment to be retrieved from the
flash cache even 11 the cache index 1s not completely rebuilt.
A request for a data segment that has not been indexed may
be retrieved from storage even if the requested data segment
1s stored 1n the flash cache. In other words, cache misses are
handled normally in the computing system.

FIG. 4 illustrates an example of a method for inserting a
data segment into the cache. FIG. 4 further illustrates an
example of mserting a data segment 1nto the cache while
rebuilding the cache. The method 400 allows data segments
to be inserted into the cache while the index 1s under
construction. In box 402, the cache state 1s accessed to
determine the highest container number and to identily
unused regions of the flash cache. The cache state can be
determined from the cache status header. The cache status
header may store the highest container number presently
stored in the cache and may 1dentity unused regions of the
flash cache. The cache status header may be read into
memory for faster repeated access. This information can be
used when 1nserting data segments 1nto the flash cache.

In box 404, a request to msert a data segment 1s evaluated
using the index. In one example, the request 1s evaluated to
determine whether the index includes the data segment
associated with the request. This may occur, for example,
when the container contaiming the data segment has been
indexed. In one example, an 1dentifier of the requested data
segment 1s compared with identifiers presently mndexed. It
the 1dentifier 1s found, then the data segment 1s stored 1n the
flash cache and has been indexed. The response to the
request 1n box 404 may be to read the data segment from the

flash cache.

In one example when the i1dentifier 1s not in the index 1n
box 404, the data segment may be inserted into the cache in
box 406. The index may also be updated. The data segment
can be inserted in different manners. In one example, the
cache status header may be read to identily the highest

container number and to obtain information about {free
space. Then, the data segment 1s written to a container (that
1s given the next container number) and the container is
written to an unused region of the flash cache i1 an unused
region 1s available.

In another example, the container containing the data
segment can be written to a region of the tlash cache that has
been used but has not been mmdexed. In this example, the
header of the container being replaced does not need to be
read and no entries need to be removed from the index.
Information for the new container, however, may be added
to the index.

In another example, a region that 1s already imndexed and
used can be selected for the new data segment. The selection
of the used region can be made using various caching
eviction policies, such as least recently used, lowest con-
tainer number, or the like.

This process may continue until the cache is rebuilt. Once
the cache 1s rebuilt, normal caching policies may be per-
formed.

The embodiments disclosed herein may include the use of
a special purpose or general-purpose computer including
vartous computer hardware or soltware modules, as dis-
cussed 1n greater detail below. A computer may include a
processor and computer storage media carrying instructions

US 11,106,586 B2

7

that, when executed by the processor and/or caused to be
executed by the processor, perform any one or more of the
methods disclosed herein.

As indicated above, embodiments within the scope of the
present 1nvention also include computer storage media,
which are physical media for carrying or having computer-
executable instructions or data structures stored thereon.
Such computer storage media can be any available physical
media that can be accessed by a general purpose or special
purpose computer.

By way of example, and not limitation, such computer
storage media can comprise hardware such as solid state
disk (SSD), RAM, ROM, EEPROM, CD-ROM, flash
memory, DRAM, phase-change memory (“PCM”), or other
optical disk storage, magnetic disk storage or other magnetic
storage devices, or any other hardware storage devices
which can be used to store program code in the form of
computer-executable instructions or data structures, which
can be accessed and executed by a general-purpose or
special-purpose computer system to implement the dis-
closed functionality of the mvention. Combinations of the
above should also be included within the scope of computer
storage media. Such media are also examples of non-
transitory storage media, and non-transitory storage media
also embraces cloud-based storage systems and structures,
although the scope of the invention 1s not limited to these
examples of non-transitory storage media.

Computer-executable mstructions comprise, for example,
instructions and data which cause a general purpose com-
puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of func-
tions. Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal acts, it 1s to be understood that the subject matter defined
in the appended claims 1s not necessarily limited to the
specific features or acts described above. Rather, the specific
teatures and acts disclosed herein are disclosed as example
forms of implementing the claims.

As used herein, the term ‘module’ or ‘component” can
refer to solftware objects or routines that execute on the
computing system. The different components, modules,
engines, and services described herein may be implemented
as objects or processes that execute on the computing
system, for example, as separate threads. While the system
and methods described herein can be implemented 1n sofit-
ware, implementations 1n hardware or a combination of
soltware and hardware are also possible and contemplated.
In the present disclosure, a ‘computing entity’ may be any
computing system as previously defined heremn, or any
module or combination of modules running on a computing,
system.

In at least some 1nstances, a hardware processor 1s pro-
vided that 1s operable to carry out executable mstructions for
performing a method or process, such as the methods and
processes disclosed herein. The hardware processor may or
may not comprise an element of other hardware, such as the
computing devices and systems disclosed herein. A control-
ler may include a processor and memory and/or other
computing chips.

In terms of computing environments, embodiments of the
invention can be performed in client-server environments,
whether network or local environments, or 1 any other
suitable environment. Suitable operating environments for at
least some embodiments of the invention include cloud
computing environments where one or more of a client,
server, or target virtual machine may reside and operate 1n
a cloud environment.

