US011087249B2

12 United States Patent

Leonelli et al.

(10) Patent No.:

45) Date of

Patent:

US 11,087,249 B2

Aug. 10, 2021

(54) METHOD AND APPARATUS FOR
TRIGGERING EXECUTION OF A
WORKFLOW OVER A NETWORK

(71)
(72)

Applicant: Ciambella Ltd., Tortola (VG)

Inventors: Jean-Baptiste Leonelli, Levallois (FR);
Trisala Chandaria, New York, NY
(US)

(73)

(%)

Assignee: Ciambella Ltd., Tortola (VG)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 982 days.

Notice:

(21) 15/163,280

(22)

Appl. No.:

Filed: May 24, 2016

(65) Prior Publication Data

US 2017/0344921 Al Nov. 30, 2017

Int. CI.
G06Q 10/06
HO4L 29/08
HO4W 4/50

U.S. CL
CPC

(51)
(2012.01)
(2006.01)
(2018.01)

(52)
G06Q 10/06311 (2013.01); HO4L 67/34
(2013.01); HO4W 4/50 (2018.02)

Field of Classification Search

CPC G06Q 10/06311; HO4AW 4/50; GO6F 9/50;
HO4L 67/34

USPC 709/223
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

*

6,158,051 A 12/2000 Mack et al.
6,895,573 B2 5/2005 Norgaard et al.
7,086,014 Bl 8/2006 Bartz et al.
7,246,319 B2 7/2007 Alden et al
(Continued)
FOREIGN PATENT DOCUMENTS
CN 1821964 A 8/2006
CN 201017215 Y 2/2008
(Continued)

OTHER PUBLICATTIONS

Feipeng Liu, “Android Native development Kit Cookbook”, Mar. 1,
2013, XP055326992, ISBN: 978-1-84969-150-5, retrieved on Dec.
7, 2016 from: http://file.allitebooks.com/20150520/Android%o
20Native%20Development%20Kit%20Cookbook.pdt, pp. 1-331.

Primary Examiner — James E Springer

(Continued)

(74) Attorney, Agent, or Firm — Moser Taboada

(57)

ABSTRACT

A method for triggering execution of a workflow over a
network comprises receiving an instruction to execute a
workilow comprising a first task for being executed on a first
remote device, receiving network settings from the user
device to enable communication and execution of the first
task on the first remote device, applying the network settings
to at least one of the host or the first remote device, and

executing the first task on the first remote device using the
network settings upon receiving the instructions from the

user device. The workflow comprises multiple tasks for
execution on multiple remote devices. Multiple tasks
include the first task, and multiple remote devices include
the first remote device. Network settings include settings for
establishing communication between any two or more of the
host and the remote devices.

6,065,053 A 5/2000 Saeki
6,108,715 A 8/2000 Leach et al. 20 Claims, 9 Drawing Sheets
300
USER DEVICE . 302 "
MONITOR i~ 104 HOST .. 306
L - - Eq MEMORY N
MEMORY é .
L i 5 5
BN I
= | = 340 T 341
1164—H-{ ,‘.-Iﬁ F;f“[i E;J\(T_,; §
g P y " I
o ' “ 4] |
i 18 117N 1181’% 339] oeeveaeeereesemeeeeeoemeseeeresees e
5551 (194 PROCESSOR b 326
316 44— REn] L2 | 210 |
] S —— cerarrerremereery |} £ 3 ST - “"i'r_H
| 314 -
- SUPPORT CIRCUITS |t
- s . : oo o e e ™
e yenm REMOTE
i i
E DEVICES [2291 |
- 350
/O DEVICE : o |1
s R “E_\t e i ¢ i—n_m_ 350
; 1| 3500 |
106 —

US 11,087,249 B2

Page 2
(56) References Cited CN 102177501 A 9/2011
CN 102262557 A 11/2011
U.S. PATENT DOCUMENTS CN 102271153 A 12/2011
CN 102479079 A 5/2012
8,055,386 B2 11/2011 McCoy et al. CN 102999322 A 3/2013
8,086,744 B2 12/2011 Abdullah et al. EP 3092561 AL 11/2016
8,352,903 Bl 1/2013 Friedman P 2006216048 A 8/2006
8,090,787 B2 3/2015 Balassanian P 2008021095 A 1/2008
2002/0194313 Al 12/2002 Brannock P 2010539600 A 12/2010
2003/0061274 Al 3/2003 Lo P 2011150430 A 8/2011
2003/0120707 A1 6/2003 Bogdan et al. IP 2016112651 A 6/2016
2003/0177208 A1 9/2003 Harvey, IV KR 20080044576 A 5/2008
2003/0204560 A1 10/2003 Chen et al. WO WO-2005050503 Al 6/2005
2004/0010734 Al 1/2004 Ghercioiu et al. WO WO-2013058768 Al 4/2013
2004/0193635 Al 9/2004 Hsu et al. WO WO0-2014/041623 Al 3/2014
2004/0221238 Al 11/2004 Cifra et al. WO WO-2014204989 Al 12/2014
2004/0249944 A1 12/2004 Hosking et al. WO WO-2017/027632 AL 2/2017
2005/0114644 Al 5/2005 Chu et al.
2005/0114854 Al 5/2005 Padisetty et al. OTHER PURILICATIONS
2005/0177269 Al 8/2005 Funk
2005/0256964 A [1/2005 Dub_e International Search Report and written Opinion dated Oct. 4, 2016
20060122730 Al 6/2006 Niemels ot al. for PCT Application No. PCT/US2016/041573
2006/0271537 A1l 11/2006 Chan drasekha:ran of al International Search Report and written Opinion dated Apr. 13,
2007/0174037 Al 7/2007 Ling 2017 for PCT Application No. PCT/US2016/067944, 14 pgs.
2007/0186246 Al /2007 Goldhort International Search Report and Written Opinion dated Nov. 15,
2008/0092073 Al 4/2008 Shih et al. 2017 for PCT Application No. PCT/US2017/047944.
2009/0070121 A1* 3/2009 Leonelli G06Q 10/06 International Search Report and Written Opinion dated Nov. 24,
705/301 2017 for PCT Application No. PCT/US2017/047964.
2009/0095807 Al 4/2009 Dickerson et al. Extended European Search Report dated Oct. 23, 2017 for Appli-
2009/0198770 Al 8/2009 Jiang cation No. 15735508.2.
2009/0307105 AL~ 12/2009 Lemay et al. Singapore Written Opinion dated Jun. 11, 2018 for Application No.
20;0/0010908 Al 1/20;0 Pasupulati et al. 112017087431
2010/0271989 Al 10/2010 Chernoguzov et al. International Search Report and Written Opinion dated Jun. 15,
2010/0299187 AL 11/2010 - Duggal 2018 for PCT Application No. PCT/US2018/022359
2011/0238969 Al 9/2011 Warkentin et al. pp" =aHon e L
2011/0246891 A1 10/2011 Schubert et al. Japanese Office Action dated Jun. 18, 2018 for Application No.
2011/0295391 Al 12/2011 Schneider et al. 2016-521515. | -
7012/0036493 Al /2012 Moosmann et al. Japanese Oflice Action dated Jun. 18, 2018 for Application No.
2012/0233588 Al 9/2012 Mruthyunjaya et al. 2016-521516.
2012/0311526 A1 12/2012 Deanna et al. Japanese Office Action dated Jun. 18, 2018 for Application No.
2013/0201316 Al 8/2013 Binder et al. 2016-521518.
2013/0275560 Al 10/2013 Bestmann et al. Chinese Office Action dated Jun. 21, 2018 for Application No.
2014/0101581 Al 4/2014 Lan et al. 201480038517.8.
383/// 8%;33?2 i 3//{ 383 8%3113”!3 et ai* Haruyoshi Maruyama, “How to Use Device Driver Configurator,”
1 1 1 andaria et al. L 1
5015/0045960 Al 79015 Caron of al I;;t_e;éz?.ce, CQ Publishing Co., Ltd., vol. 33, No. 6, Jun. 1, 2007, pp.
%82?8@;5% i 3//382 (Pé}ll;tna(li{afitaaét al International Search Report and Written Opinion dated Apr. 22,
27015/0286362 Al 10/2015 Chandaria et al 2019 for PCT Application No. PCT/US18/63704.
2015/0331406 Al 11/2015 Wang Kreger, Heather, “Web Services Conceptual Architecture (WSCA
2016/0043991 Al* 2/2016 Eizadiccccoovnee... HO4L 61/20 1.0),” Internet Citation, May 2001.
709/245 Cano Julio et al: “Coordination of ECA Rules by Verification and
2016/0092064 Al 3/2016 Wu Control”, Jun. 3, 2014, International Conference on Computer
2016/0315872 Al* 10/2016 Fizadr GO6F 9/45558 Analysis of Images and Patterns, CAIP 2017. [Lecture Notes In
2016/0327925 A1 11/2016 Leonelli et al. Computer Science], Springer, Berlin, Heidelberg, pp. 33-48.
2016/0357526 Al 12/2016 Soffer et al. Partial Supplementary European Search Report for application No.
EP 16880005, date Oct. 21, 2019.
FOREIGN PATENT DOCUMENTS PCT International Search Report and Written Opinion on applica-
tion No. PCT/US2019/055109 dated Jan. 22, 2020.
CN 101373441 A 2/2009
CN 101438299 A 5/2009 * cited by examiner

U.S. Patent Aug. 10, 2021 Sheet 1 of 9 US 11,087,249 B2

1351 s » » 135p

14019 1409

\

;
126 - 1381 1382 1383 1381 138N

\ 124 ;

USER DEVICE ;

+
4
+ H
n
+
1
+
+
+
+
+
-
+
,
+
-
,
- : 2
=
-
a
+
-
b
"
- -
b
* -
+
+
+
+
b
+
*
1

5 102
MEMORY] 108

GUI SOFTWARE 110

i

ii

1164 e 5117, 118,

ke, ek sk sheke sicke ok

+ + =+ + =+ d & 4+ Jd A 4 A

" EE L 3

116y - e 117

Ak gl

112 —f— 190

[]
L

/O DEVICE 106

L]
++

U.S. Patent Aug. 10, 2021 Sheet 2 of 9 US 11,087,249 B2

200

- 202

FORM A GRAPHICAL REPRESENTATION OF 504

A WORKFLOW

 DEFINE NETWORK SETTINGS CORRESPONDING
TO EACH TASK OF THE WORKFLOW — 209

FORM, FROM INFORMATION ASSOCIATED

WITH THE GRAPHICAL REPRESENTATION.
A RECORD FOR FACILITATING AN 206
EXECUTION OF THE WORKFLOW

+++

+++

 ISSUE, VIA A GRAPHICAL-USER INTERFACE, AN
. INSTRUCTION TO EXECUTE THE WORKFLOW, |~_210
AND TO APPLY THE NETWORK SETTINGS

+++++++++++++++++++++++++++++++

& Ol o

LA I I N NN N N RN BB E BB BB EEBEEEBEEEBEEBEBERBEEBEBEEBEREEBEEEBERERBERBEREBEBEREBREEBEREBEBEEREBEEREBEEEREBEBEREBEEBEBREEBREREBEBEERBEBIEEINEREIEINIENIEIEZIIIMN,

v JDIA3A O/

LA I I N NN NN RN RSB EEEEBE BB EEEBEEBEEBEEEBEEBEEEBEEBEREBEBEEREBEREEBEREEREEBEREBELEBEREEBEEEBREERBEREEREEBEREBEREBEREBEBEEBIEEINEIEINEINEIEINIEIEIIEZS,

m +
* + + + + *+ F + + + + + F A F At A A A A A

LN B N N N N N B A

+
+
+
+
+
+
+
+
+
+

US 11,087,249 B2

L I B N B L B B NN BN BN

L I N S N N N RN R BB EBE BB EEEEBEEREEBEEBEEBEEEBEEBERBEREEREBEREEBEREBEREEBEEBEEBEEEBEEEBEEREBEEREEBEBEREBEEEBEREBREREEBREEREIEEIBEIEBIEINIEIEIEIEZSIEM, +

L+ T+ T T 3
+ + + + + + + + + + + + + + +F + F +F FF FFFFFFFFEFFFFFEAFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFFEFFEFEFFEFEAFFEFEFEFEFEFFEFEFFEFEFFEFE T

- 4OSSIO0Nd |

0ee S1IMO 1dOddNS

+ + + + + + + + +

-

vl 0ZE
Ngpp Ny Ngpy

dJ0OS5S5300dd

+ + + + + + + + +

el

Sheet 3 of 9

R & L
& & &

o iyl LT re
| A oLl
ASOWIN

LINN ONISSTIDOHd

r
N
N
N
N
N
N
N
N
N
N
N

AJONTN

+ + + *+ + + + + F F F FFFFFEFFFEFFEFEFFEAFEAFEFEFEFEFEFEAFEFEAFEAFEFEFEFEFEEAFEFEFEAFEFEEFEAFEFEEFEFEFEAFEEFEFEFEFEEFEFEAFEFEEFEFEEEEEE

ddAddS N1ddVv-1SOH

LI I N N NN NN R R BN E BB EEBE BB EEBEEEBEEBEREREBEREBEEBEREEBEREEBEEREBEEREBELEBERERBEBEREBEEBEEEBEREREBREEREBEENREEEREIEEIEIEIBIENEIIIEZSMESIM,.

