US011093797B1

a2 United States Patent 10) Patent No.: US 11,093,797 B1

Alb 45) Date of Patent: Aug. 17,2021
(54) FEATURE SUPERPOSITION PREDICTOR (58) Field of Classification Search
USPC e 706/15, 45

(71) Applicant: Cristian Alb, Bucharest (RO) See application file for complete search history.

(72) Inventor: Cristian Alb, Bucharest (RO)

(56) References Cited
(*) Notice: Subject‘ to any disclaimer,i the term of this US PATENT DOCUMENTS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days. 7,721,336 B1* 5/2010 Adjaoute HO4L 63/1408
726/25
(21) Appl. No.: 17/098,408 2019/0374160 Al1* 12/2019 Yinoooevvviinnnnnn, A61B 5/486
(22) Filed: Nov. 15, 2020 * cited by examiner
(51) TInt. CL. Primary Examiner — David R Vincent
GO6N 20/00 (2019.01)
GO6K 9/62 (2006.01) (57) ABSTRACT
GO6F 16/903 (2019.01) A set of methods and corresponding systems that analyze,
(52) U.S. CL predict, or classity data. The improvements are the result of

CPC ... GO6K 9/6262 (2013.01), GO6F 16/90335 techniques that leverage the simultaneous evaluation of
(2019.01); GO6K 9/6201 (2013.01); GO6K training attributes.
9/623 (2013.01); GO6K 9/6288 (2013.01);
GO6N 20/00 (2019.01) 14 Claims, 1 Drawing Sheet

U.S. Patent Aug. 17,2021 US 11,093,797 B1

US 11,093,797 Bl

1
FEATURE SUPERPOSITION PREDICTOR

BACKGROUND

Field of Disclosure

The present disclosure relates generally to the fields of
machine learning and data analysis, in particular to classi-
fication and prediction of data.

Description of Related Art

Techniques 1n machine learning, and data analysis in
general, are used to discover correlations, patterns, and
trends 1 data. They may also be used to predict data
outcomes, or to classify them. An eflective tool for this
purpose 1s the decision tree. Decision trees can be used to
classily output outcomes using a set ol input attributes.
Ensembles of decision trees, known as decision forests,
proved to be quite successiul 1n a variety of classification,
and prediction tasks.

However, decision tree don’t fully exploit the informative
content of the tramning data, as they evaluate attributes
sequentially, and 1gnore possible synergies among them.

SUMMARY

A set of methods and corresponding systems that analyze,
predict, or classity data. The improvements are the result of
techniques that leverage the simultaneous evaluation of
training attributes.

The improvements are applicable to the fields of machine
learning and data analysis.

BRIEF DESCRIPTION OF TH.

L1l

DRAWINGS

FIG. 1 shows a graphical representation of the generic
prediction problem.

DETAILED DESCRIPTION

The following detailed description illustrates the prin-

ciples and operation of the disclosed items.
* Note that, 1n this description, the usage of the term “set”
1s generally intended as ensemble, gathering, or collection;
it doesn’t always have the strict meaning used in the “set
theory” branch of mathematics.

Also note that some concepts, procedures, and formulas 1n
the disclosure are described in a pseudo programming
language that imitates the style and structure of Python2.
Some of the notable conventions of the language:
=: denotes assignment;
==: denotes checking equality/equivalence;

*. denotes multiplication, e, g. 2%*3=6:
%. denotes raising to the power, e, g. 2%%*3=8.
#: precedes a comment

Techniques 1n machine learning are often used to predict
outcomes based on the knowledge of existing training data.
A target outcome 1s an outcome of interest that needs to be
predicted based on the attributes, or features, associated to 1t.
FIG. 1 provides an intuitive representation of the problem.
The 1nside pattern 1s the outcome of interest. The shape of
the element 1s the attribute used to predict the target out-
come. Decision trees are effective algorithms that implement
such predictors.

10

15

20

25

30

35

40

45

50

55

60

65

2

Deodata Classifiers

Decision tree operation 1s based on the assumption that
attributes predict the target outcomes better when evaluated
in a predetermined order.
However, it 1s conceivable that the selected attribute cham-
pion, the one that best separates outcome values, 1s less
ellicient than a combination of attributes. The combination
attributes, taken individually, might be less eflicient 1n
separating the outcome values.
The XOR problem 1s an example of situation where the
decision tree prediction might not work 1n an optimal way.
The disclosed methods, referred as “Deodata” methods,
cvaluate the attributes as an ensemble 1nstead of evaluating
cach attribute sequentially as nodes 1n the branches of a tree.
The Deodata methods renounce the tree structure and col-
lapse all branches into one evaluation 1nstance. This can be
seen also as a superposition, or flattening, of the decision
tree branches. Such a scheme better exploits the likely
synergies among the attributes.
The Deodata methods have the characteristics of “online
algorithms”. Supplementing the training data with more
entries does not require a costly retraining operation.
Also, due to their nature, the methods can accommodate data
sets containing entries for which some attributes are miss-
ng.
The Deodata methods are also essentially non parametric.
They do not require choosing a specific parameter in order
to operate. Of course, for specific cases, parameters and
formulas can be tuned to take advantage of these features.
The training data set 1s equivalent to a table of values. Each
row can be thought as a training istance. Columns corre-
spond to attributes, or features, associated to the training
instances. The target column 1s a particular column repre-
senting the outcome of interest. The target column classifies
the row instance according to the outcome value. The other
attribute columns contain attribute values that characterize
the observed instances from the perspective of the feature
attributes.
The tramning data set i1s conveniently represented as an
ensemble formed by two parts: a target column vector and
an array ol feature attribute values.
The query entry consists of a list of values corresponding to
the column attributes of the training data set.
One goal of the analysis 1s to predict the target outcome most
likely associated to the query entry.
The query entry will be compared against the rows of the
training data set.
Each attribute value of the currently evaluated training row
will be compared with the corresponding attribute value of
the query entry. A match column score 1s calculated for each
attribute. The match column score can be, 1n the simplest
form, a value of one, corresponding to a match, or zero
otherwise.
For better results, the match column score can be made a
function of the weight of the attribute and the scarcity of the
two attribute values involved. The attribute weight could be
a measure of the predictive power of the attribute relative to
other attributes.
These attribute features could be determined 1n the begin-
ning for all attributes and values. Once all attributes have
been compared, an entry match score 1s computed for the
currently evaluated training row. In the simplest form, this
score 1S the sum of the match column scores of all attributes.
Conceptually, a row summary ensemble 1s generated for the
currently evaluated training row. The summary includes the
target outcome, the entry match score. It could also include
the list of attributes that did match and other information.

US 11,093,797 Bl

3

The row summary ensemble will be used to update the
contents ol a work data set. This work data set aggregates the
content of the row summary ensemble for each of the
evaluated rows of the training data set.

After the parsing of the rows 1s completed, the work data set
will be processed 1n order to estimate likelihood measures
for the target outcomes. These likelihood measures can
subsequently be used for prediction, classification, or data
analysis. The likelihood measures can be viewed also as
virtual counts associated to the target outcomes. The 1nfor-
mative content of these virtual counts can be evaluated in
order to derive entropy or other impurity measures. For
prediction or classification tasks, the target outcome with the
highest likelihood will be used as output.

