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cision scores. The document processing system performs a
natural language processing operation on the input docu-
ment based on the confidence model.
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CONFIDENCE MODELS BASED ON
ERROR-TO-CORRECTION MAPPING

BACKGROUND

The present application relates generally to an improved
data processing apparatus and method and more specifically
to mechanisms for generating confidence models for tabular
or word processing data.

In computing, a spell checker (or spell check) 1s an
application program that flags words 1n a document that may
not be spelled correctly. Spell checkers may be stand-alone,
capable of operating on a block of text, or as part of a larger
application, such as a word processor, email client, elec-
tronic dictionary, or search engine.

A basic spell checker carries out the following processes:

It scans the text and extracts the words contained 1n 1t.

It then compares each word with a known list of correctly
spelled words (1.e. a dictionary). This might contain just a
list of words, or 1t might also contain additional information,
such as hyphenation points or lexical and grammatical
attributes,

An additional step 1s a language-dependent algorithm for
handling morphology. Even for a lightly intlected language
like English, the spell-checker will need to consider different
forms of the same word, such as plurals, verbal forms,
contractions, and possessives. For many other languages,
such as those featuring agglutination and more complex
declension and conjugation, this part of the process 1s more
complicated.

As an adjunct to these components, the program’s user
interface will allow users to approve or reject replacements
and modily the program’s operation. An alternative type of
spell checker uses solely statistical information, such as
n-grams, to recognize errors instead of correctly-spelled
words. This approach usually requires a lot of eflort to obtain
suilicient statistical information. Key advantages include
needing less runtime storage and the ability to correct errors
in words that are not included 1n a dictionary. In some cases
spell checkers use a fixed list of misspellings and sugges-
tions for those misspellings; this less flexible approach 1s
often used 1n paper-based correction methods, such as the
see also entries ol encyclopedias. Clustering algorithms
have also been used for spell checking combined with
phonetic information.

SUMMARY

This Summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
herein in the Detailed Description. This Summary 1s not
intended to identity key factors or essential features of the
claimed subject matter, nor 1s 1t intended to be used to limait
the scope of the claimed subject matter.

In one 1illustrative embodiment, a method 1s provided 1n a
data processing system comprising at least one processor
and at least one memory, the at least one memory compris-
ing 1instructions which are executed by the at least one
processor and configure the processor to implement a docu-
ment processing system which operates to perform the
method. The method comprises recording, by a spell check
confidence component executing within the document pro-
cessing system, a mapping ol misspelled words to corrected
words for set of documents. The method further comprises
generating, by the spell check confidence component, an
error-to-correction frequency model based on the mapping.
The method turther comprises parsing, by a parser executing
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within the document processing system, an iput document
to extract words 1n the error-to-correction frequency model.
The method further comprises calculating, by the spell
check confidence component, a precision score for each
word 1n the 1nput document found 1in the error-to-correction
frequency model. The precision score represents a probabil-
ity that the extracted word 1s spelled correctly as intended 1n
the mput document. The method further comprises gener-
ating, by the document processing system, a precision model
for the mput document based on the precision scores. The
method further comprises performing, by the document
processing system, a natural language processing operation
on the mput document based on the confidence model.

In other illustrative embodiments, a computer program
product comprising a computer useable or readable medium
having a computer readable program 1s provided. The com-
puter readable program, when executed on a computing
device, causes the computing device to perform various ones
of, and combinations of, the operations outlined above with
regard to the method 1illustrative embodiment.

In yet another 1illustrative embodiment, a system/appara-
tus 1s provided. The system/apparatus may comprise one or
more processors and a memory coupled to the one or more
processors. The memory may comprise instructions which,
when executed by the one or more processors, cause the one
or more processors to perform various ones of, and combi-
nations of, the operations outlined above with regard to the
method illustrative embodiment.

These and other features and advantages of the present
invention will be described 1n, or will become apparent to
those of ordinary skill in the art in view of, the following
detailed description of the example embodiments of the
present mvention.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, as well as a preferred mode of use and
further objectives and advantages thereof, will best be
understood by reference to the following detailed descrip-
tion of illustrative embodiments when read 1n conjunction
with the accompanying drawings, wherein:

FIG. 1 depicts a schematic diagram of one illustrative
embodiment of a natural language processing system 1n a
computer network in which aspects of the illustrative
embodiments may be implemented;

FIG. 2 1s an example block diagram of a computing
device 1n which aspects of the illustrative embodiments may
be implemented;

FIG. 3 illustrates a natural language processing system
pipeline for processing an mput question 1n accordance with
one 1llustrative embodiment;

FIG. 4 1s a block diagram 1illustrating a mechanism for
generating a confidence model for a document 1n accordance
with an illustrative embodiment:

FIG. 5 1s a flowchart illustrating operation of a mechanism
for generating an error/correction mapping in accordance
with an illustrative embodiment; and

FIG. 6 1s a flowchart illustrating operation of a mechanism
for generating a confidence model for a document 1n accor-
dance with an 1illustrative embodiment.

DETAILED DESCRIPTION

The illustrative embodiments provide mechanisms for
generating confidence models for tabular or word processing
data. Spell checking has revolutionized digital recording and
communications. Prior to statistical and natural language
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evidence used to correct misspelled words, much time was
spent reviewing and correcting communications. Users have
developed a trust that the spell check of the identified
incorrect word 1s correct, such that the words are auto-
corrected without review. Automated corrections have led to
unintended errors 1n scientific papers and other documents.
The problem 1s compounded when decisions are made using
the extracted facts and data from the improperly corrected
documents.

The 1llustrative embodiments provide a mechanism for
generating confidence models for tabular or word processing
data 1n an input document. The mechanism develops con-
fidence models for tabular or word processing data using
downstream analysis of the mput data. The mechanism
records the error-to-correction frequency, analyzes a selec-
tion of data for potential error/origin and correction frequen-
cies, develops a precision model of the data within the
document, and modifies the data based on the precision
model. For instance, the mechanism may 1dentify data for
which the confidence 1s low, modily the identified data,
remove the identified data, flag the identified data as being,
low-confidence, or reweight the data.

In one example embodiment, the mechanism may record
error-to-corrections along with the domain of the document.
The domain may be genomics, finance, engineering, or
architecture, for example.

In another example embodiment, the mechanism may
interface directly with a spell checker to receive data about
incorrectly spelled words that are 1dentified, words that were
automatically corrected, words that were corrected after
interaction with a user, and words that were 1dentified but
were not corrected after interaction with a user. The mecha-
nism may also examine documents with tracked changes to
identify words that were manually corrected by a user.

