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tion system includes mapping, by a controller, the produc-
tion system as a directed acyclic graph. The production
system can include multiple plants that are represented as
nodes and relations between the plants represented by edges
of the directed acyclic graph. The method further includes
generating, by the controller, a regression model for each of
the plants 1n the production system. The method further
includes predicting, by the controller, an output of each plant
based on sensor data associated from each plant. The method
further includes adjusting, by the controller, one or more
control variables for each plant based on a target output by
using machine learning. The method further includes adjust-
ing, by the controller, the one or more control variables for
cach plant to generate the target output.
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PREDICTION OPTIMIZATION FOR SYSTEM
LEVEL PRODUCTION CONTROL

BACKGROUND

The present invention generally relates to using machine
learning to operate a control system that manages operations
of a system that includes multiple plants, and more specifi-
cally, to a framework to maximize the prediction output over
different possible options on control variables, where a
relationship 1n each plant 1s captured via machine learning.

Heavy industries, such as large manufacturing and indus-
trial companies have been, and continuously are, transform-
ing to a digital semantic representation of a manufacturing
or a processing plant. This representation 1s continuously
replenished with real-time measurements from sensor net-
works using high bandwidth, low cost networks (publicly
available) to provide up-to-date situational awareness of the
operational efliciency and yield of an enterprise and 1ts effect
on the demand-supply dynamics on the manufacturing eco-
system. This data rich representation coupled with context-
specific predictive analytics enable enterprises to anticipate
disruptions, impact on productivity, yield and to take pro-

active corrective measures to optimize industrial operations.

SUMMARY

According to one or more embodiments of the present
invention, a computer-implemented method for controlling a
production system includes mapping, by a controller, the
production system as a directed acyclic graph. The produc-
tion system can include multiple plants that are represented
as nodes and relations between the plants represented by
edges of the directed acyclic graph. The method further
includes generating, by the controller, a regression model for
cach of the plants 1n the production system. The method
turther includes predicting, by the controller, an output of
cach plant based on sensor data associated from each plant.
The method further includes adjusting, by the controller, one
or more control variables for each plant based on a target
output by using machine learning. The method further
includes adjusting, by the controller, the one or more control
variables for each plant to generate the target output.

According to one or more embodiments of the present
invention, a system includes multiple plants that form a
production system, and a controller coupled with the plants
for controlling the production system by performing a
method. The method for controlling the production system
includes mapping, by the controller, the production system
as a directed acyclic graph. The production system can
include multiple plants that are represented as nodes and
relations between the plants represented by edges of the
directed acyclic graph. The method further includes gener-
ating, by the controller, a regression model for each of the
plants 1n the production system. The method further includes
predicting, by the controller, an output of each plant based
on sensor data associated from each plant. The method
turther includes adjusting, by the controller, one or more
control variables for each plant based on a target output by
using machine learning. The method further includes adjust-
ing, by the controller, the one or more control variables for
cach plant to generate the target output.

According to one or more embodiments of the present
invention, a computer program product includes a computer
readable memory that has computer executable 1nstructions
stored thereupon. The computer executable instructions
when executed by a processor cause the processor to per-
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2

form a method for controlling a production system. The
method 1ncludes mapping, by a controller, the production

system as a directed acyclic graph. The production system
can include multiple plants that are represented as nodes and
relations between the plants represented by edges of the
directed acyclic graph. The method further includes gener-
ating, by the controller, a regression model for each of the
plants 1n the production system. The method further includes
predicting, by the controller, an output of each plant based
on sensor data associated from each plant. The method
turther includes adjusting, by the controller, one or more
control variables for each plant based on a target output by
using machine learning. The method further includes adjust-
ing, by the controller, the one or more control variables for
cach plant to generate the target output.

The above-described features can also be provided at least
by a system, a computer program product, and a machine,
among other types ol implementations.

Additional technical features and benefits are realized
through the techmiques of the present mvention. Embodi-
ments and aspects of the mvention are described 1n detail
herein and are considered a part of the claimed subject
matter. For a better understanding, refer to the detailed
description and to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The specifics of the exclusive rights described herein are
particularly pointed out and distinctly claimed in the claims
at the conclusion of the specification. The foregoing and
other features and advantages of the embodiments of the
invention are apparent from the following detailed descrip-
tion taken in conjunction with the accompanying drawings
in which:

FIG. 1 depicts a block diagram of an example o1l sands
production industry scenario used to explain one or more
embodiments of the present invention;

FIG. 2 depicts a tflowchart of a method for optimizing and
adjusting system wide operations according to one or more
embodiments of the present invention;

FIG. 3 depicts a visual depiction of a plant as a model
according to one or more embodiments of the invention;

FIG. 4 depicts an example network representation for the
system shown in FIG. 1 according to one or more embodi-
ments of the invention;

FIG. 5 depicts a flowchart of a method for implementing
an optimization of the model of the entire system for a single
time period according to one or more embodiments of the
present 1nvention;

FIG. 6 depicts a flowchart for the method for implement-
ing an optimization of the model of the entire system for a
single time period according to one or more embodiments of
the present invention;

FIG. 7 depicts a tlowchart of a method for implementing,
an optimization of the model of the entire system for
multiple time periods according to one or more embodi-
ments of the present imnvention; and

FIG. 8 depicts an operation flow/block diagram for using
machine learning to identily control variable values for a
system according to one or more embodiments of the present
invention.

The diagrams depicted herein are illustrative. There can
be many variations to the diagram or the operations
described therein without departing from the spirit of the
invention. For instance, the actions can be performed 1n a
differing order or actions can be added, deleted or modified.
Also, the term “coupled” and variations thereof describes
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having a communications path between two elements and
does not imply a direct connection between the elements
with no mtervening elements/connections between them. All
ol these variations are considered a part of the specification.

In the accompanying figures and following detailed
description of the disclosed embodiments, the various ele-
ments 1llustrated in the figures are provided with two or three
digit reference numbers. With minor exceptions, the leftmost
digit(s) of each reference number correspond to the figure 1n
which 1ts element 1s first 1llustrated.

