US011106457B1

a2 United States Patent 10) Patent No.: US 11,106,457 B1

Subramanian et al. 45) Date of Patent: Aug. 31, 2021
(54) UPDATING FIRMWARE RUNTIME (56) References Cited
COMPONENTS

U.S. PATENT DOCUMENTS

(71) Applicant: AMERICAN MEGATRENDS

5,634,130 A * 5/1997 Lee ...coooevrvinnnnnnn, GO6F 9/4812
INTERNATIONAL, LLC, Norcross, 710/260
GA (US) 2009/0271772 Al* 10/2009 Stephenson GO6F 9/45516
717/145
(72) Inventors: Senthamizhsey Subramanian, 2013/0086571 Al1* 42013 Dasartc....... GOOF 8/654
Suwanee, GA (US); Srinivasan N. Rao, 717/168
Suwanee, GA (US); Feliks Polyudov, * cited by examiner
Suwanee, GA (US); Bejean David
Mosher, Acworth, GA (US) Primary Examiner — Jae U Jeon
_ (74) Attorney, Agent, or Firm — Newport 1P, LLC;
(73) Assignee: AMERICAN MEGATRENDS Leonard J. Hope
INTERNATIONAL, LLC, Norcross,
GA (US) (57) ABSTRACT

A computing device includes a processor, a volatile memory,
and a non-volatile memory. The computing device receives
a firmware update that includes updated firmware runtime
components, such as updated runtime interrupt handlers
(c.g. SMI handlers). The computing device stores the
updated firmware runtime components 1n the volatile
memory (e.g. RAM) of the device. The computing device
also causes the updated firmware runtime components stored
in the volatile memory to be used during the runtime of the
computing device instead of one or more other firmware

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

(21) Appl. No.: 16/933,331
(22) Filed: Jul. 20, 2020

(51) Int. CL

GO6E 9/44 (2018-O;~) runtime components previously stored in the wvolatile
GO6F 5/656 (201 8'0:‘) memory. For example, the contents of one or more 1nterrupt
GO6E 9/445 (2018-0;) routing tables can be adjusted such that updated runtime
GO6L" 9/4401 (2018.01) interrupt handlers stored 1n volatile memory are used instead
(52) US. CL of previously installed and potentially insecure runtime
CPC ... GO6L 8/656 (2018.02); GO6F 9/44594 interrupt handlers. On a subsequent reboot of the computing
(2013.01); GO6F 9/4401 (2013.01) device, updated firmware runtime components stored 1n the
(58) Field of Classification Search non-volatile memory will be utilized.
CPC s GO6F 9/44
See application file for complete search history. 20 Claims, 6 Drawing Sheets
¢ ST,::RT) P__jﬂﬂ
BOOT COMPUTING
> DEVICE AND LOAD
FIRMWARE “T~N—1302
LOAD DPlE RATING

SYSTEM AND RUNTIME T N—304
FIRMWARE UPDATE
APPLICATION

Y

CHECK FOR FIRMWARE"|~—2306
UPDATE

308

UPDATE N
AVAILABLE?
YES

RETRIEVE FIRMWARE “[™~—310
UPDATE

¥
PROVIDE FIRMWARE _-

UPDATE TO RUNTIME
UPDATE LISTENER

¥

INSTALL FIRMWARE UPDATE IN
NON-VOLATILE MEMORY “T “N— 1314

L
INSTALL UPDATED

INTERRUPT HANDLERS IN

Y
UNLOAD OLD INTERRUPT

HANDLERS FROM
VOLATILE MEMORY ~[™\—2318

Y
USE LUPDATED INTERRUPT

HANDLERS TO PROCESS [*
RUNTIME INTERRUPTS “T™~—.320

359
YES REBOOT? NO

0

M- 312

US 11,106,457 B1

Sheet 1 of 6

Aug. 31, 2021

U.S. Patent

801

901

NFLSAS ONILVHAdO

SHATANVH LdNaddd 1IN JNTINNS

(200 L)AYOWIAN
J71LVI0A

PR MUY R Y b ikl i

dv01

vi0l |

SININOdINOD dNILNNY

SINIANOdINOO JdNIL LOOS

JdVMINAIA

(VOOL) AMOWAW
J1LYTON-NON

cOl

US 11,106,457 B1

Sheet 2 of 6

Aug. 31, 2021

U.S. Patent

1484

801

901

4

0

ddAHdS J1VAdf _

¢

4074

WNF1LSAS ONILVHIdO

NOILVOI'ddV
A41VAdN JINLINNA

| 31vAddN IHYMINNILS

AANALSIHT JLVAdN JINLLNNA

(8001) AHOWAW
JLVTOA

31VAdN J4VMINGIL A

00c¢

c0C

A1vddn

AHVMINEI A
dvOl

VOl

AR =

SININOdNOD JNILNNY

SININOJdNOD diNIL 1004

JHVMINHI

(WOOL) AHOW3AIN
JTLVYIOA-NON

cOl

1 W

= d¢ 9l

()

4_-._,,.

