US011088835B1

a2 United States Patent 10) Patent No.: US 11,088.835 B1

Wilbur et al. 45) Date of Patent: Aug. 10, 2021
(54) CRYPTOGRAPHIC MODULE TO GENERATE (58) Field of Classification Search
CRYPTOGRAPHIC KEYS FROM None
CRYPTOGRAPHIC KEY PARTS See application file for complete search history.
(71) Applicant: Hologram, Inc., Chicago, IL (US) (56) References Cited
(72) Inventors: Patrick Floyd Wilbur, Potsdam, NY U.S. PAIENT DOCUMENTS
(US); Reuben Balik, Chicago, IL (US) 8,385,553 B1* 2/2013 JoOSte ..ccoovrmn....... HO4L 9/0822
: : 380/277
(73) Assignee: Hologram, Inc., Chicago, IL (US) 2010/0306538 Al* 12/2010 Thomas HO4L 9/0844
713/168
(*) Notice: Subject to any disclaimer, the term of this 2013/0315393 Al* 11/2013 Wang HO4W 12/04
patent 1s extended or adjusted under 35 380/270
U.S.C. 154(b) by 13 days. 2016/0294794 Al* 10/2016 Mancic HO041. 63/061
2018/0288092 Al* 10/2018 Linsky HO4L 9/3242
(21) Appl. No.: 16/110,233 * cited by examiner
(22) Filed: Aug. 23, 2018 Primary Examiner — Andrew J Steinle
(74) Attorney, Agent, or Firm — Cooley LLP
Related U.S. Application Data (57) ABSTRACT
(60) Provisional application No. 62/549,114, filed on Aug. A cryptographic module has an mput/ output port to r ecelve
73 2017 a first temporary key. A processor receives the first tempo-
’ rary key from the input/output port. A secure authentication
(51) Int. CL key memory 1s connected to the processor. A temporary key
HO4L 29/06 (2006.01) generator 1s connected to the processor to produce a second
HO4L 9/08 (2006.025) temporary key for routing to the input/output port. A cryp-
GOGF 7/58 (2006.0:h) tographic salt generator 1s connected to the processor to
1041, 9/16 (200 6. O:h) produce cryptographic salt. A cryptographic key generator 1s

connected to the processor to process key parts derived from

(52) U.S. Cl. the first temporary key, the second temporary key and the

CPC HO4L 9/0861 (2013.01); GO6F 7/58 runtoeranhic salt to aroduce crvatooranhic kevs.
(2013.01); HO4L 9/0816 (2013.01); HO4L 9/16 PSR P PRSP 4
(2013.01) 10 Claims, 1 Drawing Sheet
100
102 1
[~ /
Secure Authentication
Key Memory 112
Temporary Key ¥
Generator 116 06
Crvptc Module .}
Crypto Sait > processor 110
Generator 118
Key Part Generator ;
120 l N ‘[N
Crypto K
Generator 122 /OPort124 | >
\— y 3
114
102 2
M I

Crypto Module

130

132

Processor

(134 f‘lSE

Crypto Module
102 3 1O NIC | »

T 11 | !
136 /140

L 4

Service Provision T~
Module 142

U.S. Patent Aug. 10, 2021 US 11,088,835 B1

100

/

lemporary Key

Generator 116 106

Crypto Module

Crypto Sait ' Processor 110
Generator 118

Key Part Generator N N/
120 __
Cryptio Key
Generator 122 /0 Port 124
s ﬂ
102 2

Crypto Module

130
132
Processor
134 138
Crypto Module '
102 3 7 NIC
136 144

Service Provision |
Module 142

US 11,088,835 Bl

1

CRYPTOGRAPHIC MODULE TO GENERATE
CRYPTOGRAPHIC KEYS FROM

CRYPTOGRAPHIC KEY PARTS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to U.S. Provisional Patent
Application Ser. No. 62/549,114, filed Aug. 23, 2017/, the
contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

This invention relates generally to digital security. More
particularly, this invention relates to a cryptographic module
to generate cryptographic keys Ifrom cryptographic key
parts.

