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SYSTEMS AND METHODS FOR LEARNING
AND PREDICTING TRANSACTIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 15/481,094, filed Apr. 6, 2017, the disclosures
of which 1s incorporated by reference in its entirety.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a learning and prediction system according to an
embodiment of the invention.

FIG. 2 1s a neural network overview according to an
embodiment of the invention.

FIG. 3 1s a long short term memory mput/output example
according to an embodiment of the invention.

FIG. 4 1s a long short term memory processing example
according to an embodiment of the invention.

FIG. § shows a recurrent neural network and long short
term memory network according to an embodiment of the
invention.

FIG. 6 A-6FE show a long short term memory network
process according to an embodiment of the invention.

FIG. 7 1s a learning and prediction overview according to
an embodiment of the invention.

FIG. 8 1s a learning and prediction process according to an
embodiment of the invention.

FIG. 9 1s a model training process according to an
embodiment of the invention.

DETAILED DESCRIPTION OF SEVERAL
EMBODIMENTS

Systems and methods described herein may utilize deep
learning techniques to predict future transactions. Deep
learning (which can also be called deep structured learning,
hierarchical learning or deep machine learning) comprises a
class of machine learming algorithms that: can use a cascade
of many layers of nonlinear processing units for feature
extraction and transformation (e.g., each successive layer
uses the output from the previous layer as input); can be
based on the (unsupervised) learning of multiple levels of
features or representations of the data (e.g., higher level
features are derived from lower level features to form a
hierarchical representation); can be part of the broader
machine learning field of learning representations of data;
and can learn multiple levels of representations that corre-
spond to different levels of abstraction where the levels form
a hierarchy of concepts. There are several algorithms 1n this
family: recurrent neural networks, restricted Boltzman
machines, convolutional neural networks etc. Typically,
deep learning 1s used for computer vision and natural
language processing application. In one embodiment, deep
learning 1s utilized in a business application. For example,
given a series ol past transactions made by a customer, a
deep learning model may be used to predict what the next
transaction will be and when 1t will occur. Predictions may
be based on a publicly available data set (e.g., a transaction
record) 1n some embodiments, aggregating hundreds of
millions of customer transactions. Examples described
herein use point of sale data, but the deep learning and
prediction techniques may be applied to other data types.
Each transaction may include a customer 1D, a time stamp,
and/or a precise description of the items purchased (e.g.,
department, product, quantity, price, etc.). A long short term
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memory (LSTM) network may use this data to predict what
and when the next transaction will be. A LSTM network
comprises a recurrent neural network (RNN) architecture. A
LSTM network can be umversal in the sense that given
enough network units 1t can compute anything a conven-
tional computer can compute, provided 1t has the proper
weight matrix, which may be viewed as i1ts program. A
LSTM network may be well-suited to learn from experience
to classily, process and predict time series when there are
varying time lags. With training, the LSTM network may
output accurate predictions, such as, for example, regarding
what/when a next transaction will be. In some example
embodiments, prediction accuracy may be as follows:

Predictions may be at least 10x better than chance.

More than 50% of the items that are actually purchased
during the next transaction may be predicted (this may
be referred to as sensitivity).

More than 50% of the predicted items may actually be
purchased during the next transaction.

More than 95% of the items that are not in the predicted
basket may actually be not purchased (this may be
referred to as specificity and/or a true negative rate).

The predicted time until next transaction may be as close
as a few hours to the actual purchase time.

The systems and methods described herein may have a
diverse range ol applications, as they provide enhanced
customer behavior prediction at a micro level and can
therefore help optimize targeted marketing, dynamic pric-
ing, nventory management, etc. for retailers which includes,
but 1s not limited to: grocery chains, clothing chains, fast
food chains, etc. With information on when the customers
are going to come back and what they are going to buy,
retailers can enhance their marketing strategies and promo-
tional offers to increase sales. Knowing demand for particu-
lar 1tem(s) will peak on a specific day allows the retailers to
plan for the supply, optimize mventory and strategize pric-
ng.

FIG. 1 1s a block diagram of an example learning and
prediction system architecture 100 that may implement the
features and processes described herein. The architecture
100 may be implemented on any electronic device that runs
soltware applications derived from compiled instructions,
including without limitation personal computers, servers,
smart phones, media players, electronic tablets, game con-
soles, email devices, etc. In some implementations, the
architecture 100 may include one or more processors 102,
one or more mput devices 104, one or more display devices
106, one or more network interfaces 108, and one or more
computer-readable mediums 110. Each of these components
may be coupled by bus 112.

