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(57) ABSTRACT

Example speech enhancement and noise suppression sys-
tems and methods are described. In one implementation, a
method recetves an audio file comprising a combination of
voice data and noise data, and divides the audio file into
multiple frames. The method performs a discrete Fourier
transform on each frame of a first subset of the multiple
frames to provide a plurality of frequency-domain outputs,
which are input to a neural network. A ratio mask 1s obtained
as an output from the neural network and clean voice
coellicients are computed using the ratio mask. The method
outputs an audio file having enhanced speech based on the
computed clean voice coellicients.
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1

SPEECH ENHANCEMENT AND NOISE
SUPPRESSION SYSTEMS AND METHODS

RELATED APPLICATION

This application claims the priority benefit of U.S. Pro-

visional Application Ser. No. 62/720,702, entitled “Speech
Enhancement and Noise Suppression Systems and Meth-

ods,” filed on Aug. 21, 2018, the disclosure of which 1is
hereby incorporated by reference herein in its entirety.

TECHNICAL FIELD

The present disclosure relates to speech enhancement and
noise suppression, and more particularly to speech enhance-
ment and noise suppression using a deep neural network.

BACKGROUND

Communication devices mtended to relay speech audio
often relay background noise in addition to the speech. The
noise may prevent a listener at the other end of the com-
munication line from being able to hear or understand the
speech. Further, the noise may prevent speech recognition
software from correctly 1dentifying the speech audio.
Accordingly, speech enhancement and bandwidth enhance-
ment devices are used to remove noise and improved the
quality of speech audio. However, existing speech enhance-
ment systems use frequency band features, mstead of per-
frequency features, to process the audio, resulting in an
audio signal that still includes noise features. Thus, systems
and methods are required for speech enhancement and noise
SUppression.

SUMMARY

According to some embodiments, a method of speech
enhancement includes recerving an audio file comprising a
combination of voice data and noise data; dividing said
audio file mto a plurality of frames; performing a discrete
Fourier transform on each frame of a first subset of said
plurality of frames to provide a plurality of frequency-
domain outputs; inputting said plurality of frequency-do-
main outputs of said discrete Fourier transform and a noise
model approximation to a neural network; obtaining a ratio
mask as an output from said neural network; computing
clean voice coeflicients using said ratio mask; and outputting
an audio file having enhanced speech and suppressed noise
based on said computed clean voice coeflicients. The neural
network contains a structure and parameters based on a
previous traiming using predefined noise data and clean
speech data to result 1n a known ratio mask.

A method of bandwidth expansion according to some
embodiments includes receiving an audio file comprising a
combination of voice data and noise data having a first
bandwidth; dividing said audio file into a plurality of frames;
for a first frame of said plurality of frames, performing a
bandwidth expansion process comprising: performing a fast
Fourier transform to obtain audio features corresponding to
the combination of voice data and noise data; obtaining a
power spectrum of the audio features; mputting the power
spectrum to a neural network; determining a phase of the
audio features; constructing a frequency spectrum having a
second bandwidth based on an output of the neural network
and the determined phase, the second bandwidth being
greater than the first bandwidth; and taking an inverse fast
Fourier transform of the frequency spectrum to provide an
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2

audio signal; repeating said bandwidth expansion process
for a subsequent frame of said plurality of frames; and
outputting an audio file having the second bandwidth based
on the audio signals for the plurality of frames.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the
present disclosure are described with reference to the fol-
lowing figures, wherein like reference numerals refer to like
parts throughout the various figures unless otherwise speci-
fied.

FIGS. 1 and 2 show flow charts for recursive noise
cancellation according to some embodiments.

FIGS. 3 and 4 show flow charts for recursive noise model
approximation (NMA) according to some embodiments.

FIGS. 5 and 6 show flow charts for multitask recursive
noise model approximation according to some embodi-
ments.

FIGS. 7 and 8 show flow charts for a custom voice activity
detection (VAD) model according to some embodiments.

FIGS. 9 and 10 show flow charts for a mult1 sample rate
(SR) model according to some embodiments.

FIGS. 11 and 12 show evaluation metrics for evaluating
the performance of models according to some embodiments.

FIGS. 13 and 14 show flow charts for a bandwidth
expansion model according to some embodiments.

FIG. 15 1s a block diagram 1llustrating an embodiment of
a speech enhancement and noise suppression system.

FIG. 16 1llustrates an example block diagram of a com-
puting device.

DETAILED DESCRIPTION

In the following disclosure, reference 1s made to the
accompanying drawings, which form a part hereof, and 1n
which 1s shown by way of illustration specific implementa-
tions 1n which the disclosure may be practiced. It 1s under-
stood that other implementations may be utilized and struc-
tural changes may be made without departing from the scope
of the present disclosure. References 1n the specification to
“one embodiment,” “an embodiment,” “an example embodi-
ment,” etc., indicate that the embodiment described may
include a particular feature, structure, or characteristic, but
every embodiment may not necessarily include the particu-
lar feature, structure, or characteristic. Moreover, such
phrases are not necessarily referring to the same embodi-
ment. Further, when a particular feature, structure, or char-
acteristic 1s described 1n connection with an embodiment, it
1s submitted that 1t 1s within the knowledge of one skilled 1n
the art to aflect such feature, structure, or characteristic 1n
connection with other embodiments whether or not explic-
itly described.

Implementations of the systems, devices, and methods
disclosed herein may comprise or utilize a special purpose or
general-purpose computer including computer hardware,
such as, for example, one or more processors and system
memory, as discussed herein. Implementations within the
scope of the present disclosure may also include physical
and other computer-readable media for carrying or storing
computer-executable 1nstructions and/or data structures.
Such computer-readable media can be any available media
that can be accessed by a general purpose or special purpose
computer system. Computer-readable media that store com-
puter-executable instructions are computer storage media
(devices). Computer-readable media that carry computer-
executable instructions are transmission media. Thus, by
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way ol example, and not limitation, implementations of the
disclosure can comprise at least two distinctly different
kinds of computer-readable media: computer storage media
(devices) and transmission media.

