12 United States Patent

Dimond et al.

US011106513B2

US 11,106,513 B2
Aug. 31, 2021

(10) Patent No.:
45) Date of Patent:

(54) MESSAGE PASSING IN A DATA
PROCESSING SYSTEM

(71) Applicant: ARM Limited, Cambridge (GB)

(72) Inventors: Robert Gwilym Dimond, Cambndge
(GB); Eric Biscondi, Sophia Antipolis
(FR); Mario Torrecillas Rodriguez,
Cambridge (GB); Paul Stanley
Hughes, Cambridge (GB)

(73) Assignee: Arm Limited, Cambridge (GB)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 16/755,269

(22) PCT Filed: Sep. 4, 2018

(86) PCT No.: PCT/GB2018/052496
§ 371 (c)(1),
(2) Date: Apr. 10, 2020

(87) PCT Pub. No.: WQ02019/073193
PCT Pub. Date: Apr. 18, 2019

(65) Prior Publication Data
US 2020/0241943 Al Jul. 30, 2020

SHARED COHERENT MEMORY /400

ﬂ—-'_———ﬂﬂl—“

(52) U.S. CL
CPC ... GO6F 9/546 (2013.01); GOG6F 9/30101
(2013.01); GO6F 9/542 (2013.01); GO6F
12/0246 (2013.01); GO6F 12/0873 (2013.01);
GO6F 2212/7207 (2013.01)

(38) Field of Classification Search
CPC e GO6F 9/546
USPC e 719/313

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

9,009,660 Bl 4/2015 Grithin et al.

OTHER PUBLICATTIONS

International Search Report and Written Opinion of the ISA for
PCT/GB2018/052496 dated Jan. 7, 2019, 20 pages.

(Continued)

Primary Examiner — Timothy A Mudrick
(74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.

(57) ABSTRACT

A data processing system and method of data processing are
provided. The system comprises first and second data pro-
cessing agents and data storage shared coherently between
the both data processing agents to store a message data
structure to provide a message channel between them. A
further data storage i1s accessible to both data processing
agents to store message channel metadata, which provides
message status information for the message channel. The
message channel metadata 1s one of a plurality of message
channel metadata types defined for a corresponding plurality
ol message channel types between the first and second data
processing agents, and at least one of the first and second
data processing agents 1s responsive to an initialization
trigger to establish the message channel with a selected
message channel type.

20 Claims, 9 Drawing Sheets

ACCELERATOR INTERNAL STORAGE. /™20

;ﬂ—ﬂdﬁ--__-*ﬂﬂ_*ﬂﬂﬂ_q

(30) Foreign Application Priority Data
Oct. 12, 2017 (GB) oo 1716754
(51) Int. CL
GO6F 9/44 (2018.01)
GO6F 9/54 (2006.01)
GO6F 9/30 (2018.01)
GO6F 12/02 (2006.01)
GO6F 12/0873 (2016.01)
204
MEMORY MAP //_ 206
: A DIGEST | | : TX_DIGEST h i
L AMSWIT] 4 R}{_DIGESTIE '] R¥ DIGEST I
z AMS Table | !]| AMSTable | | Txfg‘ms
A e e SR L
E (I R e Y
| | [PECDIGEST |1 ¢ [RXDIGEST| L RAAMS
; AMI-SWin] 4 A
i AMSTabe |1 1| ANS Tabl \\ -----
; 1 i“‘"‘"""‘“"“‘“"““‘ ---------- 208
i I]f;':__i,__
L Ao | [AVMIS li |
} PARTITIONS | S SR
i AMISWR 14
: I o
I fing_bufter i ' | ring_buffer | IS
| »
: ing_buffer 1§ | ring_bufler
; |l
i 1

A i M ek ek ek b b ek ol i e T

-
Y
-""r

h‘_ﬂ“—“““ﬂﬂﬁ“ﬂ_‘“.ﬂﬂﬂﬂ_‘_ﬂ“ﬂ“ﬂ“ﬂg

“ /7 u
N i Y
X 31 -
____.._READ—NDEK 1 DB{daorbell} | rsvd | rumber of element :
. [WRITE_INCE 1 — 4
\ [ELEM SIZF I ;
MASK I :
i BASE FTR X DB TXC :
T MBI Loy s
/ 1w [- ;
210 .- ﬁ DB_THn 1_} |
""" N A | |
11

1 DB__rﬁ}ﬁ | RX_AMS §
]
I B R j ;
---------------- I-:-------------- ;
: [) :
-------------- Hp=-=="" DB_TX0 :
: : B TX1 I ;