Aug. 10, 2021

4

+ + + + + + + + F FFF o FFFEFFEFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFFEFFEFEFFEFEFFEFEFFFEF A F

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+
+
+
+*
+
+
+
+
+
+*
+
+
+
+

+ + + + + + F + + F + F FFFFEFFFEFFFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFE S H + + + + + + + + + + + + + + + + + +
AL I I B N B RSB EBEBEEBEEBEEERBEEBEREBERBERBEBEREBEBEEEBEEREBEREBEBEEERBELEBEBEREBEREBEEBEBEBEBEBEERBEEBEEEBEEREBEBEBEEEBEBEBEBEEBEBIBIEBIEBNEIEBIEBEIEIEIENEIIEMIIMEJIEZIEBIEZIEZS:.,
i F
+i+hr
+
+*
+
+
.
"
"3
"
.
+*
+
+
+
+
+
1 +
+
+
4
FRY
+
+
+*
+
+
-
+
+
+
+
* "l
+ +
+
+ o+
+
+
+*
+
w

90€ ™~ POL JOLINOIN

1SOH |
¢0t ™™ 3DIA3A ¥3SN

LA B N R LR BB EEEBEBEEBEBEBEEBEBEBEBEBEEEBEEEBEEREBEEBEEEBERBEBEBEEBEEEBEEEBEBEERBRBELEBEEBEBEBEBEBERBBEBEEBEEEREBELEEEIEBEBIEINEIEIEIBEIEZIMEJIEZIEZSJIMEZIEZSIM,

+* + + + + + + + + + +F + F F F A+ FFFFFFFFFFAFEFFFEFFAFEFEFEAFEFFEFEFEFEAFEFEFFEFEFAFEFFFEFEFFEFEFEAFEFFEAFEFFEAFEFFEFEFEFFEFFEFEFFEFEFEFFEFFEAFEFFEFEFEFEFEFEFEFEFEFFEFFEFEFFEAFEFFEFEFFEFEFEFEFEFFEFEFFEFEFEFFEFEFEFEFFEAFEFFEAFEFFEFEFFFEF A F

00¢C

U.S. Patent

U.S. Patent Aug. 10, 2021 Sheet 4 of 9 US 11,087,249 B2

400

~-402

OBTAIN THE WORKFLOW RECORD
DISPATCHED FROM A USER DEVICE

406

+++

| OBTAIN FROM A GRAPHICAL-USER INTERFACE, |
AN INSTRUCTION TO EXECUTE THE WORKFLOW | 410

APPLY NETWORK SETTINGS TO SUPPORT
EXECUTION OF THE WORKFLOW 411

EXECUTE THE WORKFLOW — 412

~-414

FIG. 4

US 11,087,249 B2

Sheet 5 of 9

Aug. 10, 2021

U.S. Patent

LLG™

9L6G
143°2

4%

99
096G~

OLS

845"
809

9GG ~
140)°

LI I N NN NN RN B EEEEEEEENNENEN

* &

* + kS

LI NN NN NN BN EEEEBEEBEEIEENEDIMNN,I

+ + + + + + + + + + + + + +F + + F +F F F A+ FFFFAFAFFAFEAFFAFAFFAFEAFFEAFEAFEFFEFFAFEAFFEFEFEFAFEFEFEAFEAFFEFEAFEFEAFEAFFEAFEFEFAFEFFEAFEFEFEFEFFEAFEFEFEAFEFEFFEFEFEAFEFEFEFEFFEEF

SAOVSSdN
ddAHIS 1IVIND JOIANGTS

+ + + + + + + + + +

ddAddS 9dM -

ddAddS d11H dOIANGIS

+ + + *+ + + + ¥ + + + +

+

+

d0IAdAd LNIOddNd dNODJS

+ + + + + + *+ + + + + + ++ + + +t +t +F A+ttt Attt ottt ettt ettt ottt ettt ettt ottt ottt ottt

L N B B N N NN NN N NN N N NN NN NN NN

LA B B B N NSRS BB BB EEBEBEBEEBEEBEBERBEBEBEBEEREBEEREEERELEEBELERBELEBEBLEEBEBEBEBEERBEBIEIBMNEIBEIMNEBEIEIMEIENEIEIENSEIEIEIEIZIIIEZIEZSJEIBEBIEZS:,.

LA B B B N NSRS BB BB EBEBEBERBNEEBEBERBEBEBERBEEREBEEREEERELEEBIELERBELEBEBLEEBEREBEBEEREBEBIEBMNEIBEBIMEBEEIBEIENEIEBIENSIEIEIBIIMEIEZIEZSSJIEJIIIBEBIEZS:,.

SIOVSSIN

+ + + + + + + + + + + + + + + + F + + F F F FF A FAFAFAFAFAFFFAFEAFAFEAFFEFEAFFAFAFFAFEFFFEAFFEAFEFEFEAFEAFEFAE S

3N3AN0 IOVSSIN 31LONTA

+ + + + + + + + + + +F + F F FFFFFFFFFFEFFAFEFFAFEAFAFEAFEAFAFEAFEAFAFEAFEFEAFEAFEAFEAFEAFEFEFEAFEAFEAFEAFEFEFEAFEFEAFEAFEFAFEAFEFEFEAFEF A F

dld 13d9dV1

LA I I N N N RN RSB EEEE BB EEEEEBEEBEEEEBEEBEEEBEERBEEBERERBEEBEBIEEBREEEIEIEE-BIEBIEIEIEMNEIESIMS,.

+ + &+ + + + + +

+
+
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+
+
+

+ + + + + + F + + + + +F F F FFFFFEFFFEFFFEFFEFEFFFEFFEFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFFFEFFEFEFFFEFEFE S FH

dIAAIS d1d JOINGTS

+ + + F + + F + +F o+ FFFEFFFEFFFEFFFEFEFEFEFFFEFFFEFFEFEFFFEFFFEFFEFEFFFEFFEFEFF S

Odd 1d9dV.L
Jdd 40dN0S

+ + + + + + + + + + F + F F F A+ FFFFAFEFFAFEAFFEAFEAFFEAFEAFEAFEAFEAFFEAFEAFFEAFEAFAFEAFEFEFEAFEFEAFEAFEAFEAFEAFEFFEAFEFFEAFEFEFEFEF

AHONEN
ddAHdS 90 dOIANGIS

* + + F ¥ F F F FFFFFFFFEFFFEFEFEFEFE

LI B B B N N R S B B R B EEEEEEEEBEBEEBEEBEEEBEEEBEREBREREEREEELEBEREEEEBEREBEREERBEBERBRBERERERERBEBEREBREBEBEREBEBEERBEBIEBENEIEINEBEIEIEIEIEIEIEZS:,

dld 40dMN0OS

AJONTN

+ + + *+ + + + ¥ + F + +F

d0IA3A INIOddNd 1S dld

+ + + + + + + + + + + + + F + + F F F FF A FFAFFAFAFFFEAFEFFAFFAFEAFEFFEAFEFAFEAFFAFEAFEFFEAFEFEAFEAFEFEFEAFEFEFEAFEFFEAFEFFEAFEFFEAFEFEFEFEFEFEAFEFEFEAFEFEFEAFEFEEAFEFEEFEFEEFEFET

+ + + + + + + + + + F +F F F A+ F A FFFEFFFEFFEFEFFEFEAFFEFEFFEFEFEFF

+ + + + + + + + + + + +

P+ + + +

+ + + + + + F F F F F FFFFFFFFEFFFEFFEFEFFEFEFFEFEFEFEFEFFEFEFFEFEFFEFEFFFEFFEFEFEFEFEFFEFEFFEFEFEFEFEFEFEFEFEFEFEFEFEFEFFEFEFEFEFEFFEFEFFEFEFFFEFFFEFFFEFFEFEFFFEFFEFEFEFFEFFEFEFFFEFFFEFFFEFFFEFFEFEFFFEFFEFEFEFFEFFEFEFEFFEFEFFEFEFFEFEFFEFFFEFFFEFFEFEFEFFEFEFFEFEFFEFFFEFF A FE

G Old

401>
J0IAdA d3ST

LA I B B NN N B RN EB BB EBEEBEEBEENRNEENEBEIENEIEILEBIENIIIEIIIEZIEJBEBENEE.,

+

L B N B N N N N R R R R EEEEEEEBE BB EEBEEBEEEBEEEEEEEEENIEIIILE-ND,.

+

+

+ + + + + + + + + + + + + + F +F +

+ + +

+ + + + + + + + F o+ FFFEFFFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEFFFEFFEFEFFEFEFFFEFFEFEFFEFEFFFEFFFEFFEFEFFFEFFFEFFEFEFFEFEFFFEFFEFEFFFEFFFEFFFEFFEFEFF A F

— — 8¢5
41V 1dINdL |

| NOILVOl'lddV {_ | Sdd004dd — -QLC
- ONIDVSSdIN JOVSSIAN | 17

+ + + + + + + + +F + F FFF FFFFFEFFFEFFEAFEFFEAFEFFEAFEFFEAFEFFEAFEFFEAFEFFEFEFFFE + + + + + + + + +F A+ F A FFEFFFEFFFEFFFEFFFEFFFEFFFEFFE

+ + + + + + + + +F F F FFFFFFFFEFFFEFFFEFFFEFFFEFFFEFFEFEFFFEFFFEFFEFEFFEFEFFE A+

+ + + + + + F F F F FFFFFEFFFEFFFEFFFEFFEFEFFEAFEFFEAFEFFEAFEFFEAFEFFEFEF A F

Sdd4004dd
INdLINOD

+*

+*
+ + + + + + + + +F F F F FFF o FFFFFFEFFFEFFEFEFFEFEFFFEFF A F

+ + + + + + + + + F F F o+ F o FFFEFFFEFFFEFFEFEFFEFEFFFEFFE A F

SNOILINI43d

+
+ +
+ + &+ 4 +*
+

m
J0OIALIS
4004 —
n AM-04dd00dd —

+ + + + + + F + F FF F o FFFFFFEFFFEFFEFEFFEFEFFEFEFFEFEFFEFEFFEFEAF A F

+* + + + + + F + +F F F F A+ FFEFFFEFFFEFFFEFFFEFFFEFFFEFFFEFFFEFF A FF

Sdd4004dd

+* + *+ + + F ¥ F + F FF A+ FFEFF

ALJONHN
ddAHIS NOILVOI'1ddV-MO 144 OM

+ + + + + + + + + + + + + + + + + +t + Attt ottt sttt ettt ottt ottt ettt ettt ettt ottt ettt sttt ottt sttt ettt ottt ottt ottt ottt rtt+

+ + + + + +F + F F o+ F A+ FFFEFFFEFFFEFFFEFFEAFEFFEFEFFEAFEFFEAFEFFEFEFFEAFEFAFEAFEFFEAFEFFEFEFFEFEFFEFEFEFEAFEFFEAFEFEFEAFEFFEFEFAFEAFEFFEAFEFFEAFEFFEAFEFFEAFEFEFEAFEFEFEAFEFFEFEFFEAFEFFEFEFFEAFEFEFEFEFFEFE A F

P9G ddAHdS d11H 1SOH
1SOH

-+

+

+ + + + + + F ¥ +F + A+
+ + + + + + + + + + + + + +
L]

S. Patent Aug. 10, 2021 Sheet 6 of 9 S 11,087,249 B2

—

LA N B N N N N RN RN B R BB EEBE BB BB EEEBEEBEEBEBERBEBERBEBEERBEEREBEREEEEBEREBEEBEBEEBEEEBEEBEREEBEBEBEREBEBEREBEBEEEBEERBEEREBEEBEEBEBEBREEBEREEBEEEBEEBEEBEBEEBEBEBEEBEBEEBEEREBEREBEBEEBEBEBEBEBEEBERBEBEEBEEBEEEBEEBERERBBEBEBEBEEBEREBEREEBREEREBEEEBEBEBERBEBREIEBEBEBIEIEIEBIEIBEIEIEIEIEIIZJEZJMZS.,.