Before beginning the discussion of the various aspects of
the illustrative embodiments, it should first be appreciated
that throughout this description the term “mechanism™ wall
be used to refer to elements of the present invention that
perform various operations, functions, and the like. A
“mechanism,” as the term 1s used herein, may be an 1imple-
mentation of the functions or aspects of the illustrative
embodiments in the form of an apparatus, a procedure, or a
computer program product. In the case of a procedure, the
procedure 1s implemented by one or more devices, appara-
tus, computers, data processing systems, or the like. In the
case of a computer program product, the logic represented
by computer code or instructions embodied in or on the
computer program product 1s executed by one or more
hardware devices in order to implement the functionality or
perform the operations associated with the specific “mecha-
nism.” Thus, the mechanisms described herein may be
implemented as specialized hardware, software executing on
general purpose hardware, software instructions stored on a
medium such that the instructions are readily executable by
specialized or general purpose hardware, a procedure or
method for executing the functions, or a combination of any
of the above.

The present description and claims may make use of the
terms “‘a”, “at least one o1, and “one or more of” with regard
to particular features and elements of the illustrative
embodiments. It should be appreciated that these terms and
phrases are mtended to state that there 1s at least one of the
particular feature or element present in the particular illus-
trative embodiment, but that more than one can also be
present. That 1s, these terms/phrases are not intended to limit
the description or claims to a single feature/element being,
present or require that a plurality of such features/elements
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be present. To the contrary, these terms/phrases only require
at least a single feature/element with the possibility of a
plurality of such features/elements being within the scope of
the description and claims.

Moreover, 1t should be appreciated that the use of the term
“engine,” 11 used herein with regard to describing embodi-
ments and features of the invention, 1s not intended to be
limiting of any particular implementation for accomplishing
and/or performing the actions, steps, processes, etc., attrib-
utable to and/or performed by the engine. An engine may be,
but 1s not limited to, software, hardware and/or firmware or
any combination thereol that performs the specified func-
tions including, but not limited to, any use of a general
and/or specialized processor in combination with appropri-
ate software loaded or stored 1n a machine readable memory
and executed by the processor. Further, any name associated
with a particular engine 1s, unless otherwise specified, for
purposes of convenience of reference and not intended to be
limiting to a specific implementation. Additionally, any
functionality attributed to an engine may be equally per-
formed by multiple engines, incorporated into and/or com-
bined with the functionality of another engine of the same or
different type, or distributed across one or more engines of
various configurations.

In addition, 1t should be appreciated that the following
description uses a plurality of various examples for various
clements of the illustrative embodiments to further i1llustrate
example 1implementations of the illustrative embodiments
and to aid 1n the understanding of the mechanisms of the
illustrative embodiments. These examples intended to be
non-limiting and are not exhaustive of the various possibili-
ties for implementing the mechanisms of the illustrative
embodiments. It will be apparent to those of ordinary skill
in the art in view of the present description that there are
many other alternative implementations for these various
clements that may be utilized 1n addition to, or 1n replace-
ment of, the examples provided herein without departing
from the spirit and scope of the present invention.

The illustrative embodiments may be utilized in many
different types of data processing environments. In order to
provide a context for the description of the specific elements
and functionality of the 1llustrative embodiments, FIGS. 1-3
are provided hereafter as example environments in which
aspects of the illustrative embodiments may be i1mple-
mented. It should be appreciated that FIGS. 1-3 are only
examples and are not intended to assert or imply any
limitation with regard to the environments 1n which aspects
or embodiments of the present mvention may be imple-
mented. Many modifications to the depicted environments
may be made without departing from the spirit and scope of
the present invention.

FIGS. 1-3 are directed to describing an example natural
language (NL) processing system, such as a (Question
Answering (QA) system (also referred to as a Question/
Answer system or Question and Answer system), method-
ology, and computer program product with which the
mechanisms of the illustrative embodiments are imple-
mented. As will be discussed 1n greater detail hereatter, the
illustrative embodiments are integrated in, augment, and
extend the functionality of these NL processing mecha-
nisms.

With respect to the example embodiment of a QA system,
it 1s 1important to first have an understanding of how question
answering 1 a QA system 1s implemented before describing
how the mechanisms of the illustrative embodiments are
integrated 1n and augment such QA systems. It should be
appreciated that the QA mechanisms described 1n FIGS. 1-3
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are only examples and are not intended to state or imply any
limitation with regard to the type of natural language pro-
cessing mechanisms with which the illustrative embodi-
ments are implemented. Many modifications to the example
NL processing system shown in FIGS. 1-3 may be imple-
mented in various embodiments of the present mmvention
without departing from the spirit and scope of the present
invention.

As an overview, a Question Answering system (QA
system) 1s an artificial intelligence application executing on
data processing hardware that answers questions pertaining
to a given subject-matter domain presented in natural lan-
guage. The QA system receives mputs from various sources
including mmput over a network, a corpus of electronic
documents or other data, data from a content creator, infor-
mation from one or more content users, and other such
mputs from other possible sources of mput. Data storage
devices store the corpus of data. A content creator creates
content 1n a document for use as part of a corpus of data with
the QA system. The document may include any file, text,
article, or source of data for use 1n the QA system. For
example, a QA system accesses a body of knowledge about
the domain, or subject matter area, e.g., financial domain,
medical domain, legal domain, etc., where the body of
knowledge (knowledgebase) can be organized 1n a variety of
configurations, e.g., a structured repository of domain-spe-
cific information, such as ontologies, or unstructured data
related to the domain, or a collection of natural language
documents about the domain.

Content users input questions to the QA system which
then answers the mput questions using the content 1n the
corpus of data by evaluating documents, sections of docu-
ments, portions ol data in the corpus, or the like. When a
process evaluates a given section of a document for semantic
content, the process can use a variety ol conventions to
query such document from the QA system, e.g., sending the
query to the QA system as a well-formed question which 1s
then interpreted by the QA system and providing a response
containing one or more answers to the question. Semantic
content 1s content based on the relation between signifiers,
such as words, phrases, signs, and symbols, and what they
stand for, their denotation, or connotation. In other words,
semantic content 1s content that interprets an expression,
such as by using Natural Language Processing.