The Deodata methods can be classified into four main
categories referred as “Delanga™, “Varsate”, “Marunte” and
“Rasturnat”. The generic mode of operation of these meth-
ods will be described 1n order to provide a better under-
standing.

The Deodata Delanga methods create a work data set that
consists of an ensemble of target outcome collections. These
collections can be viewed as lists, where the actual order of
the elements 1s not relevant.

Each of these target outcome collections will be associated
to a match score.

These collections will be referred as match score lists.
After the row summary ensemble 1s generated for a training,
row, the match score list corresponding to the entry match
score will be updated by appending the target outcome to the
list. I a l1st doesn’t exist for the entry match score, 1t will be
created and will contain the target outcome as element.
After the parsing of the rows 1s completed, the match score
list corresponding to the top score 1s selected. The counts of
the target outcomes will constitute the likelthood measures.
A tie situation occurs when counts are equal for a group of
target outcomes. For these situations, a tie breaking proce-
dure can be used. A tie breaking procedure consists 1n
evaluating the next best match score list. If a tie still persist,
the next best match score list 1s evaluated, etc.

The Deodata Varsate methods extend the processing done
by the Deodata Delanga methods by aggregating the work
data set into a set of cascaded match lists.

The processing 1s 1dentical with that of the above described
Deodata Delanga method, up to the generation of the match
score lists. Once the lists are generated, it 1s required to order
them such that the list with the best score 1s placed on top.
The match score list at the top becomes the top cascaded
match list. This top list will be appended to the next match
score list of the work data set: the result 1s the cascaded
match list for the lower level. The content of this lower level
cascaded match list will be appended to the next lower level
match score list, etc.

The process continues until all the lists have been processed.
Each of the resulting cascaded match lists will be evaluated
and assigned a predictive score.

The predictive score could be an impurity measure such as
entropy, Gini1 index, or other mnformation content measure.
The list with the best predictive score will be used to derive
the likelihood measures for classification, prediction, or data
analysis. For instance, i case of prediction, the target
outcome with most counts in the selected list becomes the
predicted outcome.

Again, a tie breaking procedure can be used 1n situations
where the target outcome counts are equal.

The Deodata Marunte methods create a work data set
similar to the Delanga one, but with an additional layer of
structure. Instead of being an ensemble of target outcome

10

15

20

25

30

35

40

45

50

55

60

65

4

lists, 1t 1s an ensemble of lists containing structures with an
associated target outcome list.

The target outcomes are aggregated not only as target
outcomes sharing the same match score, but also sharing the
same matching attributes. Therefore, outcomes of training
instances, having the same attributes that match the query
entry, form a subgroup list of outcomes. The subgroup list,
together with the set of matching attributes, forms the
subgroup ensemble. The subgroup ensembles are aggregated
into a structure, for instance a list. The work data set
becomes a collection of lists containing as elements the
subgroup ensembles.

The top entry of the work data set 1s used to determine the
likelihood measures. An impurity measure for each sub-
group list 1s evaluated. The subgroup list with the lowest
impurity measure will be selected as the champion outcome
list. The counts of the target outcomes in the champion list
will provide the likelihood measures.

In case the best impurity measure 1s a value shared by
several subgroup lists, the contents of the tied lists can be
merged together 1n an extended champion list.

An accuracy improvement 1s possible at the cost of addi-
tional processing. This improvement can address the situa-
tions where there are duplicate attribute columns in the
training data. If the attributes are not vetted 1n the prepro-
cessing ol the training data, the duplicates get excessive
welght and negatively influence the accuracy of the results.
This 1improvement requires i1gnoring the match score for
unique or rare attribute match combinations.

A heterogeneous top list 1s created by allowing all subgroup
ensembles that have maximal unique combinations of attri-
bute matches. An attribute match combination 1s a maximal
unique combination if there 1sn’t another combination that
includes the matched attributes.

The heterogeneous top list becomes the top entry of the work
data set and 1s processed as described above.

The Deodata Rasturnat methods create a work data set
that consists of an ensemble of target outcome entries, where
cach entry has a cumulative outcome score.

After the row summary ensemble 1s generated for a traiming,
row, the corresponding target outcome score entry of the
work data set 1s updated with the entry match score. The
updating could consist 1n applying a transformation function
to the entry match score, and adding the resulting value to
the outcome score. The transformation function could be an
exponential function like a power of two, or a Gaussian.
After the parsing of the rows 1s completed, the work data set
will contain the target outcomes likelihood measures.

The following pseudo-code excerpt shows an embodi-
ment that illustrates the Delanga. Varsate and Rasturnat
variations of the Deodata method for a classifier:

def DeodataClassifier(query_attr, attr table,
targ outc_list, operation_mode) :
params:
query_afttr
list of attribute values of the query entry.
e. g.
['al’, 'b2', 'cl’, 'd0’, 'el’, '12']
attr_table
attribute part of the training data set. Can be viewed
as a table of values, wherein each row corresponds to
a training instance. Columns correspond to attributes
associated to the training instance.
e. g.
[['al’, 'bO’, 'c2', 'd0’", 'e0’, 11"],
['al’, 'b0’, '¢2’, 'd0’", 'e(’, '10'],

SN S S R R R o S R S L R i

US 11,093,797 Bl

S

-continued

['al’, 'b0’", 'cl’, 'd1’, 'el’, '12']]
targ outc_list
a list representing the target outcome part of the
training data set. Can be viewed as a column vector
where each row represents the target outcome of the
corresponding row 1n the attribute table.
e. g.
[ItOI?
't0",
't2"]
operation_mode
parameter use to specify the operation mode.
Options are:
'delanga’
'varsate'
rasturnat’

output:
the most likely target prediction/classification for the

input query.

RV e S R R i S S S R R R i S S S S R R o

1f operation_mode == None:
set default parameter
operation_mode = 'delanga’
tbl_row_no = len (attr_table)
attr_col_no = len(attr_table[O])
attr col_no == 6
work_dataset = { }
for row_1dx in range(tbl_row_no)
evaluate current row
eval_row = attr_table[row_idx]
eval_outcome = targ_outc_list [row_i1dX]
col_score_list = []
for attr_1dx 1n range(attr col_no) :
evaluate current attribute term
attr_val_query = query_attr[attr 1dx]
attr_val_row = eval_row|attr 1dx]
AttrMatchEval() i1s the function that evaluates the
match column score
col_match = AttrMatchEval(attr_idx, attr_val_query,
attr_val_row)
col_score_list.append(col_match)
compute the entry match score for the current row
entry_match_score = EntryMatchEval(col_score_list)
row_summary = { }
row_summary['outcome'] = eval_outcome
row_summary|['score'| = entry_match_score
aggregate row summary into the work data set
outcome = row_summary|'outcome’]
score = row_summary|'score’|
if (operation_mode == 'delanga'’
or operation_mode == 'varsate') :
if score not in work_dataset :
work_dataset[score] = [outcome]

else :
work_dataset[score] += [outcome]
else :
operation_mode == 'rasturnat’

apply transformation to the entry match score

transt score = TransformScore(score)

if outcome not in work_dataset :
work_dataset[outcome] = transi_score

else :
work_dataset[outcome] += transi_score

obtain likelihood measures from work data set
if operation_mode == 'delanga’ :
get an ordered data set

e.g. work_dataset = { score_a: [10', 't2', 't1"],

score_b: ['t1’, 't1'] }
ordered_score_list = GetScoreOrdered(work_dataset)
e.g.

ordered_score list = [[score b, ['t1', 't1"]],

[score_a, ['tO’, 12", 't1"]]

get top score from ordered list
top_score_list = ordered_score_list[O][1]

likelihood_data = GetCGuntTﬂLike___ihﬂGd(t-:-p_smre_list)

In case of outcome ties, a procedure that uses
next best score (ordered_score_list[1+1][1])
can be used.