Computer storage media (devices) includes RAM, ROM,
EEPROM, CD-ROM, solid state drnives (“SSDs”) (e.g.,
based on RAM), Flash memory, phase-change memory
(“PCM”), other types of memory, other optical disk storage,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store desired
program code means in the form of computer-executable
istructions or data structures and which can be accessed by
a general purpose or special purpose computer.

An implementation of the devices, systems, and methods
disclosed herein may communicate over a computer net-
work. A “network™ 1s defined as one or more data links that
enable the transport of electronic data between computer
systems and/or modules and/or other electronic devices.
When information 1s transierred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
transmission medium. Transmissions media can include a
network and/or data links, which can be used to carry
desired program code means in the form of computer-
executable instructions or data structures and which can be
accessed by a general purpose or special purpose computer.
Combinations of the above should also be included within
the scope of computer-readable media.

Computer-executable mstructions comprise, for example,
istructions and data which, when executed at a processor,
cause a general purpose computer, special purpose com-
puter, or special purpose processing device to perform a
certain function or group of functions. The computer execut-
able 1nstructions may be, for example, binaries, intermediate
format instructions such as assembly language, or even
source code. Although the subject matter 1s described 1n
language specific to structural features and/or methodologi-
cal acts, it 1s to be understood that the subject matter defined
in the appended claims i1s not necessarily limited to the
described features or acts described herein. Rather, the
described features and acts are disclosed as example forms
of implementing the claims.

Those skilled 1n the art will appreciate that the disclosure
may be practiced 1in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
clectronics, network PCs, minicomputers, mainirame com-
puters, mobile telephones, PDAs, tablets, pagers, routers,
switches, various storage devices, and the like. The disclo-
sure may also be practiced in distributed system environ-
ments where local and remote computer systems, which are
linked (either by hardwired data links, wireless data links, or
by a combination of hardwired and wireless data links)
through a network, both perform tasks. In a distributed
system environment, program modules may be located 1n
both local and remote memory storage devices.

Further, where appropriate, functions described herein
can be performed in one or more of: hardware, software,
firmware, digital components, or analog components. For
example, one or more application specific integrated circuits
(ASICs) can be programmed to carry out one or more of the
systems and procedures described herein. Certain terms are
used throughout the description and claims to refer to
particular system components. As one skilled 1n the art waill
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appreciate, components may be referred to by difierent
names. This document does not intend to distinguish
between components that differ 1n name, but not function.

At least some embodiments of the disclosure may be
directed to computer program products comprising such
logic (e.g., 1n the form of soitware) stored on any computer
useable medium. Such software, when executed 1n one or
more data processing devices, causes a device to operate as
described herein.

Embodiments of the described systems and methods are
directed to speech enhancement, noise suppression, and
bandwidth expansion. The system and methods can be used
for server-side processing of audio files, server-side real
time processing during conierence calls, phone calls, etc.,
and client-side real time processing. In some embodiments,
a driver 1s 1nstalled on a device and noise cancellation 1s
being applied on an input and/or output audio stream 1n the
device 1tself. The described system and methods can be used
to clean noise 1n calls such as a business call, meetings,
personal calls, etc. A call can be placed from anywhere
(collee shop, home, street, airport, etc.) and the person on
the other end of the line will get only the caller’s clean
speech. The systems and methods disclosed hereimn waill
remove background noise including restaurant, street, rain/
wind noise, or a baby’s screaming. The systems and methods
can clean noise in mcoming calls. For example, the tech-
nology can clean background noise coming from the caller’s
side.

The methods and systems disclosed herein can be pro-
vided as an online service which receives audio or video file,
cleans it from background noise and returns the resulting file
back. This can be implemented 1n the form of an API or an
end-user service. The files can be call messages, podcasts,
YouTube videos or personal audio/videos captured by pub-
lishers.

The methods and systems disclosed herein can be pro-
vided as a noise cancellation mobile application which
allows users to noise cancel their captured audio and video
before saving on their handset or uploading to the internet.
The methods and systems can be integrated into audio/video
editing tools to make it possible to clean noise 1n the audio.
The technology can also be used in call centers to allow
customers to listen only to the voice of the operator they are
talking with. The methods and systems can further be used
for noise robust automatic speech recognition (a.k.a. speech
to text), and for improved machine understanding of 1ntents
in human speech (Alexa, Google Home, etc.).

The methods and systems according to some embodi-
ments can be used to expand low bitrate audio (e.g., 8 kHz)
in conference calls on the server side and make 1t so that
people calling in from low bitrate cellular lines sound much
richer for other participants 1n the call (from 16 kHz to 44.1
kHz). The methods and systems can also be used to expand
low bitrate audio (e.g., 8 kHz) on user device so that audio
can be sent i low bandwidth mode and then expanded on
the other end (from 16 kHz to 44.1 kHz), thereby saving
network traffic.

The methods and systems can be used to process audio
containing originally sampled both low bitrate and high bat
rate voices, detect the low bitrate voice 1n the audio, and
expand 1t to high bit rate. In the end, the full audio will sound
like i1t was all high bitrate.

Both noise cancellation and bandwidth expansion can be
implemented as a media server (Asterisk, Freeswitch, etc.)
plugin running on servers, an API Server, SDK runmng
inside an App on end device (phone, laptop, tablet, internet
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of things (IoT) device), and inside hardware chip integrated
into laptop, phone, headset, microphone or IoT device.