As will be described 1n greater detail hereatter, the QA
system receives an mput question, analyzes the question to
extract the major elements of the question, uses the extracted
clement to formulate queries, and then applies those queries
to the corpus of data. Based on the application of the queries
to the corpus of data, the QA system generates a set of
hypotheses, or candidate answers to the mput question, by
looking across the corpus of data for portions of the corpus
of data that have some potential for containing a valuable
response to the input question. The QA system then per-
forms deep analysis, e.g., English Slot Grammar (ESG) and
Predicate Argument Structure (PAS) builder, on the lan-
guage ol the input question and the language used 1n each of
the portions of the corpus of data found during the applica-
tion of the queries using a variety of scoring algorithms.
There may be hundreds or even thousands of scoring algo-
rithms applied, each of which performs diflerent analysis,
¢.g., comparisons, natural language analysis, lexical analy-
s1s, or the like, and generates a score. For example, some
scoring algorithms may look at the matching of terms and
synonyms within the language of the input question and the
found portions of the corpus of data. Other scoring algo-
rithms may look at temporal or spatial features 1n the
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language, while others may evaluate the source of the
portion of the corpus of data and evaluate 1ts veracity.

The scores obtained from the various scoring algorithms
indicate the extent to which the potential response 1s likely
to be a correct answer to the mput question based on the
specific area of focus of that scoring algorithm. Each result-
ing score 1s then weighted against a statistical model, which
1s used to compute the confidence that the QA system has
regarding the evidence for a candidate answer being the
correct answer to the question. This process 1s repeated for
cach of the candidate answers until the QA system 1dentifies
candidate answers that surface as being significantly stron-
ger than others and thus, generates a final answer, or ranked
set of answers, for the input question.

As mentioned above, QA systems and mechanisms oper-
ate by accessing 1nformation from a corpus of data or
information (also referred to as a corpus of content), ana-
lyzing 1t, and then generating answer results based on the
analysis of this data. Accessing information from a corpus of

data typically includes: a database query that answers ques-
tions about what 1s 1n a collection of structured records, and
a search that delivers a collection of document links 1n
response to a query against a collection of unstructured data
(text, etc.). Conventional question answering systems are
capable of generating answers based on the corpus of data
and the mput question, verifying answers to a collection of
questions from the corpus of data, and selecting answers to
questions from a pool of potential answers, 1.e. candidate
answers.

Content creators, such as article authors, electronic docu-
ment creators, web page authors, document database cre-
ators, and the like, determine use cases for products, solu-
tions, and services described in such content before writing
their content. Consequently, the content creators know what
questions the content 1s intended to answer 1n a particular
topic addressed by the content. Categorizing the questions,
such as 1n terms of roles, type of information, tasks, or the
like, associated with the question, 1n each document of a
corpus of data allows the QA system to more quickly and
ciliciently identify documents containing content related to
a specific query. The content may also answer other ques-
tions that the content creator did not contemplate that may
be usetul to content users. The questions and answers may
be verified by the content creator to be contained in the
content for a given document. These capabilities contribute
to improved accuracy, system performance, machine learn-
ing, and confidence of the QA system. Content creators,
automated tools, or the like, annotate or otherwise generate
metadata for providing information usable by the QA system
to 1dentily these question-and-answer attributes of the con-
tent.

Operating on such content, the QA system generates
answers for input questions using a plurality of intensive
analysis mechanisms which evaluate the content to 1dentity
the most probable answers, 1.e. candidate answers, for the
input question. The most probable answers are output as a
ranked listing of candidate answers ranked according to their
relative scores or confidence measures calculated during
evaluation of the candidate answers, as a single final answer
having a highest ranking score or confidence measure, or
which 1s a best match to the input question, or a combination
of ranked listing and final answer.

FIG. 1 depicts a schematic diagram of one illustrative
embodiment of a natural language processing system 100 1n
a computer network 102. One example of a question/answer
generation which may be used in conjunction with the
principles described herein 1s described i U.S. Patent
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Application Publication No. 2011/0125734, which 1s herein
incorporated by reference 1n its entirety. The NL processing
system 100 1s implemented on one or more computing
devices 104 (comprising one or more processors and one or
more memories, and potentially any other computing device
clements generally known 1n the art including buses, storage
devices, communication 1nterfaces, and the like) connected
to the computer network 102. The network 102 includes
multiple computing devices 104 1n communication with
cach other and with other devices or components via one or
more wired and/or wireless data communication links,
where each communication link comprises one or more of
wires, routers, switches, transmitters, receivers, or the like.
In the depicted example, NL processing system 100 and
network 102 enables question/answer ((QA) generation func-
tionality for one or more QA system users via their respec-
tive computing devices 110-112. Other embodiments of the
NL processing system 100 may be used with components,
systems, sub-systems, and/or devices other than those that
are depicted herein.

The NL processing system 100 1s configured to implement
an NL system pipeline 108 that receive mputs from various
sources. For example, the NL processing system 100
receives mput from the network 102, a corpus of electronic
documents 106, NL system users, and/or other data and
other possible sources of input. In one embodiment, some or
all of the mputs to the NL processing system 100 are routed
through the network 102. The various computing devices
104 on the network 102 include access points for content
creators and NL system users. Some of the computing
devices 104 include devices for a database storing the corpus
of data 106 (which 1s shown as a separate entity in FIG. 1
tor 1llustrative purposes only). Portions of the corpus of data
106 may also be provided on one or more other network
attached storage devices, 1n one or more databases, or other
computing devices not explicitly shown i FIG. 1. The
network 102 includes local network connections and remote
connections in various embodiments, such that the NL
processing system 100 may operate in environments of any
s1ze, including local and global, e.g., the Internet.

In one embodiment, the content creator creates content 1n
a document of the corpus of data 106 for use as part of a
corpus ol data with the NL processing system 100. The
document includes any file, text, article, or source of data for
use 1n the NL processing system 100. NL system users
access the NL processing system 100 via a network con-
nection or an Internet connection to the network 102, and
input questions to the NL processing system 100 that are
answered by the content in the corpus of data 106. In one
embodiment, the questions are formed using natural lan-
guage. The NL processing system 100 analyzes and inter-
prets the question, and provides a response to the N L system
user, e.g., NL processing system user 110, containing one or
more answers to the question. In some embodiments, the NL
processing system 100 provides a response to users in a
ranked list of candidate answers while 1n other 1llustrative
embodiments, the NL processing system 100 provides a
single final answer or a combination of a final answer and
ranked listing of other candidate answers.