Display device 106 may be any known display technol-
ogy, mcluding but not limited to display devices using
Liquid Crystal Display (LCD) or Light Emitting Diode
(LED) technology. Processor(s) 102 may use any known
processor technology, including but not limited to graphics
processors and multi-core processors. Input device 104 may
be any known mput device technology, including but not
limited to a keyboard (including a virtual keyboard), mouse,
track ball, and touch-sensitive pad or display. Bus 112 may
be any known internal or external bus technology, including
but not limited to ISA, EISA, PCI, PCI Express, NuBus,
USB, Senal ATA or FireWire. Computer-readable medium
110 may be any medium that participates in providing
instructions to processor(s) 102 for execution, including
without limitation, non-volatile storage media (e.g., optical
disks, magnetic disks, flash drives, etc.), or volatile media

(e.g., SDRAM, ROM, etc.).
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Computer-readable medium 110 may include various
instructions for implementing an operating system 114 (e.g.,
Mac OS®, Windows®, Linux). The operating system may
be multi-user, multiprocessing, multitasking, multithread-
ing, real-time, and the like. The operating system 114 may
perform basic tasks, including but not limited to: recogniz-
ing input from input device 104; sending output to display
device 106; keeping track of files and directories on com-
puter-readable medium 110; controlling peripheral devices
(e.g., disk drnives, printers, etc.) which can be controlled
directly or through an I/O controller; and managing trailic on
bus 112. Network communications 116 may use instructions
to establish and maintain network connections (e.g., soft-
ware for implementing communication protocols, such as
TCP/IP, HTTP, Ethernet, etc.).

A learming and prediction system 118 can include 1nstruc-
tions that may perform deep learning and/or LSTM network
processing as described 1n detail below. For example, the
learning and prediction system 118 may analyze transactions
and make future transaction predictions.

Application(s) 120 may be one or more applications that
use or implement the processes described below. The pro-
cesses may also be implemented 1n operating system 114.

The described features may be implemented 1n one or
more computer programs that may be executable on a
programmable system including at least one programmable
processor coupled to receive data and 1nstructions from, and
to transmit data and instructions to, a data storage system, at
least one input device, and at least one output device. A
computer program 1s a set of instructions that can be used,
directly or indirectly, in a computer to perform a certain
activity or bring about a certain result. A computer program
may be written in any form of programming language (e.g.,
Python, Objective-C, Java), including compiled or inter-
preted languages, and 1t may be deployed i any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing,
environment.

Suitable processors for the execution of a program of
instructions may include, by way of example, both general
and special purpose microprocessors, and the sole processor
or one of multiple processors or cores, of any kind of
computer. Generally, a processor may receive instructions
and data from a read-only memory or a random access
memory or both. The essential elements of a computer may
include a processor for executing instructions and one or
more memories for storing instructions and data. Generally,
a computer may also include, or be operatively coupled to
communicate with, one or more mass storage devices for
storing data files; such devices include magnetic disks, such
as internal hard disks and removable disks; magneto-optical
disks; and optical disks. Storage devices suitable for tangi-
bly embodying computer program instructions and data may
include all forms of non-volatile memory, including by way
of example semiconductor memory devices, such as
EPROM, EEPROM, and flash memory devices; magnetic
disks such as internal hard disks and removable disks;
magneto-optical disks; and CD-ROM and DVD-ROM disks.
The processor and the memory may be supplemented by, or
incorporated 1n, ASICs (application-specific integrated cir-
cuits).

To provide for interaction with a user, the features may be
implemented on a computer having a display device such as
a CRT (cathode ray tube) or LCD (liquid crystal display)
monitor for displaying information to the user and a key-
board and a pointing device such as a mouse or a trackball
by which the user can provide mput to the computer.
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The features may be implemented 1n a computer system
that includes a back-end component, such as a data server,
or that includes a middleware component, such as an appli-
cation server or an Internet server, or that includes a front-
end component, such as a client computer having a graphical
user interface or an Internet browser, or any combination of
them. The components of the system may be connected by
any form or medium of digital data communication such as
a communication network. Examples of communication
networks include, e.g., a LAN, a WAN, and the computers
and networks forming the Internet.

The computer system may include clients and servers. A
client and server may generally be remote from each other
and may typically interact through a network. The relation-
ship of client and server may arise by virtue ol computer
programs running on the respective computers and having a
client-server relationship to each other.

One or more features or steps of the disclosed embodi-
ments may be implemented using an API. An API may
define one or more parameters that are passed between a
calling application and other software code (e.g., an oper-
ating system, library routine, function) that provides a
service, that provides data, or that performs an operation or
a computation.

The API may be implemented as one or more calls 1n
program code that send or receive one or more parameters
through a parameter list or other structure based on a call
convention defined in an API specification document. A
parameter may be a constant, a key, a data structure, an
object, an object class, a variable, a data type, a pointer, an
array, a list, or another call. API calls and parameters may be
implemented 1n any programming language. The program-
ming language may define the vocabulary and calling con-
vention that a programmer will employ to access functions
supporting the API.

In some implementations, an API call may report to an
application the capabilities of a device running the applica-
tion, such as input capability, output capability, processing
capability, power capability, communications capability, etc.

Learning and prediction system 118 may utilize one or
more deep learning models. Deep learning models are
advanced machine learning algorithms based on computa-
tional models of the brain. Deep learning models may
include neural networks. Neural networks may be trained
using past data to predict future events. Research by Jurgen
Schmidhuber and his team has shown how LSTM can learn
to remember the important things and forget the less impor-
tant ones, 1n the context of brain modeling and language
learning. LSTMSs are helpful 1n natural language generation
for this reason, since they remember the context and use 1t
to predict what the next word (or sentence, etc.) should be.