10

15

20

25

30

35

40

45

50

55

60

6

-continued

if operation_mode == 'varsate' :

get an ordered data set
ordered_score_list = GetScoreOrdered(work_dataset)
aggregate score lists into imcreasingly inclusive
score lists starting from the top
score_no = len (ordered_score_list)
accumulated_list = []
cascaded_list = []
for crt_1dx 1n range (score_no) :
append current match score list
accumulated_list += ordered_score_list[crt_i1dx][1]
cascaded_list[crt_1dx] = accumulated_list
the no match cascaded entry contains everything
cascaded_list[score_no| = targ outc_list
evaluate each cascaded entry impurity score
and select entry with best score
cascaded_max_score = 0
crt_champion_list = []
for crt_1dx 1n range(score_no + 1) :
crt_score = ImpurityScore(cascaded_list[crt_idx])
if crt_score > cascaded_max_score
a new champion has been found
cascaded_max__ score = crt_score
crt_champion_list = cascaded_list[crt 1dx]
elif crt_score == cascaded _max_score
append to current champion list
crt_champion_list += cascaded list[crt_i1dx]
top_score_list = crt_champion_list
likelihood_data = GetCountToLikelihood(top_score_list)
In case of outcome ties, a procedure that uses
mnext best impurity score 1 cascaded_list

can be used.

else :

operation_mode == 'rasturnat’

e.g. work_dataset = { 't0': score_x
tl": score vy,

't2': score_z |

order outcome entries using the accumulated score

order_outc_list = OrderOutcomes(work_dataset)
likelithood data = GetScoreToLikelihood(order outc_list)

predict_outcome = likelihood_data[O]['outcome’]
predict_outcome 1s the chosen prediction of the method
return predict_outcome

An example detailing the operation of the deodata meth-
ods follows.

Note that the examples come 1n pairs, one corresponds to a
Deodata Delanga type and the other to a Deodata Rasturnat

type.

The following simple training data 1s used for training:

attr_table:
the attribute table corresponding to the training data set
attr_table == [
'al', 'b0", 'c2','d2’, 'e2’, 'f1'], # 't2'
al’, 'b0’", 'c2', 'd0’, 'e0’, 'f1'], # 'tl’
'al’, 'b0’", 'cl’, 'd0’, 'e0’, 10"], # 't0'
'al’, 'b0’, 'cl’, 'dl’, 'el’, 12"], #'t2'
'al’, 'b0’, 'cl’, 'd2', 'e2', 'T0"], #'t2'
al', 'bl’, 'c2','d0’, 'e0’, 'f1'], # 'tl’
'al', 'b0", 'c2', 'd0’, 'e0’, '12' 1, # 't0'
'al’, 'b0’", 'cl’, 'd0’, 'e0’, 12" 1, # 'tl’

]

targ_outc_list:
the outcome list corresponding to the training data set
targ_outc_list == ['t2', 't1, 't0', 't2’, 't2', 't1", 't0', 't1']

7
The query entry 1s the following;

US 11,093,797 Bl

e e e e e e e e e e e e e e
query_attr = ['al’, 'b2', 'c1’, 'd0", 'el’, '12'] 5
e e e
It has six attributes. The query entry 1s compared against
cach row of the training table. Note that in this example the
most simple score functions are used. For matching attribute
values, a point 1s assigned in case ol a match and none
otherwise. The relevance/weight of the attribute, or the
scarcity of the attribute values, are 1gnored in order to
provide a simplified description.
15
S e e e
HHH
eval_outcome = 't2'
eval_row = ['al’, 'b0'. 'c2', 'd2’, 'e2’, 'I1']
query_attr = ['al’, 'b2', 'cl’, 'd0", 'el’, '12'] 50
matches Y N N N N N
1 match
col_score_list = [1, 0, O, 0, 0, O]
entry_match_score = EntryMatchEval(col_score_list)
entry_match_score = sum(col_score_list)
entry_match_score == 1
if (operation_mode == 'delanga’ or operation_mode == 'varsate') : 23
work_dataset(entry_match_score) += eval_outcome
work dataset[1] == [12']
else :
operation_mode == 'rasturnat’
transf_score = TransformScore(entry_match_score)
transif score = 2 ** entry_match_score 30
work _dataset[eval_outcome] += transi score
work_dataset['t2'] ==
HHH
eval_outcome 't1’
eval_row = ['al’, 'b0', 'c2', 'd0’, 'e0’, 'T1']
query_attr = [al’, 'b2’, 'c1’, 'd0", 'el’, '12] 35
matches Y N N Y N N
2 matches
col_score_list = [1, 0, 0, 1, 0, 0]
entry_match_score - sum(col_score_list)
entry_match_score ==
if (operation_mode == 'delanga’ or operation_mode == 'varsate') : 40
work_dataset[entry_match_score| += eval_outcome
work dataset [2] == ['t1’]
clse :
operation_mode == 'rasturnat’
transf_score = 2 ** entry_match_score
work dataset [eval outcome] += transi_score
work_dataset['t]l'] == 4 45
HHH
eval outcome = 't0’
eval_row = ['al’, 'b0’, 'cl’, 'd0’, 'e0’, '10']
query_attr = ['al’, 'b2", 'c1’, 'd0’, 'el’, '12']
matches Y N Y Y N N
3 matches 50
col_score_list = [1, 0, 1, 1, 0, 0]
entry_match_score = sum(col_score_list)
entry_match_score == 3
if (operation_mode 'delanga’ or operation_mode == 'varsate') :
work_dataset[entry_match_score] += eval_outcome
work dataset[3] == [10'] 55
else :
operation_mode == 'rasturnat’
transf_score = 2 ** entry_match_score
work_dataset[eval_outcome] += transf_score
work dataset['t0"] ==
HiH
eval_outcome = 12’ 00
eval_row = ['al’, 'b0', 'cl’, 'd1’, 'el’, '12']
query_attr = ['al’, 'b2", 'cl’, 'd0’, 'el’, '{2']
matches Y N Y N Y Y
4 matches
col_score_list = (1,0, 1,0, 1, 1] -

entry_match_score = sum{col_score_list)
entry_match_score == 4

8

-continued

if (operation_mode == 'delanga’ or operation_mode == 'varsate') :
work dataset[entry_match_score] += eval_outcome
work_dataset[4] == ['t2']

clse :
operation_mode == 'rasturnat’
transf score = 2 ** entry_match_score
work_dataset [eval outcome] += transi score
work_dataset['t2'] == 2 + 16 == 18