11
I i
1 OB TXn i
_______________ : : !EMLSW[H] DB :.EKD_.._ i
~~~~~~~~ ¥ B ;
****** e :
T 08 RXn :
J! ;

Y

‘“H*_Hﬂu_—-—_——ﬂ_uﬂﬂJ



US 11,106,513 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Search Report for GB1716754.5 dated Mar. 23, 2018, 5 pages.
Anonymous—Online, “Memory-mapped 'O, Sep. 4, 2017, 2

pages.
Dennis—Online, “Execute a method when a variable value changes

in Swift”, Jun. 4, 2015, 8 pages.




US 11,106,513 B2

Sheet 1 of 9

Aug. 31, 2021

U.S. Patent

42

3OWOLS

J0INdd
1VadHdladd

0¢

1VddHalada
VOO
cv
=1a[0,
\_ 81l
Ol

ce

odd1519d4

INJWIOVNVYIA
d01vd41400V

8¢

1VddHalada

VOO
OV

3400

9l

L Ol4
9 0¥
FANLONYLS || F18VL AJONTN
V1V NOISS3S AFUVHS
JOVSSIN ATINIHIHOO

b FHOVO WALSAS

1OINNOOHLNI
1VddHaldda 1VddHaldda
VOO | VOO |
8¢ Ot
34090 34090
14! Cl

0¢

¢C



US 11,106,513 B2

Sheet 2 of 9

Aug. 31, 2021

U.S. Patent

09

1OELNOJ
INISS3F008d FOVE5IN
d0.Lvd3 1300V

V1S
0 TINNVHO
FOVESIN

9§

FOVH0LS J0Lvdd 1400V

¢ Old

(S3OVSSIN)
L IHNLONYLS
V1Y FOYSSIN

(STOVSSIN)
0 IMNLONYLS
V1Y FOVSSIN

AJOWdN INJH3HOO
(3HVHS

(SFOVSSIN)
L IHNLONYLS

v1v(Qd FOVESIN

(SFOVSSIN)
0 IHNLONYLS
Y1Yd IOVSSIN

(SNLYLS) YLYAYLIN
L TANNYHD 39YSSTN

(SNLYLS) YLYAYLIN
0 TANNYHD 39VSSIN

dvi\
\ AJONIN

12°)

| TINNVHO
FOVESIN 0
NOILYZI TVILINI



U.S. Patent Aug. 31, 2021 Sheet 3 of 9 US 11,106,513 B2

12 14 16
PROCESSING PROCESSING PROCESSING G2

ELEMENT ELEMENT FLEMENT | =, e s

: COHERENCE :

. LONTROL 4

INTERCONNECT 99
SHARED COHERENT | -20
MEMORY
FIG. 3A
12 14 16

PROCESSING PROCESSING PROCESSING

CLEMENT | MIGRATION ELEMENT

76 /8
[ THREAD |~
INTERCONNECT 59
SHARED COHERENT | 20 PERIPHERAL [ ~30
MEMORY SLAVE DEVICE a0
0x100 <

I
FIG. 3B



,106,513 B2

US 11

Sheet 4 of 9

31, 2021

Aug

U.S. Patent

a |/
v |

oo
-
—

318Vl
1305

153910 Xy
153910 XL

3 1avl
13X005

¢+ 153910 XY
153910 XL

FOVHOLS TYNY3LINI d01va3 1300V

¥ Old

d44418 ONIY d334N8 ONIY

# LIXI0S XL # 133005 X1
O FOV3d3 NI O JOVA4 LN
d344018 ONI& d334N8 ONI&

IN443HOO Q3aVHS

/

¢l



U.S. Patent Aug. 31, 2021 Sheet 5 of 9 US 11,106,513 B2

SOFTWARE TASK ACCESSES THE
AMS DATA STRUCTURE WITH INDICES  |-190
(i, 5) TO GET RING BUFFER PARAMETERS

DOES P&
TX_DIGEST
INDICATE THAT THIS

RING BUFFER HAS

SPACE?
Y
INDEXWRITE_INDEX

SOFTWARE TAS INCREMENTS ITS WRITE INDEX (IN
ITS LOCAL AMS TABLE) AND WRITES THIS UPDATED |-160

VALUE TO THE AMS TABLE THROUGH THE AMI-SW
PARTITION

162

THE WRITE INDEX OF SOCKET#s, INTERFACE#

ACCELERATOR MANAGER DETERMINES DESTINATION | 164
SOCKET FROM THE SESSION TABLE

1638

DOES RX
Y SOCKET'S RX_
DIGEST INDICATE THAT WAIT
THIS RING BUFFER

HAS SPACE?

ACCELERATOR MANAGER PERFORMS | 170
COPY OF MESSAGE FROM THE TX_AMS
RING BUFFER TO THE RX_AMS RING BUFFER

FIG. 5



U.S. Patent Aug. 31, 2021 Sheet 6 of 9 US 11,106,513 B2

SOFTWARE TASK DETERMINES
THAT A MESSAGE |5 AVAILABLE FROM 180

RX_AMS #5 OF AMI-SW #i VIA
ACCESS OF RX_DIGEST OF AMI_SW #i

SOFTWARE TASK ACCESSES AMS DATA STRUCTURE 182
WITH INDICES (i, s) TO GET RING BUFFER PARAMETERS

SOFTWARE TASK READS ONE (OR MULTIPLE) | 4gq,
MESSAGE(S) FROM RING BUFFER AT INDEX
READ_INDEX

SOF TWARE TASK INCREMENTS ITS LOCAL READ | 4 86
INDEXAND WRITES THIS UPDATED VALUE TO THE
AMS TABLE THROUGH THE AMI-SW PARTITION

ACCELERATOR MANAGER DETECTS UPDATE 190
TO THE READ INDEX OF SOCKET #s, INTERFACE #i

FIG. 6



19ling bu

jBing bul

US 11,106,513 B2

syng bu

iy

U MS-INY
oNOILILaVd

O MSTAY | ] MSTTAY
| MS-TINY

o e WK W wm WW W S ER BN e Bx IN

Sheet 7 of 9

JdeL SV

153910 XY
153910 X1

JqeL SV

153910 XY
153910 X1

|
i
|
|
%
]
i
£ ]
3  §
| |
% |
% |
% |
| | |
\ 4
' |
%
3
; o0
O
) N ]
]
, :
s £
!
' |
: 4
' |
b 1
|
- . -
| 1 I
| | ¥
% 1 |

UIMS-INY

%
3
|
|
)
-
F
N
-n"#"
]

‘ﬂ

Aug. 31, 2021

9IJEL SN

153910
7 [1S3910° XL

I|0EL SN

153910 XY
153910 X1

EEEN

YEEI LS Y

pAs) | (j1edioop)da

oy

h"“"“““““__-“““_“__“___

hu__—_

U.S. Patent



U.S. Patent Aug. 31, 2021 Sheet 8 of 9 US 11,106,513 B2

SOFTWARE TASK ACCESSES THE
AMS DATA STRUCTURE WITH INDICES  |290
(i 5) TO GET RING BUFFER PARAMETERS

DOES
TX_DIGEST

254
INDICATE THAT THIS
RING BUFFER HAS

WAIT
SPACE?
SOFTWARE TASK STORES MESSAGE AT
INDEX WRITE_INDEX

SOFTWARE TASK ISSUES BARRIER INSTRUCTION p298

SOFTWARE TASK INCREMENTS ITS WRITE INDEX (IN

ITS LOCAL AMS TABLE) AND WRITES THE ELEMENT NUMBER [ ~260
OF ENQUEUED MESSAGE TO THE DOORBELL
REGISTER OF AMS #s

ACCELERATOR MANAGER DETECTS UPDATE TO |-262
THE WRITE INDEX OF SOCKET#s, INTERFACE#

ACCELERATOR MANAGER DETERMINES DESTINATION | ~264
SOCKET FROM THE SESSION TABLE

268

DOES RX
SOCKET'S RX_

Y DIGEST INDICATE THAT WAIT
THIS RING BUFFER
HAS SPACE? —
ACCELERATOR MANAGER PERFORMS | 170

COPY OF MESSAGE FROM THE TX_AMS
RING BUFFER TO THE RX AMS RING BUFFER

FIG. 8



U.S. Patent Aug. 31, 2021 Sheet 9 of 9 US 11,106,513 B2

SOFTWARE TASK DETERMINES
THAT A MESSAGE IS AVAILABLE FROM | ~280

RX_AMS #5 AMI-SW #i VIA
ACCESS OF RX_DIGEST OF AMI_SW #i

SOFTWARE TASK ACCESSES AMS DATA STRUCTURE 282
WITH INDICES (i, s) TO GET RING BUFFER PARAMETERS

SOFTWARE TASK READS ONE (OR MULTIPLE)
MESSAGE(S) FROM RING BUFFER AT INDEX | -284
READ_INDEX

SOFTWARE TASK INCREMENTS ITS LOCAL READ
INDEX AND WRITES THE ELEMENT NUMBER OF THE 2386
ELEMENT DEQUEUED TO DOORBELL REGISTER OF AMS #s

ACCELERATOR MANAGER DETECTS UPDATE 290
TO THE READ INDEX OF SOCKET #s, INTERFACE #

ACCELERATOR MANAGER INITIATES DMA
TRANSACTION TO GET UPDATED VALUE |~292
OF READ INDEX

FIG. 9



US 11,106,513 B2

1

MESSAGE PASSING IN A DATA
PROCESSING SYSTEM

This application 1s the U.S. national phase of International
Application No. PCT/GB2018/052496 filed Sep. 4, 2018
which designated the U.S. and claims priornity to GB Patent
Application No. 1716754.5 filed Oct. 12, 2017, the entire
contents of each of which are hereby incorporated by
reference.

The present disclosure relates to data processing. More
particularly 1t relates to message passing 1n a data processing,
system.

In a data processing system there may be the need for a
number of separate data processing agents to communicate
with one another by exchanging messages. These messages
may have various content, depending on the application,
such as commands, acknowledgements, data for delegated
processing, and so on. These messages may be created by an
originating agent and stored a queue from which they are
then retrieved by a destination agent, for example making
use of a ring bufler 1n shared memory. There are various
ways ol managing such a queue.

In one example embodiment there 1s a data processing
system comprising: a first data processing agent and a
second data processing agent; data storage shared coherently
between the first data processing agent and the second data
processing agent to store a message data structure for one or
more messages to provide a message channel between the
first data processing agent and the second data processing
agent; and further data storage accessible to the first data
processing agent and the second data processing agent to
store message channel metadata, wherein the message chan-
nel metadata provides message status information for the
message channel, and wherein the message channel meta-
data 1s one of a plurality of message channel metadata types
defined for a corresponding plurality of message channel
types between the first data processing agent and the second
data processing agent, and wherein at least one of the first
data processing agent and the second data processing agent
1s responsive to an initialization trigger to establish the
message channel with a selected message channel type.

In another example embodiment there 1s a method of data
processing comprising: operating a {irst data processing
agent; operating a second data processing agent; storing a
message data structure for one or more messages in data
storage shared coherently between the first data processing
agent and the second data processing agent; storing message
channel metadata 1n further data storage accessible to the
first data processing agent and the second data processing
agent, wherein the message channel metadata provides mes-
sage status information for the message channel, and
wherein the message channel metadata 1s one of a plurality
of message channel metadata types defined for a correspond-
ing plurality of message channel types between the first data
processing agent and the second data processing agent; and
in response to an 1mtialization trigger establishing the mes-
sage channel with a selected message channel type.

In another example embodiment there 1s a data processing,
system comprising: means for operating a first data process-
ing agent; means for operating a second data processing
agent; means for storing a message data structure for one or
more messages shared coherently between the first data
processing agent and the second data processing agent;
means for storing message channel metadata accessible to
the first data processing agent and the second data process-
ing agent, wherein the message channel metadata provides
message status information for the message channel, and

10

15

20

25

30

35

40

45

50

55

60

65

2

wherein the message channel metadata 1s one of a plurality
of message channel metadata types defined for a correspond-
ing plurality of message channel types between the first data
processing agent and the second data processing agent; and
means for establishing the message channel with a selected
message channel type 1n response to an imitialization trigger.

The present techniques will be described further, by way
of example only, with reference to embodiments thereotf as
illustrated 1n the accompanying drawings, in which:

FIG. 1 schematically illustrates a data processing system
in one embodiment:

FIG. 2 schematically 1llustrates how memory mapping,
shared coherent memory, and additional storage are used to
store message data structures and message channel status
information in some embodiments;