The NL processing system 100 implements a NL system
pipeline 108 which comprises a plurality of stages for
processing an input question and the corpus of data 106. The
NL processing system pipeline 108 generates answers for
the mput question based on the processing of the input
question and the corpus of data 106. The NL processing
system pipeline 108 will be described 1n greater detail
hereafter with regard to FIG. 3.
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In some 1illustrative embodiments, the NL processing
system 100 may be the IBM Watson™ QA system available
from International Business Machines Corporation of
Armonk, N.Y., which 1s augmented with the mechanisms of
the 1llustrative embodiments described hereafter. As outlined
previously, the IBM Watson™ QA system receives an input
question which it then analyzes to extract the major features
of the question, that 1n turn are then used to formulate
queries that are applied to the corpus of data. Based on the
application of the queries to the corpus of data, a set of
hypotheses, or candidate answers to the input question, are
generated by looking across the corpus of data for portions
of the corpus of data that have some potential for containing
a valuable response to the mput question. The IBM Wat-
son™ QA system then performs deep analysis on the lan-
guage ol the input question and the language used 1n each of
the portions of the corpus of data found during the applica-
tion of the queries using a variety of scoring algorithms. The
scores obtained from the various scoring algorithms are then
welghted against a statistical model that summarizes a level
of confidence that the IBM Watson™ QA system has regard-
ing the evidence that the potential response, 1.e. candidate
answer, 1s inferred by the question. This process 1s repeated
for each of the candidate answers to generate ranked listing
of candidate answers which may then be presented to the
user that submitted the input question, or from which a final
answer 1s selected and presented to the user. More 1informa-
tion about the IBM Watson™ QA system may be obtained,
for example, from the IBM Corporation website, IBM
Redbooks, and the like. For example, information about the
IBM Watson™ QA system can be found in Yuan et al.,
“Watson and Healthcare,” IBM developerWorks, 2011 and
“The Era of Cognitive Systems: An Inside Look at IBM
Watson and Flow 1t Works” by Rob High, IBM Redbooks,
2012.

As noted above, the mechanisms of the illustrative
embodiments utilize specifically configured computing
devices, or data processing systems, to perform the opera-
tions for generating confidence models for tabular or word
processing data. These computing devices, or data process-
ing systems, may comprise various hardware elements
which are specifically configured, either through hardware
configuration, software configuration, or a combination of
hardware and software configuration, to implement one or
more of the systems/subsystems described herein, FIG. 2 1s
a block diagram of just one example data processing system
in which aspects of the illustrative embodiments may be
implemented. Data processing system 200 1s an example of
a computer, such as server 104 in FIG. 1, 1n which computer
usable code or instructions implementing the processes and
aspects of the i1llustrative embodiments of the present inven-
tion may be located and/or executed so as to achieve the
operation, output, and external aflects of the illustrative
embodiments as described herein.

In the depicted example, data processing system 200
employs a hub architecture including north bridge and
memory controller hub (NB/MCH) 202 and south bridge
and 1nput/output (I/O) controller hub (SB/ICH) 204. Pro-
cessing unit 206, main memory 208, and graphics processor
210 are connected to NB/MCH 202. Graphics processor 210
may be connected to NB/MCH 202 through an accelerated
graphics port (AGP).

In the depicted example, local area network (LAN)
adapter 212 connects to SB/ICH 204. Audio adapter 216,
keyboard and mouse adapter 220, modem 222, read only
memory (ROM) 224, hard disk drive (HDD) 226, CD-ROM

drive 230, universal serial bus (USB) ports and other com-
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munication ports 232, and PC/PCle devices 234 connect to
SB/ICH 204 through bus 238 and bus 240. PCI/PCle devices
may include, for example, Ethernet adapters, add-in cards,
and PC cards for notebook computers. PCI uses a card bus
controller, while PCle does not. ROM 224 may be, for 5
example, a flash basic mput/output system (BIOS).

HDD 226 and CD-ROM drive 230 connect to SB/ICH
204 through bus 240, HDD 226 and CD-ROM drive 230
may use, for example, an integrated drive electronics (IDE)
or serial advanced technology attachment (SATA) interface. 10
Super 1/0O (SIO) device 236 may be connected to SB/ICH
204.

An operating system runs on processing unit 206. The
operating system coordinates and provides control of vari-
ous components within the data processing system 200 1n 15
FIG. 2. As a client, the operating system may be a commer-
cially available operating system such as Microsoft® Win-
dows 7®. An object-oriented programming system, such as
the Java™ programming system, may run 1n conjunction
with the operating system and provides calls to the operating 20
system from Java™ programs or applications executing on
data processing system 200.

As a server, data processing system 200 may be, for
example, an IBM eServer™ System p® computer system,
Power™ processor based computer system, or the like, 25
running the Advanced Interactive Executive (AIX®) oper-
ating system or the LINUX® operating system. Data pro-
cessing system 200 may be a symmetric multiprocessor
(SMP) system 1including a plurality of processors in pro-
cessing unit 206. Alternatively, a single processor system 30
may be employed.

Instructions for the operating system, the object-oriented
programming system, and applications or programs are
located on storage devices, such as HDD 226, and may be
loaded into main memory 208 for execution by processing 35
unit 206. The processes for illustrative embodiments of the
present invention may be performed by processing unit 206
using computer usable program code, which may be located
in a memory such as, for example, main memory 208, ROM
224, or 1n one or more peripheral devices 226 and 230, for 40
example.

A bus system, such as bus 238 or bus 240 as shown 1n
FIG. 2, may be comprised of one or more buses. Of course,
the bus system may be implemented using any type of
communication fabric or architecture that provides for a 45
transier of data between different components or devices
attached to the fabric or architecture. A communication unait,
such as modem 222 or network adapter 212 of FIG. 2, may
include one or more devices used to transmit and receive
data. A memory may be, for example, main memory 208, 50
ROM 224, or a cache such as found in NB/MCH 202 1n FIG.

2.

As mentioned above, 1n some 1illustrative embodiments
the mechanisms of the illustrative embodiments may be
implemented as application specific hardware, firmware, or 55
the like, application software stored 1n a storage device, such
as HDD 226 and loaded into memory, such as main memory
208, for executed by one or more hardware processors, such
as processing unit 206, or the like. As such, the computing
device shown in FIG. 2 becomes specifically configured to 60
implement the mechanisms of the illustrative embodiments
and specifically configured to perform the operations and
generate the outputs described hereafter with regard to the
mechanism for generating confidence models for tabular or
word processing data. 65

Those of ordinary skill 1n the art will appreciate that the
hardware 1n FIGS. 1 and 2 may vary depending on the

10

implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or 1n place of the hardware depicted 1n FIGS. 1
and 2. Also, the processes of the illustrative embodiments
may be applied to a multiprocessor data processing system,
other than the SMP system mentioned previously, without
departing from the spirit and scope of the present invention.