BACKGROUND OF THE INVENTION

Making communications secure and private relies upon
establishing trust and, typically, non-compromised commu-
nications channels. Secure and private communications rely-
ing upon cryptographic technologies depend upon the estab-
lishment and agreement of identifying information (e.g.,
identity or authentication keys) and/or cryptographic keys
(c.g., data encryption keys) between all communicating
parties. Key establishment, key replenishment, and estab-
lishment of 1dentifying information continue to prove to be
difficult to perform securely, where 1nitial key/information
establishment and subsequent key replemishment are often
burdensome, costly, and can also be vulnerable to compro-
mise. Additionally, key establishment/replenishment and
agreement methods still rely upon already-established trust
and/or non-compromised channels of communication 1n
order to be eflective, and establishing both trust and non-
compromised communications channels itself 1s diflicult,
and 1tself 1s a problem to solve.

Symmetric key encryption relies upon secure imtial key
exchange, and all subsequent key replenishment to be
secure; otherwise, 1ts communications can be compromised
if the key 1s known by an unauthorized third-party, and 1n
some cases 1ts previous communications, if recorded, can
later be compromised should previously-exchanged or pre-
viously-replenished keys be compromised. Asymmetric key
encryption provides an alternative to purely-symmetric key
encryption, where a public key can be disclosed publicly and
even over an 1secure medium (susceptible to eavesdrop-
pers), but without compromising plaintext encrypted using,
the public key, assuming that the corresponding private key
remains securely stored and maintained; however, asymmet-
ric key encryption can require more computation and/or
more memory when compared to purely-symmetric key
encryption, thus suflering from performance 1ssues. Further-
more, 1 more than one plaintext 1s encrypted using the same
public/private key pair, and the private key 1s later compro-
mised, all prior communications that had previously been
intercepted and recorded can be compromised; thus, without
the use of other additional methods, there i1s no perfect
forward secrecy.

A common strategy to accommodate the weaknesses of
both purely-symmetric key encryption and purely-asymmet-
ric key encryption 1s to adopt both symmetric and asym-
metric key encryption within a single protocol’s encryption
method. Secure Socket Layer (SSL) and Transport Layer
Security (TLS), for example, as well as technologies built
upon them (e.g., HI'TPS), utilize asymmetric key encryption

10

15

20

25

30

35

40

45

50

55

60

65

2

for the purpose of performing secure key exchange, where
one party mm a commumnication (e.g., Alice) generates a
random ephemeral session key and securely sends that
ephemeral session key to another party (e.g., Bob) using
Bob’s asymmetric public key. In SSL, TLS, and similar
technologies, Bob then decrypts the random ephemeral
session key (e.g., data encryption key or key-agreement key)
using Bob’s asymmetric private key, and Alice and Bob
encrypt and decrypt plaintext using a mutually-agreeable
symmetric key cipher algorithm where the random ephem-
eral session key 1s used as the symmetric key. This approach
allows for secure key exchange using a relatively metlicient
asymmetric cipher, followed by encryption using a more
cllicient symmetric cipher based on the temporary random
key.

The handshaking step in methods like SSL and TLS,
where the ephemeral key exchange 1s performed and key
agreement 1s reached, introduces a lot of overhead 1n terms
of the amount of data transferred. While TLS can be
configured to allow sessions to be resumed across multiple
connections, these are still prone to timing out and thus
requiring a full handshake all over again. As such, across
subsequent messages, as well as over longer periods of
mactivity or a state of being disconnected, protocols like
SSL and TLS (as well as HT'TPS) are not eflicient due to
their repeated need for handshaking.

Additionally, methods like SSL and TLS, which combine
asymmetric key encryption with symmetric key encryption
and ephemeral session keys, can still be prone to man-in-
the-middle attacks. As a result, the trust model requires some
form of mndependent certification or independent verification
of the authenticity of a recipient’s public key 1n order to
determine that the party who possesses the corresponding
private key to a given public key 1s, 1n fact, the intended
recipient. Using third-party independent certification and
verification authorities, such as certificate authorities,
depends upon first establishing trust and/or a non-compro-
mised communications channel with such authorities.