FIG. 3A schematically 1llustrates a data processing system
in an embodiment 1n which there 1s aliasing of some memory
mapped register addresses across dedicated local peripheral
devices associated with a number of processing elements;

FIG. 3B schematically illustrates a data processing system
in an embodiment i which memory mapped register
addresses used by multiple processing elements in the
system map to unique physical registers 1 a peripheral
device;

FIG. 4 schematically 1llustrates how a first type of mes-
sage channel 1s provided in some embodiments, 1n which a
message data structure holding messages for the message
channel 1s stored in shared coherent memory, whilst all
message channel metadata associated with the message
channel 1s stored in the internal storage of an accelerator
unit;

FIG. 5 shows a sequence of steps which are taken 1n some
embodiments when a software task sends a message through
the first type of channel;

FIG. 6 shows a sequence of steps which are taken 1n some
embodiments when a software task receives a message
through the first type of message channel;

FIG. 7 schematically illustrates how a second type of
message channel 1s provided mm some embodiments, in
which both the message data structure holding messages for
the message channel and much of the message channel
metadata associated with the message channel are stored in
shared coherent memory, whilst notification registers are
employed 1n the internal storage of an accelerator unit;

FIG. 8 shows a sequence of steps which are taken 1n some
method embodiments when a software task sends a message
through the second type of message channel; and

FIG. 9 shows a sequence of steps which are taken 1n some
method embodiments when a software task receives a mes-
sage through the second type of message channel.

At least some embodiments provide a data processing
system comprising: a first data processing agent and a
second data processing agent; data storage shared coherently
between the first data processing agent and the second data
processing agent to store a message data structure for one or
more messages to provide a message channel between the
first data processing agent and the second data processing
agent; and further data storage accessible to the first data
processing agent and the second data processing agent to
store message channel metadata, wherein the message chan-
nel metadata provides message status information for the
message channel, and wherein the message channel meta-
data 1s one of a plurality of message channel metadata types
defined for a corresponding plurality of message channel
types between the first data processing agent and the second
data processing agent, and wherein at least one of the first
data processing agent and the second data processing agent



US 11,106,513 B2

3

1s responsive to an initialization trigger to establish the
message channel with a selected message channel type.

The data processing system makes use of coherently
shared data storage (e.g. memory such as DRAM) to store a
defined message data structure in which messages between
the first and second data processing agents can be stored and
to which they both have access. The messages can take a
great variety of forms and may generally be considered
throughout this disclosure simply to be data of some type
which one data processing agent wishes to transmit to the
other data processing agent. The data processing system
additionally provides further data storage which 1s acces-
sible to both the first and second data processing agents and
which 1s used to store message channel metadata associated
with the message data structure stored 1n the coherent shared
data storage. This accessibility to both the first and second
data processing agent may be provided 1n a variety of ways,
but 1n some embodiments this 1s achueved by memory
mapping addresses within the further data storage.

There are a plurality of message channel types which are
defined for the data processing system and may be estab-
lished for the communication ol messages between data
processing agents 1n the data processing system. The mes-
sage channel metadata varies 1n form and content in depen-
dence on the type of message channel. A message channel
can be dynamically created in the data processing system
(by the instantiation of a message data structure 1n the data
storage and corresponding message channel metadata in the
turther data storage). Hence the message channels estab-
lished 1n the data processing system for communication
between data processing agents are not predefined when the
system starts, but message channels can be created as the
data processing activities of the data processing system
require (and moreover channels can be shut down when they
are no longer required). Further, the different types of
message channel may have diflerent requirements 1n terms
of the storage requirements to support that type of message
channel. When a new message channel 1s established 1n the
data processing system (in response to a suitable trigger,
which may take a variety of forms) the message channel type
1s selected depending on the requirements of that message
channel and the resource available to support 1it.

In some embodiments the data processing system 1s
arranged to store a message interface data structure, wherein
cach message interface data structure defines a plurality of
message channels established in the data storage and the
turther data storage. Thus a number of message channels can
be bundled together 1n the message interface data structure.
This facilitates the administration of the plural message
channels, for example enabling a group of message channels
to be established 1n a single action (by the instantiation of
one message interface data structure), and for a configura-
tion for the plural message channels to be unilaterally
applied by the selection of that configuration at the level of
the message interface data structure.

In some embodiments the at least one of the first data
processing agent and the second data processing agent 1s
responsive to the mnitialization trigger to define the selected
message channel type for the plurality of message channels
by selecting the selected message channel type for the
message interface data structure. Thus one configuration of
the plurality of message channels which may be unilaterally
established 1s the selected message channel type, wherein
when a message interface data structure 1s created, the nature
of the message interface data structure can define the

10

15

20

25

30

35

40

45

50

55

60

65

4

selected message channel type for each of the plurality of
message channels defined by that message interface data
structure.

In some embodiments the data processing system 1s
arranged to store a plurality of message interface data
structures, and the selected message channel type for each of
the plurality ol message interface data structures 1s set
independently. The flexibility of the present techniques
extends further to allow multiple message interface data
structures to be established in the data processing system
such that multiple separate groups of message channels can
be established, wherein the selected message channel type
for each of those groups can be independently set. In other
words multiple message channel types can be configured
and operated 1n parallel within the data processing system.

In some embodiments the further data storage accessible
to the first data processing agent and the second data
processing agent comprises a set of registers 1n a hardware
device 1n the data processing system, wherein a set of
memory addresses 1s memory mapped to the set of registers.
The further data storage may take a variety of forms 1n the
data processing system, but the provision of the further data
storage as a set of registers in a hardware device, mapping
a set of memory addresses 1n the data processing system to
that set of registers 1s one manner in which this may be
achieved. The administration of the message channels estab-
lished 1n the data processing system may be performed 1n a
variety ol ways, but this type of approach in which the
further data storage comprises a set of registers in a hard-
ware device can enable a useful degree of that administra-
tion to be carried out by the hardware device. Where such a
hardware device 1s provided explicitly to support the
exchange ol messages 1n the data processing system this
therefore supports an eflicient system, wherein the message
status 1nformation provided by the message channel meta-
data stored 1n the further data storage (i.e. here, there set of
registers 1n the hardware devices) enables the hardware

device to ethiciently administer the message channels.

In some embodiments at least a subset of the set of
memory addresses 1s memory mapped to multiple locations
in the data processing system and at least one of the multiple
locations 1s 1 a peripheral device dedicated to a data
processing device in the data processing system. In other
words such embodiments allow for the aliasing of these
memory addresses 1n a local peripheral. This approach may
for example be used 1n embodiments 1n which it 1s desirable
for individual data processing agents 1n the data processing
system to be able to operate with greater independence with
respect to one another for performance reasons. For
example, a data processing agent in the data processing
system may have access to a peripheral device to which
other data processing agents i the system do not have
access and allowing the data processing agent to perform
some ol 1ts operations with respect to the message channel
data held in 1ts dedicated peripheral device can improve
performance, for example due to a lower average access
latency.

In some embodiments each address of the set of memory
addresses 1s memory mapped to respective unique locations