According to some embodiments, noise suppression mod-
¢ls are provided. A recursive noise model according to some
embodiments 1nvolves the following steps, shown {for
example 1 FIGS. 1-4. In some embodiments, the described
systems and methods take several overlapped frames of
noisy speech, compute Fourier coeflicients of each frame,
and take logarithms of absolute values of the coetlicients.
The systems and methods then concatenate them with a
noise model and take as an mput for a neural network (INN).
As an output, the systems and methods generate a ratio mask
(absolute values of clean voice coeflicients divided to noisy
voice coellicients). Then, clean voice coeflicients are com-
puted using ratio masks and update the noise model. Noise
model updates are implemented using, for example, the past
20 frame noise feature approximations by taking the mean.

In the NN model, linecar weights are used along with
nonlinear weights. Particularly, passing from a previous
layer to the next, the systems and methods use another linear
transformation with another (independent) parameters and
add to the nonlinear part 1in addition to using linear trans-
formation and applying RelLLU (nonlinear part). During
inference the systems and methods get a noise model, for
example, 1 the following way. The systems and methods
use the NN output (ratio mask) and apply it to the current
frame, which gives the noise approximation in that frame.
Then, the noise list 1s updated, adding a new approximation
and removing a last approximation to generate a current
noise model with averaging noise list. After that, the systems
and methods use the new noise model as input to the NN 1n
order to obtain a more precise output for the next frame.

A custom voice activity detection (VAD) model (see, for
example FIGS. 7 and 8) differs with respect to recursive
NMA model in that as an output of this model’s NN the
systems and methods get both ratio mask and voice activity
detection (VAD) features. The noise model 1s updated using
the successive frames having 0 as a VAD output.

In some embodiments, the NN takes a noise model as
input and along with a ratio mask gives VAD as output.
Using this structure the systems and methods update the
noise model by taking the previous several frames having O
as VAD output.

A multitask recursive NMA model (see, for example,
FIGS. 5 and 6) differs with respect to the recursive NMA
model 1n that this model 1s trained using a multitask traiming
technique (which 1s known as a promising way of NN
training). As a second task of NN, the systems and methods
take computing VAD. This model further enhances the
innovation of recurstve NMA by combining it with multitask
learning.

A mult1 sample rate (SR) model (see, for example, FIGS.
9 and 10) handles audios for all sample rates. The input of
the NN 1s computed using bark scale band features, and the
output 1s a band ratio mask obtained from band coeflicients.
A 1ull ratio mask 1s obtained from the band ratio mask using
band functions as an approximation tool. This model can
handle all possible sample rates with just one NN, which
works with frequency bands and has linear weights feature.

In the bandwidth expansion models (see, for example,
FIGS. 13 and 14) according to some embodiments, 8 kHz
sampled audio 1s converted to 16 kHz while human voice
frequencies are predicted from 4k to 8k. This allows resa-
mpled recordings to sound like original 16 kHz. As an input
to the NN, the systems and methods give log-power spec-
trum of Founier coeflicients of 7 overlapping frames of
narrow band audio. As an output, the systems and methods

10

15

20

25

30

35

40

45

50

55

60

65

6

give log-power spectrum of one original wide band frame.
In some embodiments, the systems and methods use the
following architectures for NN:

1) 3 hidden layer fully connected DNN, where 1n one case
an output layer predicts both narrow and upper band com-
ponents, while 1 another, only the upper band.

11) Convolutional network with 4 downsampling cony
layers and 4 upsampling de-conv like layers with skip
connections. As input, 1t gets cubic mterpolated 8 kHz audio.

Unlike existing models, the bandwidth expansion model
according to some embodiments achieves bandwidth expan-
sion with a NN having linear weights. It predicts only the
upper band and adds to 1t the spline interpolated narrow band
signal. The model includes an autoencoder for bandwidth
expansion where the middle layer 1s trained to be close to the
original narrowband audio. The model also provides noise
robust bandwidth expansion (using NAT and VAD during
the training process), has a recurrent net structure, computes
loss after (interpolation+NN prediction), and computes loss
across all .wav frames, then taking the mean of that and uses
it for a single gradient update.

For noise suppression models, post processing tools
include a moving average rescaling. The systems and meth-
ods compute the average energy of a signal, which changes
in time. The systems and methods then multiply successive
frames with the scale coetlicient, 1n order to scale the energy
ol the signal to the target energy. Post processing tools also
include ratio mask modification. Instead of using the output
of NN, the systems and methods smoothen 1t, supplying
linecar approximation in case of low SNRs and quadratic
approximation in case ol high SNR.

For bandwidth expansion models, post processing tools
include mean based upsampling. The systems and methods
upsample audio with following method. Between every 2
data points the systems and methods put the average of those
points. It produces upsampling by a factor of 2.

A model according to one embodiment 1s a deep NAT
neural network working with Relu and linear combined
activation, using several frames features of 8,000 Hz sam-
pling rate audio, normalized with speech moments 1n input,
ratio mask as output, trained on >100 hours train data, using
12 loss functions. The current model 1s increasing PESQs by
0.6 1 average from 1.9 to 2.5. In some cases, PESQ can be
improved by 1.4, 1.e., from 2.1 to 3.3.

The following description uses specific values for the
number of frames included 1n a group of frames, the length
of the frames, and the overlap between the frames. These
numbers are examples only, and are provided to elucidate
concepts of the described systems and methods. However,
other numbers of frames, lengths of frames, and overlap
between the frames may be used to practice the described
systems and methods.

Recursive NMA (See, for Example, FIGS. 1-4)

According to some embodiments, the systems and meth-
ods first create a training data set 1n the following way. The
systems and methods have data of various noise recordings
and data of various clean speech recordings. For example,
cach data set may be 1n “.wav” extension format, though
other formats can also be used. At each step of training data
creation (see train process in chart), the systems and meth-
ods take a randomly picked noise recording and a randomly
picked speech recording, and extract raw data of these
audios. The level of noise 1s randomly changed, and sum of
the speech data and the noise data 1n order to create mix data.