Lastly, both symmetric key encryption, asymmetric key
encryption, and combined approaches depend upon some
way lfor a recipient to verily the identity of a sender of a
message (or an mitiator of a connection). These approaches
require 1dentifying information (e.g., user identifier, device
identifier, passcode, etc.) and/or an i1dentifying key (used,
¢.g., in cryptographic signing, HMAC, or similar methods)
to be securely established on a system in use by the
sending/initiating entity, as well as the corresponding 1den-
tifying information or identitying key to be securely estab-
lished on a system in use by the party responsible for
verilying the sending/initiating entity’s 1dentity.

Thus, there 1s a need for improved cryptographic key
generation techniques.

SUMMARY OF THE INVENTION

A cryptographic module has an mput/output port to
receive a lirst temporary key. A processor receives the first
temporary key from the mput/output port. A secure authen-
tication key memory 1s connected to the processor. A tem-
porary key generator 1s connected to the processor to pro-
duce a second temporary key for routing to the input/output
port. A cryptographic salt generator 1s connected to the
processor to produce cryptographic salt. A cryptographic
key generator 1s connected to the processor to process key

US 11,088,835 Bl

3

parts derived from the first temporary key, the second
temporary key and the cryptographic salt to produce cryp-
tographic keys.

BRIEF DESCRIPTION OF THE FIGURES

The invention 1s more fully appreciated in connection
with the following detailed description taken 1n conjunction
with the accompanying drawings, in which:

FIG. 1 1llustrates a system configured 1n accordance with
an embodiment of the invention.

Like reference numerals refer to corresponding parts
throughout the several views of the drawings.

DETAILED DESCRIPTION OF TH.
INVENTION

(L]

FIG. 1 illustrates a system 100 configured in accordance
with an embodiment of the invention. The system 100
includes a first cryptographic module 102_1, a second
cryptographic module 102_2 and a third cryptographic mod-
ule 102_3. FEach cryptographic module has the same com-
ponents, which for convenience, are only detailed 1n cryp-
tographic module 102_1. Cryptographic module 102_1 1s a
standalone cryptographic chip, such as a Smartcard or a
Subscriber Identification Module (SIM) card. Cryptographic
module 102_2 may be incorporated mto a larger electronic
system, such as a point of sale (POS) system. Cryptographic
module 102_3 1s a segment of a general purpose processor.

Cryptographic module 102_1 includes a cryptographic
processor 110 connected to a secure authentication key
memory 112. The cryptographic processor 110 1s also con-
nected to a memory 114. In one embodiment, the memory
114 1includes 1nstructions executed by the cryptographic
processor 110 to implement various functional blocks, such
as a temporary key generator 116, a cryptographic salt
generator 118, a key part generator 120 and a cryptographic
key generator 122. In other embodiments, one or more of the
functional blocks may be implemented 1n silicon.

The secure authentication key memory 112 1s a tamper-
prool memory that stores one or more authentication keys
utilized by the cryptographic module processor 110 to
initiate a key generation process. In one embodiment, the
temporary key generator 116 1s a random number generator
used to generate a key or nonce N, which 1s passed to 1/O
port 124 for delivery to another cryptographic module. For
example, I/0 port 124 may include contact pads for engage-
ment with contact pads associated with cryptographic mod-
ule 102_2. Alternately, I/O port 124 may be a wireless
interface for connection to network 106, which may be any
combination of wired and wireless networks. Network 106
1s used to communicate with server 130.

Server 130 includes a general purpose processor 132 with
a cryptographic module 102_3. The server also includes
input/output devices 134 connected to a bus 136. The
input/output devices 134 may include a keyboard, mouse,
touch display and the like. A network interface circuit 138 1s
also connected to the bus 136 to provide connectivity to
network 106. A memory 140 1s also connected to the bus.
The memory 140 stores a service provision module 142,
which includes instructions executed by processor 132 to
coordinate the supply of a network service 1n the event of a
successiul authentication operation between cryptographic
module 102_1 and cryptographic module 102_3.