DETAILED DESCRIPTION

Various embodiments of the mmvention are described
herein with reference to the related drawings. Alternative
embodiments of the invention can be devised without
departing from the scope of this invention. Various connec-
tions and positional relationships (e.g., over, below, adja-
cent, etc.) are set forth between elements in the following
description and in the drawings. These connections and/or
positional relationships, unless specified otherwise, can be
direct or 1ndirect, and the present invention 1s not intended
to be limiting in this respect. Accordingly, a coupling of
entities can refer to either a direct or an indirect coupling,
and a positional relationship between entities can be a direct
or indirect positional relationship. Moreover, the various
tasks and process steps described herein can be incorporated
into a more comprehensive procedure or process having
additional steps or functionality not described in detail
herein.

The following definitions and abbreviations are to be used
for the interpretation of the claims and the specification. As
used herein, the terms “comprises,” “comprising,”
“includes,” “including,” *“has,” “having,” “contains” or
“containing,” or any other varnation thereof, are imtended to
cover a non-exclusive inclusion. For example, a composi-
tion, a mixture, process, method, article, or apparatus that
comprises a list of elements 1s not necessarily limited to only
those elements but can include other elements not expressly
listed or inherent to such composition, mixture, process,
method, article, or apparatus.

Additionally, the term “exemplary” 1s used herein to mean
“serving as an example, instance or illustration.” Any
embodiment or design described herein as “exemplary™ 1s
not necessarily to be construed as preferred or advantageous
over other embodiments or designs. The terms “at least one”
and “one or more” may be understood to include any 1integer
number greater than or equal to one, 1.€. one, two, three,
four, etc. The terms “a plurality” may be understood to
include any integer number greater than or equal to two, 1.e.
two, three, four, five, etc. The term “connection” may
include both an indirect “connection” and a direct “connec-
tion.”

The terms “about,” “substantially,” “approximately,” and
variations thereof, are intended to include the degree of error
associated with measurement of the particular quantity
based upon the equipment available at the time of filing the
application. For example, “about” can include a range of
+8% or 5%, or 2% of a given value.

For the sake of brevity, conventional techniques related to
making and using aspects of the invention may or may not
be described 1n detail herein. In particular, various aspects of
computing systems and specific computer programs to
implement the various technical features described herein
are well known. Accordingly, 1n the interest of brevity, many
conventional implementation details are only mentioned
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4

briefly herein or are omitted entirely without providing the
well-known system and/or process details.

Emergence of artificial intelligence (Al) based cognitive
systems have led to development of cognitive advisor sys-
tems that can be built for each enterprise function. For
example, a cognitive plant advisor can be designed to
consume historical and real-time data to predict process
performance/health and support a plant manager, that may
be a human user. The cognitive plant advisor can (1) manage
set points for control over time horizons of days (advisory
control), and (11) provide the health score for each process/
asset and provide a rank ordering of importance for mitiga-
tion.

In the existing solutions, this entails developing a
machine learning model for each plant or process in the
system that 1s to be managed by the cognitive advisor
system. The generated model has to accurately capture the
underlying physical relationships, 1n lieu of first-principles
based models that are often unavailable or inftractable.
Typically, the model that 1s built using historical data
assimilates real-time measurements and hence provides high
local temporal fidelity and tracks any non-stationarity in the
plant. Using the cognitive advisor system also requires
developing a set-point optimization model that offers the
flexibility of dynamically introducing operational restric-
tions as and when they arise. The optimization model has to
be lightweight yet scalable to provide set-point recommen-
dations 1n near real-time. Because the optimization uses a
data driven regression model as a representation of each
plant, 1ts run-time complexity, scalability and solution qual-
ity guarantees depend on the nature of the model, e.g.
whether a piece-wise linear model 1s used, nonlinear and
non-convex deep neural network 1s used, or a non-continu-
ous ensemble model 1s used.

With each plant having 1ts own model and corresponding,
control variables, a technical problem that arises 1s that of
optimizing and adjusting the prediction outputs (such as
productivity and efliciency) of a system that includes mul-
tiple such plants. Particularly, the technical problem can
arise 1n case of a large system, including a number of
sub-systems/plants (e.g. more than 5 plants), with different
possible options on control variables over a long-time hori-
zon (e.g. more than 3 months). The relationship between
inputs and an output 1n each of these subsystems 1s based on
a respective regression model. One or more embodiments of
the present invention address such techmical problem by
providing a prediction-optimization framework combining
regression analysis and nonlinear programming.

Throughout the present description, for explanation of the
features, a real world application from the o1l sands produc-
tion industry 1s used as an example. It 1s understood that the
teatures and embodiments of the present invention are not
limited to that example and are applicable to any other field.

FIG. 1 depicts a block diagram of an example o1l sands
production industry scenario used to explain one or more
embodiments of the present invention. For the o1l sands
production industry 100 depicted, at least 1n this context, the
optimization involves devising production strategies that
maximize Synthetic Crude O1l (SCO) production, under
both normal operations as well as unplanned upsets and
breakdowns. Starting with mined o1l sands, the first step 1s
to extract bitumen as froth (at plants P1 101 and P2 102) and
store 1t 1n a storage tank (T1 111 and T2 112). Plants P1 101
and P2 102 denote two parallel froth and diluted bitumen
production plants. The storage tanks T1 111 and 12 112
denote intermediate storage tanks and the storage tank T3
113 stores diluted bitumen from both, T1 111 and T2 112.
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Diluted bitumen 1s then passed through an upgrading plant,
P3 103, to produce low-quality SCO that gets stored in
storage tank T4 114. This 1s an intermediate product that 1s
either sold directly to refineries or 1s further processed 1n
plants P4 104 and P35 105 that denote parallel upgraders that
produce different grades of SCO.