S ¥0C YIAHIS JLvVadn

Y

- c0¢ J1LVAdN FHYMNYIS
7P,

- NILSAS ONILYHILO

801 NOILYOITddY >
31vadn INLLNNY l
" ¢ Tvaan SuoeaaT " |SYI1ONYH LdNyaLINI JNLNNY
- . a3Lvadn
- 90!
3 YANILSIT ILYAdN FNILNNY
7
avo avoINN
Yo
&\
—
e\
-} 90¢ 901
o0 SYFTANYH LdNEEILNI INILNNY
M a3 vYadn S TUNVH LdNddd NI dINLLNNY
~
-
@ 801
= NILSAS ONILYHIJO
e
) (8001) AMOWAIN
- FILYTOA

U.S. Patent Aug. 31, 2021 Sheet 4 of 6 US 11,106,457 B1

START

300
BOOT COMPUTING —
DEVICE AND LOAD
FIRMWARE 302

LOAD OPERATING
SYSTEM AND RUNTIME 304

FIRMWARE UPDATE
APPLICATION

CHECK FOR FIRMWARE 306
UPDATE
308
AVAILABLE?
YES
RETRIEVE FIRMWARE - 310
UPDATE FlG 3

PROVIDE FIRMWARE
UPDATE TO RUNTIME 312
UPDATE LISTENER

INSTALL FIRMWARE UPDATE IN
NON-VOLATILE MEMORY 314

INSTALL UPDATED
INTERRUPT HANDLERS IN
VOLATILE MEMORY

316
UNLOAD OLD INTERRUPT
HANDLERS FROM
VOLATILE MEMORY 318

USE UPDATED INTERRUPT

HANDLERS TO PROCESS
RUNTIME INTERRUPTS

322

- YES \. REBOOT?

U.S. Patent Aug. 31, 2021 Sheet 5 of 6 US 11,106,457 B1

400

108 OPERATING SYSTEM

UEF1 O/S LOADER

406
UEFI BOOT SERVICES | [UEFI RUNTIME SERVICES

410

oSMBIOS

ACPI PLATFORM SPECIFIC FIRMWARE

414 7

420

PLATFORM UEE]
HARDWARE O/S
SYSTEM PARTITION
PARTITION
416 418

FIG. 4

U.S. Patent Aug. 31, 2021 Sheet 6 of 6 US 11,106,457 B1

500

—

502
524

MAIN

°C cPU MEMORY

ON-BOARD |
GRAPHICS

USB PORTS |l¢—— POWER
MANAGEMENT

512

GENERATION

526

528
GPIO PINS CLOCK _

530

514
516
SERIAL ATA
PORTS

108 PLATFORM
7021 OPERATING (PCH)

SYSTEM
520
522

CONTROLLER HUB Cgmg%"ﬂEER
532
APPLICATION PCI GRAPHICS
PROGRAMS 506 ADAPTER
534
SYSTEM /]
AUDIO | MANAGEMENT BUS
CODEC - -
540

BASEBOARD ;
1OOA .----5
- - 508 CONTROLLER
NON-VOLATILE .
MEMORY DEVICE 538

SENSORS

102

FIRMWARE

FIG. 5

US 11,106,457 Bl

1

UPDATING FIRMWARE RUNTIME
COMPONENTS

BACKGROUND

Computing device firmware commonly executes 1n two
phases: a boot time phase and a runtime phase. During the
boot time phase, firmware performs various system initial-
1zation tasks, such as initializing hardware devices, and then
boots an operating system. Once the boot time phase has
completed, firmware proceeds to the runtime phase of
execution.

During the runtime phase of execution, firmware can
provide runtime services for performing various types of
functionality. Runtime services are implemented using run-
time interrupt handlers in some computing devices. For
instance, computing devices having INTEL x86 architec-
tures commonly utilize a System Management Mode
(“SMM™) through which system management interrupts
(“SMIs™) can be generated to access runtime functionality
provided by SMI handlers. Other types of architectures can
support the execution of firmware runtime components 1n
other ways.

Firmware runtime components, such as SMI handlers, can
include programming errors, or “bugs,” that cause security
vulnerabilities. In order to address security vulnerabilities in
firmware runtime components 1t 15 commonly necessary to
apply an update, or patch, to the firmware containing the
firmware runtime component and to reboot the computing
device.

In order to reduce the risk of security vulnerabilities in
firmware runtime components, firmware updates should be
immediately applied to affected computing devices. How-
ever, 1In many types of environments 1t might not be possible
to immediately apply a firmware update to a computing
device and restart the device. For example, 1t might not be
possible to patch and immediately reboot computing devices
in large-scale data centers that support critical processing
operations, such as research, e-commerce, or other tasks that
require maximum uptime.

It 1s with respect to these and other considerations that the
disclosure made herein 1s presented.

SUMMARY

Technologies are described herein for updating firmware
runtime components. Through implementations of the dis-
closed technologies, updated firmware runtime components
can be stored 1n the volatile memory of a computing device
and executed immediately without rebooting the device. As
a result, patches to firmware runtime components can be
utilized immediately, thereby immediately improving the
security of the computing device, without requiring an
immediate reboot of the computing device. The computing
device can be rebooted at a future time to permanently apply
the updates to the firmware runtime components 1n non-
volatile memory. Technical benefits other than those spe-
cifically mentioned herein can also be realized through
implementations of the disclosed technologies.

In order to provide the techmical benefits mentioned
above, and potentially others, a computing device 1s pro-
vided that includes one or more processors, a volatile
memory, and a non-volatile memory. In one embodiment,
the computing device 1s configured to receive a firmware
update during runtime. For example, 1n one embodiment, an
operating system executing on the device runs a runtime
update application that 1s configured to retrieve the firmware

10

15

20

25

30

35

40

45

50

55

60

65

2

update from an update server. The firmware update can
include one or more updated firmware runtime components,

such as updates to one or more updated runtime interrupt
handlers (e.g. SMI handlers).

The computing device 1s also configured to store the one
or more updated firmware runtime components 1n the vola-
tile memory (e.g. RAM) of the device. For example, the
runtime update application might provide the firmware
update, including the updated firmware runtime compo-
nents, to a runtime update listener component 1n the firm-
ware. The runtime update listener component can store the
firmware update in the non-volatile memory. The runtime
update listener can also store the firmware update i the
non-volatile memory (e.g. NVRAM).