The I/O port 124 receives a temporary key N' from
another cryptographic module, such as 102_2 or 102_3. The
two cryptographic keys N and N' are processed by the key

10

15

20

25

30

35

40

45

50

55

60

65

4

part generator 120 to produce cryptographic key parts, as
detailed below. In one embodiment, the key part generator
120 uses cryptographic salt from cryptographic salt genera-
tor 118.

The key part generator 120 need not be resident on
cryptographic module 102_1. The remaiming components of
the cryptographic module 102_1 need to be cryptographi-
cally secure, but the key part generator 120 may be 1mple-
mented on an external computation resource, such as server
130, with the resultant key parts being delivered to I/O port
124. The cryptographic key generator 122 processes the key
parts to produce cryptographic keys.

The disclosed system performs key exchange as often as
1s needed by set policy (e.g., key expiration or a set crypto
period), and can be used to generate either static keys, or can
be used to generate ephemeral session keys (e.g., data
encryption keys, keys used for 1dentification or authentica-
tion, or other keys or cryptographic information). Static keys
are agreed upon by both a first user (e.g., Alice) and a second
user (e.g., Bob) through computation done in parallel by
both Alice and Bob, and without the need to perform key
exchange or key replenishment over-the-air (across any
communications channel). Ephemeral session keys (e.g.,
data encryption keys, keys used for identification or authen-
tication, or other keys or cryptographic information) are able
to be computed by both Alice and Bob without the need to
transmit an ephemeral session key with each session and/or
cach message. This reduces the data transfer overhead and
latency associated with handshaking in other protocols,
reduces the computational resources required, makes 1ire-
quent key replenishment and one-time pads/passcodes less
burdensome and costly, makes interception by an eavesdrop-
per of the key agreement protocol more diflicult since key
agreement does not happen over a communications channel
between Alice and Bob, and enables secure and private
communications. The disclosed technique may be used over
any communications transport, network technology, or radio
access technology.

The mvention 1s disclosed 1n the context of two parties,
Alice and Bob, engaging 1n communication. However, the
disclosed techniques may be used 1n connection with com-
munications between more than two parties.

The term “Identity Verification Agent” refers to a com-
ponent responsible for confirming the identity of another
party/entity. Alice and Bob may each contain a local Identity
Verification Agent, may utilize a remote Identity Verification
Agent, or one party may utilize a local Identity Verification
Agent, while the other party utilizes a remote Identity
Verification Agent. One or both Identity Verification Agents
can be maintained by an independent third-party.

The term “Privacy Agent” refers to the component
responsible for encryption and/or decryption of messages
to/from another party/entity. Alice and Bob may each con-
tain a local Privacy Agent, may utilize a remote Privacy
Agent, or one party may utilize a local Privacy Agent while
the other party utilizes a remote Privacy Agent. One or both
Privacy Agents can be maintained by an independent third-
party. The Privacy Agent utilizes one or more data encryp-
tion keys or transport keys to create a private encrypted
context (end-to-end transport or tunnel) between Alice and
Bob.

The term cryptographic module refers to the component
responsible for establishing and maintaining trust between
parties, an example of which 1s defined in NIST Special
Publication 800-57 Part 1 Revision 4 (DOI 10.6028/
NIST.SP.800-57ptlrd). The cryptographic module contains
identifying information, as well as cryptographic keys. The

US 11,088,835 Bl

S

cryptographic keys contained within the cryptographic mod-
ule are used to generate static cryptographic keys, one-time
ephemeral session keys, static identifying keys, and/or one-
time ephemeral session keys (or one-time passcodes). The
cryptographic module implementation may utilize purely
software (a library, an applet, an API, a service, a micro-
service, a software implementation of a Subscriber Identity
Module or software SIM, etc.), purely hardware (Subscriber
Identity Module or SIM, Universal Integrated Circuit Card
or UICC, eSIM, Smart Card, Trusted Platiorm Module, etc.),
or a combination of the two (software and hardware, e.g.,
security-hardened hardware).