The system 100 includes a network of the multiple plants.
Each plant has a seli-contained set of inputs and outputs. The
outtlow from an upstream process becomes an inflow 1nto a
downstream process. Accordingly, a complex relationship
exists between the various set-points, material intlows, and
the final throughput of the system 100. The final throughput
1s the output of P4 104 and P5 105, together, 1n one or more
embodiments of the present invention. The production plan
for the system 100 has to be dynamic due to events like
scheduled maintenance, unexpected breakdowns, or shifting
economic objectives under which the system 100 1s oper-
ated.

According to one or more embodiments of the present
invention, the system 100 1s controlled by a controller 150
by configuring one or more control variables 1n the various
plants. The controller 150 can be a computer, such as a
server computer, a tablet computer, a laptop computer, a
desktop computer, or any other type of computing device.

The controller 150 can access historical data of the one or
more plants 1n the system 100. For example, the historical
data can cover a span of three years or more. The historical
data contains sensors measurements and production outputs
for each plant 1n the system 100. Under such scenarios, the
controller 150 generates an optimization model for the
system 100. The optimization model can provide a set of
recommendations on control set-points for the plant man-
ager, such as mine tonnage rates and upgrading feed rates,
that optimize the SCO production while maintaimng the
levels of intermediate products in storage tanks and some
operational constraints.

The optimization model 1s to optimize the system 100 at
a site-wide level spanning the multiple plants and processes.
The existing solutions have typically tried to address the
technical problem of such optimization by using nonlinear
models based on physical principles (e.g., thermodynamics)
for each process and coupling these models via flow and
material balance equations. Alternatively, or in addition,
other existing solutions attempt to combine physical models
and data-driven models.

According to one or more embodiments of the present
invention, the optimization model addresses the system-
wide prediction optimization problem for a production plant,
such as the system 100. According to one or more embodi-
ments of the present invention, the optimization model 1s
devoted to maximizing the flow throughput of end products
by seeking an optimal production schedule over a specified
time horizon with operational constraints (e.g., storage
inventories and economic targets). The use of machine
learning to model complex process (production or enter-
prise) from data facilitates to improve operations measure in
terms of productivity, throughput, efliciency and/or resource
utilization. In such a setting the pipelines for analysis
include a machine learning step to build prediction models
for every output followed by an optimization procedure to
derive the optimal set points for the entire process (and not
just 1ndividual subsystems). Accordingly, one or more
embodiments of the present invention facilitate techniques
to model and optimize umt operations for system-wide
process to maximize the output of the system 100 by
generating set-point recommendations for each subsystem 1n
the system 100. The subsystems can include the plants
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(P1-P5) and/or the storage tanks (1T1-1T4). Advantages pro-
vided by one or more embodiments of the present invention
include providing the ability to act on events 1n near-real
time across the entire system 100 for enterprise operations
management.

Accordingly, one or more embodiments of the present
invention provide improvements over existing solutions in
which Al 1s used in a limited manner to devise an optimal
operational plan and to 1dentily potential failure events. For
example, 1 existing solutions, plant managers use a heu-
ristic-based approach based on years of experience to i1den-
tify set points at unit process level, or at design time. Further,
fixed rules-of-thumb values are used to decide 1f observed
behavior 1n one part of the system 100 may be indicative of
an impending failure 1n another part of the system 100, or the
overall system 100. Embodiments of the present invention
facilitate a continuous process that momtors data such as
sensor data for the one or more components of the system
100 and provides notifications, adjustments, and other such
information to the plant managers dynamically. Further, the
use of machine learning/deep learning models accurately
capture the underlying physical relationships and non-sta-
tionarity 1n the entire process.

Also, as will be described further, one or more embodi-
ments of the present invention facilitate a multi-time period
set-point optimization model that offers the flexibility of
dynamically introducing operational restrictions. Such flex-
ible optimization approaches can take in regression func-
tions without derivative information, such as random forests,
and those with derivatives, such as neural networks. Accord-
ingly, one or more embodiments of the present mmvention
provide separate optimization models—one for gradient-
based and one for dertvative-free models. Using such tech-
niques, one or more embodiments of the present invention
facilitate receiving and analyzing sensor data from the
system 100 and determining optimal control vaniable values
for the various plants 1n near-real time across the entire
system 100.

FIG. 2 depicts a tflowchart of a method for optimizing and
adjusting system wide operations according to one or more
embodiments of the present invention. The method includes
mapping features to iputs, outputs, and control variables of
a plant 1 the system 100, at block 210. The mapping
includes representing the process/system 100 as a directed
acyclic graph (as shown 1n FIG. 1) that can be iput to the
controller 150 1n a digital format. This can include 1denti-
fying one or more subsystems in the system 100. Mapping
features further includes, given raw sensor data for all
processes, 1dentifying which features are inputs of a process,
what columns represent values for the output etc. In one or
more examples, a user can provide the mapping via a user
interface, via an electronic data file that includes the map-
ping, and any other such manner.

The mapping further includes extracting relevant data
from the historical data of the system 100, which includes
the 1inputs, outputs, and control variables of each plant in the
system 100 over at least a predetermined duration. The
extracted data can then be aggregated, such as by computing
one or more statistical values, for example, mean, geometric
mean, standard deviation, and the like.

Further, the method includes determining machine learn-
ing models for each subsystem 1n the system 100, at block
620. For example, the subsystems can include the plants
(P1-P5) and/or the storage tanks (11-14) that have one or
more control variables that can be adjusted to impact the
final output of the system 100. In one or more embodiments
of the present invention, machine learning 1s used to build a
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regression model for each respective subsystem to capture
the relationship between the outtlow, control set-points, and
inflow rates from upstream subsystems. As an example, the
SCO from plant P3 103 in FIG. 1 can be modeled as a
function of the flow rate from tank T3 113 and non-flow
variables (e.g., temperature, density, pressure, or composi-
tion ratio).