The runtime update listener can also cause the one or
more updated firmware runtime components stored 1n the
volatile memory to be used during the runtime of the
computing device mnstead of one or more other firmware
runtime components previously stored in the volatile
memory. For example, the runtime update listener might
adjust the contents of one or more interrupt routing tables
such that updated runtime interrupt handlers stored 1n non-
volatile memory are used instead of previously installed and
potentially insecure runtime interrupt handlers.

Once the updated firmware runtime components have
been configured for use 1n volatile memory, the runtime
update listener can unload the firmware runtime components
previously stored in the volatile memory to save memory.
On a subsequent reboot of the computing device, the
updated firmware runtime components stored in the non-
volatile memory as part of the firmware update will be
utilized.

It should be appreciated that the above-described subject
matter can also be implemented as a computer-controlled
apparatus, a computer process, a computing device or
device, or as an article of manufacture such as a computer-
readable medium. These and various other features will be
apparent from a reading of the following Detailed Descrip-
tion and a review of the associated drawings.

This Summary 1s provided to introduce a selection of the
technologies disclosed herein 1n a simplified form that are
further described below in the Detailed Description. This
Summary 1s not intended to identity key features or essential
features of the claimed subject matter, nor 1s 1t intended that
this Summary be used to limit the scope of the claimed
subject matter. Furthermore, the claimed subject matter 1s
not limited to implementations that solve any or all disad-
vantages noted 1n any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a software architecture diagram showing aspects
of a computing device that forms an operating environment
for the technologies disclosed herein, according to one
embodiment disclosed herein;

FIGS. 2A and 2B are software architecture diagram
showing aspects of one mechanism disclosed herein for
updating firmware runtime components, according to one
embodiment disclosed herein;

FIG. 3 1s a flow diagram showing a routing that 1llustrates
aspects ol the mechamism disclosed herein for updating
firmware runtime components, according to one embodi-
ment disclosed herein;

FIG. 4 1s a software architecture diagram illustrating a
software architecture for a UEFI-compliant firmware that
provides an operating environment for aspects of the tech-
nologies presented herein in one embodiment; and

US 11,106,457 Bl

3

FIG. 5§ 1s a computer architecture diagram that shows an
illustrative architecture for a computer that can implement
the technologies disclosed herein.

DETAILED DESCRIPTION

The following detailed description 1s directed to technolo-
gies for updating firmware runtime components. As dis-
cussed briefly above, implementations of the disclosed tech-
nologies enable patches to firmware runtime components
such as SMI handlers to be utilized immediately without
requiring a reboot of the computing device. Technical ben-
efits other than those specifically mentioned herein can also
be realized through implementations of the disclosed tech-
nologies.

It 1s to be appreciated that the subject matter presented
herein can be implemented as a computer process, a com-
puter-controlled apparatus, a computing device, or an article
of manufacture, such as a computer-readable storage
medium. While the subject matter described herein is pre-
sented 1n the general context of program modules that
execute on one or more computing devices, those skilled 1n
the art will recognize that other implementations can be
performed in combination with other types of program
modules. Generally, program modules include routines, pro-
grams, components, data structures, and other types of
structures that perform particular tasks or implement par-
ticular abstract data types.

Those skilled 1n the art will also appreciate that aspects of
the subject matter described herein can be practiced on or in
conjunction with other computer system configurations
beyond those described herein, including multiprocessor
systems, microprocessor-based or programmable consumer
clectronics, minicomputers, mainframe computers, hand-
held computers, personal digital assistants, e-readers, mobile
telephone devices, tablet computing devices, special-pur-
posed hardware devices, network appliances, and the like.
The configurations described herein can be practiced in
distributed computing environments, where tasks can be
performed by remote computing devices that are linked
through a communications network. In a distributed com-
puting environment, program modules can be located in
both local and remote memory storage devices.

In the following detailed description, references are made
to the accompanying drawings that form a part hereot, and
that show, by way of illustration, specific configurations or
examples. The drawings provided herewith are not drawn to
scale. Like numerals represent like elements throughout the
several figures (which might be referred to herein as a
“FIG.” or “FIGS.”).

FI1G. 1 1s a software architecture diagram showing aspects
of a computing device that forms an illustrative operating
environment for the technologies disclosed herein, accord-
ing to one embodiment. As discussed briefly above, a
computing device implementing the disclosed technologies
can include one or more processors, a non-volatile memory
100A, and a volatile memory 100B. A firmware 102 can be
stored 1n the non-volatile memory device 100A, such as a
non-volatile random access memory (“NVRAM™). Portions
of the firmware 102 can also be copied to and executed from
the volatile memory 100B (e.g. RAM) for faster execution.

The firmware 102 executes 1n two phases: a boot time
phase and a runtime phase. During the boot time phase of
execution, boot time components 104 A 1n the firmware 102
perform various system initialization tasks, such as initial-
1zing hardware components 1n the computing device. The
firmware 102 then causes the computing device to boot an

10

15

20

25

30

35

40

45

50

55

60

65

4

operating system 108. Once the boot time phase has com-
pleted, the firmware 102 proceeds to the runtime phase of
execution.

During the runtime phase of execution, runtime compo-
nents 1048 of the firmware 102 are executed. The runtime
components 1048 can perform various types of functionality
such as providing runtime services that can be used by the
operating system 108 and application programs executing on
the operating system 108. Runtime services are imple-
mented using runtime nterrupt handlers 106 1n some com-
puting devices. For instance, computing devices having
INTEL x86 architectures commonly utilize a SMM through
which SMIs can be generated by an operating system 108 to
access runtime functionality provided by runtime interrupt
handlers 106. Other types of architectures can support the
execution of firmware runtime components 1n other ways.