600

* + + F+ + + F ¥ + F F

138y
140,

1

* =

+ + + & + + + + + +

1
R
140 .1

+ + + + + + + + + + + + + + + + + + +

128

+

+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+
+*
+
+

+

r

+ + + + + + + + + + + + +

FIG. 6

+ + + + + + + + + + + + + + + + + + +

!_---------:I S 2 e e e e e e E | B 2 e 2 e 2 2 e e e el I 2 2 2 2

B ? <

E : 00

| g P
g O O 1 O] |~ NN N oD
g E§ gg gg N N N N N N N
; il & & o 'p o o 'p 'p 'p
I ' b - < I h I - ' ._ L'F "
g N o oo S e N N
g N IS H IS]] SN N N N e
; & & @ o ' o o ') ' '
! i b h b . b : b i ._ L'\— "
5 N) iloliml ol ol oyl ol | oo
z §§ §§ gg N\ N N N\ N N N
g o ' o o ') ' '

LA L B N N R RSB BB BB EBEEBEBEEBEBERBEBEEEBEEEBEEEBEEBEEEBERBEBEREBEEBEEBEBEEEBEBEBERBRBEEBEEBBEBEBEBEBEEBBEBEEBEBBEBEEEBEEBEEEBEBBEBEBEBEBEEBBEBEEEBEBEEBEEBEBEBEBEBEBEBEBEEREBEEEBELEEBEREBELEBEBEREBIEIBEBIEIEBIEBIEMNIEIEZIMEIEIMNEEEIEIEZSIIEZSIEZ:.

LRI N NN N B RSB EBEEBEEBEEBEEEBEEEBEERBERBEEBEBERBEBERBEBEEEBEEERBEEBEEEBERBEEBEBEEBEEEBEEBEEEBEREBEEBBEBEEBEBEBEBEEBEBEBEEBRBEEBELBEBEBEBEBEEEBEEBEBEEBEEBBEBEBEBBEBEEBEBEEBEEBEEEBEBEBEBEBEEBEEBBEBEEBEBEBEEEBEBEEEEEBEREBEBEEBEBEBEBEBIEBIEIMNBIEBIEIEIEIMEIE®BEIEMBIEIEIIEIMEZIJEIEIZIEZEZHSZEZJSZS,.

126 -

[] + + +
*
+
+
*
+
+
*
+
+
++ ﬁ # @ +
+
L -
*
+
+
*
+
+
* +
+
+
+ +
+
+ + +
* +
+
+
+
+
+
+
+
+
+
+
+
+

AdVddlT
ONINSOMLIN |

B SLINDYID 180ddNS 0G) —
376 »M0SSID0Nd

US 11,087,249 B2

+ + LN
+ -+
+ E,
+
EEEXEKEEENXIEE

1) "L MHOMLIN —
_ o Z0€ 30IA3A ¥3SN
o NI — * SERLERe)]
- 207 301A3Q ¥3SN
= 8E€ IYVMLAOS ddV-MOTHEOM| I || | |90Z IDIAZQA O 71€ SLINJHID L4O0ddNS
P oo n m s
= TEE IYVYMLIOS ¥IAYIS-ddY | = _ 0Le _d0SS390dd
— %1/ SLINOYID 180ddNS . ol =
e _ J - PIT|
mmmwm\f_\w_u_m%_\mm_m_ ONILVE3dO (B 940SS3008d |
o p— : = €8LI~"_ €Ll |
Q VCe d3aNY3S ddV-1SOH CQL L ~l. ._ COL L~ ._
= = i bgL L~ gl J
- 1922 31naow NFoNTdl| L) — | |
= | ¥2Z 3dvML40S ddv || | = 0cel |
|[0ZZSAS ONILYd3dO ||| 9bi| |||3avmidos lgeg) [0FL) | 9*°
111812 3HVMLAOS ZIE AOW3IIN
L EL AJONIN 80¢ IN¥O4LV1d ONISSIO0Hd

. 1807 INYO4LV1d ONISSIOO¥d |

004 + T
e * v0L YOLINOW
| YOZHOLINOW ,

U.S. Patent

U.S. Patent Aug. 10, 2021 Sheet 8 of 9 US 11,087,249 B2

800

802

ISSUE, FROM APPLICATION SOFTWARE, AN

| INSTRUCTION TO EXECUTE THE WORKFLOW | ™o

SEND. FROM THE APPLICATION

SOFTWARE, ONE OR MORE RECORDS 812
FOR INPUT TO THE WORKFLOW
RECEIVE, FROM THE HOST, INFORMATION 314

FOR INPUT TO THE APPLICATION SOFTWARE

US 11,087,249 B2

Sheet 9 of 9

Aug. 10, 2021

U.S. Patent

VCo6
!

J0IAdAd dLONdd ”
ANOOdS V NO MSV.L DZOOm_w
V HLIM V1VvAd JAIJOIH/ANIS

dO 11VO V dNSS| m

30IA3A ILONTY 1S¥I4 V NO |

MSVL 1Sdld V d1N0dX

(S)3A2IA3A ILON3TY

| SONILLIS YHOMLIAN A1ddY

6 Ol

0c6

MO 1A4AHO0M dHL 41 ND3 X

O

MOTAMEOM THL ILNDTIXI
0L NOILONYLSNI IAIZOTY

706 Tt

1SOH _

006

0 906

MOTIMEOM JHL 3LND3IXT

OL NOILONALSNI NV dNSSH

wmuz_._.._.m_w v_W_O>>._.m_Z >|_n_n_<
Ol ZO_._.ODW_._.wZ_ NV m_wa_

(S)3DIA3IA ¥3SN

US 11,087,249 B2

1

METHOD AND APPARATUS FOR
TRIGGERING EXECUTION OF A
WORKFLOW OVER A NETWORK

BACKGROUND

Field

Embodiments of the present invention generally relate to
worktlow deployment and execution, and, more particularly
to a method, apparatus and user interface for triggering
execution of one or more worktlows over a network.

Related Art

A company can employ one or more business processes
and other workilows to perform their core and ancillary
businesses. These worktlows may include, for example, a
workilow to facilitate processing of information as it moves
among or within any business disciplines, mcluding pur-
chasing, manufacturing, marketing, sales, accounting,
recruitment, information-technology support and the like, of
the company and/or 1ts clients, vendors, supplier, etc.

To facilitate the processing of the information, this work-
flow defines two or more tasks, which are organized and
connected 1n a particular, and hopetully, an eflicient fashion.
Each of the tasks may be any automatable activity of the
business disciplines 1n which information input to such task
(“input information™) may be operated on and/or output.
Examples of the tasks include downloading information
from remote servers, converting files between formats, pro-
cessing updates, communicating with customer or order-
management systems, sending email messages, automati-
cally backing up changes, eftc.

Often, the mput mformation for each of the tasks resides
in or has to be entered (e.g., from physical files) into one or
more data files of a plurality of computer systems of the
company and/or its clients, vendors, supplier, etc. While
some of these computer systems employ compatible plat-
forms and protocols (“compatible systems”), some of the
computer systems invariably employ disparate platiforms
and/or protocols (“incompatible systems”™). Unfortunately,
the incompatible systems make accessing and communicat-
ing the input information among the computer systems
difficult, at best.

Conventional solutions for automating access to and/or
communicating the mput information between the compat-
ible and mncompatible systems include (1) manual solutions,
and (11) automatic solutions. The manual solutions utilize
people to interface with the incompatible systems, whereby
such people manually transfer the input information to and
from the mncompatible computers. The automatic solutions,
on the other hand, employ customized soiftware and/or
hardware that are specifically adapted to itertace with the
incompatible systems (“‘customized interface™).

While the conventional solutions may fit a particular need
given a certain set of circumstances, such conventional
solutions can be costly to the company 1n terms of time,
money, and resources. For example, the company has an
initial expense of time, money and resources to create, test,
implement and provide support for an 1nmitial version of the
customized interface. When, however, the input information
resides on incompatible systems not considered or over-
looked when creating the 1nitial version of the customized
interface, the company has an additional expense of time,
money and resources to create, test, implement and provide
support for an additional version of the customized inter-

10

15

20

25

30

35

40

45

50

55

60

65

2

face. Moreover, the company may incur other additional
expenses ol time, money and resources to form new or
reworked implementations when the customized interface
no longer properly functions, if at all, due to updates,
upgrades or other modifications to the computer systems, for
example, modifications that may change network related
configurations.

Therefore, what 1s needed 1s an apparatus and method for
facilitating a generation, deployment and/or execution of a
workilow 1n which access to and communication of input
information among the computer systems having both com-
patible and disparate platforms and/or protocols does not
require customized interfaces. That 1s, an apparatus and
method for facilitating a generation, deployment and/or
execution of a workflow that facilitates interoperability
between the computer systems both compatible and dispa-
rate platforms and/or protocols. What 1s further needed 1s an
apparatus and method for facilitating a generation, deploy-
ment and/or execution of a worktlow 1n which access to and
communication of mput information and network settings
may be provided despite updates, upgrades or other changes
to the computer systems.

SUMMARY

Embodiments of the present invention generally relate to
a method and apparatus for triggering execution of a work-
flow over a network, substantially as shown in and/or
described 1n connection with at least one of the figures, as set
forth more completely 1n the claims.

These and other features and advantages of the present
disclosure may be appreciated from a review of the follow-
ing detailed description of the present disclosure, along with
the accompanying figures 1n which like reference numerals
refer to like parts throughout.

BRIEF DESCRIPTION OF THE DRAWINGS

So the manner 1 which the above recited features are
attained and can be understood 1n detail, a more detailed
description 1s described below with reference to the Figures
illustrated 1n the appended drawings.

It 1s to be noted the Figures 1n the appended drawings, like
the detailed description, are examples. As such, the Figures
and the detailed description are not to be considered limit-
ing, and other equally eflective examples are possible and
likely. Furthermore, like reference numerals 1n the Figures
indicate like elements, and wherein:

FIG. 1 1s a block diagram 1llustrating an example of a user
device for facilitating a generation, deployment and/or
execution of a workflow over a network:

FIG. 2 15 a flow diagram 1llustrating a tflow for facilitating
a facilitating a generation, deployment and/or execution of
a workflow over a network;

FIG. 3 1s a block diagram illustrating a system for
generating, deploying and/or executing a workiflow over a
network;

FIG. 4 1s a flow diagram 1llustrating a flow for facilitating
a generation, deployment and/or execution of a worktlow
over a network;

FIG. 5 15 a block diagram 1illustrating a another system for
generating, deploying and/or executing a worktlow over a
network;

FIG. 6 15 a graphical diagram illustrating an example of a
display screen of a graphical-user interface for use with
facilitating a generation, deployment and/or execution of a
workflow over a network;

US 11,087,249 B2

3

FIG. 7 1s a block diagram illustrating a system ifor
triggering a deployment and/or execution of a worktlow

over a network;

FIG. 8 15 a tlow diagram 1illustrating a flow for triggering
a deployment and/or execution of a workflow over a net-
work:; and

FIG. 9 1s a flow for triggering a deployment and/or
execution of a worktlow over a network.

DETAILED DESCRIPTION

In the following detailed description, numerous specific
details are set forth 1n order to provide a thorough under-
standing of exemplary embodiments or other examples
described herein. However, 1t will be understood that these
embodiments and examples may be practiced without the
specific details. In other instances, well-known methods,
procedures, components and circuits have not been
described 1n detail, so as not to obscure the following
description. Further, the embodiments disclosed are for
exemplary purposes only and other embodiments may be
employed in lieu of, or 1n combination with, the embodi-
ments disclosed.