FIG. 3 depicts a visual depiction of the plant P3 103 as a
model according to one or more embodiments. It 1s under-
stood that this 1s one possible example, and that 1n other
embodiments ol the present invention, the model can
include different parameters. The production process 320 of
the plant P3 1s modeled as a collection of variables (X,) that
cause nputs 310 to result in the outputs 330. The X, 1s a
result of determining a regression function representing the
process performed by the plant P3 103, in this case. The
mputs 310 can include control variables (C,) 315 that are
used to configure the plant P3 103 as well as other input
variables that are not controlled by the controller 150. For
example, such uncontrolled variables (U)) 317 can include
amount of feed. It 1s understood that the representation of the
subsystem can be different than the depiction in FIG. 3 1n
other embodiments of the invention and/or depending on the
system 100 being modeled. It should be noted that X, U, C,
and Y are vectors of values.

The system 100, especially when it 1s an engineered one,
operates 1n a steady state mode. A “steady state mode” can
be defined as a state when the system 100 has equilibrated
(in a temporal sense) and the rate of change of the state
variables 1s zero. In practice, a complex nonlinear dynamical
system, such as the system 100, can have multiple steady
states and operationally the system 100 might be operated
around a few of these steady state points (also called
operating modes). For example, industrial plants often oper-
ate at different levels of throughput due to preventive
maintenance or economic reasons.

One or more embodiments of the present invention facili-
tate two types of analysis for steady state systems: (1)
Monitoring the behavior of the system around a stationary
point, and (11) Identitying the multiple stationary points from
data so as to monitor the system 100 against the correct
stationary operating point.

The controller 150, when generating the optimization
model, considers that transient changes in the control vari-
ables happen much slower than the time scale of optimiza-
tion and only one operating mode 1s used for the entire time
period. Hence, a static steady-state model 1s used for each
plant at each time period, which corresponds to an operating,
mode. Accordingly, in one or more embodiments of the
present invention, the method includes building regression
models that provide a functional relation between the targets
against the inputs. The choice of regression functions can be
diverse including linear regression, non-smooth models
(e.g., decision tree), highly nonlinear and complex neural
networks, and black-box models (e.g., random forests).

The method further includes determinming interactions
between each subsystem in the system 100 when they
operate at a stationary point, at block 230. In one or more
examples, this can performed by determining interactions
between the corresponding models of the subsystems.
According to one or more embodiments, the system 100 1s
modeled as one or more process flows of the plants as a
directed multi-layer network of subsystems.

FIG. 4 depicts an example network representation for the
system 100 from FIG. 1 according to one or more embodi-
ments. The network representation 400 that 1s depicted
visualizes the system 100 as a hierarchy structure with L
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layers having upstream-downstream operation relations.
Each of the layers can be implemented as a layer i a
machine learning algorithm, such as an artificial neural
network (ANN), for example, a deep neural network (DNN),
a convolutional neural network (CNN), or the like.

In FIG. 4, a circular node (410) 1n a layer of the network
represents a plant (i1.e., a subsystem), where a regression
function (f,) 1s to be built. A rectangular node (420) repre-
sents all operational constraints such as maintaining mven-
tory levels and limits on the adjustment of control variables
from the preceding time period. The relationship in these
rectangular nodes are linear.

The vector-valued regression function for each of the
subsystems 1s determined using techniques that are known 1n
the art. For example, the regression function for a plant in
the 1th layer that 1s determined from the historical data can
be expressed as—

frlz,_;,x,) ERF-1™M ) ER7
AZ_1:87 Vi

Here, x,ZR™ and z,_,ER*" denote the controllable vari-
ables (e.g., set points) 315 and uncontrollable variables (e.g.,
the inflow from the previous process) 317 for f,. The vector
y,£=R™ denotes the outputs. Here the assumption is that
k~,=0; that 1s, the decision variables for the first layer of the
ANN are only set points. Now, 1f O represents the objective
function for the system 100, the main goal 1s to find optimal
set points X, and tlow rates (y,, Z,) to maximize production or
some target variable. A single-period problem can be written
as the following constrained optimization problem:

m}.{in ®(v;) such that: “ (1)

y1 = Jilxy)
vi= i@, x), Yi=2, ..., L, |
Agyg+B,{Zg Ef’?,{, ¥ il= 1, ,L—l,

5££Xg£fg,‘¥£:1, N

J

where X=(x,, sV s e oo s Vs e oo s Ly ey Zr),
and the objective function A(y,) depends on the output at the
last layer. In the above f, represent the regression functions
that model each of the subsystems in the system 100; x are
primary control variables (e.g. for the plants P1-P5); z are
secondary control variables (e.g. for the storage tanks
T1-T4); and y are the state variables.

Here, x, and X, are defined as upper and lower bounds on
the primary control variables. The regression model 1s
cognizant of operational domain constraints. Model param-
cter matrices A, and B, and vector b, are used to capture
interactions between nodes within two consecutive layers.
One example for operational constraints to be included 1n
Ay 4B,7 <b, 1s the tank storage constraint for tank T3 113 in
the system 100 of FIG. 1.

Further, one or more embodiments of the present mnven-
tion facilitate maximizing the output of the system 100 over
T time periods with coupling constraints between periods.
The problem of a single time period, described by the
equation (1) 1s a special case of the multiple time periods.
Two operational constraints and the time index t&11, . . .,
T} to denote the t-th time period.

For some controllable variables, between two consecutive
periods, an amount of adjustment has to be limited. The
ramp-up/down rate limits are modeled as:

D

£ F+1 o
|x3 —x_,:r |£p3®x3,

(2)

for some p,£[0,1]and =1, ..., L, t=..., T. Here, © denotes
the component-wise product.
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Further, consider that u, denote the storage tank levels at
time t for the 1-th layer. For inventory capacity constraints:

usu,su,

(3)

r__ . . .
Uy —Up+y;—z;

¢ —1 —1
|Hf —Hf |5{13®H3 .

for some .,&[0,1], where u, and u, are tank storage limits.
Accordingly, a multi-period formulation can be written as
follows:

T “ (4)
. ! ! ]
min E @' (v7) such that:

|
x' e X',

(x}, uy) satisfy (2) and (3) |

(J!:l, --aT):-

where, X’ is the set of constraints for the t-th period having
a form of (1). Here, x” and u® are provided from present
operation time. This the production plant optimization prob-
lem for a long planning horizon, expressed in (4) 1s a large
scale, and nonlinear problem. However, 1t 1s tractable and
can be solved etliciently because it enjoys a decomposable
structure.