For additional information on LSTMs, the following
references, which are herein incorporated by reference in
their entirety, may be consulted: “Learming Precise Timing
with LSTM Recurrent Networks” by F. A. Gers et al. n
Journal of Machine Learning Research, Vol. 3, Pgs. 115-143
(August 2002); “Learming to Forget: Continued Prediction
with LSTM” by F. A. Gers et al. in Neural Computation, Vol.
12, Is. 10, Pgs. 2451-2471 (2000/10); and “Long Short-Term
Memory” by S. Hochreiter et al., in Meural Computation,
Vol. 9, Is. 8, Pgs. 1735-1780 (1997, Nov. 15).

FIG. 2 1s a neural network overview according to an
embodiment of the invention. A neural network 202 may be
composed of a plurality of layers. For example, neural
network 202 includes an 1nput layer, a hidden layer, and an
output layer. The point-wise non linearity of each layer may
vary depending on the type of layer. Each layer may be
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composed of a plurality of nodes, which are also referred to
as neurons. Nodes from a given layer may be connected to
some or all of the nodes 1n the next layer, and each of these
connections may be characterized by a weight. Each node/
neuron i1n one layer may be fully connected to all the nodes
above and below this layer. As these nodes learn specific
relationships among the input patterns, their weights may be
strengthened. A particular input pattern could increase the
welghts and/or connection strength between several nodes
and decrease the weights elsewhere. This may be akin to
how the neurons in the brain learn to fire together—by
forming strong relationships. Each node may process the
information passed along by all the nodes from the previous
layers. For example, in 206, a node may receive data a,-a,
from the n nodes of the previous layer, and may process the
data according to a specified algorithm involving the
weights w of the connections. Diagram 204 i1s the same
neural network diagram of 202, but highlights the hidden
layers. Several such hidden layers can be added in an LSTM
to learn association between transactions. 206 illustrates
how the different weights can lead to an activation of the
node/neuron. 208 describes a cost function algorithm show-
ing how the weights can be learned when the prediction error
1s propagated back by a backpropagation algorithm, such as
one of the examples shown 1n 210. Neural network 202 may
have a cost function 208. For example, the cost function may
be the cross entropy between the target values and the output
of the network obtained by feeding a given input vector. The
discrepancy and/or error between output and target may be
back propagated through the neural network 202 (e.g., using
one or more of the back propagation equations 210), which
may cause the network weights to be optimized. By feeding
multiple data points into the neural network 202 (e.g.,
batches of data), the weights may be optimized, and the error
may decrease. Accordingly, neural network 202 may be
trained.

Additional mmformation on the back-propagation equa-
tions and algorithm can be found in the article “Learming
Representations by Back-Propagation™ by D. E. Rumelhart
et al. in Nature, Vol. 323, Pgs. 533-536 (1986), which 1s
incorporated by reference in 1ts entirety:

FIG. 3 1s a LSTM put/output example according to an
embodiment of the invention. LSTM was born 1n the context
ol language processing, providing the ability to understand
language and context and coherently complete a sentence.
From a “learning” perspective, one strength of the LSTM 1s
in 1ts ability to process and predict time series when con-
nected events happen with varied degrees of time lags.
LSTM may allow a processor to select what to remember
and what to forget. In the example of FIG. 3, the left column
includes beginnings of statements, and the right column
represents attempts to complete the statements. Statement
302 may have a relatively obvious context and may be easily
completed 1n 304 (e.g., “clouds are 1n the sky™). However,
statement 306 may require additional context to complete 1n
308 (e.g., “I speak fluent . . . ” may be completed by any
language). Given prior context, as in statement 310, a
processor using LSTM may be able to complete an other-
wise ambiguous statement i 312 (e.g., given the “I'm
Italian™ context, “I speak fluent . . . ” may be completed with
“Italian™). LSTM may be used to interpret context and
determine what 1s important and what 1s not, and use the
important context to make future predictions (e.g., predic-
tions about the end of a statement 1n the example of FIG. 3).

FIG. 4 1s a LSTM processing example according to an
embodiment of the mnvention. In 402, an LSTM system may
receive mput (e.g., spoken audio). In this example, the user
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says “I was born 1n Italy, I speak fluent . . . ” The user’s
statement contains two clauses, an earlier first clause (“I was
born 1n Italy”) and a later second clause (*I speak fluent . .
. 7). Each clause contains a plurality of words. Each clause
corresponds to a context, the first clause to a prior context
404 and the second clause to a recent context 406 occurring
later 1n time than the prior context 404. The LSTM system
may use words from the prior context 404 and the recent
context 406 to predict the next word (e.g., prediction 408
“Italian™).

The example of FI1G. 4 uses linguistic contexts to predict
future words, but the same LSTM concepts may be applied
to other types of predictions. For example, as described
below, LSTM may be used to make predictions about future
transactions. In one example, records of a person’s past
purchases may be mput and analyzed, and predictions about
future user purchases (e.g., what will be purchased and
when) may be output. Relative to the example of FIG. 4,
words may correspond to single transactions, and sentences
may correspond to a series of transactions. Instead of
predicting the next word, systems and methods described
herein may predict the next transaction.