Then, the systems and methods take a randomly picked
piece of the mix data, and takes the corresponding piece of
clean speech data. In an example embodiment, these pieces
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contain 7 overlapped 32 ms (this parameter can be pre-
defined 1n a range of 20-40 ms, for example) frames each
(the overlapping rate in thus example 1s 50%). Then, the
systems and methods take all 7 overlapped frames both for
mixture and clean speech pieces, multiply each frame with
a window function, and apply a Fast Fourier transform
(FFT) to obtain Founier coeflicients that correspond to each
frame. In one example, each frame has 126 Fourier coetl-
cients. Thus, each frame of the randomly picked piece of the
mix data has 126 Fourier coethicients, and each frame of the
corresponding piece of clean speech data 126 Fourier coet-

ficients.
The systems and methods take the amplitudes of the

obtained Fourier coeflicients, and calculate a ratio mask T
for the last frame. For example, 1f the randomly picked piece
of the mix data includes 7 overlapped frames, the ratio mask

T is calculated for the last frame of the 7 overlapped frames.
The ratio mask 1s calculated using the following formula:

2
\/52 + (m —5)°

where the s and m are the amplitudes of speech and mix
coellicients respectively.
In the example of each frame having 126 coellicients, a

value r, of the ratio mask T corresponding to the i1th
frequency 1s calculated according to the following equation.

\/ -
Fi = 2 2
ST+ (m; —5;)

where s, 1s the amplitude of the Founer coetlicient of the
clean speech data corresponding to the ith frequency, and m,
1s the amplitude of the Fournier coeflicient of the mix data
corresponding to the i1th frequency. Thus, the ratio mask

vector r has a value for each discrete frequency domain
obtained by discrete Fourier transform. In this example, the
ratio mask vector has a dimension of 1x126.

The ratio mask vector 1s kept as the output for the neural
network (NN).

Next, the systems and methods calculate the input for the
NN. Initially, the systems and methods calculate the loga-
rithm of the amplitudes of the Fourier coeflicients for each
frame of the randomly picked piece of the mix data. This
gives the log power spectrum (LPS) features of the mix data.
The LPS features for each frame have a dimension of 1x126
in this example. The features for the 7 frame 1n the randomly
picked piece of the mix data are combined to form a matrix
of dimension 7x126. This matrix will be combined with the
noise model approximation (NMA) to create the input for
the NN.

To calculate the NMA, the systems and methods take the
first several overlapped frames of the mix data. In one
example, the systems and methods take the first 10 frames
(1.e., O ms to 176 ms in overlapping frames of 32 ms with
50% overlap). The randomly picked piece of the mix data
described above as having 7 frames may or may not overlap
with the first 10 overlapped frames of mix data.

The first several overlapped frames of mix data are
selected and calculate the LPS features in the same manner
as described above. Next, the systems and methods take the
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mean of the LPS features of the first several overlapped
frames. For example, for each discrete frequency 1, add
together the i” LPS feature of the 10 frames, and then divide
by 10. This process 1s repeated for each of the 126 discrete
frequencies. The result 1s a vector of dimension 1x126. This
vector 1s the NMA.

The systems and methods then add the matrix comprising,
the LPS features of mix data with NMA and take the
obtained matrix as mput to NN. For example, the 7x126
matrix comprising the LPS features of mix data 1s combined
with the 1x126 NMA and to obtain an 8x126 matrix. This
matrix 1s input to the NN during training.

NN Architecture (NN with Linear Weights):

The systems and methods use a dense deep NN, with a
rectified linear unit (ReLLU) as a nonlineanity activation
function. The mapping of NN hidden layers from previous
to next 1s done 1n the following manner. First, multiply the
previous hidden layer with parameters (so called nonlinear
weilghts) and take RelLU, thus obtaining the nonlinear part of
mapping. The systems and methods then multiply the pre-
vious layer with other parameters (so called linear weights)
and obtain the linear part of mapping. By summing up the
linear and nonlinear parts the systems and methods get the
eventual mapping. Combining the nonlinearity activation
function with the linear weights prevents loss of information
due to the non-linearity. Information 1s maintained using the
linear weights.

The systems and methods further train the NN using a
gradient descent algorithm and mean square error as a loss
function for our optimization problem.

Inference:

During inference (see test process in accompanying draw-
ings) the systems and methods process noisy speech audio to
obtain speech enhancement. The noisy speech audio can be
audio that has not previously been used 1n traiming the NN.
To achieve speech enhancement, the systems and methods
proceed in the following manner (recursive approach).

First, create the input matrix that will be 1nput to the NN.
This 1s done by taking the ratio mask predicted by NN for
the previous frame and multiplying 1t by the amplitudes of
the Fourier coellicients of the previous frame of the noisy
speech audio. In one example, the previous frame 1s 50%
overlapping frame with current frame. The result of the
multiplication 1s a 1x126 vector.

Then, the systems and methods take the logarithm and
obtain the clean speech features. Further, the systems and
methods use the ratio mask to get a noise model (approxi-
mation of noise LPS features) for the previous frame. To get
the noise model, multiply each Fourier coeflicient m, of
noisy speech with (1-r,) and this gives the Fourier coetli-
cient of noise n,, where r, 1s the corresponding value of the
ratio mask for the corresponding Fourier coeflicient. This
operation 1s performed for all coeflicients (in this case, 126
coellicients for each frame).

The noise model approximation 1s then updated. To do
this, the newly calculated noise model 1s added to the noise
model for a previous number of frames, and then each
coellicient 1s divided by the number of frames. For example,
if 10 frames are used to calculate the noise model approxi-
mation, the coethicients of the newly calculated noise model
(dimension 1x126) are added to the corresponding coefli-
cients ol the noise models for the previous 9 frames (each
having dimension 1x126), and then the sum 1s divided by 10
to give the updated noise model approximation (dimension
1x126).