As discussed briefly above, firmware runtime components
1048, such as SMI handlers, can include programming
errors, or “bugs,” that cause security vulnerabilities. In order
to address security vulnerabilities in firmware runtime com-
ponents 104B 1t 1s commonly necessary to apply a patch to
the firmware 102 containing the affected firmware runtime
component 104B and to reboot the computing device.

In order to reduce the risk of security vulnerabilities 1n
firmware runtime components 104B, firmware updates
should be mmmediately applied to affected computing
devices. However, 1n many types of environments it might
not be possible to immediately apply a firmware update to a
computing device and restart the device. For example, 1t
might not be possible to patch and immediately reboot
computing devices 1n large-scale data centers that support
critical processing operations, such as research, e-com-
merce, or other tasks that require maximum uptime.

In order to address the technical problem described above,
and potentially others, a firmware 102 1s disclosed herein
that enables updated firmware runtime components 104B to
be stored in the volatile memory 100B of a computing
device and executed immediately without rebooting the
device. As a result, updates to firmware runtime components
104B can be utilized immediately, thereby immediately
improving the security of the computing device, without
requiring an immediate reboot of the computing device. As
will be discussed in greater detail below, the computing
device can be rebooted at a future time to permanently apply
the updates to the firmware runtime components 104B in

non-volatile memory 100A. Additional details regarding
these aspects will be provided below with regard to FIGS.
2A-3.

FIGS. 2A and 2B are software architecture diagram
showing aspects ol one mechanism disclosed herein for
updating firmware runtime components 104B, according to
one embodiment disclosed herein. As shown 1n FIG. 2A, a
computing device implementing the disclosed technologies
can recerve a firmware update 202 during runtime and apply
the update to the firmware 102 stored in non-volatile
memory 100A. The firmware update 202 can include one or
more updated firmware runtime components 1048, such as
updates to one or more updated runtime terrupt handlers
206 (shown 1n FIG. 2B) (e.g. SMI handlers). The firmware
update 202 can also include updates to other components in
the firmware 102, such as the boot time components 104 A.

In the configuration shown in FIG. 2A, an operating
system 108 executing on the computing device executes a
runtime update application 200 that 1s configured to retrieve
the firmware update 202 from a network-accessible update

US 11,106,457 Bl

S

server 204. The runtime update application 200 can obtain
the firmware update 202 1n other ways 1n other configura-
tions.

In order to update the firmware 102 with the firmware
update 202, the runtime update application 200 can call a
runtime update listener 106 provided by the firmware 102.
The runtime update listener 106 1tself can implement one or
more runtime nterrupt handlers in order to enable commu-
nication with the runtime update application 200. Through
this 1nterface, the runtime update application 200 can pro-
vide the firmware update 202 to the runtime update listener

106.

The runtime update listener 106 can, 1n turn, store the
firmware update 202 1n non-volatile memory 100A 1n order
to update the runtime components 104B. Updates to the
firmware 102 stored 1n non-volatile memory 100A are not,
however, executed until the next reboot of the computing
device. As discussed above, the disclosed technologies
enable updating of the runtime components 104B without
immediately rebooting the computing device. This process

1s illustrated 1in FIGS. 2B and 3.

As shown 1n FIG. 2B, the runtime update listener 106 can
also store updated firmware runtime components 104B like
the updated runtime interrupt handlers 206 1n volatile
memory 100B. The runtime update listener 106 can also
cause the one or more updated firmware runtime compo-
nents 104B stored in the volatile memory 100B to be used
during the runtime of the computing device instead of one or
more other firmware runtime components previously stored
in the volatile memory 100B. For example, the runtime
update listener 106 might adjust the contents of one or more
interrupt routing tables such that updated runtime nterrupt
handlers 206 stored in volatile memory 100B are used
instead of previously installed and potentially imnsecure run-
time nterrupt handlers 106.

Once the updated firmware runtime components 104B
have been configured for use 1n volatile memory 100B, the
runtime update listener 106 can unload the firmware runtime
components (e.g. the runtime interrupt handlers 106 shown
in FI1G. 2B) previously stored 1n the volatile memory 1008

to save memory. On a subsequent reboot of the computing
device, the updated firmware runtime components 104B
stored 1n the non-volatile memory 100A as part of the
firmware update will be utilized.

FIG. 3 1s a flow diagram showing a routine 300 that
illustrates aspects of the mechanism disclosed herein for
updating firmware runtime components, according to one
embodiment disclosed herein. It 1s to be appreciated that the
logical operations described herein with respect to FIG. 3
and the other FIGS., can be implemented (1) as a sequence
of computer implemented acts or program modules running
on a computing device and/or (2) as iterconnected machine
logic circuits or circuit modules within the computing
device.

The implementation of the various components described
herein 1s a matter of choice dependent on the performance
and other requirements of the computing device. Accord-
ingly, the logical operations described herein are referred to
variously as operations, structural devices, acts, or modules.
These operations, structural devices, acts, and modules can
be implemented 1n software, 1n firmware, 1n special purpose
digital logic, and any combination thereof. It should also be
appreciated that more or fewer operations might be per-
tormed than shown 1n the FIGS. and described herein. These
operations can also be performed 1n parallel, or 1n a different

10

15

20

25

30

35

40

45

50

55

60

65

6

order than those described herein. These operations can also
be performed by components other than those specifically
identified.