FIG. 5 shows a comparison between an example of
recurrent neural network 502 and LSTM network 504
according to an embodiment of the invention. The compari-
son 1illustrates how the respective networks may process
time series data to learn patterns and modify their predic-
tions based on past outputs. In the LSTM example model,
time can be implicitly modeled, the model can learn the
temporal sequence information (e.g., such as by learning a
musical composition) and can use it to predict the next note,
when presented with the first few notes of the composition.
This may be diflerent from classical neural network models
where each input may be associated with an output, and the
inputs may be considered independent (e.g., even if they are
in a sequence). In other words, the classical neural network
model can learn the association between one note and the
tollowing note—but this learning may be completely devoid
of the context and rhythm. Recurrent neural network 502
may include loops, allowing the output of the n-th iteration
to be fed back to the network of the (n+1)th 1teration (e.g.,
along with the new mnput vector). Accordingly, recurrent
neural network 502 may try to learn everything but may
“remember” only important events, akin to humans, who can
remember the musical note sequences for some composi-
tions (e.g., such as those heard often or liked) and forget the
musical note sequences for others LSTM can remember
important, frequent and/or relevant sequences and forget the
umimportant, rare and/or less relevant ones. LSTM network
504 may be an advanced version of recurrent neural network
502. RNNs aim to learn and memorize all mnput sequences,
whereas LSTM aims to learn relevant significant sequence
patterns and forget the less relevant ones. LSTM network
504 may predict and forecast next “entity” based on previ-
ous outputs. In doing so, LSTM network 504 may adapt 1ts
“way of thinking.” To extend the musical sequence analogy,
cach transaction can be treated like a musical note. The 1input
variables can be the encoded transaction or musical note,
and weights 1n the model can be updated based on the
presented mput sequence.

In embodiments of the invention, the modeling done 1n
LSTM network 504 may comprise the following varnables:
X, The input vector at the t-th iteration. This vector can be

an encoded representation of a series of transactions. An

example of an algorithm by which x, 1s generated 1s
detailed 1n FIG. 8. More precisely, X, can take the form of

the sequence of vectors 1n sub FIG. 808.
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h, ,: The output vector from the previous iteration, (t-1)-th.
In other words, h._, can be the vector outputted by the
network at the previous 1teration; 1t can take the form of
the vector in sub FIG. 812.

o: The sigmoid non-linear function.

tanh: The tanh non-linear function.

W, W, W_, W_ Weight matrices, whose entries can be
randomly 1nitialized and can be optimized during the
traimning phase (e.g., via one or more backpropagation
algorithms).

bs b;, b,. b_: Bias vectors, whose entries can be randomly
initialized and can be optimized during the training phase
(e.g., via one or more backpropagation algorithms).

t;: A vector, defined as t=0(W;[h, ,, x]+b)).

1,: A vector, defined as 1.=0(W -[h,,, X.|]+b;)

C.: A vector, defined as C ~=tanh (W_[h,,, X ]+b_)

C,: The state vector, defined as C=f*C,,+i *C,

0,. A vector, defined as o,=o(W _-[h, ,, X,]+b )

h.: The output vector (see above), defined as h =0 * tanh (C,)
FIG. 6 A-6F show a LSTM network process 600 accord-

ing to an embodiment of the invention. Specifically, FIG. 6 A

shows process 600, and FIGS. 6B-6E show detailed views of

steps 604-610, respectively. LSTM network process 600

may be performed by LSTM network 304 operated by

system 100, for example.

In 602, system 100 may receive input to be evaluated. In
604, system 100 may apply a forget gate layer. The forget
gate layer may decide what information to throw away from
the mput data, which may also be referred to as the cell state.
For example, as shown in FIG. 6B, both the previous output
(e.g., outcome of past iteration(s) of process 600 at step 610)
and the new 1nput may be passed through a sigmoid hidden
layer. As set forth 1n the variable definitions above, both the
previous output h, and the new input x, can be multi-
dimensional vectors. The term “passed through a sigmoid
hidden layer” can mean that the above vectors are sent
through a regular dense neural network layer. In other
words, each neuron 1n the hidden layer can compute the
welghted sum of the mput’s entries (e.g., weighted by the
relevant parameter, here W ), and add a bias value to 1t (e.g.,
here by). The resulting scalar can then pass through a specific
non-linear function named sigmoid, o. The output of such
process can then be set to the next step by the neuron.

In 606, system 100 may apply an mput gate layer. The
input gate layer may decide what new information to store
in the cell state. For example, as shown 1n FIG. 6C, this step
may have two parts. The previous output h,,, and the new
mput x,, (see VARIABLE DEFINITIONS for more details)
may be passed through a sigmoid hidden layer, and sepa-
rately in some embodiments, the previous output and the
new 1nput may be passed through a tanh hidden layer,
tollowing the same mechanics previously described. Those
two distinct layers may only differs from one another in
terms of the type of non-linear function that 1s applied to the
output of the individual computation of each neuron (e.g.,
one 1s a sigmoid o, the other 1s tanh).