HHH

eval outcome = 't2’

eval_row = ['al’, 'b0’, 'cl’, 'd2’, 'e2’, '{U']

query_attr = ['al’, 'b2", 'c1’, 'd0’, 'el’, '12']

matches Y N Y N N N

2 matches

col_score_list =[1, 0, 1, 0, 0, 0]

entry_match_score = sum(col_score_list)

entry_match_score ==

if (operation_mode == 'delanga’ or operation_mode == 'varsate') :
work_dataset[entry_match_score] += eval_outcome
work_dataset(2) == ['t1’, '12']

clse :
operation_mode == 'rasturnat’
transf _score = 2 ** entry_match_score
work_dataset[eval_outcome] += transf_score
work_dataset['t2'] == 18 + 4 == 22

HHH

eval outcome = 't1’

eval_row = ['al’, 'bl’, 'c2’, 'd0’, 'e0’, '{1']

query_attr = ['al’, 'b2", 'c1’, 'd0", 'el’, '12']

matches Y N N Y N N

2 matches

col_score_list = [1, 0, 0, 1, 0, O]

entry_match_score = sum(col_score_list)

entry_match_score ==

if (operation_mode == 'delanga’ or operation_mode == 'varsate') :
work_dataset[entry_match_score| +# eval_outcome
work_dataset[2]== ['t]l", 't2', 't1']

clse :
operation_mode == 'rasturnat’
transf_score = 2 ** entry_match_score
work_dataset[eval_outcome] += transf_score
work_dataset['tl'| ==4 + 4 == §

HHH

eval_outcome = 't0'

eval_row = ['al’, 'b0', 'c2', 'd0’, e0', '12']

query_attr = ['al’, 'b2", 'c1’, 'd0", 'el’, '12']

matches Y N N Y N Y

3 matches

col_score_ list =[1, 0,0, 1, 0, 1]

entry_match_score = sum{col_score_list)

entry_match_score == 3

if (operation_mode == 'delanga’ or operation_mode == 'varsate') :
work_dataset[entry_match_score] += eval_outcome
work_dataset[3] == ['t0', t0']

else :
operation_mode == 'rasturnat’
transf score = 2 ** entry_match_score
work_dataset[eval outcome| += transi_score
work_dataset['t0'] == 8 + 8 == 16

HHH

eval_outcome = 't1’

eval_row = ['al’, 'b0’, 'cl’, 'd0’, 'e0’, '12']

query_attr = ['al’, 'b2", 'c1’, 'd0’, 'el’, '12']

matches Y N Y Y N Y

4 matches

col_score_list =[1,0, 1, 0, 1, 1]

entry_match_score = sum|col_score_list]

entry_match_score ==

if (operation_mode == 'delanga’ or operation_mode == 'varsate') :
work_dataset[entry_match_score] += eval_outcome
work_dataset[4] == ['t2', 't1']

clse :
operation_mode == 'rasturnat’
transf score = 2 ** entry_match_score
work_dataset[eval_outcome] += transf_score

work_dataset [t1l'] == 8 + 16 == 24

Al

US 11,093,797 Bl

9

follows:

if (operation_mode == 'delanga’ or operation_mode == 'varsate') :

work dataset ==

['t2'],

['t1', 't2', 't1'],
:['t0", 't0'],
['t2', 't1'],

i N S T (N T

h

operation_mode == 'rasturnat’
work_dataset ==

else :

H0'": 16,
' 22,
t1': 24,

ter parsing all training entries, the work data set looks as

The above descriptions are provided just as exemplifications
to facilitate an understanding of the operating principle.

Better implementations are possible. For instance, instead of

storing the target outcomes, an mdex to the row in the
training table would sutlice.

The {following pseudo-code excerpt illustrate how ft
work_dataset structure 1s processed 1n order to generate t
likelthood measures:

1C

if operation_mode == 'delanga’ :

ordered_score_list = GetScoreOrdered(work_dataset)
ordered_score_list == |

, [12, T1']],

, ['t0', 't0']].

, ['t1', 't2', 't1']],

, [127]]

IF_:IMIEJJIL:

]
the top score corresponds to the first entry (index 0).

top_score_list = ordered_score_list[0][1]
top_score_list == [12','t1']
the likelithood measure is represented by the outcome counts
likelithood_data = GetCountToLikelihood(top_score_list)
likelihood_data == |

{"outc':'t2", 'score’:1},

{'outc”:'t1", 'score’:1}

]

elif operation_mode == 'varsate':

ordered_score_list = GetScoreOrdered(work_dataset)
ordered_score_list == |

, ['t2', 't1']],

, [0, O],

, ['tl', 't2', 't1']],

, [127]]

IF_;II\‘-}IIL-J\-’IIL:

]

aggregate score lists into increasingly inclusive
score lists starting from the top
accumulated_list = []

cascaded_list = []

accumulated_list += ordered_score_list[O][1]
accumulated_list == ['12",'t1]

cascaded_list[0] = accumulated_ list
cascaded_list == [['t2"'t1"]]

accumulated_list += ordered_score_list[1][1]
accumulated_list == ['12"'t1",'10",'t0"]
cascaded_list[1] = accumulated_ list
cascaded_list == [['t2".)'t1"], ['t2",'t1",10",'t0']]
accumulated_list += ordered_score_list[2][1]
accumulated_list == ['t2",'t1",'t0",'t0"'t1",'t2",'t1"]
cascaded_list[2] = accumulated_list
cascaded_list == |

't2",'t1'],

't2",'t1",'t0",'t0"],
't2",'t1','t0",'t0",'t1",'12",'t1"]

1C

10

15

20

25

30

35

40

45

50

55

60

65

10

-continued

]

accumulated_list += ordered_score_list[3][1]
accumulated_list == ['t2'.'t1",'t0",t0",'t1",'t2",'t1",'t2"]
cascaded_list[3] = accumulated_list

cascaded_list == |
't2"'t1'],
't2",'t1",'t0",'t0'],
't2",'t1",'10",'10",'t11",'12",'t1"),
't2",'t1°,'t0",'t0",'t1",'12",'t 1,12 "]
]

evaluate the impurity score of each cascaded entry
casc_score_list = []

crt_ent = Entropy(cascaded_list[0])

cascd_score_list[O] = [-crt_ent, cascaded_list[O]]

crt_ent = Entropy(cascaded_list[1])

cascd_score_list[1) = [-crt_ent, cascaaed_list[1]]

crt_ent = Entropy(cascaded_list[2])

cascd_score_list[2]= [-crt_ent, cascaded_list[2]]

crt_ent = Entropy(cascaded_list[3])

cascd_score_list[3] = [-crt_ent, cascaded_list[3]]
cascd_score_list == |

—1.0, ['t2'.'t1']],

—1.5, ['t2','t1",'t0",'t0']],

—1.55665, ['t2",'t1",'t0",'t0",'t1",'12",'t1']],
—1.56127, ['t2",'t1",'t0",'t0",'t1",'12",'t1",'t2']]