The routine 300 begins at operation 302, where a com-
puting device 1s booted and firmware 102 1s loaded from a
non-volatile memory 100A. One 1llustrative architecture for
a computing device capable of implementing the disclosed
technologies 1s described below with regard to FIG. 5.

From operation 302, the routine 300 proceeds to operation
304 where the computing device begins executing an oper-
ating system 108 and the runtime update application 200.
The routine 300 then proceeds to operation 306, where the
runtime update application 200 communicates with the
update server 204 to determine 1f a firmware update 202 1s
available for the computing device. If a firmware update 202
1s available, the routine 300 proceeds from operation 308 to
operation 310, where the runtime update application 200
retrieves the firmware update 202 from the update server
204.

From operation 310, the routine 300 proceeds to operation
312, where the runtime update application 200 provides the
firmware update 202 to the runtime update listener 106. As
discussed above, the runtime update listener 106 1s a part of
the firmware 102 that can communicate with the runtime
update application 200. The runtime update listener 106 can
implement runtime interrupt handlers to enable this com-
munication.

From operation 312, the routine 300 proceeds to operation
314, where the runtime update listener 106 updates the
content of non-volatile memory 100A with the firmware
update 202. This can include, for instance, updating boot
time components 104A, runtime components 1048, or other
firmware components stored in the non-volatile memory
100A. This process 1s 1llustrated 1n FIG. 2A.

From operation 314, the routine 300 proceeds to operation
316, where the runtime update listener 106 stores updated
runtime interrupt handlers 206 from the firmware update 202
in volatile memory 100B. The runtime update listener 106
also causes the updated runtime interrupt handlers 206
stored 1n the volatile memory 100B to be used during the
runtime of the computing device instead of one or more
other runtime interrupt handlers 106 previously stored in the
volatile memory 100B (e.g. at the previous boot time of the
computing device). For example, and as described brietly
above, the runtime update listener 106 might adjust the
contents of one or more interrupt routing tables such that
updated runtime interrupt handlers 206 stored in volatile
memory 100B are used instead of previously installed and
potentially insecure runtime interrupt handlers 106. The
runtime update listener 106 can also unload the runtime
interrupt handlers 106 previously stored in the volatile
memory 100B to save memory. This process 1s shown in
FIG. 2B.

From operation 318, the routine 300 proceeds to operation
320, where the updated runtime interrupt handlers 206 are
utilized to process runtime interrupts, such as SMI inter-
rupts. The routine 300 then proceeds from 320 to operation
322, where a determination 1s made as to whether the
computing device has been rebooted. I the device has been
rebooted, the routine 300 proceeds from operation 322,
where the process described above can be repeated. On a
subsequent reboot of the computing device, the updated
firmware runtime components 104B stored in the non-
volatile memory 100A as part of the update process
described above will be utilized.

Turning now to FIG. 4, a software architecture diagram
will be described that i1llustrates an architecture 400 for a

US 11,106,457 Bl

7

UEFI Specification-compliant firmware that can be config-
ured to provide and/or utilize aspects of the technologies
disclosed herein. In particular, the firmware architecture 400
shown 1n FIG. 4 can be utilized to implement the firmware
102 described above. The firmware 102 can also be imple-
mented 1n conjunction with other firmware architectures in
other configurations.

The UEFI Specification describes an interface between an
operating system 108 and a UEFI Specification-compliant
firmware 102. The UEFI Specification also defines an inter-
face that a firmware 102 can implement, and an interface
that an operating system (“OS””) 108 can use while booting.
How a firmware implements the interface can be left up to
the manufacturer of the firmware. The UEFI Specification
also defines a way for an operating system 108 and a
firmware 102 to exchange information necessary to support
the operating system boot process. The term “UEFI Speci-

fication” used herein refers to the EFI Specification devel-
oped by INTEL CORPORATION, the UEFI Specification

managed by the UEFI FORUM, and other related specifi-
cations available from the UEFI FORUM.

As shown 1n FIG. 4, the architecture can include platform
hardware 420, such as that described below with regard to
FIG. 5, an operating system 108, and a UEFI system
partition 416. The UEFI system partition 416 can be an
architecturally shareable system partition. As such, the UEFI
system partition 416 can define a partition and file system
designed to support safe sharing of mass storage between
multiple vendors. An OS partition 418 can also be utilized.

Once started, the UEFI OS loader 404 can continue to
boot the complete operating system 108. In doing so, the
UEFI OS loader 404 can use UEFI boot services 406, UEFI
runtime services 408, and an interface to other supported
specifications, to survey, comprehend, and initialize the
vartous platform components and the operating system
soltware that manages them. Thus, interfaces 414 from other
specifications can also be present on the system. For
example, ACPI and the System Management BIOS (*SM-
BIOS”) specifications can be supported.

UEFI boot services 406 can provide interfaces for devices
and system functionality used during boot time. UEFI run-
time services 408 can also be available to the UEFI OS
loader 404 during the boot phase. UEFI allows extension of
platform firmware by loading UEFI driver and UEFI appli-
cation 1mages which, when loaded, have access to UEFI-
defined runtime and boot services such as those described
above.

Additional details regarding the operation and architec-
ture of a UEFI Specification-compliant firmware can be
tound 1n the UEFI Specification, which is available from the
UEFI Forum. The UEFI Forum has also provided further
details regarding recommended implementation of UEFI 1n
the form of the Platform Inmitialization (*“PI”’) Specification.
Unlike the UEFT Specification, which focuses on program-
matic interfaces for the interactions between the operating
system 108 and system firmware 102, the PI specification
describes a firmware implementation that has been designed
to perform the full range of operations that are required to
mitialize a platform from power on through transier of
control to the operating system 108. The PI specification,
which 1s available from UEFI Forum, 1s also expressly
incorporated herein by reference.