The noise model approximation 1s combined with LPS
teatures of the current frame and the previous 6 overlapping
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frames of audio data, and the resulting matrix i1s the input
vector for the NN. For example, the 1x126 noise model
approximation is combined with LPS features of the current
frame (1x126) and the previous 6 overlapping frames of
audio data (6x126), and the 8x126 resulting matrix 1s the
input vector for the NN.

As an output, the systems and methods generate the ratio
mask for the current frame. Modifying this ratio mask with
special smoothing functions, 1t 1s multiplied with amplitudes
of current Iframe’s Fourier coeflicients. This gives the
approximation of amplitudes of Fourier coeflicients of
voice. Taking the inverse Fourier transform of the approxi-
mation of amplitudes, creates the approximation of the voice
data for the current frame. The systems and methods use the
overlap-add method to obtain the time domain approxima-
tion of clean speech contained 1n the noisy audio. Using
overlapping Irames maintains continuity between the
frames, and prevents information at the edges of the frames

from being lost.
2) Multitask Recursive NMA (See, for Example, FIGS. 5

and 6).

A difference between this model and previous one 1s that
here the systems and methods take a VAD (voice activity
detection) feature for each frame of the mix along with
respective ratio mask features. VAD takes two arguments O
and 1, VAD=0 means no voice 1s present in the current
frame, VAD=1 means there 1s a voice activity in the current
frame.

Thus, the systems and methods obtain more optimal
training with the help of the multitask learning technique of
NN tramning. Here the systems and methods don’t use the
VAD output feature during inference.

3) Custom VAD (See, for Example, FIGS. 7 and 8).

The difference between this and multitask recursive NMA
model 1s that here the systems and methods use the VAD
feature both in train and inference to calculate the NMA
more precisely. During data collection prior to train (see
train process) the systems and methods extract VAD of clean
speech based on k-mean algorithm and use this feature to
calculate NMA based on voiceless frames of the mix. During
inference, the systems and methods take the VAD output
(learned by NN) and recursively updates the NMA as
described 1n the recursive NMA model.

4) Mult1 SR (See, for Example, FIGS. 9 and 10).

The difference between this and main model 1s that here
the systems and methods train the NN using data of various
SRs (sampling rate) and to achieve faster implementation,
they use frequency band features. For example, instead of
using all frequency bins’ Fourier coeflicients, the systems
and methods select frequency bands and sum squares of
amplitudes of Fourier coetlicients inside bands which gives
band energies. The systems and methods then take a loga-
rithm of band energies and then apply DCT (discrete Fourier
transform). The same features are extracted for NMA. And
during inference, the systems and methods detect SR, extract
features according to SR and proceed with the NN having
linear weights and update NMA recursively as described 1n
the main model.

5) Evaluation (See, for Example, FIGS. 11 and 12).

The systems and methods evaluate the overall perfor-
mance ol the models using, for example, the following
metrics: STOI (Short-Time Objective Intelligibility), PESQ
(perceptual evaluation of speech quality, version ITU-T
P.862), SNR (speech to noise ratio), SIR (speech to inter-
terence ratio). All of these metrics work based on reference
audio (clean speech) and enhanced audio. To give an overall
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performance measure, the systems and methods calculate
mean and standard deviation of scores.

6) Bandwidth Expansion (BE) (See, for Example, FIGS.
13 and 14).

Train process: The systems and methods take a 8 kHz
wav lile and calculate 1ts power spectrum and phase of
overlapped frames. Overlapping frames allow keeping cor-
relation between neighboring frames. The minimal length of
an audio signal that the human ear can differentiate lays
between 20 ms to 40 ms. The systems and methods take a 32
ms frame length which 1s close to the center of this range,
and feed the NN with the resulting vectors of Fourier
coellicients.

The systems and methods also take LPS features of the
above overlapping frames of 8 khz audio as input to NN and
respective LPS features of 16 khz version of the same audio,
processed by high pass filter (to keep frequency information
over 4 khz).

Inference (test process): The described systems and meth-
ods construct a wideband audio signal 1n the following way.
Take a narrowband signal which 1s fed to a NN containing
liner weights and up-sample 1t using traditional methods
(2-means 1 diagram). In parallel, the systems and methods
predict an upper band of the same signal with the NN and
then compute IFFT (Inverse FFT) to bring signal to the time
domain. When doing IFFT, the systems and methods use
phases of the original narrowband signal to reconstruct a
phase of the wide band signal. Then, the systems and
methods simply add them and get a 16 kHz bandwidth
expanded audio signal as a result.

The methods disclosed herein can be implemented by a
processor. The processor can be a dedicated “hard-wired”
device, or 1t can be a programmable device. For example, 1t
can be, but 1s not limited to, a personal computer, a work
station, or any other suitable electronic device for the
particular application. In some embodiments, 1t can be
integrated 1nto a unit or 1t can be attachable, remote, and/or
distributed. A system for speech enhancement and noise
suppression may include a processor configured to 1mple-
ment a method for speech enhancement and noise suppres-
sion. The system may further include audio mput and output
devices, as well as a memory for storing audio files and
processing and enhancement algorithms and software. The
system may include other user mput devices, such as a
keyboard and display. The system may also have wireless
and cellular communication capabilities.

FIG. 15 1s a block diagram 1llustrating an embodiment of
a speech enhancement and noise suppression system 1500.
As shown 1n FIG. 135, speech enhancement and noise sup-
pression system 1500 includes a communication manager
1502, a processor 1504, and a memory 1506. Communica-
tion manager 1502 allows speech enhancement and noise
suppression system 1500 to communicate with other sys-
tems and devices. Processor 1504 executes various nstruc-
tions to implement the functionality provided by speech
enhancement and noise suppression system 1500, as dis-
cussed herein. Memory 1506 stores these instructions as
well as other data used by processor 1504 and other modules
and components contained 1n speech enhancement and noise
suppression system 1500.