In 608, system 100 may update an old cell state. For
example, as shown 1n FIG. 6D, cell state may be updated via
3 distinct element wise operations between the 3 previously
outputted vectors and the current state of the nets. More
concretely, the output of 604 can be point-wise multiplied
with the old state vector C,_ ;. Then, both outputs from 606
can be point-wise multiplied with each other. The output
vector can then point-wise added to the updated state vector.

In 610, system 100 may decide what to output. For
example, as shown 1n FIG. 6E, the decision may be based on
the updated cell state, the previous output, and the current
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input. Both the previous output and the new input may be
passed through a sigmoid hidden layer. The results may be
point-wise multiplied with the updated cell state vector C,,
which previously was passed through a tan, non-linearity.
System 100 may output the resulting vector h(See VARI-
ABLE DEFINITIONS for more details).

FIG. 7 1s a learning and prediction overview, wherein
transactions may be used to train a predictive model, accord-
ing to an embodiment of the mvention. In this example, the
inputs 702 include records of transactions (e.g., user pur-
chases, including what was purchased, when, where, at what
price, and/or other information). Inputs 702 (transactions)
may be represented as separate transaction baskets, where
cach transaction basket may include one or more purchased
items. System 100 may encode transaction baskets into
binary vectors according to the mapping described 1n 804 of
FIG. 8. For example, if there are a total of 2 items A and B,
then a transaction consisting of B only, will be encoded as
(0,1). System 100 may also encode time since last transac-
tion. For example, 1n the example above, 11 the time since the
previous transaction was 24 hours, the final encoded trans-
action vector will be (0,1,24).

System 100 may feed encoded transactions to LSTM
model 704. Within model 704, a data point may comprise a
series ol sequential transactions, not a single unique trans-
action. LSTM model 704 may extract information from the
sequence of transactions. LSTM model 704 may also extract
information from the time between transactions.

System 100 may produce output 706. Output 706 may
include predictions regarding when a next transaction 1s
likely and what items are likely to be purchased next.

FIG. 8 1s a learming and prediction process according to an
embodiment of the mnvention. This process may be a speciiic
implementation of the general learning and prediction pro-
cedure illustrated 1n FIG. 7. As 1n FIG. 7, the process of FIG.
8 may use a series of sequential transaction made by a given
customer as mput(s). Each transaction may include a set of
purchased items and a time stamp. For example, the data set
may be a sequence of transactions, such that for each
transaction, the items purchased are specified, as well as the
time when the transaction took place.

(Given an mput transaction, 1 802, system 100 may create
a mapping such that each item gets assigned a unique index.
For example, 1f there are a total of 2 1tems, A and B, then
item A may be assigned index 0, and item B may be assigned
index 1. In 804, system 100 may encode the transaction to
represent each mapped 1tem within the transaction. For
example, in the example above, a transaction consisting only
of 1item A will be mapped to the vector (1,0). In 806, system
100 may add a dimension to the encoded transaction to
indicate the time since the last transaction. For example 1n
the example above, 11 the time since the previous transaction
was 48 hours, the final encoded transaction vector will be
(1,0,48). These steps may be repeated for multiple input
transactions.

In 808, system 100 may feed a series of sequential
transactions vectors encoded as described above as a single
data point to the LSTM network. For example, within the
frame of the above example, such vector sequence could be
(0,1), (1,1), (0,1), (1,0). In the embodiment 1n 810, system
100 may sequentially pass the data point through: an 1nput
layer, an LSTM layer, a reshape layer, a dense layer, a
reshape layer, and an output layer. (Note that in other
embodiments the number of a certain type of layer can vary
and/or the order of how the data 1s passed through the layers
can vary.) An LSTM layer can process the data as described
in FIG. 6. A reshape layer can allow an LSTM’s output to be
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reshaped into a different multi-dimensional vector. A dense
layer may be a simple fully connected neural network layer.
Where the output of a previous reshape layer can be sent to
two distinct dense layers: one layer can try to learn “what”™
the next transaction will be while the other layer can try to
learn “when” 1t will take place. An output layer can compute
the predictions based on the output of the previous dense
layer. The sequence of the transaction vector 1s then fed to
the network and can successively be passed through various
layers. First, the input may be passed through a LSTM layer,
according to the algorithm detailed in FIG. 6B-FIG. 6E.
Then, the output of such layer may be reshaped mto a
multi-dimensional vector with different dimensions. Then,
this new multi-dimensional vector may be passed through a
regular fully connected dense neural network layer, accord-
ing to the algorithm detailed i FIG. 2. Finally, the output of
this dense layer may be passed through an output layer,
which turns its iput 1nto a probability distribution.