Referring now to FIG. 5, a computer architecture diagram
that shows an 1illustrative architecture for a computer that
can provide an operating environment for the technologies
presented herein will be described. For example, and with-
out limitation, the computer architecture shown 1n FIG. 5

10

15

20

25

30

35

40

45

50

55

60

65

8

can be utilized to implement a computing device 500 that
executes the firmware 102, including the functionality
described herein.

FIG. 5 and the following discussion are intended to
provide a briel, general description of a suitable computing
environment in which the configurations described herein
can be implemented. While the technical details are pre-
sented herein in the general context of program modules that
execute 1 conjunction with the execution of an operating
system, those skilled in the art will recogmze that the
confligurations can also be implemented 1n combination with
other program modules.

Generally, program modules include routines, programs,
components, data structures, and other types of structures
that perform particular tasks or implement particular abstract
data types. Moreover, those skilled 1n the art will appreciate
that the configurations described herein can be practiced
with other computer system configurations, including hand-
held devices, multiprocessor systems, microprocessor-based
or programmable consumer electronics, minicomputers,
mainframe computers, and the like. The configurations
described herein can also be practiced 1n distributed com-
puting environments where tasks are performed by remote
processing devices that are linked through a communica-
tions network. In a distributed computing environment,
program modules can be located 1n both local and remote
memory storage devices.

In particular, FIG. 5 shows an 1llustrative computer archi-
tecture for a computer 300 that can implement the technolo-
gies described herein. The 1llustrative computer architecture
shown 1n FIG. 5 includes a baseboard, or “motherboard”,
which 1s a printed circuit board to which a multitude of
components or devices can be connected by way of a system
bus or other electrical communication path. In one illustra-
tive configuration, a central processing unit (“CPU” or
“processor’’) 302 operates 1 conjunction with a Platform
Controller Hub (“PCH™) 506. The CPU 502 1s a central
processor that performs arithmetic and logical operations
necessary for the operation of the computer 500. The com-
puter 500 can include a multitude of CPUs 502. Each CPU
502 might include multiple processing cores.

The CPU 3502 provides an interface to a RAM or other
type of volatile memory device used as the main memory
524 1in the computer 500 and, possibly, to an on-board
graphics adapter 510. The PCH 506 provides an interface
between the CPU 502 and the remainder of the computer
500.

The PCH 506 can also be responsible for controlling
many of the mput/output functions of the computer 500. In
particular, the PCH 506 can provide one or more universal
serial bus (“USB”) ports 312, an audio codec 522, an
Ethernet Controller 5330, and one or more general purpose
iput/output (“GPIO”) pins 314. The USB ports 512 can
include USB 2.0 ports, USB 3.0 ports and USB 3.1 ports
among other USB ports.

The PCH 506 can also include functionality for providing
networking functionality through an FEthernet Controller
530. The Ethernet Controller 530 1s capable of connecting
the computer 500 to another computer via a network.
Connections that can be made by the Fthernet Controller
530 can include LAN or WAN connections. LAN and WAN
networking environments are commonplace 1n oflices, enter-
prise-wide computer networks, intranets, and the Internet.

The PCH 506 can also provide a bus for interfacing
peripheral card devices such as a graphics adapter 532. In
one configuration, the bus comprises a PCI bus. The PCI bus
can include a Peripheral Component Interconnect (*“PCI”)

US 11,106,457 Bl

9

bus, a Peripheral Component Interconnect eXtended (*PCI-
X"’} bus and a Peripheral Component Interconnect Express
(“PCle”) bus among others.

The PCH 506 can also provide a system management bus
534 for use 1n managing the various components of the
computer 500. Additional details regarding the operation of
the system management bus 534 and 1ts connected compo-
nents are provided below. Power management circuitry 526
and clock generation circuitry 528 can also be utilized
during the operation of the PCH 506.

The PCH 506 1s also configured to provide one or more
interfaces for connecting mass storage devices to the com-
puter 500. For instance, according to one configuration, the
PCH 506 includes a serial advanced technology attachment
(“SATA”) adapter for providing one or more serial ATA
ports 316. The serial ATA ports 316 can be connected to one
or more mass storage devices storing an operating system
and applications 220, such as a SATA disk drive 518. As
known to those skilled 1n the art, an OS comprises a set of
programs that control operations of a computer and alloca-
tion of resources. An application 220 1s software that runs on
top of the operating system, or other runtime environment,
and uses computer resources to perform application specific
tasks desired by the user, such as those described herein.

According to one configuration, the OS comprises the
LINUX operating system. According to another configura-
tion, the OS comprises the WINDOWS operating system
from MICROSOFT CORPORATION. According to another
configuration, the OS comprises the UNIX operating system
or one of 1ts variants. It should be appreciated that other
operating systems can also be utilized.

The mass storage devices connected to the PCH 506, and
their associated computer-readable storage media, provide
non-volatile storage for the computer 500. Although the
description of computer-readable storage media contained
herein refers to a mass storage device, such as a hard disk or
CD-ROM drive, 1t should be appreciated by those skilled 1n
the art that computer-readable storage media can be any
available media that can be accessed by the computer 500.

By way of example, and not limitation, computer-read-
able storage media can comprise computer storage media
and communication media. Computer storage media
includes volatile and non-volatile, removable and non-re-
movable media implemented 1n any method or technology
for storage of information such as computer-readable
istructions, data structures, program modules or other data.
However, computer-readable storage media does not encom-
pass transitory signals. Computer storage media includes,
but 1s not limited to, RAM, ROM, EPROM, EEPROM, ﬂash
memory or other solid state memory technology, CD-ROM,
DVD, HD-DVD, BLU-RAY, or other optical storage, mag-
netic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store the desired information, and which can be
accessed by the computer 500.