Each Identity Verification Agent makes use of a crypto-
graphic module containing corresponding keys to that of a
sender/imitiator’s cryptographic module 1n order to verily
identity of a sender/initiator. Each Privacy Agent makes use
of a cryptographic module to generate the necessary keys to
perform cryptographic functions on data and information
being transported.

Multiple methods of communication are possible between
Alice and Bob. An example sequence of events that allow
Alice and Bob to engage 1n trusted communication include
the following:

1. Cryptographic Module Provisioming: If the crypto-
graphic module has not yet been provisioned, Crypto-
graphic Module Provisioning 1s performed first.

2. If identity verification for communications from Alice
to Bob 1s required by mutually-agreeable communica-
tions policy:

a) Alice performs Identity Information Generation
using Alice’s cryptographic module.

b) Alice sends the identily information generated from
Identity Information Generation to Bob.

¢) Bob verifies Alice’s identity using Bob’s Identity
Verification Agent.

3. IT encryption for communications from Alice to Bob 1s
required by mutually-agreeable communications
policy:

a) Bob optionally generates and communicates a nonce
and/or sequence number to Alice.

b) Alice performs Transport Key Generation using
Alice’s cryptographic module.

c) Alice optionally generates and communicates a
nonce and/or sequence number to Bob.

d) Alice encrypts the plaintext message and any nec-
essary identifying information, and communicates
the encrypted message and identifying information
to Bob.

¢) Bob performs Transport Key Generation using Bob’s
cryptographic module containing key-agreement
keys that correspond to the key-agreement keys used

by Alice’s cryptographic module.

1) Bob decrypts the message using the keys generated

by Transport Key Generation using Bob’s crypto-
graphic module.

Alternatively, 1dentity information generated in 2.qa. may
be encrypted and sent within the message, as 1n 3.c., instead
of being sent in plaintext form. An example of a simple use
case 15 where the owner of server 130, say Bob, supplies
cryptographic module 102_1 (e.g., a SIM card) to Alice.
Since Bob distributed the module, he has knowledge of the
information 1n the secure authentication key memory 112.
Therefore, Bob can authenticate Alice after that information
1s delivered from cryptographic module 102_1 to crypto-
graphic module 102_3 of server 130.

Cryptographic Module Provisioning happens for both
Alice’s cryptographic module, as well as Bob’s crypto-

10

15

20

25

30

35

40

45

50

55

60

65

6

graphic module. Cryptographic Module Provisioning of
both cryptographic modules establishes necessary trust
between Alice’s cryptographic module and Bob’s crypto-
graphic module by establishing corresponding crypto-
graphic key-agreement keys 1n both cryptographic modules.

Cryptographic Module Provisioning may be performed
by generating keys and transferring software and keys over
an existing secured channel, provisioning and physically
transporting secure hardware modules containing keys, or
some combination of both. Examples of provisioning and
physically transporting secure hardware modules include the

use ol Subscriber Identity Modules (SIM), Smart Cards,
UICC, eSIM, Trusted Platform Modules, and similar secure
hardware modules capable of performing a one-way func-
tion 1n order to satisiy the purposes of the Key Part Gen-
cration Function. Examples of transferring software/keys
over an existing secured channel include use of applets,
software-SIM, eSIM, similar secure software transter meth-
ods, and cryptographic keys transferred over any already-
secure channel, including the use of cryptographic modules
to create an already-secure and already-private bootstrap-
ping channel to then be used to establish agreement of such
software and/or keys for subsequent use by the application
(that 1s, by Alice and Bob).

Depending upon the identity verification method(s) cho-
sen, there may be a need to generate any or all of the
following: static keys or information used for identification,
authentication, or authorization purposes and one-time
ephemeral session keys or one-time passcodes to be used for
identification, authentication, or authorization purposes. To
generate static keys used for identification purposes, the Key
Generation procedure 1s performed. To generate one-time
passcodes for identification purposes using a time-based
approach, the Key Generation procedure 1s performed, for
example, using temporary key generator 116. Cryptographic
salt from the cryptographic salt generator 118, such as a
current time, may also be used. To generate one-time pass-
codes for i1dentification purposes using a sequence number
approach, the Key Generation procedure 1s performed with
sequence number and optional nonce(s) as Key Generation
Inputs. The sequence number may be maintained by the
cryptographic salt generator 118. Otherwise, one-time pass-
codes for identification purposes may be generated using
only nonce(s) as Key Generation Inputs. The output of the
Key Generation procedure may optionally be truncated as
appropriate for a given application.