In 812, system 100 may generate an output of the sequen-
tial layers that may include a vector of probability of
purchase for each item as well as the estimated time of
purchase for each 1tem. For example, within the frame of the
above example, such vector could be (75%, 62%, 2.3),
where the first entry represents the probability item A 1s
purchased during the next transaction, the second entry
represents the likelihood of 1tem B being bought, and the
third entry 1s the time prediction regarding when the next
transaction will occur. In 814, system 100 may compare the
output to the actual vector of purchased items during the
next transaction (e.g., which may be mput and encoded as
discussed above 1n 802-806) and compute the error between
the target vector and the output 812. For example, within the
frame of the above example, the prediction vector could be
(75%, 62%, 2.3) and the actual transaction vector could be
(1, 0, 3.4). In 816, system 100 may back propagate the
discrepancy/error between output and target through the
LSTM network and the weights may be optimized. For
example, as explained above, each neuron 1n a given layer
of the network may be connected to all or some neurons 1n
the next layer. Each of these connections may be character-
1zed by a ‘weight’. The training phase may optimize those
weights, for example, by finding the set of weights that
mimmizes the error between the prediction output and the
actual target values. The back-propagation through time
algorithm used in 816 may perform such optimization 1n

some embodiments. By repeating the process 802-816 a
large number of times (e.g., any large number of times, such
as 2000 times), the LSTM may be trained.

FIG. 9 1s a model training process according to an
embodiment of the mvention. For example, the process of
FIG. 9 may be a specific implementation of the data point
creation 1n 808 and LSTM training in 816 of FIG. 8.

System 100 may build one or more transaction vectors
902 to represent transactions. This may be done, for
example, by using data from an Online Analytical Process-
ing (OLAP) Database 904. System 100 may retrieve from
database 904 one or more of the following: point of sale
(POS) data (e.g., item purchased, price, time, etc.) 906,
customer profiles and behavioral attributes (e.g. age, occu-
pation, marital status) 908, product information (e.g. nutri-
tional value, size, content, ingredients) 910, and/or physical
context (e.g. hour of the day, temperature, location) 912.
From this information, system 100 may build a transaction
vector 914, according to the mapping described in 802-804.
For example, 11 there are a total of 2 items, A and B, then
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item A may be assigned index 0, and 1tem B may be assigned
index 1. A transaction consisting only of item A will be
mapped to the vector (1,0).

Transaction vector 914 may be used to train the model
916. The mput layers 918 may feed mto LSTM layers 920
which may learn long or short-term dependencies out of the
data (as described 1n FIG. 6B through 6EF). Dropout layers
may also be included to prevent over fitting. A dropout layer
may allow certain nodes 1n the network to be randomly
disregarded during the training process, causing the associ-
ated weights to not be updated during all training iterations.
The at least one LSTM layer may feed into at least one
reshape layer 921, then at least one dense layer 922, then at
least one output layers 923 which may reshape the data to
output the predicted transaction vectors (reshape layers
allows to change the dimension of the multidimensional
vector, that 1s output by the previous layer. Dense layers are
simple fully connected neural network layers) as described
in FIG. 2. The exact amount of layers may be problem-
specific and may be tuned via cross-validation. For example,
one may train and test a network with 2 layers, and keep
track of the prediction quality of such model. He/She then
may train and test another network with 4 layers, and keep
track of the quality of predictions. By comparing the pre-
dictive power of both models (e.g., 2 vs 4 layers), one may
know which number of layer 1s optimal System 110 may
train the model via a Backpropagation Through Time
(BPTT) algorithm to learn the parameters of the network
over Graphics Processing Unit (GPU) hardware and serial-
1ze the trained model for future business use. The resulting
output may be a trained network 938.

Note that additional information on the BPTT equations
and algorithm can be found 1n the article entitled “A Focused
BackPropagation Algorithm for Temporal Pattern Recogni-
tion” by MC Mozer in Complex Systems, Vol. 3, Pgs.
349-381 (1989), which is herein incorporated by reference 1n
its entirety.

Once the network 1s trained, system 100 can use new
transaction data and predict future transactions. The predic-
tion quality may be assessed via measuring the discrepancy
between the predicted output and the actual target. For
example, once a predicted basket of future purchases has
been computed, 1t may be compared to an actual transaction
basket. System 100 may use a confusion matrix to compute
the number of times a predicted i1tem was actually pur-
chased, a predicted item was not purchased, a non-predicted
item was purchased, and/or a non-predicted item was not
purchased. These numbers may allow system 100 to com-
pute metrics such as sensitivity (also called recall, or true
positive rate) and specificity (also called true negative rate).
Listed below are some other example metrics that system
100 may compute.

Note that additional information on these metrics can be
found m the Wikipedia article entitled “Sensitivity and
Specificity” and 1n the article entitled “Diagnostic Tests 1:
Sensitivity & Specificity” by D. G. Altman et al. in BMI,
Vol. 308, Pg. 1552 (Jun. 11, 1994), which are herein incor-
porated by reference 1n their entirety.

Precision: Percentage of predicted items that are actually
purchased during the next transaction.

Cross entropy: A measure of how high the probabilities of
purchase were for products that were actually purchased,
and of how low the probabilities of purchase were for
products that weren’t actually purchased.

Predicting time until next transaction: Since the LSTM
also outputs the estimated time until the next transaction
occur, system 100 can assess the quality of such prediction.
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Mean-squared error: Computing the square of the differ-
ence between the predicted amount of time until the next
transactions and the actual time periods until next transac-
tions.

Parameter tuning slide: Using an LSTM to predict future
transactions may 1mvolve mnovative parameterization, such
as the following:

Number of hidden units: Number of neurons in the first
hidden layer of the neural network set to ~30 1n this
example.