Embodiments of the present imnvention relate to method
and apparatus for facilitating a generation, deployment and/
or execution of a workiflow over a network. Using a graphi-
cal user interface on a user device, a user defines a worktlow
for execution at remote devices, such as, devices providing
remote services, for example, FACEBOOK, AMAZON,
TWITTER, DROPBOX, email, fileserver, and the like. The
user also defines network settings for enabling communica-
tion between the various remote devices, and between the
remote devices and a host which deploys the workflow to the
remote devices. The network settings may be defined by
using the graphical user interface, otherwise selected using,
the user device, for example from the host or another device
on the network. The network settings allow for various tasks
of the workflow and/or various services provided by the
remote devices to interact for, or as a consequence of, the
execution of the worktlow.

Architecture Example

FIG. 1 1s a block diagram illustrating an example of a user
device 100 for facilitating a generation, deployment and/or
execution of a workflow over a network. As above, this
workilow includes a plurality of tasks; each of which defines
a corresponding automatable activity (“task’s function™) for
operating on and/or outputting imnformation input nto 1t.

The user device 100 may be, for example, any of or any
combination of a personal computer; a portable computer, a
handheld computer; a mobile phone, a digital assistant, a
personal digital assistant, a cellular phone, a smart phone, a
pager, a digital tablet, a laptop computer, an Internet appli-
ance and the like. In general, the user device 100 includes a
processor-based platform that operates on any suitable oper-
ating system, such as Microsoft® Windows®, Linux and/or
Symbian; and that 1s capable of executing software.

The user device 100 may, however, include a large
number of elements; many of which are not shown 1n FIG.
1 for simplicity of exposition. Details of example architec-
ture of a user device, which may be representative of the user
device 100, are described with reference to FIG. 3. As shown
in FI1G. 1, the user device 100 includes a processing unit 102
that 1s operable to control, manipulate or otherwise interact
with a monitor or other display device (collectively “moni-
tor”) 104 and/or an mput/output (“I/O) device 106, via
respective couplings. The monitor 104 and the input/output
device 106 include, respectively, monmitors and input/output

10

15

20

25

30

35

40

45

50

55

60

65

4

devices employed with user devices as described above and
as generally known 1n in the art.

The processing unit 102 includes memory 108 that 1s
capable of storing (1) software, such as graphical-user-
interface (“GUI”) software 110; and (11) one or more records
or other data structures (collectively, “records”) 112, each of
which may be stored as or 1n a single file or a plurality of
files. The records 112 may be structured as text, a table, a
database, a distributed hashtable, a distributed concurrent
object store, a document formed using a markup or markup-
like language, such as eXtensible Markup Language
(“XML”), JavaScript Object Notation (JSON), eXtensible

Markup Language-Remote Procedure Calling protocol
(“XML/RPC”); or according to a given protocol, such as
Hypertext Transter Protocol (“HTTP”), Simple Object

Access Protocol (“SOAP”); and the like.

The records 112 include a workflow record 114, work-
flow-operation records 116,-116_, and workilow-sequencing
records 118,-118 . The workflow record 114 1s/are stored,
for example, as an XML document in one or more files. The
workilow-operation records 116,-116_ 1s/are stored 1n one or
more files, and the worktlow-sequencing records 118 -118
1s/are stored 1n one or more files.

As described 1n more detail below, each of the workflow-
operation records 116,-116, corresponds to one of the work-
flow’s tasks. Each of these tasks 1s/are configured as a
sequence of logical operations for completing such tasks
along with preliminary set up operations and/or subsequent
validation operations for achieving proper execution of the
tasks. The task’s logical, set-up and/or validation operations
take the form of abstractions of functionality associated with
one or more complex processes for obtaining, transforming
and outputting information; rather than, taking form of
information for performing individual low-level program-
ming constructs that handle a small portion of such func-
tionality, such as calling a given function or assigning a
given value to a variable. To facilitate this, the workilow-
operation records 116,-116, include one or more parameters
for each of the corresponding tasks. The parameters for each
of the tasks (“task parameters”) include an indication of the
task’s function; one or more references to the task’s input
information, and/or one or more relerences to services,
settings such as network setting configurations 117,-117_ for
communication between multiple devices that execute one
or more of the workilow tasks or components thereoft, rules,
variables, expressions, templates, characteristics, directives,
commands, fields, etc. for generating, deploying and/or
executing the task.

Each of the workilow-sequencing records 118,-118 cor-
responds to a sequencing of one task to another task. To
facilitate this, each of the worktlow-sequencing records
118,-118 1nclude one or more parameters associated with
such sequencing (“sequence parameters”). The sequence
parameters include an 1indication of the tasks for sequencing,
an order of execution of the tasks, a set of conditions
governing the order of execution of the tasks and/or one or
more relferences to services, settings, rules, variables,
expressions, templates, characteristics, directives, com-
mands, etc. for generating, deploying and/or executing the
sequencing.

The workilow record 114 includes the task parameters for
all or a subset of the tasks and the sequence parameters for
all or a subset of the sequences in the worktlow. Alterna-
tively, the workilow record 114 includes the task parameters
for all or a subset of the tasks, and be arranged 1n a sequence
in accord with the sequencing. The worktlow record 114,

US 11,087,249 B2

S

worktlow-operation records 116,-116,, and workflow-se-
quencing records 118,-118 take other forms and include
other information as well.

In addition to the memory 108, the processing unit 102
includes one or more processors (collectively “processor”)
120 that execute (e.g., launches, generates, runs, maintains,
etc.) and operates on a suitable operating system. The
processor 120 1s/are capable of executing the GUI software
110, storing the records 112 in the memory 108, dispatching
the worktlow record 114 to facilitate the generation, deploy-
ment and/or execution of the workflow, issuing triggers
and/or 1ssuing one or more commands and/or instructions to
cause the generation, deployment and/or execution of the
workilow. Examples of the processor 108 include conven-
tional processors, microprocessors, multi-core processors
and/or microcontrollers.

The GUI software 110, when executed by the processor
120, executes a GUI and render on the monitor 104 at least
one display screen 122 of the GUI. The display screen 122
includes a window 124. The window 124, 1n turn, includes
a widget pane 126, a widget toolbar 128, a workflow pane
130 and a network connectivity pane 129.

The widget pane 126 includes task widgets 132,-132 .

The task widgets 132,-132 represent, graphically, the tasks
that are selected for inclusion 1n the worktlow. Such selec-
tion 1s eflected by including instances of the task widgets
132,-132 1n a graphical representation of the worktlow
(“graphical workilow™) 134 set forth on the worktlow pane
130. The task widgets 132,-132 , and any instances thereof,
1s/are rendered by the GUI software 110 as icons and the
like.

The widget toolbar 128 includes a sequencing widget 136;
instances of which also be used to form the graphical
workilow 134, and in turn, the worktlow. The sequencing
widget 136 represents, graphically, a coupling that 1s/are
used to couple together and sequence the tasks. The
sequencing widget 136, and any instances thereof, 1s/are
rendered by GUI software 110 as a connector line and the
like.

The workilow pane 130 includes the graphical workflow
134. The graphical workflow 134 includes task-widget
instances 138,-138 sequenced together with sequencing-
widget 1nstances 140,-140, . Each of the task-widget
instances 138,-138, 1s/are an instance of any of the task
widgets 132,-132 , and each of the sequencing-widget
instances 138,-138 1s/are an instance of the sequencing-
widget 136.

The network connectivity pane 129 includes network
setting widgets 135, . . . 135, (135). The network setting
widgets 135 include options to select or otherwise input
information relating to network settings associated with the
execution of the worktlow and the tasks therein. The GUI
software 110 1s/are used to select the appropriate network
setting widgets 135, and to receive input related to one or
more network settings. Each captured network setting 1s/are
referred to as an mnstance of the network setting widget 135,
and each network setting corresponds to execution of a
task(s) or a part thereof, and communication setting between
the devices mnvolved 1n execution of such task(s). In some
embodiments, information related to network settings 1is
included directly in corresponding task-widget instances
138,-138 ., when the task-widget instances 138,-138, are
configured, for example, using the GUI software 110, and 1n
such embodiments, defining network settings associated
with the tasks of the worktlow does not require the use of
network setting widgets 135.

10

15

20

25

30

35

40

45

50

55

60

65

6

The task-widget instances 138,-138, 1s/are associated
with the workflow-operation records 116,-116, ., respec-
tively; and the worktlow-operation records 116,-116,
include the task parameters of the tasks represented by the
task-widget instances 138,-138,. Further, the worktlow-
operation records 116,-116, include network setting con-
figurations 117 -117 . for example, as defined using network
setting widgets 1335, defined directly with the task-widget
instances 138 -138 | or otherwise defined. In some embodi-
ments, the network setting configurations 117,-117, are
stored as separate records, although, the network setting
configurations 117,-117 are associated with the workilow-
operation records 116,-116, . Similarly, the sequencing-wid-
get instances 140,-140 1s/are associated with the work-
flow-sequencing records 118,-118 . respectively; and the
worktlow-sequencing records 118,-118 1include the
sequence parameters of the sequences represented by the
sequencing-widget instances 140,-140_ .

Although the workflow-operation records 116,-116,
including the configured network setting configurations
117,-117 , the worktlow-sequencing records 118 -118 . and
the workflow record 114 are delineated above as four
separate entities, the delineation and the use of four entities
1s/are dispensed with. For example, the workflow record 114
(or any other of the records 112) include the task parameters
of the tasks represented by the task-widget instances 138, -
138, ., the network setting information incorporated in the
task-widget instances 138,-138 , and the sequence param-
eters of the sequences represented by the sequencing-widget
instances 140 ,-140 .

Alternatively, the workflow record 114 (or any other of
the records 112) include the task parameters of the tasks
represented by the task-widget instances 138,-138, , and be
arranged 1n a sequence 1n accord with a sequencing repre-
sented by the collective sequences of the sequencing-widget
instances 140,-140_. To facilitate the foregoing, the task-
widget 1nstances 138,-138 and the sequencing-widget
instances 140,-140_ 1s/are associated with the worktlow
record 114, directly. The workilow record 114, the work-
tlow-operation records 116,-116_, the network setting con-
figurations 117,-117 , and the workflow-sequencing records
118,-118 take other forms and be arranged 1n other ways,
as well.

Additionally, although the window 124 includes three
panes and one toolbar, as shown, the window 124 includes
more or fewer panes and more or fewer toolbars. In addition,
the window 124 includes tabs, dropdown menus, command
menus, etc. The widget pane 126 include more or fewer
task-type widgets than shown; the network connectivity
pane 129 include fewer or more network setting widgets
135, and the widget toolbar 128 include more sequencing-
type widgets than shown.

As an alternative, the widget pane 126, the network
connectivity pane 129 and the widget toolbar 128 i1s/are
combined into a single pane or toolbar that includes both of
the task-type and sequencing-type widgets. As another alter-
native, any combination of the widget pane 126, the network
connectivity pane 129 and the widget toolbar 128 includes
the task-type, network settings-type and sequencing-type
widgets.

As yet another alternative, one or more of the sequencing-
type widgets 136 1s/are combined, integrated with or other-
wise formed 1ntegral to the task widgets 132,-132 so as to
form umfied widgets. The unified widgets obviate having
separate sequencing-type widgets for each task-type widget
and network setting widgets. Such unified widgets are
rendered by the GUI software 110 as 1cons having connector

US 11,087,249 B2

7

clements, and incorporating options to input network setting
information, and the like. Instances of the unified widgets on
the worktlow pane 130 1s/are associated with the worktlow-
operation records 116,-116_, the network setting configura-
tions 117,-117 , and the workiflow-sequencing records 118, -
118, . Alternatively, the instances of the unified widgets are
associated with the workflow record 114 directly.

Operation Example

Referring now to FIG. 2, a flow diagram illustrating a flow
200 or a process 200 or a method 200 for facilitating a
generation, deployment and/or execution of a worktlow 1s
shown. For convenience, the flow 200 1s described with
reference to the user device 100 of FIG. 1. The flow 200,
however, 1s carried out using other architectures as well.

The flow 200 starts at termination block 202, whereupon
the processor 120 executes the GUI software 110 to form the
GUI and render the display screen 124. After termination
block 202, the flow 200 transitions to process block 204.