in the data processing system. In other words 1n such
embodiments the above mentioned aliasing may not be
present, such that the view of the memory mapped registers
1s consistent for all data processing agents 1n the data
processing system. This may for example facilitate the
migration of a task being performed by one data processing
agent to be performed by another data processing agent.




US 11,106,513 B2

S

In some embodiments the respective umique locations are
in a single peripheral device 1n the data processing system.
For example a number of data processing agents in the data
processing system may access a single peripheral device
provided the further data storage in the message channel
metadata 1s stored. This may for example be within the
above mentioned dedicated hardware device.

In some embodiments at least one address of the set of
memory addresses 1s memory mapped to locations 1n mul-
tiple peripheral devices in the data processing system,
wherein the multiple peripheral devices are arranged to
implement a coherence mechamism to ensure consistent
copies of the content of the set of registers. Alternatively a
turther approach may theretfore be taken 1n which aliasing 1s
allowed 1n order to enable parallel operation of multiple
peripheral devices to improve performance, yet consistency
across the message channel metadata stored in these mul-
tiple peripheral devices may be achieved by means of this
coherence mechanism.

In some embodiments the set of registers comprises a
notification register for storage of the message channel
metadata, wherein a value stored 1n the notification register
provides the message status information for the message
channel, and wherein the hardware device 1s responsive to a
modification of the value stored in the notification register to
perform a predetermined action with respect to the message
channel. This memory mapped notification register can
therefore act as a variety of “doorbell”, where in a data
processing agent 1n the data processing system can modily
the value stored 1n the notification register and this modifi-
cation can trigger an action in the hardware device with
respect to the message channel. The particular manner in
which the hardware device i1s configured to notice the
modification of the value i1n the notification register may
take a variety of forms. For example the hardware device
may poll the notification register with the frequency suitable
tor the purposes of the message channel or the notification
register may be provided with a physical connection to
trigger this “doorbell” notification. Further, the predeter-
mined action which the hardware device takes with respect
the message channel may take a variety of forms, depending,
on the system requirements. For example, the modification
of the value may notily the hardware device that a new
message has been stored in the message data structure
providing the message channel and the hardware device may
then act to transfer that message to an appropriate destina-
tion.

In some embodiments the set of registers comprises a
plurality of notification registers respectively corresponding,
to the plurality of message channels, and the value stored in
the notification register 1s indicative of a selected message
stored 1n the message data structure of the message channel.
Accordingly when there 1s one notification register for each
message channel, the value stored in a given notification
register may then be used to indicate a specific message
stored 1n the message data structure of that message channel.
For example the notification register may be configured such
that the range of values 1t can store corresponds to (at least)
the number of individual messages which can be stored in
the message data structure of the message channel, and
hence the value may indicate a specific message (for
example a newly stored message).

In some embodiments the set of registers comprises a
digest register for storage of the message channel metadata,
wherein a value stored in the digest register provides the
message status information for each of the plurality of
message channels, indicating whether each respective mes-

10

15

20

25

30

35

40

45

50

55

60

65

6

sage channel currently has capacity to hold one or more new
messages. Hence 1n such embodiments the digest register (a
“transmission” digest) may be provided to give an overview
of a plurality of message channels, and specifically to show
if each message channel has the capacity to hold one or more
new messages (1.€. has space lelt) or 11 does not (1.e. 1s Tull).

Similarly, in some embodiments the set of registers com-
prises a further digest register for storage of the message
channel metadata, wherein a value stored in the further
digest register provides the message status information for
cach of the plurality of message channels, indicating
whether each respective message channel currently holds
one or more messages. Hence in such embodiments the
turther digest register (a “reception” digest) may be pro-
vided to give an overview of a plurality of message chan-
nels, and specifically to show 1 each message channel 1s
currently holding one or new more messages (1.€. has new
messages ready to process) or 1f does not (1.e. 1s empty).

In some embodiments the set of registers in the hardware
device 1s arranged to store a configuration data structure
associated with the message data structure, wherein the
configuration data structure defines usage parameters for the
message data structure, and wherein the usage parameters
comprise an index for the message data structure and
wherein the hardware device 1s responsive to a modification
of the index to perform a predetermined action with respect
to the message data structure. Accordingly one of the usage
parameters provided in the configuration data structure in
the configuration data structure can be an index, and for
example this may take the form a write index or a read index
with respect to a set of queued messages in the message
channel. Thus where a data processing agent in the data
processing system adds a message to a queued set of
messages 1n the message data structure, it can increment the
write 1ndex to indicate where the next message should
subsequently be added to the message data structure and the
modification of this write index can serve to notily the
hardware device that a new message has been stored in the
message data structure. Alternatively the index may be a
read index and a data processing agent in the data processing
system may update the read index with respect to the
message data structure once 1t has retrieved a message stored
there, and the modification of this read index may also serve
as a nofification to the hardware device that a previously
stored message 1n the message data structure has now been
retrieved. As 1n the above described examples of the noti-
fication (“doorbell”) register there are a variety of ways 1n
which this response from the hardware device to a modifi-
cation of a value 1n a register may be achieved, such as
polling the mdex register or a connection to the index
register directly triggering the response.

In some embodiments at least one of the first data pro-
cessing agent and the second data processing agent 1s a
soltware task executing in the data processing system. In
some embodiments at least one of the first data processing,
agent and the second data processing agent 1s a hardware
agent 1n the data processing system. Accordingly the present
techniques may be used to pass messages between two
software tasks, between a software task and a hardware
device, or between two hardware devices.

In some embodiments the message data structure 1s an
ordered queue of messages. This may be a ring builer.

In some embodiments the message channel provides
unmdirectional message transmission from the first data pro-
cessing agent to the second data processing agent.

At least some embodiments provide a method of data
processing comprising: operating a first data processing




US 11,106,513 B2

7

agent; operating a second data processing agent; storing a
message data structure for one or more messages in data
storage shared coherently between the first data processing
agent and the second data processing agent; storing message
channel metadata 1n further data storage accessible to the
first data processing agent and the second data processing
agent, wherein the message channel metadata provides mes-
sage status information for the message channel, and
wherein the message channel metadata 1s one of a plurality
of message channel metadata types defined for a correspond-
ing plurality of message channel types between the first data
processing agent and the second data processing agent; and
in response to an 1mitialization trigger establishing the mes-
sage channel with a selected message channel type.

At least some embodiments provide a data processing
system comprising: means for operating a first data process-
ing agent; means for operating a second data processing
agent; means for storing a message data structure for one or
more messages shared coherently between the first data
processing agent and the second data processing agent;
means for storing message channel metadata accessible to
the first data processing agent and the second data process-
ing agent, wherein the message channel metadata provides
message status information for the message channel, and
wherein the message channel metadata 1s one of a plurality
of message channel metadata types defined for a correspond-
ing plurality of message channel types between the first data
processing agent and the second data processing agent; and
means for establishing the message channel with a selected
message channel type 1n response to an initialization trigger.

Some particular embodiments are now described with