]

the best score, 1n this mode of operation, corresponds to
iz the lowest entropy, that 1s the first entry (index 0).
top_score_list = ordered_score_list[O][1]
top_score_list == ['t2', 't1']
the likelihood measure 1s represented by the outcome counts
likelihood_data = GetCountToLikelihood(top_score_list)
likelithood_data == |

{'outc':'t2", 'score’:1},

{'outc":'t1", 'score’:1}

]

HHH

else :
operation_mode == 'rasturnat’
order outcome entries using the accumulated score
order_outc_list = OrderOutcomes(work_dataset)

order_outc_list == |
24, 'tl'],
22, '12'],
16, 't0"

]

the likelihood measure 1s represented by the outcome score
likelithood_data = GetScoreToLikelihood(order outc_list)
likelithood_data == |

{'outc':'t1", 'score’:24}

{'outc':'t2", 'score’:22},

{'outc':'t0", 'score’:16}

It can be seen 1n the above example that, for operation modes

‘delanga and ‘varsate’, two outcome types have the same
associated score. This 1s a tie situation.

One possibility of breaking the tie 1s to search for additional
counts 1n the below ensemble. The following pseudo-code
excerpt illustrates such a procedure:

R e e e e e e e e e e e e
if operation_mode == 'delanga’ :
ordered_score_list = GetScoreOrdered(work_dataset)
ordered_score_list == |
4, ['t2', 't1']],
3, ['t0', 't0"]],
2, ['t1', 't2', 't1']],
1, [227]]
]

the top score corresponds to the first entry (index 0).
top_score_list = ordered_score_list [O][1]
top_score_list == ['t2", 't1'],

the liklihood measure 1s represented by the outcome
counts

US 11,093,797 Bl

11

-continued

likelihood_data = GetCountToLikelithood(top_score_list)
likelihood_data == |

{'outc':'t2", 'score’:1},

{"outc':'tl", 'score’:1}

]

to break the tie the next best entries are searched
for additional counts:
tie_index = 0
next_entry_list = ordered_score list[tie_index + 1][1]
next_entry_list == ['t0’, 't0']
the list doesn’t contain instances of any of the tied
outcomes 't2' or 't1', therefore i1t 1s 1gnored.
evaluate next index
next_entry_list = ordered_score_list[tie_index + 2][1]
next_entry_list == ['tl’, 2", 't1']
1n this list there are 2 counts for 't1' and only one
2 for 't2". Therefore 't1' 1s chosen as the best predictor.
predict_outcome = 't1’

Another possible tie breaking procedure consists 1n com-
bining the Delanga Varsate or Marunte methods with the
Rasturnat method. For instance, the target outcome scores of
the Rasturnat method could be used as tie breakers. And vice
versa, the other Deodata methods could be used to break ties

when Rasturnat 1s the primary method.

The following pseudo-code excerpt shows an embodi-
ment that illustrates a Marunte variation of the Deodata
method for a classifier:

def DeodataMarunteClassifier(query_attr, attr table,
targ outc_list) :

th
o
=
=

query_attr
list of attribute values of the query entry.

attr_table
attribute part of the training data set.

targ outc_list
a list representing the target outcome part of the
tramning data set.

output:
the most likely target prediction/classification for the

input query.

SN Sl St i R R R S S S SR R i

tbl_row_no = len(attr_table)
attr_col_no = len(attr_table[0])
work_dataset = {'top’: [], 'generic":[]}
for row_1dx 1n range (tbl_row_no)
evaluate current row
eval_row = attr_table[row_idXx]
eval _outcome = targ outc_list[row_i1dX]
eval_match_list = [O] * attr_col_no

e.g.
if attr_col no == 6 :
eval_match_list == [0, O, 0, O, O, O]

determine attribute columns that match query
for attr_1dx 1n range(attr col no) :
evaluate current attribute term
attr_val_query = query_attr [attr_1dx]
attr_val_row = eval_row|attr_idx]
if attr_val_query == attr_val_row :
eval _match_ list[attr 1dx] =1
compute the entry match score for the current row
row_summary = { }
entry_match_score = sum(eval_match_list)
row_summary|['score'] = entry_match_score
row_summary['outcome'] = eval_outcome
row_summary|['matches'|= eval_match_list
check whether other entries exist with the same
attribute matches.
delayed_add_flag = True

10

15

20

25

30

35

40

45

50

55

60

65

HH#

12

-continued

for crt_top i work_dataset['top']:

if (

elif (

elif (

elif (

HH#

crt_matches = crt_top['matches’]
more_in_top_flag = False
more_in_eval flag = False

for attr_i1dx in range(attr col_no) :

if not (crt_matches[attr 1dx] ==
eval_match_list [attr 1dXx]) :

there 1s an attribute mismatch

if eval _match_list[attr 1dx]==
an additional attribute match
eval match list
more_in_eval_flag = True

else :
an additional attribute match 1n
crt_matches
more_in_top_flag = True

more_in_eval_flag == False
and more_in_top_flag == False
)
the top subgroup 1s similar
append entry to the matching subgroup
crt_top['outcome'] += (eval_outcome]
delayed add_flag = False
break

more_in_eval_flag == False
and more_in_top_flag == True
)
the top entry has more matches than the
evaluated entry.
Relegate evaluated entry to the generic section
work_dataset['generic'] += [eval_outcome]

delayed add_flag = False
break

more_in_eval_flag == True
and more in_top_flag == False
)
the evaluated entry has more matches than the
i top entry.
i Replace top entry with evaluated entry.
work_dataset['generic'] += crt_top['outcome’]
work_dataset['top'].remove(crt_top)
the evaluated entry will be added after all
entries 1n the top part have been checked

more_in_eval_flag == True
and more_in_top_flag == True
)
the evaluated entry 1s potentially a candidate
for an additional top entry.
i Needs to be further checked against remaining
top entries.
the evaluated entry will be potentially added
after all entries 1n the top part have

been checked
pass

if delayed_add_flag :

the evaluated entry match needs to be added
to the top part of the work data set.
new_top ={ }

new_top['matches'| = eval_match_list
new_top['outcome'] = [eval_outcome]
work_dataset['top'].append(new_top)

the work data set has been created

Compute the impurity measure for the subgroup entries 1n
the 'top’ part of the work data set.

minimal_impurity = None
champion_list = None

aggregated list = []

for crt_subgroup 1in work_ dataset['top'] :

crt_outc_list = crt_subgroup['outcome’]
agoregated_list += crt_outc_list
crt_impurity = Entropy(crt_outc_list)
if minimal_impurity == None :

minimal_impurity = crt_impurity

13

-continued

champion_list = crt_outc_list
else :

if mimimal_impurnty > crt_impurity :
minimal_impurity = crt_impurity
champion_list = crt_outc_list

elif minimal_1mpurity == crt_impurity :
append to champion subgroup
champion_list += crt_outc_list

top_score_list = champion_list

likelithood_data = GetCountTolLikelithood(top_score_list)
In case of outcome ties, aggregated_list can be used

to break the tie.