As shown 1n process block 204, the GUI software 110
forms the graphical worktlow 134. The GUI software 110
does so 1n response to one or more manipulations of the GUI
by the user via the I/O device 106. For example, the GUI
software 110 render the task-widget instances 138 ,-138 on
workiflow pane 130 responsive to the I/O device 106
manipulating the GUI to select from the task widgets
132,-132, and to place (e.g., by dragging and dropping) such
instances on the workflow pane 130.

In addition, the GUI software 110 render the sequencing-
widget instances 140,-140 on workiflow pane 130 in
response to the I/0 device 106 manipulating the GUI to (1)
select such 1nstances from widget toolbar 128, (11) place the
instances on the workilow pane 130, and (111) couple the
task-widget instances 138, -138, with the sequencing-widget
instances 140,-140_ .

The GUI software 110 obtains, via manipulation of the
GUI by the I/O device 106, the task and sequence param-
cters for populating the records 114, 116,-116, and 118, -
118 . For example, the GUI software 110 obtains, as a
function of the presence of the task-widget instances 138, -
138 1n the graphical workflow 132, the task parameters that
define the tasks’ functions. The task-widget instance 138,
represents a task for starting the worktlow (“start task™), for
instance. The start task’s parameters include information for
the start task’s function, which as noted, 1s to mark a start the
workilow. The presence of the task-widget instance 138, in
graphical workilow 134 allows for population of the records
114 and/or 116,-116, with the start task’s parameters.

Alternatively and/or additionally, the GUI software 110
supplement the start and/or other tasks’ parameters by way
of a user using a keyboard or other I/O device to enter a
character or a string of characters into one or more fields of
one or more display screens (not shown) of the GUI.
Entering the information this way also be used as an
alternative to selecting and placing (e.g., dragging and
dropping) the task-widget instances 138,-138, onto the
worktlow pane 130. For example, the user enter a character
or a string of characters 1nto one or more of the fields of the
display screens of the GUI for each of the task-widget
instances 138,-138, . The GUI software 110, 1n turn, nter-
prets such entries, and responsively renders the task-widget
instances 138,-138, on the GUI.

Like the task parameters, the GUI soitware 110 obtains, as
a function of the presence and layout of the graphical
workilow 132, the sequence parameters that 1s/are used to
develop an order of execution of the task-widget instances
138,-138 . For example, the sequence parameters are
obtained as a function of each of the links (as rendered by

10

15

20

25

30

35

40

45

50

55

60

65

8

the sequencing-widget instances 140,-140) that connect an
output of one of the task-widget instances 138,-138, to an
input of another of the task-widget instances 138,-138, .
Alternatively and/or additionally, the GUI software 110
obtains the sequence parameters by way ol entering a
character or a string of characters into one or more fields of
one or more display screens (not shown) of the GUI.
Entering the parameters this way, in turn, provides an
alternative to selecting and placing the sequencing-widget
instances 140,-140_ on the workilow pane 130. As above,
the GUI software 110, in turn, interprets the entries, and
responsively renders the sequencing-widget istances 140, -
140 that create the links connecting the task-widget
instances 138,-138, .

After process block 204, the flow transitions to process
block 205. As shown 1n process block 203, the GUI software
110 receives network settings associated with the tasks of
the workflow. For example, the GUI software 110 enables
iput of network settings using network setting widgets 135,
or otherwise using any I/O device configured to provide
input to the GUI software 110. The mput of network settings
include manual entry of network settings, for example, by
typing on a keyboard or by using a pointer to select an
clement on the network connectivity pane 129, or a combi-
nation thereof. The mput of network settings also include
selecting of one or more settings from an available network
settings library located on the user device 100, or remote to
the user device 100, for example, a device located on a
network to which the user device 100 1s communicably
coupled. In some embodiments, the network settings are also
input to the task-widget instances 138,-138 . Using one or
more of the techniques described above, network settings
are defined corresponding to each task of the worktlow.

After process block 2035, the tlow transitions to process
block 206. As shown 1n process block 206, the GUI software
110 generates or otherwise forms the workflow record 114
from the graphical worktlow 134. The GUI software 110, for
example, populate the worktlow record 114 with the task and
sequence parameters that 1t garnered in process block 204,
and optionally the network setting configurations that it
garnered 1n process block 205. Specifically, depending on a
user preference, for example, a preference provided by a
user to the GUI software 110 or an otherwise configured
preference, the GUI software 110 populates the workilow
record 114 with the network settings corresponding to the
tasks of the workflow recerved at process block 205. In other
embodiments, the GUI software 110 creates a separate
network settings record (not shown), which 1s/are utilized
for the execution of the workflow in a manner similar to the
use of the network settings populated in the workilow record
114.

As alternative to populating the workflow record 114
directly, the GUI software 110 populate the workilow-
operation records 116,-116, , the network setting configura-
tions 117,-117 , and the workilow-sequencing records 118, -
118 . first. For example, the GUI software 110 populate the
worktlow-operation records 116,-116, with the task param-
cters associated with the task-widget instances 138,-138,
garnered 1n process block 204. In addition, the GUI software
110 populate the worktlow-sequencing records 118,-118
with the sequence parameters associated with the sequenc-
ing-widget mstances 140,-140_ garnered in process block
204. Further, the GUI software 110 populate the network
setting configurations 117,-117 with the information on
network setting for each task-widget instance 138,-138, as
in the process block 2035. After populating the workilow-
operation and workilow-sequencing records 116,-116, ,

US 11,087,249 B2

9

118,-118_, and network setting configurations 117,-117
the GUI software 110 1nserts the worktlow-operation records
116,-116, and the network setting configurations 117,-117
into the worktlow record 114 in accordance with the
sequencing.

Additionally, the GUI software 110 arranges the records
114, 116,-116,, network setting configurations 117,-117
and 118,-118_ 1n a particular fashion. For example, the task
and sequence parameters in records 114, 116,-116, and
118,-118 ., and information in network setting configura-
tions 117,-117 1s/are arranged, 1n terms of object-oriented
programming, as respective mstances of objects of one or
more given classes. As an example, the task-widget
instances 138 ,-138 defines, respectively, the start task and
a task for stopping the workflow (*stop task’). The work-
flow-operation records 116,, 116, define the task parameters
for deployment of start and stop instances of start and stop
objects of start and stop classes, respectively and similarly,
the network setting configurations 117,-117, define the
network settings for start and stop 1nstances of start and stop
objects of start and stop classes, respectively. The workilow-
sequencing records 118,-118 and workilow record 114
1s/are arranged 1n a similar fashion.

The GUI software 110 also prepares the worktlow record
114 for dispatch to a target device to facilitate generating,
deploying and/or executing the worktlow. For example, the
GUI software 110 formats the workflow record 114 accord-
ing to one or more suitable mmformation exchange mecha-
nisms. Examples ol such exchange mechanisms include:
American Standard Code {for Information Interchange
(“ASCII”), XML, XML/RPC, HTTP, SOAP, shared
memory, sockets, local or remote procedure calling, etc. In
addition to facilitating sharing and replication of the work-
flow record 114, the exchange mechanisms also beneficially
tacilitate interoperability between the processing unit 102
and the target device, such as the host device 306 (FIG. 3),
to which the workflow record 114 1s/are dispatched.

After process block 206, the flow 200 transitions to
process block 208. As shown 1n process block 208, the GUI
software 110 dispatch the worktlow record 114 to facilitate
generating, deploying and/or execution of the worktlow. To
do this, the GUI software 110 cause the processing unit 102
to dispatch the worktlow record 114 from the user device
100 to the target device. The dispatch occurs 1n response to
a trigger 1nitiated by the GUI software 110 (e.g., in response
to the user’s mampulation of the GUI), or 1n response to a
query irom the target device.

Alternatively, the GUI software 110 cause the processing
unit 102 to dispatch the workflow record 114 on a periodic
basis using, for example, a routine for synchronizing and/or
replicating the workilow record 114 on the target device.
After process block 208, the flow 200 transitions to process
block 210.

As shown 1n process block 210, the GUI software 110
cause the processing unit 102 to 1ssue commands, which
emanate ifrom the GUI, to cause application of the network
settings, and execution of the worktlow. The execution
commands are, for example, a trigger emanating from the
GUI. This trigger 1s/are mitiated 1n response to the user’s
manipulation of the GUI. Alternatively, a user mampulate
the GUI to trigger the commands based on other conditions
on the user device being met, for example, an output of a
job-scheduler application output (e.g. a CRON job), an
output of an application without a user interface running on
the user device (e.g. a C++ application), or an output by
another application running on the user device, based upon
a condition being met, such as a state of data related to the

10

15

20

25

30

35

40

45

50

55

60

65

10

application (e.g. Microsolit Access database cell achieving a
particular value, or Visual Basic for Applications ifor
Microsolit Excel), among other applications.

The GUI software 110 cause the processing unit 102 to
1ssue the application of network settings and the execution
commands at any time aiter or at the same or substantially
the same time as the time of dispatch of the workilow record
114. As described in more detail below, the target device,
responsive to erther the execution command or the applica-
tion ol network settings command, interpret the worktlow
record 114 or the network setting configurations portion of
the worktlow record 114, respectively, directly to execute
the worktlow.

As an alternative to directly interpreting the worktlow
record 114, the target device generates, as a function of the
worktlow record 114, computer-executable mstructions (or,
simply, “code”) for accomplishing the workflow (“work-
flow-executable code”). Further, the target device generates
or extracts network setting configurations from the worktlow
record 114, for application to additional devices. The target
device generates the worktlow executable code and the
network setting configurations at a time prior to execution
time or at the same or at substantially the same time as
execution time. To facilitate the former, the GUI software
110 and/or the processing unit 102 issue, prior to the
execution command, other commands to cause the target
device to generate the workiflow-executable code and the
network setting configurations. The target device also gen-
erates one or more tests for testing the worktlow-executable
code and the network setting configurations. Unless other-
wise mentioned hereinafter, worktflow includes the network
setting configurations, which are for application prior to the
execution of the workflow. In some embodiments, the net-
work setting configurations 117 are physically stored sepa-
rately, and sent separately from the workflow record 114,
however, 1n either case, the network settings are applied for
enabling the execution of the worktlow, and specifically for
enabling execution of the tasks therein on various devices.
The execution of tasks require communication between
vartous devices or the tasks place a remote call to or
exchange data with other tasks on various devices, and the
network settings enable connectivity between such various
devices to enable the communication required for the execu-
tion of tasks.

After the process block 210, the tlow 200 transitions to
termination block 212, at which point the flow 200 termi-
nates. Alternatively, the flow 200 1s repeated periodically, in
continuous fashion, or upon being triggered as a result of a
condition, such as an addition, deletion or modification of
one or more of the tasks of the workflow. As another
alternative, the process block 210 1s repeated periodically, 1n
continuous fashion, or upon being triggered as a result of a
condition, so as to cause additional deployments of the
workilow.

System Architecture Example

FIG. 3 1s a block diagram 1llustrating a system 300 for
facilitating generation, deployment and/or execution of a
worktlow. The system 300 includes a user device 302, a host
device (“host”) 306, and one or more remote devices 350,,
350,, . . . 350, (collectively, “3507). The user device 302,
the host 304 and the remote device(s) 350 are communica-
tively coupled together via a network 304. This way, the user
device 302 and host 304 exchanges the input and/or deploy-
ment information and other mmformation associated with
deploying the workilow, for example, on the remote devices
350, including the information regarding network settings
for connectivity among the various remote devices 350,

US 11,087,249 B2

11

between the host 306 and the remote devices 350, and
between the user device 302 and the remote devices 350, via
one or more communications carried over the network 304.

The network 304 1s a partial or full deployment of most
any communication or computer network, including any
combination of a public or private, terrestrial wireless or
satellite, or wireline network. As such, the network 302
include network elements from a Public Switch Telephone
Network (“PSTN), the Internet, core and proprietary public
networks, wireless voice and packet-data networks, such as
1G, 2G, 2.5G and 3G telecommunication networks, wireless
oflice telephone systems (“WOTS”) and/or wireless local
arca networks (“WLANs”), including, Bluetooth and/or
IEEE 802.11 WLANSs, wireless personal area networks
(“WPANs), wireless metropolitan area networks
(“WMANSs”) and the like.