Accordingly, (1) and (4) above provide mathematical
representation of the single period and multi-period optimi-
zation problem that 1s solved by one or more embodiments
of the present mvention using machine learning, such as
ANN. A technical challenge to optimize regression based
functions, such as those 1n (1) and (4) 1s that the underlying
machine learning techniques provide only 1implicitly speci-
fied or complicated functions.

Typically, in machine learning, ensemble methods are
used, where an ensemble method 1s a machine learning
technique that combines several base models 1n order to
produce one optimal predictive model. For example, an
ensemble method such as Random Forests or xgBoost 1s an
ensemble of trees. The prediction output 1n these cases 1s a
function of predictor variables, which need to be treated as
a black box. The function evaluation i1s generally costly
(with respect to time and computer resources) or noisy, and
derivative information 1s unavailable, unreliable, or imprac-
tical to obtain. For deep learning, a deep neural network with
many layers 1s a composition of nonlinear transformation
tfunctions. The full derivative with respect to iput controls
tor the fixed, optimized set of weights can also be expensive
to evaluate, because it requires a backpropagation and a full
pass of substantially large dataset. Another technical chal-
lenge with ensemble methods 1s the notorious “vanishing
gradient 1ssue’” when using gradient information to optimize
the process. In machine learning, the vanishing gradient
problem 1s a difliculty found in training artificial neural
networks with gradient-based learning methods and back-
propagation. In such methods, each of the neural network’s
weilghts receives an update proportional to the partial deriva-

tive of the error function with respect to the current weight
in each iteration of training. The problem 1s that 1n some
cases, the gradient 1s substantially small and hence *““van-
1shing”, effectively preventing the weight from changing 1ts
value.

To address such technical challenges, one or more
embodiments of the present invention facilitate gradient-
based algorithms for these problems where the gradient for
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cach regression function i1s evaluated independently. The
techniques according to one or more embodiments of the
present invention are based on and improve upon alternating
direction method of multipliers (ADMM). Further, accord-
ing to one or more embodiments of the present invention a
derivative free optimization algorithm 1s used to handle
black-box functions.

For the single period model, reformulating the linear

inequalities 1n (1) into equalities, and separating out the box
constraints provides the following problem description:

-

min @(y,) such that: (5)

y1 = filx),

i= Sz x), V=2, ..., L,
Agyg+Bng+ngg =0,¥/[=1,...,L-1,
ili:x!iifg,\?’lzl, Y

y ==y, Vi=1..,1L,

vz 0, ¥Ii=1, ..., L—1, where
W = (Xl, ey VL—l)

In order to solve problem (35), the Lagrangian 1s defined
as:

T
Dy + A (v — filx )+ Z Ay (v = filzmr, X)) +
=1

I—1 )3
Z p;r (Afyg + B;'Z.{ + V; — b.{) + E

{=1

vy = fie)II* +

B L ﬁL_l
5 2 v = iz 20l + 5 ) A+ Bizy +vi = bill.
=2 =1

Where X=(X;, . . .. X,), Y= - - -, Y1) 272y, . - ., Z;y),

{}:(Vlf‘ T VL—I)! 7"':(7"'131 et }"L): !J':(”'l: - ML-I): and
3, p are positive constants. Here, L 1s the number of layers

in an ANN used to optimize the model. An alternating
optimization framework for minimizing the Lagrangian is
then used. The primal-dual algorithm for (5) minimizes over
X,V, Z, V, A ﬁ separately and is described further. Here, A,
B, and b are used to model a graphical representation of a
plant. X, Y, Z are decision variables as described herein, and
the remaining are additional variables, that are used to solve
problem (3).

FIG. § depicts a tlowchart of a method for implementing,
an optimization of the model of the entire system for a single
time period according to one or more embodiments of the
present invention. The method facilitates to linearize the
regression function f,. For a vector o, lower and upper
bounds 1 and u, P(c, 1, u) denotes the projection min{max{a,
1}, u}. In the method, the Lagrangian is minimized for
different values at diflerent steps. For example, at step 1 1n
block 510, the Lagrangian 1s minimized to obtain Vlkj C
v, .. Further, in block 520, the minimization is performed
to obtain z,*, . . ., z,_,*. This step can be performed by
casting the minimization problem 1in this step as a linear
problem as follows:
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T . 6
HSH gﬁﬂ(zia i) fien 2 X)) = (B + A0 fien (2 ¥ ) + ©)

£ _ 2 T
§||B£ZJ+A£}J’§ Pavi =" + 71 Bz

sl =g =171

Here, the terms having f,. ,(z,, X,.,”") are linearized and
a proximal term 1s added:

ngn(ﬁﬁﬂ &L ) Vi@ i - (7)

B+ AV (T oz +

k—112 k—1T
—|lz¢ — 2 IIMf + 4

P k-1, &k 2
Bizi+ =||Bizi + A +Vv; — b

s.t. Z.{ =7 = Z.‘fa

Here, M/ =al-pn,B,’B,=1 is selected to cancel the term
IB,z|*, for example, a=pn,A,_(B,’B,). The closed form
solution of (7) is P(z, z, z,) where:

2= =T (Y i G A i@ ) - (8)
Vi@ L T+ ) +

B (ti ™t + pBizi  + AT eV — b))+ 27

Further yet, i block 330, the minmimization vyields
X%, ..., X,/ This step is also linearized similar to step 2

above:

- 1 g
min((5f, D) =BT ATV AGT xg + 3l - e &)

S.l. X, =X =X

This results in obtaining an updated P(X,, x,, X,), where

= (VL D B 1 DBy =R ).