Speech enhancement and noise suppression system 1500
also includes an audio processing manager 1508 that man-
ages the processing of various audio data and audio signals,
as discussed herein. A Fourier transform module 1510
performs Fourier transform procedures as described herein.
A neural network manager 1512 manages a variety of
functions and operations associated with (and performed by)
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neural networks as described 1n various embodiments
herein. A voice coeflicient module 1514 calculates and
manages a variety of voice coeflicients of the type discussed
herein. A ratio mask manager 1516 manages various func-
tions associated with generating and applying ratio masks as
discussed herein.

FIG. 16 illustrates an example block diagram of a com-
puting device 1600. Computing device 1600 may be used to
perform various methods and procedures, such as those
discussed herein. For example, computing device 1600 may
perform any of the functions or methods of the computing,
devices and systems discussed herein. Computing device
1600 can perform various functions as discussed herein, and
can execute one or more application programs, such as the
application programs or functionality described herein.
Computing device 1600 can be any of a wide variety of
computing devices, such as a desktop computer, a notebook
computer, a server computer, a handheld computer, tablet
computer, a wearable device, and the like.

Computing device 1600 includes one or more
processor(s) 1602, one or more memory device(s) 1604, one
or more interface(s) 1606, one or more mass storage
device(s) 1608, one or more Input/Output (I/0) device(s)
1610, and a display device 1630 all of which are coupled to
a bus 1612. Processor(s) 1602 include one or more proces-
sors or controllers that execute instructions stored i1n
memory device(s) 1604 and/or mass storage device(s) 1608.
Processor(s) 1602 may also include various types ol com-
puter-readable media, such as cache memory.

Memory device(s) 1604 include various computer-read-
able media, such as volatile memory (e.g., random access
memory (RAM) 1614) and/or nonvolatile memory (e.g.,
read-only memory (ROM) 1616). Memory device(s) 1604
may also include rewritable ROM, such as Flash memory.

Mass storage device(s) 1608 include various computer
readable media, such as magnetic tapes, magnetic disks,
optical disks, solid-state memory (e.g., Flash memory), and
so forth. As shown in FIG. 16, a particular mass storage
device 1s a hard disk drive 1624. Various drives may also be
included 1n mass storage device(s) 1608 to enable reading
from and/or writing to the various computer readable media.
Mass storage device(s) 1608 include removable media 1626
and/or non-removable media.

I/O device(s) 1610 include various devices that allow data
and/or other information to be input to or retrieved from
computing device 1600. Example 1/O device(s) 1610
include cursor control devices, keyboards, keypads, micro-
phones, monitors or other display devices, speakers, print-
ers, network interface cards, modems, and the like.

Display device 1630 includes any type of device capable
of displaying information to one or more users of computing
device 1600. Examples of display device 1630 include a
monitor, display terminal, video projection device, and the
like.

Interface(s) 1606 include various interfaces that allow
computing device 1600 to interact with other systems,
devices, or computing environments. Example interface(s)
1606 may include any number of different network inter-
faces 1620, such as interfaces to local area networks
(LANSs), wide area networks (WANs), wireless networks,
and the Internet. Other interface(s) include user interface
1618 and peripheral device interface 1622. The interface(s)
1606 may also include one or more user interface elements
1618. The interface(s) 1606 may also include one or more
peripheral interfaces such as interfaces for printers, pointing,
devices (mice, track pad, or any suitable user interface now

10

15

20

25

30

35

40

45

50

55

60

65

12

known to those of ordmary skill in the field, or later
discovered), keyboards, and the like.

Bus 1612 allows processor(s) 1602, memory device(s)
1604, interface(s) 1606, mass storage device(s) 1608, and
I/0 device(s) 1610 to communicate with one another, as well
as other devices or components coupled to bus 1612. Bus

1612 represents one or more of several types of bus struc-
tures, such as a system bus, PCI bus, IEEE bus, USB bus,
and so forth.

For purposes of illustration, programs and other execut-
able program components are shown herein as discrete
blocks, although it 1s understood that such programs and
components may reside at various times 1n diflerent storage
components ol computing device 1600, and are executed by
processor(s) 1602. Alternatively, the systems and procedures
described herein can be mmplemented in hardware, or a
combination of hardware, software, and/or firmware. For
example, one or more application specific integrated circuits
(ASICs) can be programmed to carry out one or more of the
systems and procedures described herein.

The following definitions are provided as examples, and
are not imtended to limit the scope of the systems and
methods described herein.

1. Processing of .wav files—.wav files are not compressed
and contain suflicient information for processing.

2. Tests on data expression—the systems and methods use
audio spectrograms to visually explore audio data, 32 ms
length of frames and 16 ms frame overlapping.

3. 8000 hz—speech spectrum generally 1s located 1n 30 to
4000 hz frequencies. Thus recordings with 8000 hz sample
rate contain main human voice frequencies.

4. Founier coetlicients—the described systems and meth-
ods use Fourier coeflicients obtained by fast fourier trans-
form algorithm as audio features.

5. Data collection—collected 63k speeches (in English)
and 11k different noises.

6. Neural networks—in the first model, the systems and
methods used simple neural networks with sigmoidal non-
linearity and 1 or 2 hidden layers architecture.

7. Combination of statistical and machine learning meth-
ods—testings showed that enhancing with statistical algo-
rithms along with neural nets leads to better results.

8. Autoencoder implementation—to achieve fast perior-
mance, started to use autoencoders that keep 95% of speech
data variation and could supply new compressed features of
speech.