Number of learning epochs: Number of learning itera-
tions, (e.g., the number of batches of points that will be
used for training, which is set to >200 1n this example).

Batch size: Number of traiming data points to be fed at
once set to 1 1n this example.

Learning rate: How much each learning iteration waill
modily the weights 1n the net set to ~0.075 1 this
example.

Sequence length: Number of distinct transactions to be
used 1n a single data point set anywhere between 2 and
20 1n this example.

The sequence length may tell the LSTM how far back in
the past they can look to predict the next transaction. The
value for the sequence length may depend on the type of
customer, the average basket size, and/or the variance of the
time 1ntervals between transactions. An example heuristic 1s
to set the sequence length s to: s=0.561,40.220, where L1 1s
the average basket size and o, 1s the standard deviation of the
time periods between transactions.

When the algorithm 1s well tramned and tuned, the pre-
dicting power can be useful. For example, 1n some examples
using some embodiments of the mmvention, the following
results have been demonstrated:

More than 50% of the 1tems that were actually purchased
during the next transaction were predicted (e.g., also
referred to as recall and/or sensitivity).

More than 350% of the predicted items were actually
purchased during the next transaction (e.g., also
referred to as precision).

More than 95% of the 1tems that were not 1n the predicted
basket were actually not purchased (e.g., also referred
to as true negative rate and/or specificity).

The predicted time until the next transaction was close
(e.g., within a few minutes, within a few hours) to the
actual purchase time.

Such predictive power may provide visibility on what the
customers’ next short term moves will be. Useful business
applications may comprise the following:

Predictive ability at the customer level.

More efhicient targeted advertisement (e.g., oflers,

rewards, etc.).

Better dynamic pricing strategies.

Optimized inventory management.

The following example illustrates a complex classifica-
tion problem that may be solved by the LSTM. Consider the
following scenario:

Distinct 1tems to potentially purchase: 70

Number of 1tems 1n the true transaction basket: 6

By picking 6 items at random without replacement, what
1s the expected number of 1tems that will be 1n the actual
basket?

This experiment follows a hyper-geometric distribution
and the average number of right item picks 1s ~0.51.

The deep learning approach consistent with the descrip-
tion above may yield approximately 5 right item predictions
per basket (10 times more).
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The LSTM tries to predict both what will be purchased
next and when. Qualitatively, a customer may purchase an
unusually large basket of products, giving information on
what he will and will not purchase next and when he will do
so (e.g., 1t may be safe to assume he will not be shopping for
a while). Quantitatively, the training algorithm may attempt
to minimize a linear combination of the cross entropy cost
function from the “what” problem and the mean squared
error cost function from the “when” problem. During the
back propagation phase, discrepancy between the true time
and the estimated time may impact the weights of the part of
the neural network dedicated to solving the “what” problem
(and vice-versa).

While various embodiments have been described above,
it should be understood that they have been presented by
way ol example and not limitation. It will be apparent to
persons skilled 1n the relevant art(s) that various changes in
form and detail can be made therein without departing from
the spirit and scope. In fact, after reading the above descrip-
tion, 1t will be apparent to one skilled 1n the relevant art(s)
how to implement alternative embodiments.

In addition, it should be understood that any figures which
highlight the functionality and advantages are presented for
example purposes only. The disclosed methodology and
system are each sufliciently flexible and configurable such
that they may be utilized in ways other than that shown.

Although the term ““at least one” may often be used in the
specification, claims and drawings, the terms “a”, “an”,
“the”, “said”, etc. also signity “at least one™ or “the at least
one” 1n the specification, claims and drawings.

Finally, 1t 1s the applicant’s intent that only claims that
include the express language “means for” or “step for” be
interpreted under 35 U.S.C. 112(1). Claims that do not
expressly include the phrase “means for” or “step for” are
not to be mterpreted under 35 U.S.C. 112(1).

What 1s claimed 1s:

1. A prediction method comprising:

storing 1n memory, with a processor circuit, a record for
cach of a plurality of events associated with user
transactions, each record comprising an 1indication
identifying plural items of a set of 1tems associated with
an event and an indication of a time elapsed between
the event and a previous event;

analyzing, with the processor circuit, a sequential plural-
ity of the events using a neural network comprising at
least a unidirectional long short term memory (LSTM)
network and first and second dense neural network
layers configured to receive output from the LSTM
network, wherein a first layer 1s configured to produce
as the output a probability that at least one 1tem of the
set of 1items will be 1involved 1n a next event, and a
second layer 1s configured to produce as an output a
time estimate value for a future time until the next event
occurs, the neural network learning from plural item
information and timing information in the record, the
learning comprising sequentially feeding sequential
pluralities of events into the neural network and algo-
rithmically optimizing weights of the neural network
by using a combination of a categorical cross entropy
cost function applied to the output of the first dense
neural network and a squared error cost function
applied to the output of the second dense neural net-
work layer to back propagate an error between an
estimated output values and actual output values for the
next event to the LSTM network and first and second
layers; and
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performing processing associated with analyzing, with the
processor circuit, a further sequential plurality of the
events using the neural network and storing, with the
processor circuit, each probability and a time estimate
value output by dense layers in the memory as a
prediction.