Moreover, the data processing system 200 may take the
form of any of a number of different data processing systems
including client computing devices, server computing
devices, a tablet computer, laptop computer, telephone or
other communication device, a personal digital assistant
(PDA), or the like. In some 1illustrative examples, data
processing system 200 may be a portable computing device
that 1s configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-
generated data, fir example. Essentially, data processing
system 200 may be any known or later developed data
processing system without architectural limitation.

FIG. 3 illustrates a natural language processing system
pipeline for processing an iput question in accordance with
one 1illustrative embodiment. The natural language (N L)
processing system pipeline of FIG. 3 may be implemented,
for example, as NL system pipeline 108 of NL processing
system 100 1n FIG. 1. It should be appreciated that the stages
of the NL processing system pipeline shown i FIG. 3 are
implemented as one or more soltware engines, components,
or the like, which are configured with logic for implement-
ing the functionality attributed to the particular stage. Each
stage 1s 1implemented using one or more of such software
engines, components or the like. The software engines,
components, etc. are executed on one or more processors of
one or more data processing systems or devices and utilize
or operate on data stored 1n one or more data storage devices,
memories, or the like, on one or more of the data processing
systems. The NL system pipeline of FIG. 3 1s augmented, for
example, 1n one or more of the stages to implement the
improved mechanism of the illustrative embodiments
described hereafter, additional stages may be provided to
implement the improved mechanism, or separate logic from
the pipeline 300 may be provided for interfacing with the
pipeline 300 and implementing the improved functionality
and operations of the illustrative embodiments.

In the depicted example, NL system pipeline 300 1s
implemented 1 a Question Answering (QA) system. The
description that follows refers to the NL system pipeline or
the NL system pipeline as a QA system; however, aspects of
the 1llustrative embodiments may be applied to other NL
processing systems, such as Web search engines that return
semantic passages from a corpus ol documents.

As shown 1n FIG. 3, the NL system pipeline 300 com-
prises a plurality of stages 310-390 through which the NL
system operates to analyze an input question and generate a
final response. In an 1nitial question mmput stage, the NL
system receives an mput question 310 that 1s presented 1n a
natural language format. That 1s, a user inputs, via a user
interface, an iput question 310 for which the user wishes to
obtain an answer, e€.g2., “Who were Washington’s closest
advisors?” In response to receiving the mput question 310,
the next stage of the NL system pipeline 300, 1.e. the
question and topic analysis stage 320, analyzes the mput
question using natural language processing (NLP) tech-
niques to extract major elements from the mput question,
and classily the major elements according to types, e.g.,
names, dates, or any of a plethora of other defined topics. For
example, 1n the example question above, the term “who”
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may be associated with a topic for “persons” indicating that
the 1dentity of a person 1s being sought, “Washington™ may
be 1dentified as a proper name of a person with which the
question 1s associated, “closest” may be identified as a word
indicative of proximity or relationship, and “advisors” may
be mdicative of a noun or other language topic.

In addition, the extracted major features include key
words and phrases classified into question characteristics,
such as the focus of the question, the lexical answer type
(LAT) of the question, and the like. As referred to herein, a
lexical answer type (LAT) 1s a word 1n, or a word inferred
from, the input question that indicates the type of the answer,
independent of assigning semantics to that word. For
example, 1n the question “What maneuver was mvented 1n
the 1500s to speed up the game and involves two pieces of
the same color?,” the LAT 1s the string “maneuver.” The
focus of a question 1s the part of the question that, if replaced
by the answer, makes the question a standalone statement.
For example, 1n the question “What drug has been shown to
relieve the symptoms of attention deficit disorder with
relatively few side efl

ects?,” the focus 1s “What drug” since
if this phrase were replaced with the answer 1t would
generate a true sentence, e.g., the answer “Adderall” can be
used to replace the phrase “What drug” to generate the
sentence “Adderall has been shown to relieve the symptoms
ol attention deficit disorder with relatively few side eflects.”
The focus often, but not always, contains the LAT. On the
other hand, 1n many cases 1t 1s not possible to infer a
meaningiul LAT from the focus.

Referring again to FIG. 3, the identified major elements of
the question are then used during a hypothesis generation
stage 340 to decompose the question 1nto one or more search
queries that are applied to the corpora of data/information
345 1n order to generate one or more hypotheses. The queries
are applied to one or more text indexes storing information
about the electronic texts, documents, articles, websites, and
the like, that make up the corpus of data/information, e.g.,
the corpus of data 106 1n FIG. 1. The quernies are applied to
the corpus of data/information at the hypothesis generation
stage 340 to generate results 1dentifying potential hypoth-
eses for answering the input question, which can then be
evaluated. That 1s, the application of the queries results 1n
the extraction of portions of the corpus of data/information
matching the criteria of the particular query. These portions
of the corpus are then analyzed and used in the hypothesis
generation stage 340, to generate hypotheses for answering
the input question 310. These hypotheses are also referred to
herein as “candidate answers™ for the input question. For any
input question, at this stage 340, there may be hundreds of
hypotheses or candidate answers generated that may need to
be evaluated.

The NL system pipeline 300, 1n stage 350, then performs
a deep analysis and comparison of the language of the input
question and the language of each hypothesis or “candidate
answer,” as well as performs evidence scoring to evaluate
the likelihood that the particular hypothesis 1s a correct
answer for the iput question. This involves evidence
retrieval 351, which retrieves passages from corpora 345.
Spell check confidence component 352 generates a confi-
dence model for a portion of text, such as an evidence
passage or a source document, based on a confidence that
words within the passage or document were appropriately
corrected by a spell check route, engine, or system. If words
that were not incorrect were automatically or unintentionally
auto-corrected by a spell check system, then the confidence
may be represented by a lower value. Conversely, if 1t 1s
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determined that the words 1n the passage or document are
likely to be spelled correctly, the confidence may be repre-
sented by a higher value.

Consider an example scenario. A spell check routine
detects a paragraph of text and scans the text to find a word
that 1s not 1n a dictionary and not a proper noun. The spell
check processes the following passage:

“Mary, Percy, Lord Byron and John Polidon decided to
have a competition to see who could write the best horror
story. After thinking for days, Shelley dreamt about a
scientist who created life and was horrofied by what he had
made; her dream later evolved into the novel’s story.”

The spell check finds “horrofied” and automatically cor-
rects 1t to “horror.”” The mechanism of the illustrative
embodiments creates and records the following mapping:
|horrofied-horror], The mechanism continually sources the
spell corrections and any auto-corrections, undos, and fixes.
The mechanism store the resulting mappings in a database
and uses these mappings to generate an 1nverse mapping
count. For instance, given the mappings [horrofied-horror, 3]
and [hornors-horror, 1], horror maps to hornors one time out
of four, and horror maps to horrofied three times out of four.
The mechanism may also record the times when horror 1s not
automatically corrected. The mechanism stores the counts as
an error-to-correction frequency as a secondary model or
error/correction mapping 353.