For the next layers in the network 1=2, . . . , L, the
linearized sub problem 1s:

(10)

I{;Jl'm((ﬂﬁ(zi‘_p Ky 2 Byl XYY kT 1)

1
—1n2
— |2 =,

s.l. X, = X7 = Xy
{ { {
21’?!{

The solution for this sub problem is P (X, X,, X,), where

X=x T e (Vs S Y (B iz S DBy -

M), (12)

In yet another minimization, in block 540, the y,*, . . . ,
y,“ are obtained. The obtained values are then used to update
the one or more multiplier values, at block 550. It should be
noted that the various calculations are detailed in the flow-
chart and are not repeated herein. Accordingly, the control
variables can be obtained for the single period optimization
of the system 100 using this method.

FIG. 6 depicts a flowchart for the method for implement-
ing an optimization of the model of the entire system for a
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single time period according to one or more embodiments of
the present invention. The flowchart depicts the methods
described above 1n a manner 1n which they are implemented
in one or more embodiments of the present invention. For
simplicity, the description herein 1s for a practical case of
A(y,)=c’(y,), for a vector c. However, it is understood that
the problem can be formulated in any other way and the one
or more embodiments of the present invention would still be
applicable. The method includes updating the v values, at
block 610. These values are used to compute mput param-
cters for an ANN. For example, the z values for each layer
1-(L-1) are computed using the v values, at block 620. The
calculation of the z values 1s shown 1n Eq. (8). The ANN
configured 1n this manner 1s used to compute the primary
control variables x, at 630. The calculations for the x values
1s performed per Eq. (10) and Eq. (12). The control variables
are then used to compute the output states y, at 640. The
multiplier values are further updated based on the results of
the present 1teration, at 650. The updated multiplier values
are used 1n the next iteration of the method. The method 1s
continuously performed until output values y cannot be
maximized any further.

FIG. 7 depicts a flowchart of a method for implementing
an optimization of the model of the entire system for
multiple time periods according to one or more embodi-
ments of the present invention. For the multiple time peri-
ods, as described earlier, the formulation 1n Eq. (4) 1is
decomposed by rewriting the coupling constraints (2) and

(3) as:

(1-p)x;/ ' =x/+p,=0-(1+px; '4x/+q,=0u;/=u/ 4y /-
fo( 1 —'[1) Hfr_ l—H3r+F";f=0— ( ]. +E1)Hfr_l +Hfr+.5ffr:0 .

(13)

As a result, the problem from Eqg. (4) can be represented
in a compact form as:

(14)

T
: f
1fmir ; d (W)

st. weQ. r=1,....T

MTIWL L NTW + ¢ =0,

where, w=(X, u, p, q, I, s) and the constraint £ is related to
X’, bounds for u, and positivity constraints for p, q, , s. In
this case, the Lagrangian can be defined as:

T
Lov, A, B =) ¢'(wW)+
t=1

T T
Z AT MWL L N o) + gz 1M f N+ )|
t=1 t=1

Accordingly, referring to FIG. 7, the method for the
multi-period optimization 1involves using the method
described for a single period (FIGS. 5 and 6) to solve sub
problems in the multi-period optimization problem. The
method for the multi-period optimization includes solving
the single period problem for the imitial period represented
by w/, at block 710. Further, the method includes using the
computed values for finding the control vanables for the
other time periods from t=2 to T-1, at block 720. The single
period method 1s used or each of the time periods. The
method further includes using the single period method for
the last time period T, at block 730. It should be noted that
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the formulation of the optimization at the different time
periods 1s different. Further yet, the multipliers are updated
for the next 1teration, 1f any, at block 740.

Referring to the method corresponding to the flowchart of
FIG. 2, the interactions between the subsystems are now
identified and the control vanables determined. The method
turther includes optimizing and adjusting the machine leamn-
ing models using derivative free optimization (DFO), at
block 240. This 1s because the ensemble methods, such as
Random Forests, act as a black box without derivative
information available. Accordingly, the optimization 1s of a
black-box function which leads to the i1ssue of how to
estimate the derivative information (with respect to 1nput
controls, not the parameters of the regression models) from

the black box.

It should be noted, as described herein, that the objective
functions of sub-problems 1n Steps 2 and 3 (FIG. 7) have

been linearized. Therefore, unbiased estimators can be used
in the method of FIG. 6 for Vf,, ,(z, x,.,“") at z!, for

VT, (x,)atx,* !, and for VF,(z,_,*, x,) at x,~*. This replace-
ment results 1n similar worktlow of the method as shown in
FIG. 6, where the exact gradients for (8), (10) and (12) are

now replaced by approximated gradients, where the gradient
estimator at some X 1s computed as:

fo(x): E 5 I

li fitx = dwj) — fi¥)
=1

Where, w, are random vectors, independently sampled
from a standard normal distribution, b 1s the sample size, and
0 15 a predetermined positive value. Using an approximated
gradient can 1troduce noise 1n the calculations. In order to
address such a technical challenge, one or more embodi-
ments of the present invention use a convolution operation

with a Gaussian kernel, such as the following, to smooth out
the computational noise:

Fx): = (f +De)x) = o F)Oc(y; x)dy

oo sl

where, Q- (y; X) 1 =

Here, the error bounds are:

nlo? nlo?
5 <Flx)< f(x)+ 5

fx) - IVfx)-VFx)| <vVn Lo

The denivative can be estimated using Monte Carlo
approximations and an adaptive importance sampling tech-
nique, that allows to reuse all sampled function values.
Accordingly:

1 oy | &
VF@) = —E[f(c+02)Z). G ) = = ) oo (i 0 ().
=1

@cr(yi; X)
(i)

(We(¥i5 X) =
T I 7
my(xe +p)i=b+g,p+ EP H.p~ F{x, +p)

Further, a discussion 1s provided of applying the above
described embodiments of the present invention to the oil
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sands production system 100 depicted in FIG. 1. The opti-
mization for the system 100 includes generating prediction
and site wide production optimization models to 1mprove
crude o1l production under various asset capacity constraints
and competing objectives. For example, the objective of the
production optimization model 1s maximizing SCO produc-

tion and maintaining the levels of intermediate products in
the storage tanks T1-T4 (111-114) under both normal opera-
tions as well as during planned maintenance. Further, opera-
tional constraints can include an asset (e.g. plant P1 101)
being under maintenance, hence reducing available produc-
tion capacity. It 1s understood that other objective and/or
constraints are possible 1n other examples, and the above are
used for explanation herein.