Depending upon the encryption method(s) chosen, there
may be a need to generate any or all of the following: static
keys used for encryption/decryption purposes, static keys
used for integrity purposes, and ephemeral session keys used
for encryption/decryption keys and/or for integrity purposes.
To generate static keys used for encryption/decryption, the
Key Generation procedure 1s performed. To generate one-
time pads for encryption/decryption using a time-based
approach, the Key Generation procedure 1s performed with
current time and optional nonce(s) as Key Generation
Inputs. To generate one-time pads for encryption/decryption
using a sequence number approach, the Key Generation
procedure 1s performed with sequence number and optional
nonce(s) as Key Generation Inputs. Otherwise, one-time
pads for identification purposes may be generated using only
nonce(s) as Key Generation Inputs. These one-time ephem-
eral session keys may be used for any suitable encryption
and decryption algorithm.

Keys can be generated for imitial key establishment, key
replenishment, and/or one-time ephemeral key establish-

US 11,088,835 Bl

7

ment, for any type of cryptographic key or information, as
often as 1s needed by the encryption/decryption method(s)
chosen.

Once Cryptographic Module Provisioning has occurred,
key agreement has been established between the crypto-
graphic module accessible by Alice and the additional
cryptographic module accessible by Bob. The corresponding
key-agreement keys (e.g., N and N' of FIG. 1) inside both
Alice’s cryptographic module and Bob’s cryptographic
module are then used to generate key parts (key compo-
nents) for any type of cryptographic keys, cryptographic
keying material, or cryptographic information needed by the
cryptographic method(s) chosen.

Betore the Key Part Generation Function 1s used, a Key
Generation Input Conditioning Function may be used, as
implemented by the key part generator 120. This approach
protects against an attacker using carefully-chosen mputs to
try to compromise the system and/or as part of a perfect
forward secrecy method implementation. Inputs to the Key
Part Generation Input Conditioning Function, as imple-
mented by the key part generator 120, may include one or
more of the following:

N: Nonce generated by Bob (1f ephemeral session keys
and/or one-time passcodes are used); the Nonce may be
generated by the temporary key generator 116

N': Nonce generated by Alice (if ephemeral session keys
and/or one-time passcodes are used)

T: Current time (1f time-based ephemeral session keys
and/or time-based one-time passcodes are used) opera-
tive as cryptographic salt from cryptographic salt gen-
erator 118

S: Sequence number (1f ephemeral session keys and/or
one-time passcodes are used) operative as crypto-
graphic salt from cryptographic salt generator 118

If a Key Generation Input Conditioning Function 1s
chosen to alter the inputs, then another nonce (N'), and one
or more forms of cryptographic salt (e.g., the current time
(1) and/or the sequence number (S)), and/or static 1dentify-
ing keys or information are used to alter the nonce generated
by Bob (N) and produce conditioned inputs as to the Key
Part Generation Function. The Key Part Generation Input
Conditioning Function may be implemented using a Mes-
sage Authentication Code (MAC) or keyed-hashing method
(e.g. HMAC), simple mathematical transform or operation
(e.g. XOR), or other method. The Key Generation Input
Conditioning Function may be implemented either inside or
outside of the cryptographic module 102_1.

The mputs to the Key Part Generation Function (e.g.,
Cryptographic Key Generator 122) are the outputs from the
Key Part Generation Input Conditioning Function (e.g., Key
Part Generator 120). If conditioning 1s not desired, the Key
Generation Input Conditioning Function may be substituted
for a function whose outputs are i1dentical to its mputs or
may be a simple concatenation of its 1nputs; alternatively,
the Key Part Generation Input Conditioning Function Inputs
may be used as Key Part Generation Function inputs
directly.