The network elements include circuit-switched as well as
packet-data elements to provide transport of the workflow
record 114, the triggers, the execution command and other
information for generating, deploying and/or executing the
workilow 1ncluding application of network settings (collec-
tively “worktlow content™), and are configured to commu-
nicate such worktlow content using any number of protocols
and 1n any manner consistent with providing such informa-
tion to the user device 302 and host 304. These protocols
include standardized, proprietary, open-source, and freely-
available communication protocols for communicating con-
tent 1n circuit-switching and/or packet data networks, and
the like.

The user device 302 1s similar to the user device 100 of
FIG. 1, except as described herein below. The user device
302 1s any computing device, system and the like, and may
be formed 1n a single unitary device and concentrated on a
single server, client, peer or other type node. Alternatively,
the user device 302 may be formed from one or more
separate devices, and as such, may be distributed among a
number of server, client, peer or other type nodes. In
addition, the user device 302 1s scalable (1.e., may employ
scale-up and/or scale-out approaches).

As shown, the user device 302 includes a processing unit
308 that 1s operable to control, manipulate or otherwise
interact with the monitor 104 and/or an I/O device 106, via
respective couplings. The processing unit 308 includes one
or more processors (collectively “processor’”) 310, memory
312, supports circuits 314 and bus 316. The processor 310
1S one or more conventional processors, miCroprocessors,
multi-core processors and/or microcontrollers. The support
circuits 314 facilitate operation of the processor 310 and
include well-known circuitry or circuits, including, for
example, an 1/O terface; one or more network-interface
units (“NIUs™); cache; clock circuits; power supplies; and
the like.

The processor 310 uses the NIUs for exchanging the
workilow content the host 306 via the network 304. Accord-
ingly, the NIUs are adapted for communicating over any of
the terrestrial wireless, satellite, and/or wireline media.

The memory 312 stores (and receive requests from the
processor 310 to obtain) software 318, the records 112, 114,
116,-116,. 117,-117 and 118,-118_ and various other
stored software packages, such as an operating system 320.
The memory 312 1s or employ random access memory,
read-only memory, optical storage, magnetic storage,
removable storage, erasable programmable read only
memory and variations thereof, content addressable memory
and varniations thereof, flash memory, disk drive storage,
removable storage, any combination thereof, and the like. In
addition, the memory 312 stores (and receive requests from

10

15

20

25

30

35

40

45

50

55

60

65

12

the processor 310 to obtain) operands, operators, dimen-
sional values, configurations, and other data that are used by
the operating system 320 and the software 318 to control the
operation of and/or to facilitate performing the functions of
the user device 302.

The bus 316 provides for transmissions of digital infor-
mation among the processor 310, the memory 312, support
circuits 314 and other portions of the user device 302 (shown
and not shown). The I/O interface 1s adapted to control
transmissions of digital information between (shown and not
shown) components of the user device 302. In addition, the
I/O 1nterface 1s adapted to control transmissions of digital
information between 1/0 devices disposed within, associated
with or otherwise attached to the user device 302. Examples
of the I/0O devices include the I/O device 106, the monitor
104, and any or any combination of (1) storage devices,
including but not limited to, a tape drnive, a floppy drive, a
hard disk drive or a compact disk drive, (11) a recerver, (11)
a transmitter, (111) a speaker, (1v) a display, (v) a speech
synthesizer, (vi1) an output port, and (vi) the like.

The operating system 320 includes code for operating the
user device 302 and for providing a platform onto which the
software 318 can be executed. The software 318 include the
GUI software 110 and other user-device software 322, which
perform the exchange of the worktlow content using com-
munication and security protocols compatible with the user
and host devices 302, 306.

The GUI software 110 and user-device software 322 are
in any of a standalone, client/server, peer-to-peer and other
format. The GUI software 110 includes code for accessing
one or more services oflered by the host 306. Using this code
and information obtained from a user, the GUI software 110
1s operable to substantiate 1ts identity, and in turn, receive
authorization to access (e.g., view, configure and/or execute)
the services oflered by the host 306.

The host 306 includes one or more servers, including a
host-application server 324. The host-application server 324
1s deployed 1n one or more general or specialty purpose
computers, personal computers, mainframes, minicomput-
ers, server-type computers and/or any a processor-based
platiorm that operates on any suitable operating system,
such as Microsoft® Windows® and/or Linux; and that 1s
capable of executing software.

Like the user device 302, the host-application server 324
includes a large number of elements; many of which are not
shown 1n FIG. 3 for simplicity of exposition. The elements
of host-application server 324 are formed 1n a single unitary
device and concentrated on a single server, client, peer or
other type node. Alternatively, the elements of the host-
application server 324 are formed from two or more separate
devices, and as such, are distributed among a number of
server, client, peer or other type nodes.

As shown, the host-application server 324 includes one or
more processors (collectively “processor”) 326, memory
328, supports circuits 330 and bus 332. The processor 326
1S one or more conventional processors, miCroprocessors,
multi-core processors, microcontrollers and the like.

The bus 332 provides for transmissions of digital infor-
mation among the processor 326, memory 328 and support
circuits 330 and other portions of the host-application server
324 (not shown). The support circuits 330 facilitate opera-
tion of the processor 326, and include well-known circuitry
or circuits, including, for example, one or more 1input/output
I/O interfaces; one or more NIUs; cache; clock circuits;
power supplies and the like.

The I/O terface provides an interface to control the
transmissions of digital information between components of

US 11,087,249 B2

13

host-application server 324 (shown and not shown). In
addition, the I/O interface provides an interface to control
the transmissions of digital information between I/O devices
(not shown) associated with or otherwise attached to the
host-application server 324. The I/O devices (not shown) are
embodied as any or any combination of (1) storage devices,
including but not limited to, a tape drive, a floppy drive, a
hard disk drive or a compact disk drive, (11) a recerver, (11)
a transmitter, (111) a speaker, (1v) a display, (v) a speech
synthesizer, (v1) an output port, and (vi1) a pointing device,
such as a mouse, joystick, trackball, touchpad, pointing
stick, light pen, head pointer, soap mouse, eye tracking
devices, digitizing tablet and stylus, data glove that trans-
lates the user’s movements to computer gestures; and a
key-1n device, such as a keyboard or a touchpad, (vi1) and
the like.

The NIUs facilitate exchange (e.g., sending and/or receiv-
ing) of the workilow content. Accordingly, the NIUs are
adapted for communicating over terrestrial wireless, satel-
lite, and/or wireline media.

The memory 328 stores and 1s queried by the processor
326 to obtain various software packages, such as operating
system 334, application-server software 336 and worktlow-
application software 338. The memory 328 1s or employs
random access memory, read-only memory, optical storage,
magnetic storage, removable storage, erasable program-
mable read only memory and variations thereof, content
addressable memory and vaniations thereof, tflash memory,
disk drive storage, removable storage, any combination
thereot, and the like.

In addition, the memory 328 stores the workflow record
114, one or more libraries 340 for generating the workflow-
executable code, and one or more network setting libraries
341 for resolving, supplementing or otherwise enabling
network setting configurations in applying the appropnate
network settings for execution of the workilow. The libraries
340, which are written 1 C++, for example, and include
routines for generating the worktlow-executable code that 1s
associated with each of the tasks (“task routines™). Addi-
tionally, the libraries 340 include routines for sequencing the
task routines 1n accordance with the sequence parameters set
forth 1n the workflow record 114 (“sequence routines™).

The application-server software 336 1s an application on
the server to execute various host 306 processes. The
application-server software 336 1s an application framework

Type

Credential
Profile
Credential
Profile
Credential
Profile
Credential
Profile

Connection
Profile

Connection
Profile
Connection

Profile
Connection

Profile

Connection
Profile

10

15

20

25

30

35

40

Parameter

Username

Password

APl Key

API Secret

Connection

14

comprised of the applications 570-574, for example as
described with respect to FIG. 5.

The network setting libraries 341 include a repository of
network connectivity configuration information relating to
connectivity between various devices on which the work-
flow 1s executed, or exchange data with, for various tasks
that form a part ol the worktlow. Network connectivity
configuration information includes type of network, connec-
tion mode, connection settings and connection parameters,
among other network connectivity related information. Type
of networks includes diflerent type of networks as described
with respect to, for example, network 304, and include,
without limitations Public Switch Telephone Network
(“PSTN™), the Internet, a proprietary public network, a
wireless voice and packet-data network, 1G, 2G, 2.5G, 3G,
4G or LTE telecommunication network, a wireless oflice
telephone system (“WOTS”), a wired or wireless local area

network (“LAN"), Bluetooth network, IEEE 802.11 WLAN,

a wired or wireless personal area network (“PAN”), or a
wired or wireless metropolitan area network (“MAN™), for
example. Connection mode refers to the communication
mode used for connecting with the network, for example,
WilF1, Bluetooth, Infrared Data Connection, FEthernet, or
other wireless or wired connection modes. Connection set-
tings include information regarding ports and interfaces
according to workflow tasks and devices, and also include
one or more of standardized, proprietary, or open-source
communication protocols. Connection parameters include
information related to operationalizing a connection, €.g.
authorization or identity substantiation information, com-
munication bandwidth requirements, bandwidth restrictions,
IP address restrictions, among several other such param-
eters. Further, authorization information include, {for
example, access credentials (e.g. user ID and a password),
public and private key pairs, etc. for logging into a network
for enabling connectivity between multiple devices {for
executing various tasks of the workflow. Network setting
configurations or network settings include all the informa-
tion above, and other information that may be needed to
enable connectivity of remote devices to a network, includ-
ing, without limitation, network name, connection protocol,
SSID, access tokens, access keys, encryption and/or decryp-
tion mechanisms, among various others. TABLE 1 further
illustrates a few non-limiting examples of network settings.

TABLE 1

Example/Comments

Username for a web service like FACEBOOK, TWITTER,
etc.

Password for a web service like FACEBOOK, TWITTER,
etc.

Developer API key given by web services like FACEBOOK,
TWITTER, etc. There can be several API keys

Developer API secret given by web services like
FACEBOOK, TWITTER, etc. There can be several API
secrets

Allows selection of different Connection profiles

Profile
name

Type

Security

Wifl, Bluetooth, Zigbee, GSM, CDMA, other cellular
connectivity modes and associated profiles
WPA, WEP, unsecured, . . .

Type

SSID/

WiF1 network identifier, Access Point Names (APN), . . .

Network
Name

Password

Network password

US 11,087,249 B2

15
TABLE 1-continued

Type Parameter Example/Comments
Connection Network Mac address

Profile

Connection Network [P address

Profile

Connection Transport MQTT, CoAP, HTTP/S, . ..
Profile Protocol

Connection Role Gateway or Edge

Profile

Each remote device 350 connected to the worktlow-
execution soltware 336 1s registered, that 1s, connected to the
host 306 via the network 304 and thereby each remote
device 350 1s accessible to the host 306, and conversely,
cach remote device, when registered, can communicate with
the host 306. Registration of remote devices 350 includes
manually entering the network parameters necessary to
access the remote device (together referred to as network
settings), and for example, including at least some param-
cters listed in TABLE 1. Further network settings may be
stored on the host 306, or another network device remote to
the host, and the network settings are used by the host 306
for generating workilow-executable code for the remote
devices 350. The workflow-executable code includes net-
work connection parameters (for example, network settings
for the remote device to connect to a local WIFI network).
In some embodiments, the host 306 sends network settings
to the remote devices 350, although application of the

network settings can be started by the host 306 or the remote
devices 350. In some embodiments, the remote devices 350
query the host 306 at a pre-defined frequency, or at occur-
rence ol an event, and therefore, the remote devices 350
need not be connected to the network 304 at all times. In
some embodiments, the server may push information to the
remote devices 350 at a pre-defined frequency, or at occur-
rence of an event, and therefore, the information flow
between the server 306 and the remote devices 3350 1s
bi-directional.

Additionally, network setting libraries 341 also include a
catalog of various network connectivity configuration infor-
mation for easy searchability, and a cross-reference between
all network connectivity configuration information, to 1den-
tify suitable portion of the information based on available
information. For example, if 1t 1s determined that the net-
work type 1s the Internet, and connection mode 1s WiF1, then
it may be 1nferred that connection parameters such as a user
ID (e.g. SSID) and a password (WEP key or other applicable
key depending on the WikF1 network) are needed to enable
the connection.