In the event of process upsets or breakdowns within any
plant (P1-P5), to ensure uminterrupted supply of diluted
bitumen to upgrading and/or to the market, mnventories of
froth and diluted bitumen are maintained 1n the storage tanks
(I'1-T4). Depending on operational constraints, planned
maintenance schedules, and production plans, plant manag-
ers balance the production of SCO through the various unit
processes to maximize the output and to maintain enough
inventories ol intermediate products. Regression models are
used to represent the relationships between inflows and
outtlows for each plant P1. These models are built using deep
fully connected neural networks 1n one or more embodi-
ments of the present invention.

Data analysis can reveal that transient changes i1n the
covariates happen much faster (between 15-20 minutes) than
the time scale of process optimization, which was an hourly
model. So, a static prediction model to estimate behaviors of
continuous tlow processes can be considered at an hourly
granularity. For each regression model, the time-series data
1s aggregated at an hourly granularity using the mean of 12
data points (collected at a S-minute granularity). In other
embodiments, any other granularity can be used and any
other number of data points can be collected.

Based on expert mput and feature extraction and engi-
neering, covariates to be used for each regression model are
identified. The dataset 1s ordered by time and then split into
train, test and validation sets. Each split 1s time-wise con-
tiguous, 1.e. it contains data for set ol consecutive time
stamps.

In this example scenario a single period optimization 1s to
be performed when a plant manager has to configure the
system 100 for the next hour. For multi-period optimization,
the case 1s where the plant manager has to provide decisions
at each hour for next 10 hours, or some other duration and/or
intervals. Note that the prediction functions can be different
for each period; and the multi-period also uses coupling
constraints, which 1n this case are control action constraints
and inventory capacity constraints. For example, the con-
straints can be a=30% and p=30%, that 1s, the limitation
percentages of the changes between two consecutive peri-
ods.

FIG. 8 depicts an operation flow/block diagram for using
machine learning to identily control vanable values for a
system according to one or more embodiments of the present
invention. The controller 150 receives the historical data 805
of the system 100. The controller 150 can include a data
processor 810 that analyzes the received historical data 805.
For example, the data processor 810 can parse the historical
data 805 and extract the inputs, outputs, control variables,
constraints and other such operational parameters of the
system 100 for the duration over which the historical data
803 1s captured.
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The controller 150 can include a prediction engine 820
that uses the extracted data from the data processor 810 to
generate regression models of each subsystem 1n the system
100. The prediction engine 820 further determines relation-
ships between the subsystems. The prediction engine 820 1s
used to generate one or more control variables for each of
the subsystems. As noted earlier, the subsystems can be the
plants P1-P5, and/or the storage tanks T1-T4. The control
variables can include the primary and/or the secondary
control variables for the subsystems. The prediction engine
820 generates the control variables based on the regression
models for each subsystem. The control variables generated
can be optimal for each of the respective subsystem.

Further, the controller 150 includes an optimization mod-
ule 830 that optimizes the control vaniables that are gener-
ated by the prediction engine 820. The optimization module
830 uses machine learning, such as a DNN to optimize the
control variables. The optimization module 830 receives
constraints under which the one or more subsystems are to
be operated. The constraints can includes limits on amounts
of 1put, amounts of storage, operation time, and other such
parameters. The optimization module 830 further receives
sensor data. The optimization module 830 further receives
target intervals 815 for which the control variables are to be
optimized. For example, the target 815 can indicate 1f a
single period optimization 1s to be performed or a multi-
period optimization 1s to be performed for a longer duration.

The controller 150 notifies the plant manager of the
optimized control variables. In one or more examples, the
notification can be performed by a notification system 835.
The notification system 835 can notily the plant manager via
clectronic messages, such as email, text messages, stant
messages, and the like. The notification can also be provided
via a user interface, such as an audio/visual interface. The
controller 150 can also adjust the control variables of the one
or more plants to the optimized control variables.

The system 100 continues to operate with the adjusted
control variables, as shown at block 845. If targets and/or
constraints change, the optimization module 830 generates
updated optimized control variables and adjusts the system
100 accordingly, as shown at block 825. If the targets and
constraints do not change, the system continues to operate
with the set control variables, as shown at block 845.

One or more embodiments of the present invention facili-
tate managing operations of a production plant using opti-
mization to determine optimal control set-points for all
control variables across multiple subsystems of the plant.
Managing the operations includes using advanced machine
learning/deep learning models that can capture complex
nonlinear relationships between the subsystems. A data
driven model can explicitly learn dynamics and non-station-
ary behaviors. In one or more embodiments of the present
invention a model selection step 1s used to choose the best
fit model.

According to one or more embodiments of the present
invention, a multi-time period set-point optimization model
offers the flexibility of incorporating operational constraints
(1.e., asset capacity constraints) and user specified produc-
tion restrictions (1.€., expected production 1nterruptions) for
site-wide operations. For this, the model 1s represented as an
optimization problem 1n a directed acyclic graph.

According to one or more embodiments of the present
invention, the tlexible optimization approaches that can take
in regression functions without derivative information such
as random forests, and those with derivatives such as neural
networks are used. Described herein are at least two non-
linear optimization techniques for solving gradient-based
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and derivative-free models. The optimization techniques
facilitate providing set-point recommendations in near real-
time.