9. Research of traiming algorithms——compared different
algorithms for neural network parameters update (e.g., Gra-
dient descent, momentum optimizer, LBFGS, ADAM opti-
mizer) and ADAM optimizer shows the best results.

10. 7 overlapping frames data—studies show that for
learning speech specifications, neural networks need more
data, particularly the systems and methods extract data of the
last 7 overlapping frames (time data).

11. Normalizing with speech moments—normalize the
train data with mean and variance of feature vectors of clear
speech data.

12. Implementation of deep NN-models built with dense
deep neural networks with more than 2 hidden layers.

13. Implementation of speech enhancement evaluation
scores (benchmarks)—the systems and methods are using
PESQ, MOS, STOI, POLQA, SNR, SIR scores to evaluate
the model performance and to compare the results with other
models.

14. Changing the activation functions—the systems and
methods use non ordinary activation of neurons, such as
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ReLU (rectified linear unit) combined with linear units, with
separate non-linear and linear biases.

15. Recurrent neural networks—recurrent neural nets are
known to work well on sequential data and the systems and
methods have implemented such networks for speech
enhancement.

16. Ratio mask vs Binary mask—studies show that ratio
masking lead to better performance than binary masking,
and the systems and methods started to use ratio masks as
output data.

17. Diverse loss functions—use mean square error, sig-
moid cross entropy, KL (Kulback Leibler) divergence during,
training ol neural network.

18. Implementation of NAT model-—NAT (noise aware
training) shows better performance, and the systems and
methods have trained the neural networks supplying infor-
mation on noise model.

19. Along with NMA model, the systems and methods get
noise model with K mean algorithm.

20. Smoothing techniques—the systems and methods find
out that using smoothed version of neural network output
leads to better performance.

21. Big data usage——collected big data of noises and >100
hours training data on that noises. This provides a more
generalized model.

22. CRM—the systems and methods made testings on
ideal CRM (complex ratio mask) and find out that adding
phase information of audio data improves significantly the
model performance.

While various embodiments of the present disclosure are
described herein, 1t should be understood that they are
presented by way of example only, and not limitation. It waill
be apparent to persons skilled in the relevant art that various
changes 1n form and detail can be made therein without
departing from the spirit and scope of the disclosure. Thus,
the breadth and scope of the present disclosure should not be
limited by any of the described exemplary embodiments, but
should be defined only 1n accordance with the following
claims and their equivalents. The description herein 1is
presented for the purposes of 1llustration and description. It
1s not itended to be exhaustive or to limit the disclosure to
the precise form disclosed. Many modifications and varia-
tions are possible 1n light of the disclosed teaching. Further,
it should be noted that any or all of the alternate implemen-
tations discussed herein may be used i1n any combination
desired to form additional hybrid implementations of the
disclosure.

The 1nvention claimed 1s:

1. A method of speech enhancement comprising:

receiving an audio file comprising a combination of voice
data and noise data;

dividing said audio file into a plurality of frames;

performing a discrete Fourier transform on each frame of
a first subset of said plurality of frames to provide a
plurality of frequency-domain outputs;

inputting said plurality of frequency-domain outputs of
said discrete Fourier transform and a noise model
approximation to a neural network;

obtaining a ratio mask as an output from said neural
network;

computing clean voice coetlicients using said ratio mask;
and

outputting an audio file having enhanced speech and
suppressed noise based on said computed clean voice
coellicients.
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2. The method of claim 1, further comprising;:
prior to said outputting said audio file having enhanced
speech, revising said noise model approximation using,
saild ratio mask to provide a revised noise model
approximation for mnput to said neural network;
performing a discrete Fourier transform on each frame of
a second subset of said plurality of frames to provide a
second plurality of frequency-domain outputs;
inputting said second plurality of frequency-domain out-
puts of said discrete Fourier transform and said revised
noise model approximation to said neural network;
obtaining a revised ratio mask as an output from said
neural network; and
computing clean voice coeflicients using said revised ratio
mask.
3. The method of claim 2, further comprising:
prior to said outputting said audio file having enhanced
speech, revising said revised noise model approxima-
tion using said revised ratio mask to provide a second
revised noise model approximation for mnput to said
neural network:;
performing a discrete Fourier transform on each frame of
a third subset of said plurality of frames to provide a
third plurality of frequency-domain outputs;
inputting said third plurality of frequency-domain outputs
of said discrete Fourier transtorm and said second
revised noise model approximation to said neural net-
work;
obtaining a second revised ratio mask as an output from
said neural network; and
computing clean voice coetlicients using said second
revised ratio mask.
4. The method of claim 1, wherein the neural network 1s
a deep neural network that:
includes more than two hidden layers;
employs rectified linear units 1n combination with linear
units; and
uses linear and non-linear weights.
5. The method of claim 1, further comprising:
training the neural network, comprising;:
constructing mixed data by mixing the predefined noise
data and clean speech data;
dividing the mixed data mto a plurality of frames;
dividing the clean speech data into a corresponding
plurality of frames;
identifying a first subset of the plurality of frames of the
mixed data, the first subset including a randomly cho-
sen frame and a first plurality of frames immediately
preceding the randomly chosen frame;
identiiying a corresponding first subset of the plurality of
frames of the clean speech data;
performing a discrete Fourier transform for the first
subset of the plurality of frames of the mixed data
and the corresponding first subset of the plurality of
frames of the clean speech data to obtain mixed data
frequency-domain outputs and clean speech data
frequency-domain outputs for each frame;
calculating the known ratio mask for one frame of the
plurality of frames of the mixed data based on the
mixed data frequency-domain outputs and the clean
speech data frequency-domain outputs and
using the known ratio mask as an output for the neural
network during training.
6. The method of claim 5, wherein training the neural
network further comprises:
identifying a second subset of the plurality of frames of
the mixed data, the second subset including a second
plurality of frames;
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performing a discrete Fourier transform for the second
plurality of frames to obtain frequency-domain outputs
for each frame of the second subset;

calculating a noise model approximation based on the

frequency-domain outputs for each frame of the second
subset:;

combining the mixed data frequency-domain outputs for

the first subset with the noise model approximation to
create an 1mput matrix; and

using the mput matrix as an iput for the neural network

during training.