A low pin count (“LPC”) interface can also be provided
by the PCH 506 for connecting a Super 1/O device 508. The
Super 1/0 device 508 1s responsible for providing a number
of mput/output ports, mcluding a keyboard port, a mouse
port, a serial interface, a parallel port, and other types of
input/output ports. The LPC interface can also connect a
computer storage media such as a ROM or a flash memory
such as a non-volatile memory 100A for storing firmware
102 that includes program code containing the basic routines
that help to start up the computer 500 and to transier
information between elements within the computer 500 as
discussed above.

10

15

20

25

30

35

40

45

50

55

60

65

10

It should be appreciated that the program modules dis-
closed herein, including the firmware 102, can include
software instructions that, when loaded into the CPU 502
and executed, transform a general-purpose computer 500
into a special-purpose computer 500 customized to facilitate
all, or part of, the operations disclosed herein. As detailed
throughout this description, the program modules can pro-
vide various tools or techniques by which the computer 500
can participate within the overall systems or operating
environments using the components, logic tlows, and/or data
structures discussed herein.

The CPU 3502 can be constructed from any number of
transistors or other circuit elements, which can individually
or collectively assume any number of states. More specifi-
cally, the CPU 502 can operate as a state machine or
finite-state machine. Such a machine can be transformed to
a second machine, or a specific machine, by loading execut-
able instructions contained within the program modules.
These computer-executable instructions can transiform the
CPU 502 by specitying how the CPU 502 transitions
between states, thereby transtorming the transistors or other
circuit elements constituting the CPU 502 from a {irst
machine to a second machine, wherein the second machine
can be specifically configured to perform the operations
disclosed herein. The states of either machine can also be
transformed by receiving input from one or more user input
devices, network interfaces (such as the Gigabit Ethernet
Controller 330), other peripherals, other interfaces, or one or
more users or other actors. Either machine can also trans-
form states, or various physical characteristics of various
output devices such as printers, speakers, video displays, or
otherwise.

Encoding the program modules can also transform the
physical structure of the storage media. The specific trans-
formation of physical structure can depend on various
factors, 1 different implementations of this description.
Examples of such factors can include but are not limited to
the technology used to mmplement the storage media,
whether the storage media are characterized as primary or
secondary storage, and the like. For example, 11 the storage
media are implemented as semiconductor-based memory,
the program modules can transform the physical state of the
semiconductor maimn memory 524 and/or non-volatile
memory 100A. For example, the software can transform the
state of transistors, capacitors, or other discrete circuit
clements constituting the semiconductor memory.

As another example, the storage media can be 1mple-
mented using magnetic or optical technology such as hard
drives or optical drives. In such implementations, the pro-
gram modules can transiorm the physical state of magnetic
or optical media, when the software 1s encoded therein.
These transformations can include altering the magnetic
characteristics of particular locations within given magnetic
media. These transformations can also include altering the
physical features or characteristics of particular locations
within given optical media to change the optical character-
1stics of those locations. It should be appreciated that various
other transformations of physical media are possible without
departing from the scope and spirit of the present descrip-
tion.

As described above, the PCH 506 can include a system
management bus 534. The system management bus 334 can
include a baseboard management controller (“BMC”) 540.
The BMC 540 1s a microcontroller that monitors operation
of the computer 500. The BMC 3540 monitors health-related
aspects associated with the computer 500, such as, but not
limited to, the temperature of one or more components of the

US 11,106,457 Bl

11

computer 500, speed of rotational components (e.g., spindle
motor, CPU {fan, etc.) within the computer 500, the voltage
across or applied to one or more components within the
computer 500, and the available and/or used capacity of
memory devices within the computer 500. To accomplish
these monitoring functions, the BMC 540 1s communica-
tively connected to one or more components by way of the
system management bus 534 1n some configurations.

In one configuration, these components include sensor
devices 338 for measuring various operating and perfor-
mance-related parameters within the computer 500. The
sensor devices 538 can be either hardware or software based
components configured or programmed to measure or detect
one or more of the various operating and performance-
related parameters.

The BMC 540 functions as the master on the system
management bus 534 1n most circumstances but can also
function as either a master or a slave in other circumstances.
Each of the various components communicatively con-
nected to the BMC 540 by way of the system management
bus 534 1s addressed using a slave address. The system
management bus 534 1s used by the BMC 540 to request
and/or receitve various operating and performance-related
parameters from one or more components, such as the
firmware 102, which are also communicatively connected to
the system management bus 534.

It should be appreciated that the functionality provided by
the computer 500 can be provided by other types of com-
puting devices, including hand-held computers, smart-
phones, gaming systems, set top boxes, tablet computers,
embedded computer systems, personal digital assistants, and
other types of computing devices known to those skilled 1n
the art. It 1s also contemplated that the computer 500 might
not include all the components shown 1n FIG. 5, can include
other components that are not explicitly shown 1n FIG. 5, or
might utilize an architecture completely different than that
shown 1n FIG. 5.

Based on the foregoing, it should be appreciated that
technologies for updating firmware runtime components
such as SMI handlers have been disclosed herein. Although
the subject matter presented herein has been described in
language specific to computer structural features, method-
ological acts, and computer readable media, 1t 1s to be
understood that the present mnvention 1s not necessarily
limited to the specific features, acts, or media described
herein. Rather, the specific features, acts and mediums are
disclosed as example forms.