reference to the figures.

FIG. 1 schematically illustrates a data processing system
10 1n one embodiment. Generally the data processing system
10 comprises a number of data processing cores 12-18 (four
in the illustrated example), which perform various data
processing activities when data processing system 1s opera-
tional. Each of the illustrated cores 12-18 may instead be a
cluster of cores. To support the data processing activities the
data processing system 10 1s provided with a coherently
shared memory (e.g. DRAM), to which each of the data
processing cores 12-18 have access via the interconnect 22.
A system cache 24 i1s also provided in this example to
improve system performance. As will be described 1n more
detail with reference to the figures which follow, one 1tem
which 1s stored in the coherently shared memory 20 1s a
message data structure 26 which 1s used to provide a
message channel to support the passing of messages
between two data processing agents in the data processing,
system. More details of the message data structure 26 and
other data structures which are defined 1n the data processing
system 1n order to support the use of the message channel
will be discussed 1n more detail with reference to the figures
which follow, and in which various possibilities for the
configuration of the message data structure and the other
data structures will be set out. Here 1t suflices to recognise
that the data processing system 1s provided with the capa-
bility dynamically to establish message channels to support
message passing between data processing agents 1n the data
processing system with a range of different types. As 1s
discussed further below a given type of message channel
amongst the different possible types of message channel
may be more suitable to a particular data processing context,
and therefore when a message channel 1s established 1n the
data processing system the message channel type 1s selected
in dependence on the current data processing requirements.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 1 additionally shows an accelerator management
device 28 and a peripheral device 30. When a message
channel 1s established in the data processing system, mes-
sage channel metadata associated with the message data
structure 26 1s additionally stored in further data storage of
the data processing system, such as the registers 32 of the
accelerator management device 28 or the storage 34 of the
peripheral device 30. This message channel metadata pro-
vides message status imnformation for the message channel
and 1ts storage 1n a distinct further data store (separate from
coherently shared memory) supports the administration of
the message channel and thus the communication between
data processing agents in the system. For example, the
message channel metadata may be stored 1n the registers 32
of the accelerator management device 28. These registers
may be made accessible to data processing agents (of
whatever type), 1n the system by memory mapping them.
Further, the accelerator management device 28 can be pro-
vided as a hardware device which 1s dedicated to facilitating
communication between data processing agents in the sys-
tem via the message channels which are established. Where
the message status information for the message channel 1s
stored 1n the registers of this hardware device, the hardware
device may then also be structured to respond to a change 1n
status of the message channel (such as the storage of a new
message 1n the message data structure 26) by taking appro-
priate action with respect to communicating this new mes-
sage to 1ts destination. Nevertheless there 1s no need for this
additional storage to be physically located within a hardware
device such as the accelerator management device 28, and a
variant embodiment 1n which may also be implemented in
the data processing system 10 can make use of the storage
34 in peripheral device 30 for this purpose. The accelerator
management device 28 can then be considered to be “state-
less” (registers 32 might then not be provided or at least
might only be used for purposes not directly related to the
techniques disclosed here) and indeed whilst 1t 1s 1llustrated
as a single self-contained unit 28 1n the schematic 1llustra-
tion of FIG. 1, 1t could be fully distributed in the data
processing system with 1ts functionality provided by various
separate components.

As will be understood from the schematic illustration of
FIG. 1 each of the cores 12-18 can access the accelerator
management device 28 (and 1n particular its registers 32)
and can access the peripheral device 30 (and 1n particular
access 1ts storage 34) when one of these 1s used to provide
the above-discussed further data storage in which the mes-
sage channel metadata 1s stored. However as also shown 1n
FIG. 1 each of the cores 12-18 in this example 1s also
provided with a respective local peripheral device 36-42.
This set of local peripheral devices may be used for the local
storage of memory mapped addresses, and aliasing of at
least some of the memory mapped addresses may be per-
mitted, such that each address of that set of aliased memory
mapped addresses maps to multiple locations (across the set
of local peripherals 36-42) in the system. Allowing the data
processing cores 12-18 to access the memory mapped reg-
ister addresses 1n their own local peripheral in this manner
can 1mprove performance (for example due to a reduced
average access latency), but where the view of the memory
mapped registers 1s not consistent for all processing ele-
ments 1n the system, this may restrict the ease with which
soltware threads can be migrated between cores.

FIG. 1 also shows a session table 40 stored in the
coherently shared memory 20 (which may also be referred
to as a routing table), which 1s used for storing information
indicating the source and the destination for each defined




US 11,106,513 B2

9

message channel in the data processing system. In the
following description a message channel may also be
referred to as a “session”, whilst a source or destination may
also be referred to as a “socket”. In this terminology, the
concepts of socket and session are directly related to each
other: a session refers to the logical link between two sockets
and, conversely, a socket 1s an endpoint in one particular
session. A session can be established between two software
tasks (which may be referred to as threads), between a
hardware and a software task (which can be seen as an
accelerator and granule of state which 1s required to perform
jobs that are completely independent from each other), or
between two hardware tasks. Sessions are used to transport
messages between these tasks of “agents™ in the data pro-
cessing system.

FIG. 2 schematically illustrates some more detail of how
the message data structures and the message channel meta-
data of the present techniques are stored. The figure shows
shared coherent memory 50, 1n which the message data
structures are stored, and accelerator storage 32 (where 1t
should be understood that this storage may form part of an
accelerator device itsell or may be further system storage
accessible to the accelerator device) 1n which the message
channel metadata 1s stored. The corresponding system
memory map 34 1s also illustrated, showing that both
message channel metadata and the message data structures
themselves form part of the memory map, and may therefore
can be coherently accessible to any data processing agent 1n
a system. At mitialisation, both a message data structure 1n
the shared coherent memory 50 and message channel meta-
data 1n the accelerator storage 52 are instantiated. FIG. 2
shows example of a message channel 1 being imtialised with
message data structure 1 set up in the shared coherent
memory 50 and message channel 1 status information being,
stored 1n a register 58 which provides the accelerator storage
52. A separate message channel 0 1s already 1in existence,
having the corresponding message data structure 0 1n the
shared coherent memory 30 and message channel 0 status
information stored 1n a register 36 as part of the accelerator
storage 52. These two message channels are independent of
one another and may be of diflerent types. FIG. 2 also shows
accelerator message processing control 60 which may for
example form part of an accelerator management device 28
such as that shown 1n FIG. 1. One role of this control unit
60 shown here i1s the monitoring of the content of the
registers 56 and 58, such that appropriate message-related
processing can be carried out 1n response to a change in
content of one of those registers. Two alternative mecha-
nisms for performing this monitoring shown in FIG. 2. In a
first mechanism, a connection 1s made between the respec-
tive registers and the accelerator message processing control
60, such that each register may act as a “doorbell” to trigger
the response of the accelerator message processing control
60. In a second mechanism the accelerator message pro-
cessing control 60 polls the registers to determine when a
change 1s content occurs, where the polling cycle 1s set 1n
dependence on a balance between the speed with which a
consequent action should then follow and the overhead
associated with providing this polling.

FIGS. 3A and 3B return to the issue of the memory
mapping of a given register address used for the storage of
message channel metadata (including message status infor-
mation) for a given message channel. The example shown 1s
closely based on the structure of the data processing system
such as that discussed with reference to FIG. 1 and various
components of the system are reproduced in FIGS. 3A and
3B and given the same reference numerals (although note

10

15

20

25

30

35

40

45

50

55

60

65

10

that here the cores 12-16 of FIG. 1 are referred to as
“processing elements” 12-16). In the example of FIG. 3A the