Upon loading a document from a specified corpus 345,
spell check confidence component 352 scans the words 1n
the document to identify the potential of each word to be a
corrected word. Consider the following document:

“File: ']

I'he Horrors of Frankenstein
Victor Frankenstein, a cold, horror genius, 1s angry when
his father forbids him to continue his anatomy experiments.
He inherits the title of Baron von Frankenstein and the
family fortune. He uses the money to enter medical school
in Vienna.”

Spell check confidence component 352 scans this docu-
ment for the recorded words, including “horror.” The
mechanism detects the varniability with regard to the word
“horror’—{3x horrofied, 1x hornors, 4x not changed] Spell
check confidence component 352 calculates the precision of
the word 1s 4% or 50%. Spell check confidence component
352 repeats across all words and develops vanability to the
precision of the document.

Spell check confidence component 352 builds a precision
model for the document. This model may indicate 50%
variability for any statement using the word “horror” and, as
another example, 10% variability for any statement using
the word “money” based on a mapping [1x moneys, 9x
correct].

In the case of a cognitive system that provides answers or
advice based on a corpus of information, as shown 1n FIG.
3, spell check confidence component 352 adds a precision
value to any answer generated with statements for which a
confidence model has been generated. Spell check contfi-
dence component 352 may remove phrases with low con-
fidence (1.e., precision) from fact generation by lowering the
weight of the included data when considering candidate
answers 1n hypothesis and evidence scoring phase 350.

Hypothesis and evidence scoring phase 350 uses a plu-
rality of scoring algorithms, each performing a separate type
of analysis of the language of the mput question and/or
content of the corpus that provides evidence 1n support of,
or not in support of, the hypothesis. Each scoring algorithm
generates a score based on the analysis 1t performs which
indicates a measure of relevance of the individual portions

of the corpus of data/information extracted by application of
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the queries as well as a measure of the correctness of the
corresponding hypothesis, 1.e. a measure of confidence 1n
the hypothesis. There are various ways of generating such
scores depending upon the particular analysis being per-
formed. In general, however, these algorithms look for
particular terms, phrases, or patterns of text that are indica-
tive of terms, phrases, or patterns of interest and determine
a degree of matching with higher degrees of matching being
given relatively higher scores than lower degrees of match-
ng.

For example, an algorithm may be configured to look for
the exact term from an input question or synonyms to that
term 1n the mput question, e.g., the exact term or synonyms
for the term “movie,” and generate a score based on a
frequency of use of these exact terms or synonyms. In such
a case, exact matches will be given the highest scores, while
synonyms may be given lower scores based on a relative
ranking of the synonyms as may be specified by a subject
matter expert (person with knowledge of the particular
domain and terminology used) or automatically determined
from frequency of use of the synonym 1n the corpus corre-
sponding to the domain. Thus, for example, an exact match
of the term “movie” 1n content of the corpus (also referred
to as evidence, or evidence passages) 1s given a highest
score. A synonym of movie, such as “motion picture” may
be given a lower score but still higher than a synonym of the
type “film” or “moving picture show.” Instances of the exact
matches and synonyms for each evidence passage may be
compiled and used in a quantitative function to generate a
score for the degree of matching of the evidence passage to
the mput question.

Thus, for example, a hypothesis or candidate answer to
the mput question of “What was the first movie?” 1s “The
Horse 1 Motion.” If the evidence passage contains the
statements “The first motion picture ever made was ‘The
Horse in Motion’ in 1878 by Eadweard Muybridge. It was
movie of a horse running,” and the algorithm 1s looking for
exact matches or synonyms to the focus of the mput ques-
tion, 1.e. “movie,” then an exact match of “movie” 1s found
in the second sentence of the evidence passage and a highly
scored synonym to “movie,” 1.e. “motion picture,” 1s found
in the first sentence of the evidence passage. This may be
combined with further analysis of the evidence passage to
identify that the text of the candidate answer 1s present 1n the
evidence passage as well, 1.e. “The Horse in Motion.” These
factors may be combined to give this evidence passage a
relatively high score as supporting evidence for the candi-
date answer “The Horse 1n Motion” being a correct answer.

It should be appreciated that this 1s just one simple
example of how scoring can be performed. Many other
algorithms of various complexities may be used to generate
scores for candidate answers and evidence without departing
from the spirit and scope of the present invention.

In answer ranking stage 360, the scores generated by the
various scoring algorithms are synthesized into confidence
scores or confidence measures for the various hypotheses.
This process involves applying weights to the wvarious
scores, where the weights have been determined through
training of the statistical model employed by the QA system
and/or dynamically updated. For example, the weights for
scores generated by algorithms that identily exactly match-
ing terms and synonyms may be set relatively higher than
other algorithms that evaluate publication dates for evidence
passages.

The weighted scores are processed in accordance with a
statistical model generated through tramning of the QA
system that identifies a manner by which these scores may
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be combined to generate a confidence score or measure for
the individual hypotheses or candidate answers. This con-
fidence score or measure summarizes the level of confidence
that the QA system has about the evidence that the candidate
answer 1s inferred by the input question, 1.e. that the candi-
date answer 1s the correct answer for the mput question.

The resulting confidence scores or measures are processed
by answer ranking stage 360, which compares the confi-
dence scores and measures to each other, compares them
against predetermined thresholds, or performs any other
analysis on the confidence scores to determine which
hypotheses/candidate answers are the most likely to be the
correct answer to the mput question. The hypotheses/can-
didate answers are ranked according to these comparisons to
generate a ranked listing of hypotheses/candidate answers
(hereafter simply referred to as “candidate answers”).

Supporting evidence collection phase 370 collects evi-
dence that supports the candidate answers from answer
ranking phase 360. From the ranked listing of candidate
answers 1n stage 360 and supporting evidence from support-
ing evidence collection stage 370, NL system pipeline 300
generates a final answer, confidence score, and evidence, or
final set of candidate answers with confidence scores and
supporting evidence, and outputs answer, confidence, and
evidence 390 to the submuatter of the original input question
310 via a graphical user interface or other mechanism for
outputting information.