Collectively, the network connectivity configuration
information, 1n the context of execution of the worktlow as
described herein 1s also referred to as network settings, and
specific configuration setting applied to execution of a task,
or execution on a device, or both, 1s referred to as network
setting configuration, and each of these pertain to connec-
tivity settings between the user device, the host and multiple
remote devices, or remote services. The network setting
libraries 341 supplement information contained in the net-
work setting configurations, e.g., network setting configu-
rations 117, and information from the network setting librar-
ies 341 are combined with the network setting
configurations 117 to form an implementable network set-
ting, although in several embodiments, network setting
configurations 117 are complete and directly implementable.

15

20

25

30

35

40

45

50

55

60

65

16

Further, the network setting configurations include connec-

tivity configuration information for remote devices as well
as the host.

The network setting libraries 341 catalogs and cross-
references all network connectivity configuration informa-
tion for easy querying, and include modules for searching
and/or 1dentifying relevant information for a particular task,
device or other network connectivity related parameters.
Further, the network setting libraries 341 include code to
determine “if-then” scenarios, for example, to provide read-
1ly available network settings depending upon characteris-
tics of various devices and workflow tasks, and known
network connectivity configuration information (e.g. one or
more of available networks, connection mode, connection
settings, connection parameters etc.). Using such code,
network configuration settings for various tasks and/or
devices can be determined. For example, 11 it 1s determined
that network configuration for a particular remote device
executing a task, for example, the network type available 1s
WiF1, then the code identifies the appropriate connection
parameters for the WikF1 network for applying to the par-
ticular remote device. An SSID and a WEP key associated
with the WiF1 network 1s identified by the code, for example,
by using cross-referencing information or by searching the
network setting libraries 341, and the SSID and the WEP key
are 1dentified for application to the remote device as a part
of the network settings. Such information 1s then sent to the
worktlow-execution software 338 for applying to the par-
ticular remote device to ensure that the remote device has the
required connectivity for executing the tasks assigned for
execution on the particular remote device. The workilow-
execution software 338 is also responsible for maintaining
an updated status of the network connectivity configuration
information for the remote devices, the host and the user
devices, for example, by storing a status table (not shown)
in the network setting libraries 341.

In some embodiments, the workflow-execution software
338 causes a change 1n network setting configuration
required for execution of one or more tasks, for example, for
more eflicient execution, or failure of a task or a device
while executing a worktlow, and 1n such embodiments, the
worktlow-execution software 338 queries the network set-
ting libraries 341 to receive a new network setting configu-
ration for execution of the one or more tasks.

According to some embodiments, the network setting
libraries 341 are used for populating network setting widgets
135 of FIG. 1, by sending network connectivity configura-
tion information pertaining to various task types for the task
widgets 132, from the network setting libraries 341 to the
user device 100 or 302, over the network 304. In some
embodiments, the network connectivity configuration infor-
mation pertaining to a task type corresponding to a selected
task widget 132 1s automatically sent to the user device 100
or 302 1n response to the selection. Such network connec-

US 11,087,249 B2

17

tivity configuration information 1s already configured appro-
priately for execution of the workflow, however, changes are
made, for example, using the GUI software 110 if needed.

While the network setting libraries 341 are shown as a
part of the host-application server 306, the network setting
libraries 341 are implemented anywhere on the network 304,
for example, the user device 302, other devices remote to the
host 306, or as an independent database communicably
coupled to the network 304.

The memory 328 also stores operands, operators, dimen-
sional values, configurations, and other data that 1s used by
the application-server software 336 and the operating system
334 to control the operation of and/or facilitate performing
the functions of the host-application server 324.

The host-application server 324 1s deployed 1n accordance
with the scale-up and/or scale-out approaches. Using the
scale-up approach, the host-application server 324 increases
its processing power, amount of memory and number of
networkable connections by utilizing a symmetrical, multi-
processor architecture so as to provide additional capacity. A
benefit of this scale-up approach is that such approach
provides for simplified configuration and management as
compared to the scale-out approach. Using the scale-out
approach, the host-application server 324 increases its pro-
cessing power, amount of memory and number of network-
able connections by incrementally adding and/or removing
capacity as needed, balancing workload across multiple
processors, multiple servers, dedicating specific processors
and/or servers for performing specific tasks, using physical
or logical servers (e.g., a multi-node cluster approach), etc.

The operating system 334 includes and/or be embodied in
various soltware and/or executable 1nstructions or code for
operating the host-application server 324. The operating
system 334, when executed by the processor 326, provides
a platform on which the application-server software 336 and
workilow-application software 338 can be executed.

The workflow-application software 338, when executed
by the processor 326, 1s operable to generate, deploy and/or
execute the worktlow, including applying the network set-
tings for executing the workflow. To facilitate this, the
worktlow-application software 338, for example, mcludes
code for directly interpreting the workflow record 114 at
execution time so as execute the workflow and apply the
network settings responsive to the execution commands, for
example, received from the GUI software 110 of the user
device 302.

Alternatively, the workflow-application software 338 1s
operable to obtain the worktlow record 114, and generate, as
a function of the worktlow record, the workflow-executable
code.

The worktlow-application software 338 includes code for
parsing the task and/or sequence parameters, and network
setting configurations from the workilow record 114
(“parsed imnformation™). The worktflow-application software
338 also includes functionally for verifying that the work-
flow record 114 1s well formed and valid.

The worktlow-application software 338 includes code for
inspecting the parsed information to determine which of the
libraries 340 correspond to the tasks, which of the network
setting libraries 341 correspond to the network setting
configurations, and for combining the parsed information
with one or more of such libraries 340 so as to form sets of
code (“parsed-code sets”) or combining the parsed network
setting configuration with one or more such network setting
libraries 341 to form sets of implementable network settings.
To facilitate this, the workflow-application soiftware 338
also 1ncludes code for sequencing the parsed information 1n

10

15

20

25

30

35

40

45

50

55

60

65

18

accordance with sequencing reflected 1n the parsed infor-
mation. The workilow-application software 338 also
includes code for arranging or rearranging, dynamically
and/or via user interaction, the parsed imnformation so as to
deviate from the sequencing reflected in the parsed infor-
mation and provide another order of execution of the task of
the workflow. This 1s done for efliciency (e.g., by analyzing
the parse information and determining an optimally-eflicient
execution sequence), handing branching, handling errors,
generating alternate or backup network connections and/or
configurations, etc.

The workflow-application software 338 also includes
code for combining with the parsed-code sets with one or
more of the libraries 340 or one or more network setting
libraries 341 for binding the parsed-code sets together
(“binding libraries™). This code uses the binding libraries to
facilitate transier of appropriate portions of the task and/or
sequence parameters, and network setting configurations
between adjacent parsed-code sets.

The workilow-application software 338 optionally
includes code for compiling the workilow-executable code
for execution by the workflow-application soiftware 338.
Alternatively, the worktlow-application software 338 might
not compile the workflow-executable code until runtime, or
at all, depending on which programming language 1s used to
generate the worktlow-executable code, or if all parsed-code
sets are pre-compiled.

The worktlow-application software 338, when executed
by the processor 326, 1s operable to apply the network
setting configurations and execute the worktlow-executable
code. The workflow-application software 338 applies the
network setting configurations or executes the worktlow-
executable code 1n response to receiving or otherwise
obtaining the appropriate command via the network 304.

The remote devices 350 are remote to the host-application
server 324 and the user device 302. In some embodiments,

one or more remote devices may provide remote services,
for example, services provided by AMAZON, FACEBOOK,

INSTAGRAM, DROPBOX, or include configured services
such as mail server, an FTP server, a file server, a database
server, an HTTP server, a web server, or any server exposed
as a web service, and the like, among several other such
commercially available or on-site configured services. Such
remote devices include devices upon which one or more
tasks of a workilow may be deployed and/or executed. The
remote devices 350 (350,, 350,, . . . 350,) are communi-
cably coupled to each other, for example, via the network
304. The remote devices 350 (350, 350,, . . . 350,) may
also be communicatively coupled to each other via commu-
nication channels other than the network 304, which for
example, include one of the possible networks described
with respect to the network 304 above. For example, two
remote devices located 1 physical proximity may commu-
nicate with each other via a local network or a peer-to-peer
network, instead of the network 304. According to some
embodiments, deploying or executing a workilow on the
remote devices includes executing services on different
remote devices or different remote service provide

Workflow-Deployment Operation

Referring now to FI1G. 4, a flow diagram 1illustrating a flow
or a process or a method 400 for facilitating generation,
deployment and/or execution of a workflow 1s shown. For
convenience, the flow 400 1s described with reference to the
system 300 of FIG. 3, for example, the host-application
server 324, and more particularly the worktlow-application
software 338. The flow 400, however, 1s carried out using
other architectures as well.

US 11,087,249 B2

19

The tflow 400 starts at termination block 402, whereupon
the user device 302 executes the GUI software 110 to form
the GUI and render the display screen 124. After termination
block 402, the flow 400 transitions and proceeds to process
block 406, at which the workiflow-application software 338
obtains the worktlow record 114 including the network
configuration settings, or the network setting configurations
are received separately from the workilow record 114, for
example, from the GUI software 110.

As shown 1n process block 406, the worktlow-application
soltware 338 obtains the worktlow record 114 from the GUI
software 110. To do this, the workilow-application software
338 receives, via the network 304, the workflow record 114
and included or separate network setting configurations, 1n
response to the dispatch caused by manipulation of the GUI
or, alternatively, caused by the synchromization and/or rep-
lication routines, such as routines triggered by user-device
soltware 322, among others. In some embodiments, the GUI
software 110 dispatches the workiflow record 114 to the
host-application server 324 over the network 304, 1n accor-
dance with the process block 208 of the method 200 of FIG.
2. The workilow record 114 includes network settings asso-
ciated with the tasks or the workflow. Further, the GUI
software 110 and the workflow-application software 338
employ any of the suitable mmformation exchange mecha-
nisms to perform the dispatch and the reception of the
worktlow record 114 at the host 324. After process block
406, the tlow 400 transitions to optional process block 408
or to process block 410.

As shown 1n optional process block 408, the workflow-
application software 338 generates the workflow-executable
code as a function of the workiflow record 114. The work-
flow-application software 338 does this as follows.

The workiflow-application soitware 338 parses the infor-
mation from the workilow record 114. The parsed informa-
tion 1ncludes the task and/or sequence parameters from the
workilow record 114 and the parsed network setting con-
figuration from the worktlow record.

The worktlow-application software 338 inspects the
parsed mformation to determine which of the libraries 340
and the network setting libraries 341 matches the parsed
information. This includes, for example, mspecting the task
parameters to determine the tasks included in the workflow
(e.g., by mspecting the indication of the task’s function 1n
cach task parameters), and inspecting the network setting
configurations to determine the network settings which
correspond to the tasks included in the workilow.

Additionally, the workiflow-application software 338
sequences the tasks 1 accordance with sequencing reflected
in the parsed information. To carry this out, the workilow-
application software 338 first culls the sequence parameters
from the parsed information so as to obtain the sequencing.
Then, the worktlow-application software 338 arranges the
parsed-code sets according to the sequencing so that the
tasks are performed 1n the sequence defined by the workflow
(as represented by the graphical worktlow 134). Alterna-
tively, the worktlow-application software 338 arranges or
rearranges, dynamically and/or via user interaction, the tasks
in an order that 1s different from the sequence defined by the
sequencing. The worktlow-application software 338 does
this, as noted above, to obtain an optimally-eflicient execu-
tion sequence and/or to handle branching, to handle errors,
etc.

In addition, the workiflow-application soitware 338
searches through the libraries 340 and the network setting
libraries 341 to determine the libraries that match (e.g., have
patterns that are consistent with, the same as and/or sub-

10

15

20

25

30

35

40

45

50

55

60

65

20

stantially the same as) the task and/or sequence parameters
and the network setting configurations (“matching librar-
1es”’). After locating the matching libraries, the code gen-
erator combines the parsed information with the matching
libraries so as to form parsed-code sets. The code generator
may, for example, form each of the parse-code sets by
applying one task’s parameters to the matching libraries that
correspond to such task. This includes, for example, incor-
porating the criteria specified in the task and/or sequence
parameters 1nto the code of the matching libraries, and
incorporating the criterion specified in network setting con-
figurations into the specification of matching libraries. In
addition, the code generator configures the parse-code sets
or includes binding libraries to link together the parsed-code
sets so that appropriate portions of the task and/or sequence
parameters transier between adjacent parsed-code sets. Once
linked, the parsed-code sets form the workflow-executable
code.