register address (0x100) can be seen to map to multiple
locations 1n the system, namely 1n each of the local periph-
crals 36, 38 and 40. This means that the view of the memory
mapped registers 1s not consistent for each of the processing
clements 12-16, and 1n particular for each of the threads
70-74, which are respectively illustrated as executing in the
processing elements 12-16. Nevertheless, this also means
that each of the processing elements 12-16 1s able to access
this memory mapped register address 0x100 in 1ts local
peripheral 36-40, which may aid performance for example
due to reduced average access latency. By contrast in the
example of FIG. 3B the view of the memory mapped
registers 1s consistent for each of the processing elements
12-16, and 1n particular for each of the threads 76 and 78,
which are respectively illustrated as currently executing in
the processing elements 12 and 16, because the memory
mapping (address 0x100) for all 1s consistently mapped to
the mdicated register 80 1n the peripheral slave device 30.
Because of this consistency this means that a thread execut-
ing 1n one processing element (e.g. core) can migrate to a
different processing element without this causing significant
complexity. This 1s schematically illustrated in FIG. 3B,
with thread 76 migrating from execution 1n processing
clement 12 to execution in processing element 14. Returning
to a consideration of FIG. 3A consistency may alternatively
be achieved (for example to allow straightforward thread
migration) by the implementation of a coherence mechanism
between the local peripheral devices 36-40. This 1s shown as
an alternative (dashed lines) in FIG. 3A by the provision of
the coherence control 82 which implements this coherence
mechanism. Alternatively the message channel may be pro-
vided using the second type of message channel described
herein (1in which the entire AMS table 1s stored 1n shared
coherent memory, facilitating software thread migrations).

As mentioned above the present techniques provide that
different types ol message channel can dynamically be
established in the data processing system, and FIG. 4
schematically illustrates more detail of how a first type of
message channel 1s provided in some embodiments, in
which a message data structure holding messages for the
message channel 1s stored 1n shared coherent memory, whilst
all the message channel metadata associated with the mes-
sage channel 1s stored in the internal storage of an accel-
crator device 1n the data processing system. Example con-
tent of a shared coherent memory 102 and accelerator device
internal storage 104 are shown where all of this content 1s
memory mapped and the memory map 100 1s also illus-
trated.

In the upper part of the memory map 100, three examples
of an Accelerator Messaging Interface for software (AMI-
SW) are shown (AMI-SW 0, AMI-SW 1, and AMI-SW n).
Both of the first two interfaces provide groups of this first
type of message channel (in which all the message channel
metadata associated with the message channels 1s stored
outside the shared coherent memory—in this example 1n
registers of the accelerator device). In the embodiment
illustrated in FIG. 4, a message channel 1s also referred to as
an Accelerator Message Socket (AMS) and one message
queue 1s supported per AMS. The AMS type provided by the
interface AMI-SW n cannot be seen from FIG. 4, and indeed
it should be noted that the configuration of the message
channel (AMS) type 1s determined at the level of granularity
of each interface, so that the interface AMI-SW n could
either also provide message channels of this first type (as
shown i FIG. 4) or could provide message channels of




US 11,106,513 B2

11

another type supported by the system (such as the second
type discussed below with reference to FIG. 7). In the lower
part of the memory map 100, the mapping of two example
ring bullers are shown.

A first hierarchical level of the message channel metadata
associated with this first type of message channel 1s shown
in FIG. 4 as the items 106, which for each AMI-SW
comprises TX_DIGEST and RX_DIGEST registers and TX

and RX AMs data structures which are arranged in the

I-SW partition when this AMI-SW 1s

corresponding AMI
established. The AMI-SW partition contains the digests

followed by the AMS data structures. The size of the
partition depends on the number of transmission (TX)
and reception (RX) AMSs (NUM_TX AMS and
NUM_RX_AMS) defined in the system per AMI. In one

example there are 64 AMS_TX for transmission and 64

AMS_RX for reception for each AMI_SW. The TX_DI-
GEST and RX_DIGEST registers and TX and RX AMS data
structures 1n this embodiment are described below 1n Table

1.

TABLE 1

AMI-SW partition for first tvpe of AMS

Oflset
(1n bytes) Bits Name Description
+0 64 TX_DIGEST Digest register that
provides status
information about all
the TX__AMS rings O to 63
+0x0400 64 RX__DIGEST Digest register that
provides status
information about all
the AMS-TX rings 0 to 63.
+0x0800 TX AMS_TABLE Ring buffers data
structures for TX _AMS
0to (NUM__TX_ AMS-1)
+0x0C00 RX_AMS_ TABLE Ring buffers data

structures for RX__AMS
0 to (NUM__RX__AMS-1)

The ring buffer data structures TX_AMS_TABLE and
RX_AMS_TABLE are labelled 1n FIG. 4 as a socket (AMS)
table. Further detail of the content of the socket tables are
shown in the second hierarchical level of the message
channel metadata associated with this first type of message
channel as the items 108, these bemg the ring buller param-
eters for each of the TX sockets 1n this AMI-SW partition
tollowed by the ring bufler parameters for each of the RX
sockets 1n this AMI-SW partition. The specific detail of one
set of ring bufler parameters (for TX_AMS #1) 1s shown 1n
the third hierarchical level of the message channel metadata
associated with this first type of message channel as the
items 110. These ring bufler parameters comprise: the cur-
rent read and write indices for this ring bufler (essentially
indicating where the next message should be read from the
ring bufler and indicating where the next message to be
written to the ring bufler); an element size definition for the
ring bufler (a given message may occupy one or more
clements); a mask value indicating the ring bufler size (being
n°, where n is the value indicated by the mask value in
binary); and a base pointer indicating the base address of the
ring builer 1n the shared coherent memory.

Example ways in which the message channel metadata
associated with this first type of message channel 1s used are
now discussed with reference to FIGS. 5 and 6, which show
example sequences of steps which are taken when a software
task respectively sends a message via one of the TX_AMS

10

15

20

25

30

35

40

45

50

55

60

65

12

data structures and receives a message via one of the
RX_AMS data structures. Beginning with FIG. 5, with
transmission of a message from a software task, at step 150
the software task accesses the AMS data structure which has
indices (1,s) to get the parameters of the corresponding ring
bufler. Then at step 152 the software task determines if there
1s space 1s left 1n the rmg bufler for the message 1t 1s seeking,
to transmit by accessing the TX_ DIGEST value. The value
of the bit corresponding to the relevant rnng bufler indicates
this 1n a binary (yves/no) manner. Whilst there 1s not space
available the task waits, circulating via step 154. When
space 1s available, at step 156 the software task stores the
message in the ring bufler at the index WRITE_INDEX.
Then at step 158 the soitware task 1ssues a barrier instruction
to guarantee that all in-tflight write transactions have landed
at their destination. This 1s because writes 1n the shared
coherent memory are not order-constraimned and thus this
ensures that other write transactions to the shared memory
issued prior to the barrier instruction are guaranteed to be
performed before further transaction 1ssued after the barrier
instruction. Then at step 160 the soitware task increments 1ts
own write index (in 1ts local AMS table) and writes this
updated value to the AMS (socket) table through the AMI-
SW partition. The steps carried out by the software task are
now complete. The subsequent steps are taken by the
accelerator manager in response. At step 162 accelerator
manager (also referred to here as an AMU) detects an update
to the write index of socket #s, interface #1. Note that this
detection may be implemented in various ways, such as
polling the WRITE_INDEX register or configuring the
WRITE_INDEX register to act as doorbell that triggers
further action by the accelerator manager (see also the
description of FIG. 2 above on this topic). Then at step 164
the accelerator manager determines the destination socket by
accessing the session table (see item 40 1n FIG. 1). At step
166 the accelerator manager determines 1f the message can
be written to the destination socket (1.e. 1f the RX_DIGEST
of the RX_AMS indicates that the relevant ring bufler has
space). Whilst there 1s not space available the accelerator
manager waits, circulating via step 168. When space 1s
available, at step 170 the accelerator manager performs the
copying of the message from the TX_AMS ring bufler to the
RX_AMS ring butiler.

Turning now to FIG. 6, an example sequence of steps are
shown which are taken when a software task receives a
message. Firstly at step 180 the software task determines
that a message 1s available from RX AMS #s of AMI #1 by
accessing the RX_DIGEST of AMI #1. Then at step 182 the
software task accesses the AMS data structure with the
indices (1,s) to get the parameters of the relevant ring builer.
At step 184 the software task reads one (or multiple)
message(s) from the ring bufller at index READ_INDEX and
at step 186 the software task increments 1ts own local read
index and writes this updated value to the AMS table