The subject matter described above 1s provided by way of
illustration only and should not be construed as limiting.
Various modifications and changes can be made to the
subject matter described herein without following the
example configurations and applications 1llustrated and
described, and without departing from the true spirit and
scope of the present invention.

What 1s claimed 1s:

1. A computing device, comprising:

ONe Or MOre processors;

a volatile memory; and

a non-volatile memory having computer-executable

instructions stored therein which, when executed by the

one or more processors, cause the computing device to:

receive a lirmware update during a runtime of the
computing device, the firmware update comprising
one or more updated runtime interrupt handlers,

store the firmware update 1n the non-volatile memory,

store the one or more updated runtime nterrupt han-
dlers 1n the volatile memory, and

5

10

15

20

25

30

35

40

45

50

55

60

65

12

cause the one or more updated runtime interrupt han-
dlers stored in the volatile memory to be used during
the runtime of the computing device instead of one
or more other runtime interrupt handlers previously
stored 1n the volatile memory.

2. The computing device of claim 1, wherein the non-
volatile memory has further computer-executable nstruc-
tions stored therein to unload the one or more other runtime
interrupt handlers previously stored in the volatile memory.

3. The computing device of claim 1, wherein the one or
more updated runtime interrupt handlers and the one or more
other runtime interrupt handlers previously stored in the
volatile memory comprise system management interrupt
(SMI) handlers.

4. The computing device of claim 1, wherein the com-
puting device 1s configured to execute the firmware update
from the non-volatile memory following a reboot of the
computing device.

5. The computing device of claim 1, wherein the volatile
memory stores an operating system and a runtime update
application configured execute on the operating system and
to retrieve the firmware update from an update server.

6. The computing device of claim 5, wherein the volatile
memory stores a runtime update listener configured to
receive the firmware update from the runtime update appli-
cation.

7. The computing device of claim 6, wherein the runtime
update listener 1s further configured to store the one or more
updated runtime interrupt handlers in the volatile memory
and to cause the one or more updated runtime interrupt
handlers stored 1n the volatile memory to be used during the
runtime of the computing device instead of one or more
other runtime interrupt handlers previously stored in the
volatile memory.

8. A non-transitory computer-readable storage medium
having computer-executable instructions stored thereupon
which, when executed by a computing device, cause the
computing device to:

recerve a firmware update during a runtime of the com-

puting device, the firmware update comprising one or
more updated runtime interrupt handlers;

store the firmware update in a non-volatile memory;

store the one or more updated runtime interrupt handlers

in a volatile memory; and

cause the one or more updated runtime nterrupt handlers

stored 1n the volatile memory to be used during the
runtime of the computing device instead of one or more
other runtime interrupt handlers previously stored in
the volatile memory.

9. The non-transitory computer-readable storage medium
of claim 8, having further computer-executable instructions
stored therein to unload the one or more other runtime
interrupt handlers previously stored 1n the volatile memory.

10. The non-transitory computer-readable storage
medium of claim 8, wherein the one or more updated
runtime interrupt handlers and the one or more other runtime
interrupt handlers previously stored in the volatile memory
comprise system management interrupt (SMI) handlers.

11. The non-transitory computer-readable storage
medium of claim 8, wherein the computing device 1s con-
figured to execute the firmware update from the non-volatile
memory following a reboot of the computing device.

12. The non-transitory computer-readable storage
medium of claim 8, wherein the volatile memory stores an
operating system and a runtime update application config-
ured execute on the operating system and to retrieve the
firmware update from an update server.

US 11,106,457 Bl

13

13. The non-transitory computer-readable storage
medium of claim 12, wherein the volatile memory further
stores a runtime update listener configured to receive the
firmware update from the runtime update application.

14. The non-transitory computer-readable storage
medium of claim 13, wherein the runtime update listener 1s
turther configured to store the one or more updated runtime
interrupt handlers 1n the volatile memory and to cause the
one or more updated runtime interrupt handlers stored 1n the
volatile memory to be used during the runtime of the
computing device instead of one or more other runtime
interrupt handlers previously stored in the volatile memory.

15. A computer-implemented method performed by a
computing device, the method comprising:

receiving a firmware update during a runtime of the

computing device, the firmware update comprising one
or more updated runtime interrupt handlers;

storing the firmware update 1n a non-volatile memory of

the computing device;

storing the one or more updated runtime interrupt han-
dlers 1n a volatile memory of the computing device; and

causing the one or more updated runtime interrupt han-
dlers stored in the volatile memory to be used during
the runtime of the computing device instead of one or
more other runtime interrupt handlers previously stored
in the volatile memory.

10

15

20

25

14

16. The computer-implemented method of claim 15, fur-
ther comprising unloading the one or more other runtime
interrupt handlers previously stored 1n the volatile memory.

17. The computer-implemented method of claim 185,
wherein the one or more updated runtime interrupt handlers
and the one or more other runtime interrupt handlers previ-
ously stored 1n the volatile memory comprise system man-
agement 1nterrupt (SMI) handlers.

18. The computer-implemented method of claim 185,
wherein the computing device 1s configured to execute the
firmware update from the non-volatile memory following a
reboot of the computing device.

19. The computer-implemented method of claim 185,
wherein the volatile memory stores an operating system and
a runtime update application configured execute on the
operating system and to retrieve the firmware update from
an update server.

20. The computer-implemented method of claim 19,
wherein the volatile memory further stores a runtime update
listener configured to receive the firmware update from the
runtime update application, store the one or more updated
runtime interrupt handlers in the volatile memory, and cause
the one or more updated runtime interrupt handlers stored in
the volatile memory to be used during the runtime of the
computing device instead of one or more other runtime
interrupt handlers previously stored in the volatile memory.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