7. The method of claim 1, further comprising training the
neural network using a gradient descent algorithm and mean
square error as a loss function.

8. The method of claim 1, further comprising:

determining, for each of the plurality of temporally over-

lapping frames of clean speech data, whether the frame
includes voice activity; and

only using frames of clean speech data that do not include

volice activity to calculate the noise model approxima-
tion during training of the neural network.

9. The method of claim 1, turther comprising;:

obtaining a voice activity detection parameter as an output

from the neural network: and

revising said noise model based on said voice activity

detection parameter.

10. The method of claim 5, wherein training the neural
network comprises constructing mixed data by mixing noise
data and clean speech data having a plurality of sampling
rates.

11. The method of claim 10, further comprising:

detecting a sample rate from the clean speech data;

extracting features of the clean speech data based on the
detected sampling rate; and

calculating the known ratio mask based on the extracted

features.

12. The method of claim 11, wherein the noise model
approximation process further comprises:

detecting a sample rate of the combination of voice data

and noise data; and

after performing a discrete Fourier transform on each

frame of said plurality of frames to provide said plu-
rality of frequency-domain outputs, selecting a subset
of said plurality of frequency-domain outputs based on
said detected sample rate; and

inputting said subset of frequency-domain outputs and

said noise model approximation to said neural network.

13. The method of claim 1, wherein said neural network
contains a structure and parameters based on a previous
training using predefined noise data and clean speech data to
result i a known ratio mask.

14. A method of bandwidth expansion, comprising:

receiving an audio file comprising a combination of voice

data and noise data having a first bandwidth;
dividing said audio file into a plurality of frames;

for a first frame of said plurality of frames, performing a

bandwidth expansion process comprising:

performing a fast Founier transform to obtain audio
features corresponding to the combination of voice
data and noise data;

obtaining a power spectrum of the audio features;

inputting the power spectrum to a neural network;

determining a phase of the audio features;

constructing a frequency spectrum having a second
bandwidth based on an output of the neural network
and the determined phase, the second bandwidth
being greater than the first bandwidth; and
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taking an 1nverse fast Fourier transform of the fre-
quency spectrum to provide an audio signal;
repeating said bandwidth expansion process for a subse-
quent frame of said plurality of frames; and
outputting an audio file having the second bandwidth
based on the audio signals for the plurality of frames.
15. The method of claim 14, further comprising:
training the neural network, comprising:
obtaining a first sample of an audio file and a second
sample of the audio file, the first sample having a first
frequency bandwidth and the second sample having
a second frequency bandwidth, the second frequency

bandwidth being larger than the first frequency band-
width;
dividing the first sample and the second sample mnto a
plurality of frames;
performing a fast Fourier transform for the plurality of
frames of the first sample to obtamn first audio
features;
performing a fast Fourier transform for the plurality of
frames of the second sample to obtain second audio
features;
using a high pass filter to remove audio features within
the first frequency bandwidth from the second audio
features, resulting 1n filtered second audio features;
and
using the first audio features as an input and the filtered
second audio features as an output for the neural
network during training.
16. A speech enhancement system comprising:
a processor; and
a memory device coupled to the processor, the memory
device configured to store 1structions for execution on
the processor, the mstructions causing the processor to:
receive an audio file comprising a combination of voice
data and noise data;
divide said audio file 1into a plurality of frames;
perform a discrete Fourier transform on each frame of
a first subset of said plurality of frames to provide a
plurality of frequency-domain outputs;
input said plurality of frequency-domain outputs of said
discrete Fourier transform and a noise model
approximation to a neural network;
obtain a ratio mask as an output from said neural
network:
compute clean voice coetlicients using said ratio mask;
and
output an audio file having enhanced speech and sup-
pressed noise based on said computed clean voice
coellicients.
17. The speech enhancement system of claim 16, wherein
the 1nstructions further cause the processor to:
prior to said outputting said audio file having enhanced
speech, revise said noise model approximation using
said ratio mask to provide a revised noise model
approximation for input to said neural network;
perform a discrete Fourier transform on each frame of a
second subset of said plurality of frames to provide a
second plurality of frequency-domain outputs;
input said second plurality of frequency-domain outputs
of said discrete Fourier transform and said revised
noise model approximation to said neural network;
obtain a revised ratio mask as an output from said neural
network; and
compute clean voice coeflicients using said revised ratio
mask.
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18. The speech enhancement system of claim 16, wherein
the 1nstructions further cause the processor to:
prior to said outputting said audio file having enhanced
speech, revise said revised noise model approximation
using said revised ratio mask to provide a second 5
revised noise model approximation for input to said
neural network:
perform a discrete Fourier transform on each frame of a
third subset of said plurality of frames to provide a third
plurality of frequency-domain outputs; 10

input said third plurality of frequency-domain outputs of
said discrete Fourier transform and said second revised
noise model approximation to said neural network;

obtain a second revised ratio mask as an output from said
neural network; and 15

compute clean voice coellicients using said second
revised ratio mask.

19. The speech enhancement system of claim 16, wherein
the 1nstructions further cause the processor to:

train the neural network using a gradient descent algo- 20

rithm and mean square error as a loss function.

20. The speech enhancement system of claim 16, wherein
said neural network contains a structure and parameters
based on a previous training using predefined noise data and
clean speech data to result 1n a known ratio mask. 25
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