through the AMI-SW partition. The steps carried out by the
soltware task are now complete and the final step 190 1s
taken by the accelerator manager in response. At step 190
the accelerator manager detects the update to the read index
of AMS #s, AMI #1 and thus has acknowledgement that the
message has been received by the destination software task.
This acknowledgment can be propagated to the transmitter
of the message 1 required. Note that, as above for the
detection of the modification of the write index, this detec-
tion of the modification of the read index may also be
implemented 1n various ways, such as polling the
READ_INDEX register or configuring the READ_INDEX
register to act as doorbell that triggers further action by the
accelerator manager (see also the description of FIG. 2
above on this topic).




US 11,106,513 B2

13

FIG. 7 schematically illustrates more detail of how a
second type of message channel which can dynamically be
established 1n the data processing system i1s provided in
some embodiments. For this second type of message chan-
nel not only 1s the message data structure holding messages
for the message channel stored 1n shared coherent memory,
but a significant proportion of the message channel metadata
associated with the message channel (1n fact all of the AMS
table) 1s also stored there. Only a small set of status
indications (notification registers) 1s stored in the internal
storage of an accelerator device i1n the data processing
system. Example content of a shared coherent memory 200
and an accelerator device internal storage 202 are shown,
wherein all of this content 1s memory mapped and the
memory map 204 1s also illustrated.

In the upper part of the memory map 204, two examples
of an Accelerator Messaging Interface for software (AMI-
SW) are shown (AMI-SW[0] and AMI-SW [n]) for their

mapping to the shared coherent memory. Both of the these
interfaces provide groups of this second type of message
channel, 1n which the majority of the message channel
metadata (all of the AMS table) associated with the message
channels 1s stored in the shared coherent memory. In the
embodiment 1llustrated in FIG. 7, a message channel 1s also
referred to here as an Accelerator Message Socket (AMS)
and one message queue 1s supported per AMS. It should be
again be noted that the configuration of the message channel
(AMS) type 1s determined at the level of granularity of each
interface, so that further AMI-SW 1nterfaces could either
also provide message channels of this second type (as shown
in FIG. 7) or could provide message channels of another
type supported by the system (such as the first type discussed
above with reference to, say, FIG. 4). In the middle part of
the memory map the mappings to the accelerator device
internal storage for the AMI-software partitions (one per
AMI-SW) are shown (the size of the AMI-SW partitions
depends on the number of AMSs specified), and in the
lowest part of the memory map 100, the mappings of two
example ring buflers are shown.

A first hierarchical level of the message channel metadata
associated with this second type of message channel 1is
shown 1n FIG. 7 as the items 206, which (similarly to the first
type of message channel) for each AMI-SW comprise
TX DIGEST and RX DIGEST wvalues and TX and RX
AMS data structures which are arranged in the coherent
shared memory when AMI-SW 1s established. The digests
are followed by the AMS data structures. The second
hierarchical level of the message channel metadata associ-
ated with this second type of message channel 1s shown 1n
FIG. 7 as the items 208 and the third hierarchical level as
items 210. These are the same as the items 108 and 110
described 1 FIG. 4. The format of the AMI-SW entries 1s
provided below 1n Table 2, in which N=(NUM_TX_AMS-1)
and M=(NUM_RX_AMS-1). The AMI Table contains one
doorbell register per AMS.

TABLE 2

AMI-SW table for second type of AMS

Offset
(1n bytes) Bits Name Description
+0 [31:0] DB_TX_0 Doorbell register
for TX__AMS #0
+16 [31:0] DB_TX 1 Doorbell register

for TX__AMS #1

5

10

15

20

25

30

35

40

45

50

55

60

65

14
TABLE 2-continued

AMI-SW table for second type of AMS

Offset

(1n bytes) Bits Name Description

+N*16 [31:0] DB_TX_N Doorbell register
for TX__AMS #N

+(N + 1)*16 [31:0] DB_RX_ 0 Doorbell register
for RX_AMS #0

+(N + 1)*16 + 16 [31:0] DB_RX_1 Doorbell register
for RX_AMS #1

+(N + 1)*16 + [31:0] DB_RX_N Doorbell register

M*16 for RX__AMS #N

In this embodiment, as illustrated in FIG. 7, in each
doorbell register bits [15:0] are used to specily the number
of an element 1n the ring bufler, whilst bits [31:16] are
reserved. In other embodiments all bits of each doorbell

register can correspond to elements in the ring butler.

Example ways in which the message channel metadata
associated with this second type of message channel 1s used
are now discussed with reference to FIGS. 8 and 9, which
show example sequences of steps which are taken when a
soltware task respectively sends a message via one of the
TX_AMS data structures and receives a message via one of
the RX_AMS data structures. Beginning with FIG. 8, with
transmission of a message from a software task, at step 2350
the software task accesses the AMS data structure which has
indices (1,s) to get the parameters of the corresponding ring
bufler. Then at step 252 the software task determines if there
1s space 1s left 1n the ring builer for the message it 1s seeking
to transmit by accessing the TX_ DIGEST value. The value
of the bit corresponding to the relevant ring builer indicates
this 1n a binary (yes/no) manner. Whilst there 1s not space
available the task waits, circulating via step 254. When
space 1s available, at step 256 the software task stores the
message in the ring bufler at the index WRITE_INDEX.
Then at step 258 the soitware task 1ssues a barrier instruction
to guarantee that all in-tlight write transactions have landed
at their destination (see above—writes in the shared coher-
ent memory are not order constrained). Then at step 260 the
soltware task increments 1ts own write index (in its local
AMS table) and nofifies accelerator manager (AMU) by
writing the number of the element 1t has just enqueued to the
doorbell register of the AMS #s. The steps carried out by the
soltware task are now complete. The subsequent steps are
taken by the accelerator manager in response. At step 262
the accelerator manager (AMU) detects an update to the
doorbell register of socket #s, interface #1. Note that (as
above for the write and read indices) this detection may be
implemented in various ways (despite the convenient name
of the “doorbell register”), such as polling the doorbell
register or configuring the doorbell register indeed to act as
doorbell that triggers further action by the accelerator man-
ager (see also the description of FIG. 2 above on this topic).
Then at step 264 the accelerator manager determines the
destination socket by accessing the session table (see 1tem
40 1 FIG. 1). At step 266 the accelerator manager deter-
mines 1f the message can be written to the destination socket
(1.e. if the RX_DIGEST of the RX_AMS indicates that the
relevant ring bufler has space). Whilst there 1s not space
available the accelerator manager waits, circulating via step
268. When space 1s available, at step 270 the accelerator




US 11,106,513 B2

15

manager performs the copying of the message from the
TX_AMS ring buffer to the RX_AMS ring buifer.

Turning now to FIG. 9, an example sequence of steps are
shown which are taken when a software task receives a
message. Firstly at step 280 the software task determines
that a message 1s available from RX AMS #s of AMI # by
accessing the RX_DIGEST of AMI #1. Then at step 282 the
software task accesses the AMS data structure with the
indices (1,s) to get the parameters of the relevant ring butler.
At step 284 the software task reads one (or multiple)
message(s) from the ring bufller at index READ_INDEX and
at step 286 the software task increments its own local read
index and notifies accelerator manager (AMU) by writing
the number of element 1t has just dequeued to the doorbell
register of the AMS #s. The steps carried out by the software
task are now complete. At step 290 the accelerator manager
detects the update to the doorbell register of AMS #s, AMI
#1 and thus has acknowledgement that the message has been
received by the destination software task. This acknowledg-
ment can be propagated to the transmitter of the message 1
required. Note that, as above for the detection of the modi-
fication of the write index, this detection of the modification
of the doorbell register may also be implemented 1n various
ways, such as by polling or indeed configuring the doorbell
register to act as doorbell that triggers further action by the
accelerator manager (see also the description of FIG. 2
above on this topic). Finally at step 292 the accelerator
manager mitiates a DMA read transaction to get the updated
value of the READ INDEX.

In brief overall summary a data processing system and
method of data processing are provided. The system com-
prises {irst and second data processing agents and data
storage shared coherently between the both data processing
agents to store a message data structure to provide a message
channel between them. A further data storage 1s accessible to
both data processing agents to store message channel meta-
data, which provides message status information for the
message channel. The message channel metadata 1s one of a
plurality of message channel metadata types defined for a
corresponding plurality of message channel types between

the first and second data processing agents, and at least one
of the first and second data processing agents 1s responsive
to an 1nitialization trigger to establish the message channel
with a selected message channel type.