If that doesn’t suffice, the generic part

of the work data set can be used

(work_dataset['generic']).
predict_outcome = likelithood_data[O]['outcome’]

predict_outcome 1s the chosen prediction of the method

return predict_outcome

An example detailling the operation of the Deodata

US 11,093,797 Bl

10

15

20

Marunte method follows. The following simple data 1s used

for training:

attr table:

25

i the attribute table corresponding to the training data

set

attr_table == [

'al’, 'bO", 'cl’, 'd0', 'e2', ']
1', 'b0’, 'cl’, 'd2", 'e2', "1l
1', 'b0’, 'c0', 'd2', 'el’, 'fl
1', 'b0’, '¢2', 'd2", 'el’, 'fl
1', 'bl’, 'cl’, 'd2", 'el’, '12
1', 'b0’, 'cl’, 'd1’, 'el’, '12

o T 4 IO o T o TR o T ol

]
targ outc_list:

1, # 't
1, # 'tl’
1, # 't0’
1, # 't0’
1, # 'tl’
1, # 't0’

30

the outcome list corresponding to the training data set 33

targ_outc_list == ['t2', 't1', 't0', 0", 't1’, 't0']

40

It has six attributes. The query entry 1s compared against

cach row of the training table.

1

work_dataset == {'top":[], 'generic’:[]}
1

eval _outcome = 't2'

eval_row = ['al’, 'b0’, 'cl’, 'd0’, 'e2’, 'f1
query_attr = ['al’, 'b2', 'c1’, 'd0’, 'el’, '12
matches Y N Y Y N N
3 matches

eval_match_list = [1, 0, 1, 1, O, O]

]
|

entry_match_score = EntryMatchEval(eval_match_list)

entry_match_score = sum(eval_match_list)
entry_match_score ==

first entry, add 1t to 'top' section
new_top ={ }

45

50

55

60

new_top = {'matches'’: eval_match_list, 'outcome’: [eval_outcome] }

work_dataset['top'].append(new_top)
work_dataset ==

top": |

{'matches’: [1, 0, 1, 1, 0, 0], 'outcome": ['t2']}

h

'generic’;: []

65

14

-continued
i
HitH
eval outcome = 't1'
eval_row = ['al’, 'b0', 'cl’, 'd2’, 'e2', 'f1']

query_attr = ['al’, 'b2", 'c1’, 'd0", 'el’, '12']

matches Y N Y N N N

2 matches

eval_match_list = [1, O, 1, 0, O, O]
entry_match_score = sum(eval_match_list)
entry_match_score ==

the matching attributes form a subset included 1n
an entry already part of the top. Add entry to
the generic part.

top member: [1,0,1,1,0,0]

eval: [1,0,1,0,0,0]

new_generic = [eval_outcome] |
work_dataset['generic'] += new_generic
work_dataset ==

#
#
#
#

'top”: |
{'matches’: [1, 0, 1, 1, 0, 0],'outcome’: ['t2']}
|
'oeneric’: ['t1']
i
HitHt
eval outcome = 't0'
eval_row = ['al’, 'b0’, 'cO’, 'd2’, 'el’, '{1']

query_attr = ['al’, 'b2’, 'c1’, 'd0’, 'el’, '12']

matches Y N N N Y N

2 matches

eval_match list = [1, 0, 0, 0, 1, O]

entry_match_score = sum(eval_match_list)
entry_match_score ==

the matching attributes form a new combination subset.
Although has less matches, add entry to top part.
#

top member: [1,0,1,1,0,0]

eval: [1,0,0,0,1,0]

new_generic = (eval_outcome] |
work_dataset['generic'] += new_generic

work_dataset ==

'top': |
{'matches’: [1, 0, 1, 1, 0, 0], 'outcome": ['t2']}
{'matches’: [1, 0, 0, 0, 1, 0], 'outcome': ['t0']}
]
'oeneric’: ['t1']
h
HitH
eval_outcome = 't0’
eVﬂl_rGW — [Iallj IbOI: ICZI: Idzlj IE:II: Iﬂl]

query_attr = ['al’, 'b2", 'c1’, 'd0", 'el’, '12']
matches Y N N N Y N
2 matches
eval_match_list = [1, 0, O, 0, 1, O]
entry_match_score = sum(eval_match_list)
entry_match_score == 2
the matching attributes are the same. Append outcome to
existing top subgroup list.
#
top member: [1,0,0,0,1,0]
eval: [1,0,0,0,1,0]
work_dataset['top']|[O]['ocutcome'].append(eval_outcome)
work_dataset ==
'top”: |
'matches’: [1, O, 1,
0

1, 1, 0, 0],'outcome’: ['t2']}
'matches’: [1, 0, 0,0, 1

, 1, 0],'outcome’: ['t0",'t0"]}

'oeneric’: ['t1']

h
HHH
eval_outcome = 't1’
eval_row = ['al’, 'bl’, 'cl’, 'd2’, 'el ', '12]
query_attr = ['al’, 'b2 ', 'c1’, 'd0", 'el’, "{2']
matches Y N Y N Y Y
4 matches
eval_match list = [1, 0, 1, 0, 1, 1]
entry_match_score = sum(eval_match_list)
entry_match_score ==
the existing top member matching attributes form

US 11,093,797 Bl

15

-continued

a subset included in the evaluated entry.
Move the top member 1n generic part, replace it
with new entry.

top member: [1,0,0,0,1,0]

eval: [1,0,1,0,1,1]
work_dataset['top'][O]['ocutcome'].append(eval_outcome)
work_dataset ==

SN e S R R

'top”: |
{'matches’: [1, 0, 1, 0, 1, 1], 'outcome": ['t1']}
{'matches’: [1, 0, 1, 1, 0, 0], 'outcome”: ['t2']}
]
'generic': ['t1', 't0', 't0"]
h
HHH

eval outcome = 't0’

eval_row = ['al’, 'b0’, 'cl’, 'dl’, 'el’, '12']

query_attr = ['al’, 'b2", 'c1’, 'd0’, 'el’, '12']

matches Y N Y N Y Y

4 matches

eval_matchlist = [1, 0, 1, 0, 1, 1]

entry_match_score = sum(eval_match_list)
entry_match_score ==

the matching attributes are the same. Append outcome to
existing top subgroup list.