The sequence number (S), 1f used, may constitute either a
sequential counter, a less predictable cryptographic one-way
function or hash (e.g., a MAC or keyed-hash function
influenced by the sequence numbers and MACs/hashes of all
previous sequential messages), or a combination of the two.

The Key Part Generation Function implemented by the
cryptographic key generator 122 1s any appropriate math-
ematical one-way function (e.g., MAC or keyed-hashing
function) 1n which the same set of Key Part Generation
Inputs produces the same mathematically derived output,

10

15

20

25

30

35

40

45

50

55

60

65

8

and for which a mathematical inverse for that function either
does not exist, 1s unknown, or 1s sufliciently hard to deter-
mine.

The Key Part Generation Function associated with the
cryptographic key generator 122 resides within each soft-
ware and/or hardware implementation of the cryptographic
module. It 1s the responsibility of the cryptographic module
to generate the cryptographic keys required by the applica-
tion.

In both identification and encryption/decryption, it may
be necessary to generate multiple key parts (e.g., for extend-
ing overall key length, for multiple rounds of encryption/
decryption, for encrypting parts of messages to be each
decrypted by different recipients, etc.). Multi-part Key Gen-
eration 1s made possible by repeatedly calling the Key Part
Generation Function with different elements from a set of
multiple Key Part Generation Inputs.

Optional Message Integrity Verification 1s made possible
through any appropnate integrity assurance method (e.g.,
cryptographic signing, MAC or keyed-hashing, etc.). To
perform Message Integrity Verification:

1. Alice performs Identifying Information Generation to
generate a key to be used for integrity assurance
purposes.

2. Alice utilizes the generated key to assure the integrity
of the message (e.g., for keved HMAC, Alice uses the
generated key and message as iputs to an appropriate
HMAC method).

3. Alice communicates the integrity assurance informa-
tion (e.g., HMAC result) to Bob.

4. Bob performs the same Identifying Information Gen-
cration to generate a key.

5. Bob verifies the integrity assurance method produces
integrity assurance 1information that corroborates
Alice’s communicating integrity assurance informa-
tion.

Integrity assurance information (e.g., HMAC result) may
be communicated by Alice to Bob in unencrypted or
encrypted form, depending upon application appropriate-
ness.

Various protocol options for use during communications
can be negotiated between Alice and Bob, depending upon
the availability of each option within each entity’s protocol
implementation. Any mutually-supported asymmetric key
encryption algorithm, symmetric key encryption algorithm,
or other encryption algorithm may be used for establishing
secure and private communication. Depending upon the
encryption algorithm selected, generated static crypto-
graphic keys, generated replenished cryptographic keys,
and/or generated one-time pads as cryptographic ephemeral
keys produced by the disclosed method may be used,
including multiples of each.

An implementation may choose to utilize additional 1den-
tifying information, identitying keys, and/or cryptographic
keys, as well as additional stages and forms of establishment
or replenishment, as an application requires.

One-time pads, one-time passcodes, and some integrity
preservation methods require a hashing (e.g., HMAC) algo-
rithm to be used, and any mutually-agreeable cryptographic
hashing algorithm may be used that satisiies the application
requirements. Any key length that can be supported by the
encryption algorithm(s) chosen may be used. Any padding
scheme that transforms data from onginal length into a
length that 1s aligned with lengths that are acceptable by the
encryption algorithm chosen (e.g., PKCS7 for AES encryp-
tion) may be used.

US 11,088,835 Bl

9

Compression 1s common 1n networking and Internet com-
munications; similarly, an implementation may incorporate
compression on pre-encrypted data and/or post-encrypted
data (or the entire final message itself sent from Alice to
Bob). In order to minimize the amount of data transferred,
sessions may be supported where authentication of Alice
occurs 1n the first transmission to Bob but not with every
subsequent transmission, according to mutually-agreeable
policy.