In the present application, the words “configured to . . . ™
are used to mean that an element of an apparatus has a
configuration able to carry out the defined operation. In this
context, a “configuration” means an arrangement or manner
of interconnection of hardware or software. For example, the
apparatus may have dedicated hardware which provides the
defined operation, or a processor or other processing device
may be programmed to perform the function. “Configured
to” does not imply that the apparatus element needs to be
changed 1n any way 1n order to provide the defined opera-
tion.

Although 1llustrative embodiments have been described
in detail herein with reference to the accompanying draw-
ings, 1t 1s to be understood that the invention 1s not limited
to those precise embodiments, and that various changes,
additions and modifications can be effected therein by one
skilled 1n the art without departing from the scope of the
invention as defined by the appended claims. For example,
various combinations of the features of the dependent claims
could be made with the features of the independent claims
without departing from the scope of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

16

The mnvention claimed 1s:

1. A data processing system comprising:

a first data processing agent and a second data processing

agent;
data storage shared coherently between the first data
processing agent and the second data processing agent
to store a message data structure for one or more
messages to provide a message channel between the
first data processing agent and the second data process-
ing agent; and
turther data storage accessible to the first data processing
agent and the second data processing agent to store
message channel metadata, wherein the message chan-
nel metadata provides message status information for
the message channel, and wherein the message channel
metadata 1s one of a plurality of message channel
metadata types defined for a corresponding plurality of
message channel types between the first data process-
ing agent and the second data processing agent, and

wherein at least one of the first data processing agent and
the second data processing agent 1s responsive to an
initialization trigger to establish the message channel
with a selected message channel type.

2. The data processing system as claimed in claim 1,
wherein the data processing system 1s arranged to store a
message interface data structure, wherein each message
interface data structure defines a plurality of message chan-
nels established 1n the data storage and the further data
storage.

3. The data processing system as claimed i1n claim 2,
wherein the at least one of the first data processing agent and
the second data processing agent 1s responsive to the 1ni-
tialization trigger to define the selected message channel
type for the plurality of message channels by selecting the
selected message channel type for the message interface data
structure.

4. The data processing system as claimed in claim 3,
wherein the data processing system 1s arranged to store a
plurality of message interface data structures, and wherein
the selected message channel type for each of the plurality
ol message interface data structures 1s set independently.

5. The data processing system as claimed in claim 1,
wherein the further data storage accessible to the first data
processing agent and the second data processing agent
comprises a set of registers 1n a hardware device 1n the data
processing system, wherein a set of memory addresses 1s
memory mapped to the set of registers.

6. The data processing system as claimed in claim 3,
wherein at least a subset of the set of memory addresses 1s
memory mapped to multiple locations in the data processing
system and at least one of the multiple locations 1s 1n a
peripheral device dedicated to a data processing device in
the data processing system.

7. The data processing system as claimed in claim 5,
wherein each address of the set of memory addresses 1s
memory mapped to respective umique locations 1n the data
processing system.

8. The data processing system as claimed in claim 7,
wherein the respective unique locations are in a single
peripheral device 1n the data processing system.

9. The data processing system as claimed i1n claim 5,
wherein at least one address of the set of memory addresses
1s memory mapped to locations in multiple peripheral
devices 1n the data processing system, wherein the multiple
peripheral devices are arranged to implement a coherence
mechanism to ensure consistent copies of the content of the
set of registers.



US 11,106,513 B2

17

10. The data processing system as claimed in claim 5,
wherein the set of registers comprises a notification register
for storage of the message channel metadata, wherein a
value stored 1n the notification register provides the message
status mnformation for the message channel, and wherein the
hardware device 1s responsive to a modification of the value
stored in the notification register to perform a predetermined
action with respect to the message channel.

11. The data processing system as claimed in claim 10,
wherein the data processing system 1s arranged to store a
message 1interface data structure, wherein each message
interface data structure defines a plurality of message chan-
nels established 1n the data storage and the further data
storage, wherein the set of registers comprises a plurality of
notification registers respectively corresponding to the plu-
rality of message channels, and the value stored in the
notification register 1s indicative of a selected message
stored 1n the message data structure of the message channel.

12. The data processing system as claimed in claim 5,
wherein the data processing system 1s arranged to store a
message 1interface data structure, wherein each message
interface data structure defines a plurality of message chan-
nels established 1n the data storage and the further data
storage, wherein the set of registers comprises a digest
register for storage of the message channel metadata,
wherein a value stored in the digest register provides the
message status information for each of the plurality of
message channels, indicating whether each respective mes-
sage channel currently has capacity to hold one or more new
messages.

13. The data processing system as claimed in claim 5,
wherein the set of registers comprises a further digest
register for storage of the message channel metadata,
wherein a value stored 1n the further digest register provides
the message status information for each of the plurality of
message channels, indicating whether each respective mes-
sage channel currently holds one or more new messages.

14. The data processing system as claimed i claim 5,
wherein the set of registers in the hardware device 1s
arranged to store a configuration data structure associated
with the message data structure, wherein the configuration
data structure defines usage parameters for the message data
structure, and wherein the usage parameters comprise an
index for the message data structure and wherein the hard-
ware device 1s responsive to a modification of the index to
perform a predetermined action with respect to the message
data structure.

15. The data processing system as claimed in claim 1,
wherein at least one of the first data processing agent and the
second data processing agent 1s a software task executing 1n

the data processing system.

10

15

20

25

30

35

40

45

18

16. The data processing system as claimed in claim 1,
wherein at least one of the first data processing agent and the
second data processing agent 1s a hardware agent 1n the data
processing system.
17. The data processing system as claimed in claim 1,
wherein the message data structure 1s an ordered queue of
messages.
18. The data processing system as claimed in claim 1,
wherein the message channel provides unidirectional mes-
sage transmission from the first data processing agent to the
second data processing agent.
19. A method of data processing comprising:
operating a {irst data processing agent;
operating a second data processing agent;
storing a message data structure for one or more messages
in data storage shared coherently between the first data
processing agent and the second data processing agent;

storing message channel metadata 1n further data storage
accessible to the first data processing agent and the
second data processing agent, wherein the message
channel metadata provides message status information
for the message channel, and wherein the message
channel metadata 1s one of a plurality of message
channel metadata types defined for a corresponding
plurality of message channel types between the first
data processing agent and the second data processing
agent; and

in response to an imitialization trigger establishing the

message channel with a selected message channel type.

20. A data processing system comprising:

means for operating a {irst data processing agent;

means for operating a second data processing agent;

means for storing a message data structure for one or more
messages shared coherently between the first data pro-
cessing agent and the second data processing agent;

means for storing message channel metadata accessible to
the first data processing agent and the second data
processing agent, wherein the message channel meta-
data provides message status information for the mes-
sage channel, and wherein the message channel meta-
data 1s one of a plurality of message channel metadata
types defined for a corresponding plurality of message
channel types between the first data processing agent
and the second data processing agent; and

means for establishing the message channel with a

selected message channel type in response to an 1ni-
tialization trigger.

G ex x = e



	Front Page
	Drawings
	Specification
	Claims