One or more embodiments of the present invention facili-
tate an approach to recasting ol a multi-plant process net-
work 1nto a surrogate network of regression transformers
that capture the process input to output relationships 1n a
data-driven manner, instead of relying on state-of-the art
process simulators or first-principles based approaches to
estimate these relationships. Coupling this representation
with operational constraints facilitates one or more embodi-
ments of the present invention to develop a prediction
optimization formulation for data-driven, site-wide optimi-
zation. Further, one or more embodiments of the present
invention use nonlinear regression functions to represent the
behavior of the various unit processes under varying set
points, parameter values, and operational conditions. The
multiple non-linear behavioral models are tied together 1n a
non-linear set-point optimization model that can consume
operational and practical considerations as side constraints.
Further, one or more embodiments of the present invention
facilitate 1improvements to primal-dual methods to solve
such a model.

The present mnvention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface i each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
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instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program 1instructions for carrying out
operations of the present invention may be assembler
istructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent 1nstructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source-code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or stmilar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone soitware package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instruction by uti-
lizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1 the tlowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1mple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

The tflowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
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gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of 1nstructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality mvolved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks 1n
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.
The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill 1n the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
described herein.
What 1s claimed 1s:
1. A computer-implemented method for controlling a
production system, the computer-implemented method com-
prising:
mapping, by a controller, the production system as a
directed acyclic graph, the production system compris-
ing a plurality of plants that are represented as nodes
and relations between the plants represented by edges
of the directed acyclic graph;
generating, by the controller, a regression model for each
of the plants in the production system, wherein a first
regression model for a first plant of the plurality of
plants comprises a gradient-based model and wherein a
second regression model for a second plant of the
plurality of plants comprises a black-box model;

predicting, by the controller, an output of each plant based
on sensor data and the regression model associated
from each respective plant;

determining, by the controller, one or more optimized

control variables for each plant based on the regression
models and a target output by using machine learning,
wherein the one or more optimized control variables
are selected to maximize the target output, wherein the
optimized control variables for the first regression
model are determined by decomposing the gradient-
based model using a primal dual algorithm, and
wherein the optimized control vanables for the second
regression model are determined using a derivative free
optimization and estimating noisy gradients by convo-
lution smoothing;

adjusting, by the controller, one or more set points for

cach plant based on the optimized control vanables to
generate the target output, wherein each of the one or
more optimized control variables i1s associated with a
set point; and

operating the production system using the adjusted one or

more set points.
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2. The computer-implemented method of claim 1, further
comprising sending, by the controller, a notification with the
optimized one or more control variables.

3. The computer-implemented method of claim 1,
wherein adjusting the one or more set points comprises
determining, by the controller, one or more non-linear
relations between the plants based on the sensor data.

4. The computer-implemented method of claim 1,
wherein the target output 1s a multi-period set point com-
prising a plurality of desired outputs over a predetermined
duration.

5. The computer-implemented method of claim 4,
wherein each period 1n the multi-period set point has respec-
tive constraints.

6. A system comprising;:

a plurality of plants that form a production system; and

a controller coupled with the plurality of plants for

controlling the production system by performing a

method comprising:

mapping the production system as a directed acyclic
graph, the plurality of plants are represented by
nodes and relations between the plants represented
by edges of the directed acyclic graph;

generating a regression model for each of the plants 1n
the production system, wheremn a first regression
model for a first plant of the plurality of plants
comprises a gradient-based model and wherein a
second regression model for a second plant of the
plurality of plants comprises a black-box model;

predicting an output of each plant based on sensor data
and the regression model associated from each
respective plant;

determining one or more optimized control variables
for each plant based on the regression models and a
target output by using machine learning, wherein the
one or more optimized control variables are selected
to maximize the target output, wherein the optimized
control variables for the first regression model are
determined by decomposing the gradient-based
model using a primal dual algorithm, and wherein
the optimized control variables for the second regres-
sion model are determined using a derivative iree
optimization and estimating noisy gradients by con-
volution smoothing;

adjusting one or more set points for each plant based on
the optimized control variables to generate the target
output, wherein each of the one or more optimized
control variables 1s associated with a set point; and

operating the production system using the adjusted one
or more set points.

7. The system of claim 6, wherein the method further
comprises sending, by the controller, a notification with the
optimized one or more control variables.

8. The system of claim 6, wherein adjusting the one or
more set points comprises determining, by the controller,
one or more non-linear relations between the plants based on

the sensor data.
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9. The system of claim 6, wherein the target output 1s a
multi-period set point comprising a plurality of desired
outputs over a predetermined duration.
10. The system of claim 9, wherein each period 1n the
multi-period set point has respective constraints.
11. A computer program product comprising a computer
readable storage medium that has computer executable
instructions stored thereupon, the computer executable
instructions when executed by a processor cause the pro-
cessor to perform a method comprising:
mapping, by a controller, a production system as a
directed acyclic graph, the production system compris-
ing a plurality of plants that are represented as nodes
and relations between the plants represented by edges
of the directed acyclic graph;
generating, by the controller, a regression model for each
of the plants 1n the production system, wherein a first
regression model for a first plant of the plurality of
plants comprises a gradient-based model and wherein a
second regression model for a second plant of the
plurality of plants comprises a black-box model;

predicting, by the controller, an output of each plant based
on sensor data and the regression model associated
from each respective plant;

determining, by the controller, one or more optimized

control variables for each plant based on the regression
models and a target output by using machine learning,
wherein the one or more optimized control variables
are selected to maximize the target output, wherein the
optimized control variables for the first regression
model are determined by decomposing the gradient-

based model using a primal dual algorithm, and
wherein the optimized control vaniables for the second
regression model are determined using a derivative free
optimization and estimating noisy gradients by convo-
lution smoothing;

adjusting, by the controller, one or more set points for

cach plant based on the optimized control varniables to
generate the target output, wherein each of the one or
more optimized control variables 1s associated with a
set point; and

operating the production system using the adjusted one or

more set points.

12. The computer program product of claim 11, wherein
adjusting the one or more set points comprises determining,
by the controller, one or more non-linear relations between
the plants based on the sensor data.

13. The computer program product of claim 11, wherein
the target output 1s a multi-period set point comprising a
plurality of desired outputs over a predetermined duration.

14. The computer program product of claim 13, wherein
cach period i1n the multi-period set point has respective
constraints.
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