10

15

20

25

30

35

40

45

50

55

60

65

8

The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential charac-
teristics. The described embodiments are to be considered in
all respects only as 1llustrative and not restrictive. The scope
of the invention 1s, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What 1s claimed 1s:

1. A method for operating a flash memory cache while
rebuilding an index for the tlash memory cache, the method
comprising;

rebuilding the index by:

reading headers of containers stored in the flash
memory cache, each of the containers storing seg-
ments, wherein the headers contain suthcient infor-
mation to index the segments stored 1n the containers
without accessing the segments stored 1n the con-
tainers; and

updating the mndex with information extracted from the
headers of the containers, wherein the information
includes identifiers of the segments stored in the
containers and locations of the segments stored 1n the
containers; and

adding a new segment to the flash memory cache 1n
parallel with updating the index.

2. The method of claim 1, further comprising adding
information including an identifier for the new segment and
a location of the new segment 1n a container to the index.

3. The method of claim 1, further comprising operating
the flash memory cache 1n a normal manner with a partially
rebuilt index, wherein the normal manner includes at least
evicting segments or containers from the flash memory
cache using the partially rebuilt index and performing
lookup operations using the partially rebuilt index.

4. The method of claim 1, further comprising adding the
new segment to a portion of the tlash memory cache that has
not been used or that does not currently store any containers
Or segments.

5. The method of claim 1, further comprising adding the
new segment to a portion of the flash memory cache that has
been used but not yet indexed while rebuilding the index.

6. The method of claim 1, further comprising adding the
new segment to the flash memory cache 1n accordance with
first policies while the index 1s rebwilt and operating the flash
memory cache in accordance with normal polices after the
index 1s rebuilt, wherein the first policies relate to selecting
a used region of the flash memory cache in which to add the
new segment, wherein the first policies include at least one
ol least recently used or lowest container number.

7. The method of claim 1, further comprising performing,
lookup operations into the flash memory cache while
rebuilding the index.

8. The method of claim 1, further comprising reading the
flash memory cache with multiple threads, wherein each
thread 1s assigned a range of containers to read.

9. The method of claim 1, further comprising storing a
cache state 1n a reserved region of the flash memory cache.

10. The method of claim 9, wherein the cache state
identifies a highest container i1dentifier stored in the flash
memory cache and identifies which regions of the flash
memory cache are unused, wherein the highest container
identifier ensures that all containers are read when rebuild-
ing the index.

11. The method of claim 1, further comprising adding a
new container to the flash memory cache while rebuilding
the index, wherein the new container 1s added to an unused

US 11,106,586 B2

9

region ol the flash memory cache or wherein the new
container replaces an existing container in a used region of
the tlash memory cache that has not been indexed, wherein
a header of the new container 1n the used region 1s not read
during the rebuilding process.

12. A computing system configured to rebuild an index
into flash memory, the computing system comprising:

a flash memory configured to cache data segments in the

flash memory;
a processor configured to execute computer executable
instructions for performing a method for rebuilding the
index, the method comprising:
rebuilding the index into the flash memory, wherein the
index associates 1dentifiers of the data segments with
locations of the data segments 1n the flash memory, by:
reading headers of containers stored in the flash
memory, each of the containers stored in the flash
memory and storing at least one of the data segments
in the flash memory, wherein the headers contain
suflicient information to index the data segments
stored 1n the containers stored in the flash memory
without accessing the data segments stored in the
containers stored in the flash memory; and

updating the index with information extracted from the
headers of the containers, wherein the information
includes 1dentifiers of the data segments stored 1n the
containers and locations of the data segments 1n the
containers; and

adding a new data segment to the flash memory 1n
parallel with updating the index.

13. The computing system of claim 12, further comprising
adding imformation including an identifier for the new data
segment and a location of the new data segment within one
of the containers stored in the flash memory to the index.

10

15

20

25

30

10

14. The computing system of claim 12, further comprising
a memory that 1s separate from the tflash memory, wherein
the 1ndex 1s stored 1n the memory, in the flash memory, or in
both the memory and the flash memory.

15. The computing system of claim 12, further comprising
adding the new data segment to a new container that 1s added
to a portion of the flash memory that has not been used.

16. The computing system of claim 12, further comprising
adding the new data segment to a portion of the flash
memory that has been used but not yet indexed while
rebuilding the index, wherein the new data segment being
added 1s added to a new container stored 1n the flash memory
in accordance with first policies while the imndex 1s being
rebuilt and operating the flash memory 1n accordance with
normal policies after the index is rebuilt.

17. The computing system of claim 12, further comprising
performing lookup operations into the flash memory while
rebuilding the index.

18. The computing system of claim 12, further comprising
storing a cache state i a reserved region of the flash
memory.

19. The computing system of claim 18, wherein the cache
state 1dentifies a highest container identifier stored in the
flash memory and identifies which regions of the flas
memory are unused, wherein identifying the highest con-
tainer 1dentifier ensures that all containers stored 1n the flash
memory are read while rebuilding the 1index.

20. The computing system of claim 12, further comprising
inserting a new container ito a portion of a used region of
the flash memory that i1s not yet indexed without indexing
any containers replaced by the insertion of the new container
and without removing entries that correspond to data seg-
ments stored 1n the containers being replaced from the index.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