FIG. 4 1s a block diagram 1illustrating a mechanism for
generating a confidence model for a document 1n accordance
with an illustrative embodiment. The mechanism receives an
input text 401, which may be a tabular document such as a
spreadsheet, a word processing document, or a portion of
text from a corpus of information, such as a Wikipedia
article, an electronic medical record (EMR), a social media
post, or the like. Spell check engine or system 402 receives
text 401 and identifies incorrectly spelled words. In one
embodiment, spell check 402 compares each word against a
dictionary and determines that any word not found 1n the
dictionary 1s spelled incorrectly. In one embodiment, spell
chick 402 suggests corrections or performs automated cor-
rections.

Error/correction recording component 403 records each
correction [prior word—corrected word] to form error/cor-
rection mapping 404. In one embodiment, error/correction
recording component 403 records automated corrections and
user-driven corrections. In an example embodiment, error/
correction recording component 403 records the corrections
in a database. Error/correction recording component 403
may record error-to-correction based on a single author
(while authoring, over all documents authored), a set of
authors (in a specific domain), everyone (within the system,
all authors), crowdsourced (selective modelling of error-to-
correction), or a specified time frame.

In one embodiment, error/correction recording compo-
nent 403 records error-to-corrections along with the domain
of the text 401. The domain may be genomics, finance,
engineering, architecture, etc. Error/correction recording
component 403 may consider all versions of a document—a
single version of the document and the related tracked
changes. FError/correction recording component 403 may
derive the errors and corrections from tracked changes 1n the
text 401.

Parser 412 receives a document 411, which may be a
source document or evidence passage for a cognitive sys-
tem, such as the question answering system as described
above or a decision support system. Parser 412 1dentifies the
words 1 document 411. Variability count component 413
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determines a variability count for the words. The vanability
count represents a number of times a word, either correctly
spelled originally or corrected, and all error words mapped
to that word occur 1n the error/correction mapping 404. For
example, 1 the example discussed above, for the word
“horror,” the error words 1nclude “horrofied” and “hornors.”
Furthermore, the varnability count may include the number
of times each vanation occurs. For example, the word
“horrofied” may be corrected to “horror” three times, the
word “hornors” may be corrected to “horror” once, and the
word “horror” may appear uncorrected four times.

Confidence model generation component 414 maps each
word 1n document 411 to a variability and stores the words
in the document along with the varnability to form confi-
dence model 415. Confidence model generation component
414 builds confidence model 415 based on the data within
document 411 and maintains 1t along with the parsed data
from document 411. For each set of words or passage,
confidence model 415 stores a precision or confidence score
related to the passage. In the above example, 11 the word
“horror” appears 1n document 411, then there 1s a 45 or 50%
probability that the word uncorrected. Given this probability,
confidence model generation component 414 determines a
confidence that the word 1s the intended word. That 1s, there
1s a less than 50% chance the word “horror” was uninten-
tionally auto-corrected from a word that was intended to be
a word other than “horror.”

Confidence model generation component 414 may use
machine learning techniques to determine a confidence score
for each word 1 document 411. For example, confidence
model generation component 414 may use a machine learn-
ing model that 1s trained using supervised learming and a
tramning set of words and documents. Thus, confidence
model generation component 414 may provide a confidence
model 415 that provides a confidence score for each word in
document 411 with respect to whether a word 1s correct or
appropriately auto-corrected.

In an example embodiment, such a precision or confi-
dence score can be used to weight the passage when deter-
miming a confidence score for a candidate answer for which
the passage 1s evidence. As another example, a cognitive
system may choose to remove the passage from the docu-
ment, modily the passage, or flag the passage as having a
low confidence score.

In one embodiment, the mechanism uses gazetteers or
specialized dictionaries to selectively 1gnore words or to
map 1mportant words to preferred forms. In another embodi-
ment, the mechanism uses lemma or normal forms. In yet
another embodiment, the mechanism only calculates errors
for select words or the important words 1n a grammar. For
example, the mechamism may only do calculations of words
in certain styles or fonts to limit calculations on the 1mpor-
tant parts of a document.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present mvention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
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examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program 1instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present 1nvention.

Aspects of the present invention are described herein with
reference to flowchart i1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.
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These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1 the tlowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tlow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks i1n the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

FI1G. 5 15 a flowchart 1llustrating operation of a mechanism
for generating an error/correction mapping in accordance
with an illustrative embodiment. Operation begins for a
received portion of text, such as an evidence passage or
source document (block 500). The mechanism obtains spell
check data for the text (block 501) and records automated
and user-driven corrections for the text (block 502). The
mechanism then determines error-to-correction mappings
for words (block 503). The mechanism stores the recorded
error-to-correction mappings in a database (block 504).
Thereatter, operation ends (block 505).

FIG. 6 1s a flowchart 1llustrating operation of a mechanism
for generating a confidence model for a document 1n accor-
dance with an illustrative embodiment. Operation begins
when a new document 1s detected (block 600). The mecha-
nism parses the document for key words or phrases (block
601). The mechanism extracts words and finds varnability
counts for words (block 602). The mechamism stores words
in the document along with the variability counts (block
603). Then, the mechanism builds a model based on the data
within the document (block 604). The mechanism stores
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weights for the document (block 605). Then, the mechanism
modifies, removes, or flags words or phrases based on
confidence (block 606). Thereafter, operation ends (block
607).

Thus, the illustrative embodiments provide mechanisms
for generating confidence models for documents with
respect to probability that words are appropriately auto-
corrected by a spell checker. The illustrative embodiments
avold misinterpreting the types of data. The mechanisms
reassign data to invalid types and reuse data in formulas and
machine learning vectors with confidence. The mechanisms
also enhance the use of mobile productivity applications.

As noted above, it should be appreciated that the 1llus-
trative embodiments may take the form of an entirely
hardware embodiment, an entirely software embodiment or
an embodiment containing both hardware and software
clements. In one example embodiment, the mechanisms of
the 1llustrative embodiments are implemented in soitware or
program code, which includes but 1s not limited to firmware,
resident software, microcode, etc.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
communication bus, such as a system bus, for example. The
memory elements can include local memory employed
during actual execution of the program code, bulk storage,
and cache memories which provide temporary storage of at
least some program code 1n order to reduce the number of
times code must be retrieved from bulk storage during
execution. The memory may be of various types including,

but not limited to, ROM, PROM, EPROM, EEPROM,
DRAM, SRAM, Flash memory, solid state memory, and the
like.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled
to the system either directly or through intervening wired or
wireless I/O intertaces and/or controllers, or the like. I/O
devices may take many different forms other than conven-
tional keyboards, displays, pointing devices, and the like,
such as for example communication devices coupled
through wired or wireless connections including, but not
limited to, smart phones, tablet computers, touch screen
devices, voice recognition devices, and the like. Any known
or later developed 1I/O device 1s intended to be within the
scope of the illustrative embodiments.