2. The method of claim 1, further comprising performing,
processing associated with mapping, with the processor
circuit, each 1tem of the plural items within the event to a
unique index to generate a vector representation of the event.

3. The method of claim 2, comprising an output layer
arranged to compute the prediction based on the output of
the first and second dense neural network layers.

4. The method of claim 1, wherein the processing asso-
ciated with training comprises learning multiple long term
and short term patterns based on a dataset of past events.

5. The method of claim 4, wherein a first dense neural
network layer comprises a number of nodes equal to a
number of items in the set and a second dense neural
network layer comprises a single node.

6. The method of claim 1, wherein the processing asso-
ciated with analyzing further comprises:

using a reshape layer after the first and second dense

neural network layers to change a dimension of a
multidimensional vector that 1s output by the first and
second dense neural network layers betfore being input
to an output layer arranged to compute the predictions;
and/or

using a reshape layer after the LSTM network to change

the dimension of the multidimensional vector that 1s
output by the LSTM network, before being input to the
first and second dense neural network layers.

7. The method of claim 1, wheremn using the LSTM
network comprises performing processing associated with
predicting a future event based on at least one prior context.

8. The method of claim 7, wherein using the LSTM
network comprises performing processing associated with
identifying and discarding an information subset, derived
from past event data, to be discarded when making a
prediction and/or with 1dentifying and retaining an informa-
tion subset, derived from past event data, to be discarded
when making a prediction.

9. The method of claim 8, wherein using the LSTM
network comprises performing processing associated with
updating a current state or the at least one prior context
based on an mformation subset that was discarded and/or
based on an information subset that was retained.

10. The method of claim 7, wherein using the LSTM
network comprises performing processing associated with
selecting the probability, a time estimate, or a combination
thereol from among a plurality of possible outcomes.

11. The method of claim 1, wherein each record represents
a single purchase transaction.

12. An automated prediction system comprising:

a memory; and

a processor circuit in communication with the memory

and configured to:

perform processing associated with storing in the memory

a record for each of a plurality of events associated with
user transactions, each record comprising an indication
identifying plural items of a set of items involved 1n an
event and an 1ndication of a time elapsed between the
event and a previous event;

perform processing associated with analyzing a sequential

plurality of events using at least a unidirectional long
short term memory (LSTM) network and first and
second dense neural network layers configured to
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receive output from the LSTM network, wherein a first
layer 1s configured to produce a probability that at least
one 1tem of the set will be involved 1n a next event, and
a second layer 1s configured to produce as an output a
time estimate value for a future time until the next event
occurs, wherein a neural network learns from plural
item 1nformation and timing mnformation in the record,
the learning comprising sequentially feeding sequential
pluralities of events into the neural network and algo-
rithmically optimizing weights of the neural network
by using a combination of a categorical cross entropy
cost function applied to the output of the first dense
neural network and a squared error cost function
applied to the output of the second dense neural net-
work layer to back propagate an error between esti-
mated output values and actual output values for the
next event to the LSTM network and first and second
layers; and

perform processing associated with analyzing a further

sequential plurality of the events using the neural
network and storing each probability and a time esti-
mate value output by dense layers in the memory as a
prediction.

13. The system of claim 12, further comprising perform-
ing processing associated with mapping, with the processor
circuit, each item of the plural items within the event to a
unique index to generate a vector representation of the event.

14. The system of claim 12, wherein the processing
associated with training comprises learning multiple long
term and short term patterns based on a dataset of past
events.

15. The system of claim 14, wherein a {irst dense neural
network layer comprises a number of nodes equal to a
number of items 1n a set and a second dense neural network
layer comprises a single node.

16. The system of claim 15, wherein the processing
associated with analyzing further comprises:

using a reshape layer after the first and second dense

neural network layers to change a dimension of a
multidimensional vector that 1s output by the first and
second dense neural network layers before being input
to an output layer arranged to compute the predictions;
and/or

using a reshape layer after the LSTM network to change

the dimension of the multidimensional vector that 1s
output by the LSTM network, before being input to the
first and second dense neural network layers.

17. The system of claim 16, comprising an output layer
arranged to compute the prediction based on the output of
the first and second dense neural network layers.

18. The system of claim 12, wherein using the LSTM
network comprises performing processing associated with
predicting a future event based on at least one prior context.

19. The system of claim 18, wherein using the LSTM
network comprises performing processing associated with
identifving and discarding an information subset, derived
from past event data, to be discarded when making a
prediction and/or with identifying and retaining an informa-
tion subset, derived from past event data, to be discarded
when making a prediction.

20. The system of claim 19, wherein using the LSTM
network comprises performing processing associated with
updating a current state or the at least one prior context
based on an information subset that was discarded and/or
based on an information subset that was retained.

21. The system of claim 20, wherein using the LSTM
network comprises performing processing associated with
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selecting the probability, a time estimate, or a combination
thereof from among a plurality of possible outcomes.

22. The system of claim 12, wherein each record repre-
sents a single purchase transaction.
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