Perfect forward secrecy can be enabled if mutually sup-
ported by both Alice and Bob. In the case that the perfect
forward secrecy option 1s enabled, an additional (random)
ephemeral session key 1s conveyed whenever authentication
information 1s conveyed, which 1s upon the start of either
cach transmission or each session (depending upon the
connection persistence option as described, above). In the
case where the perfect forward secrecy option 1s enabled, the
conveyance ol an additional random ephemeral session key
increases the overall amount of data to be transferred;
however, the reduction of key exchange handshaking (like 1in
other protocols, where handshaking 1s either per-transmis-
sion or per-session) still realizes an overall reduction 1n
transierred data compared to other protocols.

Any mutually-agreeable integrity checking algorithm
(e.g., checksum, Cyclic Redundancy Check, Block Hash, or
similar technique) may be used and attached to messages
from Alice to Bob, and Bob may likewise send a confirma-
tion of integrity and/or success to Alice in a mutually-
agreeable fashion.

An embodiment of the present invention relates to a
computer storage product with a computer readable storage
medium having computer code thereon for performing vari-
ous computer-implemented operations. The media and com-
puter code may be those specially designed and constructed
for the purposes of the present invention, or they may be of
the kind well known and available to those having skill in
the computer soitware arts. Examples of computer-readable
media include, but are not limited to: magnetic media such
as hard disks, floppy disks, and magnetic tape; optical media
such as CD-ROMs, DVDs and holographic devices; mag-
neto-optical media; and hardware devices that are specially
configured to store and execute program code, such as
application-specific integrated circuits (“ASICs™), program-
mable logic devices (“PLDs”) and ROM and RAM devices.
Examples of computer code include machine code, such as
produced by a compiler, and files containing higher-level
code that are executed by a computer using an interpreter.
For example, an embodiment of the invention may be
implemented using JAVA®, C++, or other object-oriented
programming language and development tools. Another
embodiment of the mnvention may be implemented 1n hard-
wired circuitry 1n place of, or in combination with, machine-
executable software instructions.

The foregoing description, for purposes of explanation,
used specific nomenclature to provide a thorough under-
standing of the mvention. However, 1t will be apparent to

10

15

20

25

30

35

40

45

50

55

10

one skilled 1n the art that specific details are not required 1n
order to practice the invention. Thus, the foregoing descrip-
tions of specific embodiments of the invention are presented
for purposes of illustration and description. They are not
intended to be exhaustive or to limit the mvention to the
precise forms disclosed; obviously, many modifications and
variations are possible in view of the above teachings. The
embodiments were chosen and described in order to best
explain the principles of the imvention and 1ts practical
applications, they thereby enable others skilled 1n the art to
best utilize the mvention and various embodiments with
vartous modifications as are suited to the particular use
contemplated. It 1s mtended that the following claims and
their equivalents define the scope of the ivention.

The mvention claimed 1s:

1. A cryptographic module, comprising:

an 1put/output port to receive a first temporary key in a
first communication exchange with another machine to
initiate an authentication operation;

a processor to receive the first temporary key from the
input/output port;

a secure authentication key memory connected to the
Processor;

a temporary key generator connected to the processor to
produce a second temporary key for routing to the
input/output port;

a cryptographic salt generator connected to the processor
to produce cryptographic salt;

a cryptographic key generator connected to the processor
to process key parts dertved from the first temporary
key, the second temporary key and the cryptographic
salt to complete the authentication operation and pro-
duce cryptographic keys without a second communi-
cation exchange with another machine.

2. The cryptographic module of claim 1 configured as a

standalone cryptographic chip.

3. The cryptographic module of claim 1 operative as a
segment of a general purpose processor.

4. The cryptographic module of claam 1 wherein the
input/output port has physical contacts.

5. The cryptographic module of claam 1 wherein the
input/output port 1s a wireless interface.

6. The cryptographic module of claim 1 wheremn the
temporary key generator 1s a random number generator.

7. The cryptographic module of claam 1 wherein the
cryptographic salt generator secures a common time stamp
associated with the first temporary key and the second
temporary key.

8. The cryptographic module of claim 1 wherein the
cryptographic salt generator utilizes a sequence number.

9. The cryptographic module of claim 1 wherein the key
parts are received at the input/output port from an external
computation resource.

10. The cryptographic module of claim 1 wherein the key
parts are computed by the cryptographic module.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