Network adapters may also be coupled to the system to
cnable the data processing system to become coupled to
other data processing systems or remote printers or storage
devices through intervening private or public networks.
Modems, cable modems and Ethernet cards are just a few of
the currently available types of network adapters for wired
communications. Wireless communication based network
adapters may also be utilized including, but not limited to,
802.11a/b/g/n wireless communication adapters, Bluetooth
wireless adapters, and the like. Any known or later devel-
oped network adapters are imtended to be within the spirt
and scope of the present invention.

The description of the present invention has been pre-
sented for purposes of illustration and description, and 1s not
intended to be exhaustive or limited to the mvention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without depart-
ing from the scope and spirit of the described embodiments.
The embodiment was chosen and described in order to best
explain the principles of the invention, the practical appli-
cation, and to enable others of ordinary skill in the art to
understand the imvention for various embodiments with
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vartous modifications as are suited to the particular use
contemplated. The terminology used herein was chosen to
best explain the principles of the embodiments, the practical
application or technical improvement over technologies
found 1 the marketplace, or to enable others of ordinary
skill 1n the art to understand the embodiments disclosed
herein.

What 1s claimed 1s:

1. An apparatus comprising:

at least one processor; and

a memory coupled to the at least one processor, wherein
the memory comprises instructions which, when
executed by the at least one processor, cause the
processor to implement a question answering system,
wherein the instructions cause the at least one processor
to:

record, by a spell check confidence component executing
within the question answering system, a mapping of

misspelled words to corrected words for set of docu-
ments 1n a database to form an error-to-correction
mapping;

parse, by a parser executing within the question answer-

ing system, an input document to extract words 1n the
error-to-correction mapping;

calculate, by the spell check confidence component, a

precision score for each word in the mput document
found as a corrected word 1n the error-to-correction
mapping, wherein for a given word 1n the input docu-
ment that was auto-corrected by a spell checker, the
precision score represents a probability that the given
word was approprately auto-corrected by the spell
checker, wherein calculating the precision score for the
given word found as a corrected word 1n the error-to-
correction mapping comprises:
determining a number of times the given word was
corrected from a plurality of misspelled words;
determining a number of times the given word was not
corrected; and
calculating a vanability score of the given word based
on the number of times the given word was corrected
from the plurality of misspelled words and the num-
ber of times the given word was not corrected;
generate, by the question answering system, a weight for
a passage within the input document containing the
given word based on the precision score of the given
word; and

provide the generated weight to a hypothesis and evidence

scoring phase of the question answering system.

2. The apparatus of claim 1, wheremn the instructions
turther cause the at least one processor to identily a passage
contaiming words for which the precision score 1s low and
adjust a weight of the identified passage in the hypothesis
and evidence scoring phase of the question answering sys-
tem.

3. The apparatus of claim 1, wherein recording the map-
ping of misspelled words to corrected words comprises
recording a mapping of at least one misspelled word cor-
rected by a spell checker to the corrected word.

4. The apparatus of claim 3, wherein recording the map-
ping of misspelled words to corrected words further com-
prises recording autocorrect undos and manual fixes.

5. The apparatus of claim 3, wherein recording the map-
ping of misspelled words to corrected words further com-
prises generating an mverse mapping count.

6. The apparatus of claim 3, wherein recording the map-
ping of misspelled words to corrected words comprises
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recording times when a corrected word appears 1 a given
document correctly and 1s not autocorrected.

7. The apparatus of claim 1, wherein recording the map-
ping ol misspelled words to corrected words comprises
examining tracked changes to at least one document in the
set of documents.

8. The apparatus of claim 1, further comprising recording,
the error-to-correction frequency model 1in association with
a domain of the set of documents.

9. The apparatus of claim 1, wherein recording the map-
ping of misspelled words to corrected words 1s performed
over a specified time frame.

10. A computer program product comprising a computer
readable storage medium having a computer readable pro-
gram stored therein, wherein the computer readable pro-
gram, when executed on a computing device, causes the
computing device to implement a question answering sys-
tem, wherein the computer readable program causes the
computing device to:

record, by a spell check confidence component executing

within the question answering system, a mapping of
misspelled words to corrected words for set of docu-
ments 1 a database to form an error-to-correction
mapping;

parse, by a parser executing within the question answer-

ing system, an input document to extract words in the
error-to-correction mapping;

calculate, by the spell check confidence component, a

precision score for each word in the mput document
found as a corrected word in the error-to-correction
mapping, wherein for a given word 1n the mput docu-
ment that was auto-corrected by a spell checker the
precision score represents a probability that the given
word was appropriately auto-corrected by the spell
checker, wherein calculating the precision score for the
given word found as a corrected word 1n the error-to-
correction mapping comprises:
determining a number of times the given word was
corrected from a plurality of misspelled words;
determining a number of times the given word was not
corrected; and
calculating a vanability score of the given word based
on the number of times the given word was corrected
from the plurality of misspelled words and the num-
ber of times the given word was not corrected:
generate, by the question answering system, a weight for
a passage within the input document containing the
given word based on the precision score of the given
word; and

provide the generated weight to a hypothesis and evidence

scoring phase of the question answering system.

11. The computer program product of claim 10, wherein
the computer readable program further causes the computing
device to 1dentily a passage containing words for which the
precision score 1s low and adjust a weight of the identified
passage 1n the hypothesis and evidence scoring phase of the
question answering system.

12. The computer program product of claim 10, wherein
recording the mapping of misspelled words to corrected
words comprises recording a mapping of at least one mis-
spelled word corrected by a spell checker to the corrected
word.

13. The computer program product of claim 12, wherein
recording the mapping of misspelled words to corrected
words further comprises recording autocorrect undos and
manual fixes.
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14. The computer program product of claim 12, wherein
recording the mapping of misspelled words to corrected
words further comprises generating an inverse mapping
count.

15. The computer program product of claim 12, wherein
recording the mapping of misspelled words to corrected
words comprises recording times when a corrected word
appears 1 a given document correctly and 1s not autocor-
rected.

16. The computer program product of claim 10, wherein
recording the mapping of misspelled words to corrected
words comprises examining tracked changes to at least one
document 1n the set of documents.

17. The computer program product of claim 10, further
comprising recording the error-to-correction Irequency
model 1n association with a domain of the set of documents.

18. The computer program product of claim 10, wherein
recording the mapping of misspelled words to corrected
words 1s performed over a specified time frame.
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