#

top member: [1,0,1,0,1,1]

eval: [1,0,1,0,1,1]

work_dataset ['top'][0]['outcome’].append (eval_outcome)
work_dataset ==

'top”: |
{'matches': 1,0, 1, 0, 1, 1], 'outcome’: ['tl’, 'tO']}
{'matches’: [1, 0, 1, 1, 0, 0], 'outcome': ['t2']}
]

'generic’: ['t1’, 't0', 't0']

;

The {following pseudo-code excerpt illustrate how ft
work_dataset structure 1s processed in order to generate t

likelihood measures:

HitH
work dataset ==
top”: |
{'matches’: [1, 0, 1, 0, 1, 1], 'outcome’: ['t1’, 't0']}
{'matches’: [1, 0, 1, 1, 0, 0], 'outcome”: ['t2']}
|
'generic’: ['tl’, 't0", 't0']
i
evaluate the entropy of each entry in the top part.
HitH

crt_subgroup = work dataset['top'][0]
crt_outc_list = crt_subgroup['outcome’]
crt_outc_list == ['tl’, 't0']

crt_impurity = Entropy(crt_outc_list)
crt_impurity ==

minimal_impurity = crt_impurity

champion_list = crt_outc_list

HHH

crt_subgroup = work_dataset['top'][1]
crt_outc_list = crt_subgroup['outcome’]
crt_outc_list == ['t2']

crt_impurity = Entropy(crt_outc_list)
crt_impurity == 0

crt_impurity < minimal_impurity
minimal_impurity = crt_impurity

champion_list = crt_outc_list

the second entry in top produces the champion
list with lowest entropy

top_score_list = champion_list

top_score_list == ['t2']

the likelihood measure 1s represented by the outcome counts
likelithood_data = GetCountToLikelithood(top_score_list)
likelihood_data == |

{'outc':'t2", 'score’:1},

1C

1C

10

15

20

25

30

35

40

45

50

55

60

65

16

-continued

{'outc':'t0’", 'score’:0}
{'outc':'t1", 'score”:0}

The best score (lowest impurity) 1s achieved by the second
entry in top part of the work data set. Its outcome list
provides the likelihood measures for this embodiment.

In the above examples the matching score has been
simplified to a sum of zero or one values corresponding to

attribute matches. In the following pseudo-code excerpts,
more refined ways of computing the match score are
detailed.

The match column score 1s made a tunction of the scarcity
of the two attribute values mvolved 1 a comparison. For
instance, if the attribute values match, and the respective
attribute value has a low probability of occurrence, a larger
weilght should be given to the match. Also, for mismatches
it 1s possible to assign a negative value that 1s proportional
to the probabilities of the two attribute values mvolved.
The following training data 1s used for illustration:

e e e e e e e e e e e
attr_table:
the attribute table corresponding to the training data set
attr_table == |
'al’, 'b0’, 'c0’, 'dO'], # 't2'
'al’, 'b0’, 'c0’, 'dO'], # 't1’
'al’, 'bl’, 'cl’, 'dO'], # 't0'
a0, 'bl’, 'cl’, 'd1'], # 't0'
‘a0, 'bl’, 'c2', 'd1'], # 't1’
- 'a0’, 'bl’, 'c2', 'd2'], # 't0'
]
targ outc_list:
the outcome list corresponding to the traiming data set
targ_outc_list == ['t2', 't1', 10", 't0’, 't1’, 't0']
B e e e e e e e

The query entry 1s compared against several rows of the
training table in the following pseud-code excerpt:

HiH
Using the 'attr_table' data, relative frequency estimates
of the attribute value probabilities can be calculated:

attr_prob == |
{'a0": 3.0/6, 'al'": 3.0/6},
{'b0': 2.0/6, 'bl1": 0.6666},
{'¢0': 0.3333, 'c1': 0.3333, 'c2": 0.3333},
{'d0’: 0.5, 'd1": 0.3333, 'd2": 0.1666},
]
HiH

eval_outcome = 't2’

eval_row = ['al’, 'b0’, 'c0’, 'dO']
query_attr = ['al’, 'bl’, 'cl’, 'd2']

matches Y N N N

1 match

basic/default computing of entry score
col_score_list = [1, 0, O, O]
entry_match_score = sum(col_score_list)
entry_match_score == 1

variant A of computing entry score

US 11,093,797 Bl

17

-continued

col_score_list[0] = 1.0 — attr_prob[0]['al’]
col_score_list[1] =

col_score_list[2]
col_score_list[3] =

entry_match_score == sum(col_score_list)
entry_match_score == 1.0 - 3.0/6 == 0.5
variant B of computing entry score

col_score_list[O] = 1.0 — attr_prob [O]['al'])**2

col_score list[1] = —(attr_prob[1]['bl'] * attr_prob[1]['b0'])
col_score_list[2] = —(attr_prob[2]['cl'] * attr_prob[2]['c0'])
col_score list[3] = —(attr_prob[3]['d2'] * attr_prob[3]['d0'])

entry_match_s_cr::-re = smn(cml_écﬁre_list)
entry_match_score == (1.0 =0.5%*2 -0.666*0.333
—-0.333%0.333 -0.166*0.5) == 0.334

#. ..

HH#

eval outcome = 't0'

eval_row = ['a0’, 'bl’, 'cl’, 'd1’]

query_attr = ['al’, 'bl’, ’cl', 'd2']
#matches N Y Y N

2 matches

basic/default computing of entry score
col_score_list = [0, 1, 1, 0]
entry_match_score = sum(col_score_list)
entry_match_score == 2

variant A of computing entry score

col_score_list[0] = 0

col_score_list[1] = 1.0 — attr_prob[1]['bl’]
col_score_list[2] = 1.0 — attr_prob[2]['cl’]

col_score_list[3] =0

entry_match_score = sum(col_score_list)
entry_match_score == (1.0 —=0.666%*2 + 1.0 -0.333%%2) ==
1.445

entry_match_score == 1.445

variant B of computing entry score

col_score_list[0] = — (attr_prob[O]['al’] * attr_prob[O]['a0'])
col_score_list[1] = 1.0 — (attr_prob[1]['b1'])**2
col_score_list[2] = 1.0 — (attr_prob[2]['c1'])**2
col_score_list[3] = —(attr_prob[3]['d2'] * attr _prob[3]['d1'])
entry_match_score = sum(col_score_list)
entry_match_score == (-0.5%0.5 + 1.0 -0.666%*2 +

1.0 —0.333*%*2 -0.166%0.333) ==

1.140
entry_match_score == 1.140

#...

HitH

eval_outcome = 't0’

eval_row = ['a0', 'bl’, 'c2', 'd2']
query_attr = ['al’, 'bl’, 'cl’, 'd2']

matches N Y N Y

2 matches

basic/default computing of entry score
col_score_list = [0, 1, O, 1]
entry_match_score = sum(col_score_list)
entry_match_score ==

variant A of computing entry score

col_score_list[O] = 0
col_score_list[1] = 1.0 — attr_prob[1]['bl’]
col_score_list[2] =0
col_score_list[3] = 1.0 — attr_prob[3]['d2']

entry_match_score = sum (col_score_list)
entry_match_score == (1.0 —=0.666 + 1.0 -0.166) == 1.168
entry_match_score == 1.168&
variant B of computing entry score
col_score_list[0] = —(attr_prob[0]['al'] * attr_prob[0][a0'])
col_score list[1] = 1.0 — (attr_prob[1]['b1'])**2
col_score_list[2] = —(attr_prob[2]['cl'] * attr_prob[2][c2'])
col_score_list[3] = 1.0 — (attr_prob[3]['d2'])**2
entry_match_score = sum(col_score_list)
entry_match_score == (-0.5%0.5 + 1.0 —-0.666%**2
—0.333*%0.333 + 1.0 -0.166**2) == 1.16%8
entry_match_score == 1.168
Variant B assigns to mismatches a negative value that i1s
2 proportional to the probabilities of the two values

occurring

Additional Improvements:
An improvement, applicable when the training table con-
tains too many entries, consists 1n using just a subset of the

10

15

20

25

30

35

40

45

50

55

60

65

18

rows for evaluation against the query entry. The choice of
the rows to process could be random, or done according to
some other critera.

Another improvement 1s weighting the outcome counts 1n
order to compensate for their uneven proportions in the
training data set.

Although the focus of the description has been on discrete
outcome and attribute values, the disclosed methods can be
modified such that they can be applied to continuous coun-

terparts.

The described methods and embodiments should not be

interpreted as limiting the scope of the disclosure to the
particular details presented. It 1s always possible to rearrange
the structures, the sequence of processing, or the formula
expressions, to achieve the same or similar results. The
present disclosure intends to cover all equivalent embodi-
ments.
The above disclosure describes the embodiments 1n terms of
algorithmic processes or operations. These algorithmic
descriptions and representations convey the substance of the
improvements. These operations, while described function-
ally, computationally, or logically, are understood to be
implemented by computer programs comprising instructions
for execution by a processor or equivalent electrical circuits,
microcode, or the like. The described procedures may be
embodied 1n software, firmware, hardware, or any combi-
nations thereof.

The mvention claimed 1s:

1. A machine learning method for predicting unknown
attributes based on available data, the method comprising:

accessing a training table of attribute values, wherein each

row corresponds to a tramming entry, while columns
correspond to attributes;

accessing a training target list, where each element 1s a

target outcome that 1s associated to the corresponding
row from said training table;

accessing a query data entry consisting 1n a list of attribute

values corresponding to the columns of said training
table; and

calculating, by a machine learning device, a likelihood

measure of said target outcomes, said calculation com-
prising;:
cvaluating rows of the traiming table and processing
cach evaluated i1tem, where the processing com-
Prises:
evaluating each of said attributes, and for each pair
of values, one from the query data entry and one
from the current row, computing a match column
SCOre;
computing an entry match score for the ensemble of
said match column scores;
defining a row summary ensemble that contains the
target outcome, said entry match score, and the list
of matching attributes;
aggregating content from said row summary
ensemble to an entry of a work data set; and
extracting likelihood measures for target outcomes by
processing said work data set.

2. The method of claim 1, where said match column score
1s a function of match degree, features of the attribute, and
features of the attribute values 1n said pair.

3. The method of claim 1, wherein said aggregating
content from the row summary ensemble comprises append-
ing said target outcome to the corresponding match score
list, wherein each match score list contains only outcomes

US 11,093,797 Bl

19

from rows that have the same entry match score; and
wherein the work data set 1s constituted by the ensemble of
match score lists.
4. The method of claim 3, wherein said processing of said
work data set comprises:
selecting the match score list with the best score;
using the selected data to calculate said likelihood mea-
sures; and
using a tiebreak procedure 1n case more than one target
outcome has the same number of occurrences, wherein
said tiebreak procedure comprises:
selecting the next best match score list to provide
additional counts to break the tie, and 1n case the tie
persists, repeating the procedure with the next best

match score list.

5. The method of claim 3, wherein said processing of
work data set comprises:

ordering said match score lists according to said entry

match score, such that the match score list with the best
score 1s placed on top;

creating a set of cascaded match lists by aggregating the

match score lists starting from the top, such that the
content of the top match score list 1s added to the next
match score list below, and the resulting new content 1s
further added to the next match score list, etc., until the
whole set 1s processed;

computing a predictive score for each of the cascaded

match lists, and selecting the one with the best predic-
tive power, and

using the selected list to calculate said likelihood mea-

sures.

6. The method of claim 5, wherein the computation of the
predictive score comprises calculating an impurity measure
of the target outcome list, and the best predictive power
corresponds to the lowest impurity.

7. The method of claim 1, wherein said work data set
includes a top collection of subgroup lists, wherein each
subgroup list contains outcome values corresponding to row
entries that match the same attributes 1n the query data entry,
and the row entries have the top match score.

8. The method of claim 1, wherein said work data set
includes a top collection of subgroup lists, wherein each
subgroup list contains outcome values corresponding to row
entries that match the same attributes 1n the query data entry,
and no set of matching attributes of a subgroup list is
included in the set of matching attributes of another sub-
group list.

9. The method of claim 8, wherein said processing of said
work data set comprises computing an impurity measure of
the subgroup lists 1 the top collection and choosing as
predictor list the subgroup list with lowest impurity, and
where said predictor list 1s used to calculate said likelihood
measures.

10. The method of claim 1, wherein said aggregating
content from the row summary ensemble comprises updat-
ing the score of the corresponding target outcome with said
entry match score; and wherein the work data set 1s consti-
tuted by the ensemble of target outcome scores.

11. The method of claim 10, wherein said updating of the
target outcome score consists 1n using a transiormation
function on the entry match score, and the result of the
transformation function 1s added to the target outcome score.

5

10

15

20

25

30

35

40

45

50

55

60

20

12. The method of claim 11, wherein said transformation
function 1s an exponential function.

13. A machine learning system comprising:

a processor configured to execute mstructions; and

a non-transitory computer-readable medium containing

instructions for execution on the processor, the instruc-

tions causing the processor to perform steps of:

accessing a training table of attribute values, wherein
cach row corresponds to a training entry, while
columns correspond to attributes;

accessing a training target list, where each element 1s a
target outcome that 1s associated to the correspond-
ing row from said training table;

accessing a query data entry consisting i a list of
attribute values corresponding to the columns of said
training table; and

calculating by a machine learning device a likelihood
measure ol said target outcomes, said calculation
comprising;:

cvaluating rows of the traiming table and processing
cach evaluated i1tem, where the processing com-
Prises:

evaluating each of said attributes, and for each pair of
values, one from the query data entry and one from
the current row, computing a match column score;

computing an entry match score for the ensemble of
said match column scores:

defining a row summary ensemble that contains the
target outcome, said entry match score, and the list of
matching attributes;

aggregating content from said row summary ensemble
to an entry of a work data set; and

extracting likelihood measures for target outcomes by
processing said work data set.

14. A non-transitory computer readable storage medium
comprising mnstructions executed by a processor, the mstruc-
tions comprising:

accessing a training table of attribute values, wherein each

row corresponds to a tramming entry, while columns
correspond to attributes;

accessing a training target list, where each element 1s a

target outcome that 1s associated to the corresponding
row from said training table;

accessing a query data entry consisting 1n a list of attribute

values corresponding to the columns of said training
table; and

calculating a likelihood measure of said target outcomes,

said calculation comprising: evaluating rows of the
training table and processing each evaluated item,
where the processing comprises:
evaluating each of said attributes, and for each pair of
values, one from the query data entry and one from the
current row, computing a match column score;

computing an entry match score for the ensemble of said
match column scores:

defining a row summary ensemble that contains the target

outcome, said entry match score, the list of matching
attributes;

aggregating content from said row summary ensemble to

an entry of a work data set; and

extracting likelthood measures for target outcomes by

processing said work data set.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