The workflow-application software 338 compiles the
workilow-executable code to ready 1t for execution. Alter-
natively, the workiflow-application software 338 might not
compile the workflow-executable code until runtime or at
all.

After process block 408, the flow 400 transitions to
process block 410. As shown 1n process block 410, the
worktlow-application software 338 obtains the execution
command from the GUI software 110 via the network 304.
In some embodiments, the GUI software 110 issues the
execution command to a target device, for example the
host-application server 324 1n accordance with the process
block 210 of the method 200 of FIG. 2. The GUI software
110 issues the execution command 1n response to a user
mampulation of the GUI, or other triggering mechanmisms,
such as synchronization and/or replication routines, or trig-
gering 1nitiated by application soiftware on the user device.
The GUI software 110 and the workilow-application sofit-
ware 338 employ any of the suitable information exchange
mechanisms to perform the dispatch and the reception of the
execution command. As noted above, the execution com-
mand 1s received some time after receirving the workilow
record 114 or, alternatively, at or substantially at the same
time as the workilow record 114. After process block 410,
the flow 400 transitions to process block 411.

As shown 1n process block 411, the worktlow-deployment
soltware 338 applies the network setting configurations to
various devices to which the workilow pertains. Applying
correct network setting configurations enables connectivity
between the various remote devices (e.g. servers of provid-
ers of remote services) to which the workflow pertains. The
connectivity between the remote devices i1s enabled by a
network, for example the network 304, for execution of the
tasks of the worktflow on the various devices. In some
embodiments, the network settings are defined by a user
using the user device. In some embodiments, the user
manually enters the network setting information via a
graphical user interface on the user device. In some embodi-
ments, the network settings are obtained from a profile
stored on the network and communicably coupled to either
the user device, the host or both. The profile 1s stored 1n a
profile database, and the profiles comprise network settings,
which are either entered manually by the user (for example
using a communicably coupled graphical user interface to
the profile database), or obtained from a pre-defined data-
base (for example, provided by a manufacturer of remote
devices, or otherwise available). In this manner, the network
settings may be updated at any time by a user, or be
otherwise updated (e.g. by updating the profile database) to

US 11,087,249 B2

21

reflect a change 1n the configuration of remote devices (e.g.
addition and/or deletion of edge or gateway devices, change
in connectivity modes or other network related changes), 1n
an instantaneous manner. While the process block 411 1s
depicted 1n FIG. 4 as being implemented after process block
410 1n which instruction to execute the workflow 1s received,
the process block 411 1s implemented before the process
block 410, and well ahead of execution of the workflow.
After process block 411, the flow 400 transitions to process
block 412.

As shown 1n process block 412, the workilow-deployment
module executes the worktlow. Responsive to the execution
command, the workflow-application software 338 directly
interprets the worktlow record 114 so as to perform the
workilow.

If not directly interpreted, then the workflow-application
software 338 indicates to the workilow-deployment module
that 1t received the execution command. Alternatively, the
workilow-application software 338 passes the execution
command to the worktlow-deployment module to cause the
workilow-deployment module to execute the workilow. The
workilow-deployment module does so 1n response to the
execution command.

When the execution command 1s received at the work-
flow-application software 338 prior to generating of the
worktlow-executable code, the workiflow-application soft-
ware 338 and/or the worktlow-deployment module wait for
the generation of the workilow-executable code to complete.
Thereatter, the workflow-application software 338 indicates
to the worktlow-deployment module to perform execution
the workflow-executable code. The workflow-deployment
module executes the workflow-executable code at any time
alter generation of the workilow-executable code and
receiving the execution command.

The workiflow-application software 338 executes the
workilow (via direct interpretation or the workflow-execut-
able code) 1 a test mode or a production mode. In the test
mode, the worktlow-application software 338 develops one
or more tests to test the workflow, and execute the workflow
against the test for evaluation. When executing the worktlow
against the test, the input information mimics the input
information for the production mode. In the production
mode, the worktlow-application software 338 executes the
worktlow using the mmput information for the production
mode.

To facilitate executing the workilow (via direct interpre-
tation or the workilow-executable code), the worktlow-
application software 338 provisions the host-application
server 324 (e.g., by provisioning one or more modules of the
workilow-application soitware 338 and/or the application-
server software 336) for the tasks to receive service. The
workilow-application software 338 provisions the host-ap-
plication server 324 as a function of each task’s functionality
and criteria. Examples of the tasks and associated function-
ality and criteria are described in more detail with respect to
FIGS. 5 and 6.

After the process block 412, the tlow 400 transitions to
termination block 414, at which point the flow 400 termi-
nates. Alternatively, the flow 400 1s repeated periodically, in
continuous fashion, or upon being triggered as a result of a
condition, such as a command or trigger. As another alter-
native, the process block 410 is repeated periodically, in
continuous fashion, or upon being triggered as a result of a
condition, such as additional execution commands, so as to
execute the worktlow. As yet another alternative, the process
block 412 1s repeated periodically (e.g., on a given schedule
or other basis), 1n continuous fashion, or upon being trig-

10

15

20

25

30

35

40

45

50

55

60

65

22

gered as a result of a condition so as to re-execute the
worktlow. Additionally, an assessment 1s made 1f a change 1n
network settings 1s required, e.g. by virtue of a change in the
tasks, sequencing, or failure or upgrade of the devices, and
if 1t 15 determined that a change 1s required, the process 411
1s repeated periodically, in continuous fashion, or upon
being triggered as a result of a condition, such as additional
execution commands, so as to support execution or re-
execution of the workilow with the appropriate network
settings.

Alternative System Architecture Example

FIG. 5 1s a block diagram illustrating a system 500 for
generating, deploying and/or executing a workilow. The
system 500 1s similar to the system 300 of FIG. 3, except as
described herein. The system 300 includes the user device
302, a host device (“host”) 502, and remote devices includ-
ing a first endpoint device 504, a second endpoint device
506, a service-database server 508, a service-FTP server
510, a remote-message store 512, a service-HTTP server
514, a web server 516 and a service-email server 517; each
of which 1s communicatively coupled to another via the
network 304.

Each of the first endpoint device 504, second endpoint
device 506, service-database server 508, service-FTP server
510, remote-message store 512, service-HTTP server 514,
web server 316 and the service-email server 517 (collec-
tively “remote devices”, for example, similar to the remote
devices 350 of FIG. 3) 1s any processor-based platform that
operates on any suitable operating system, such as
Microsolt® Windows®, Linux, UNIX, Symbian, among
several others; and that 1s capable of executing software.
Each of the remote devices 504-517 and includes a large
number of elements; most of which are not shown in FIG.
5 for simplicity of exposition.

The elements of each of the remote devices 504-517 are
formed 1n a single unitary device and concentrated on a
single server, client, peer or other type node. Alternatively,
the remote devices 504-517 are formed from two or more
separate devices, and as such, are distributed among a
number of server, client, peer or other type nodes.

Like the host-application server 324, each of the remote
devices 504-517 are configured as a server, except such
devices performs services diflerent from the host-applica-
tion server 324. The remote devices 504-517, however, need
not be configured as servers, but rather, have the ability to
service the host-application server 324. According to some
embodiments, the workflow includes a first task executed on
a {irst remote device (e.g. first endpoint device 504) resulting
in a second task (same or diflerent from the first task)
executed on a second remote device (remote message queue
512). The second task 1s executed by enabling a connection
between the first and the second remote devices. In some
embodiments, the first task generates a call from the first
device to the second device, requesting or sending data from
or to the second device, respectively. In some embodiments,
multiple other tasks are executed on multiple remote devices
(e.g. described and others) and the tasks generates calls
between such devices, or cause execution of additional tasks
on one or more such remote devices. For enabling the
execution of the workflow as intended, wherein tasks are
executed on the remote devices, and data 1s exchanged
between the remote devices and to/from the host, correct
settings are needed for the communication channel (e.g. the
network 304) connecting the remote devices and the host.

The first endpoint device 504 1s configured as an appli-
cation server, and includes memory (“first-endpoint
memory’’) 556. The first-endpoint memory 356 stores source

US 11,087,249 B2

23

records obtained from the host-application server 324 using,
the File Transter Protocol (“FTP”).

The second endpoint device 506 1s configured with a
messaging application. The messaging application 1s
capable of servicing requests and/or messages sent from the
host-application server 324.

The service-database server 508 1s configured as a data-
base server, and 1s capable of servicing requests from the
host-application server 324. The service-database server 508
includes a memory 538 for storing source database records
transierred from the host-application server 324 along with
target database records for transfer to the host-application
server 324.

The service-FTP server 510 1s configured as a F'TP server,
and 1s capable of servicing requests from the host-applica-
tion server 324. The service-FTP server 510 includes a
memory 560 for storing target-itp files 562 for transfer to the
host-application server 324.

The remote-message store 512 1s configured to hold
(temporarily, permanently or for some other period of time)
one or more messages. These messages are retrieved and/or
placed therein by one or more of the tasks of the worktlow,
another process (e.g., manual or automatic entry via a
remote server, client, etc.), and/or another worktlow.

In addition, the messages 1n the remote-message store 512
include or are populated with one or more target messages
and/or one or more source messages. The target messages
are messages that are exchanged between the remote-mes-
sage store 512 and the content records 526 (via execution of
the worktlow). The source messages are messages that are
exchanged between the remote-message store 512 and the
content records 526 and/or messaging soitware 570 (as
described 1n more detail below).

The service-http server 514 1s/are configured as an HT'TP
server, and 1s/are capable of servicing HT'TP requests sent
from the host-application server 324. The web server 516
1s/are configured to serve web services to the host-applica-
tion server 324. The service-email server 317 1s/are config-
ured as an email server, and 1s/are capable of servicing email
requests sent from the host-application server 324.

To not obscure the foregoing and following description
with details and/or features of elements of the system 300
described above, some of these details and/or features are
not repeated 1n the following description or shown 1n FIG.
5. Other details and/or features not described and/or not
shown 1n FIG. 3 are presented.

The host 502 1s similar to the host 306 of FIG. 3. Like the

host 306, the host 502 includes the host-application server
324. The host 502 also includes a host-http server 564. The
host-application server 324 couples to and transacts with the
host-http server 564 while under the control of the work-
flow-application software 324 (e.g., under the control of the
workilow-deployment module executing the workflow-ex-
ecutable code).

The host-http server 564 include any processor-based
platiorm that operates on any suitable operating system,
such as Microsoft® Windows®, Linux and/or Symbian; and
that 1s capable of executing software. Like the host-appli-
cation server 324, the host-http server 564 includes a large
number of elements; most of which are not shown 1n FIG.
5 for simplicity of exposition.

The elements of the host-http server 564 are formed 1n a
single unitary device and concentrated on a single server,
client, peer or other type node. Alternatively, the elements of
the host-http server 564 1s/are formed from two or more
separate devices, and as such, 1s/are distributed among a
number of server, client, peer or other type node.

10

15

20

25

30

35

40

45

50

55

60

65

24

Although not shown, the host-http server 564 include a
Oone or more processing units, memory, supports circuits,
buses and other elements similar to the elements of the
host-application server 324. The memory of the host-http
server 364 include an operating system, which include
and/or be embodied 1n various software and/or executable
istructions or code for operating the host-http server 564.
The operating system, when executed by 1ts processors,
provide a platform on which the host-http 564 server execute
soltware applications for servicing HTTP requests that ema-
nate from and/or terminate to the host-application server
324.

The host-http server 564 1s configured as a server, and
assists the host-application server 324 for accomplishing the
execution of the workilow (as described in more detail
below). The host-http server 564, however, needs not be
configured as a server, but rather, be in any form that 1s
operable to perform services for the host-application server
324. According to some embodiments, desired operational
configuration(s) of the host-http server 564 are included 1n
the network settings incorporated in the workilow.

The memory 328 also include various other software,
such as messaging soiftware 570, email software 572, F1P
software 574, database software 574, etc., which 1s/are
configured to facilitate requests of the host-application
server 324. Each of the messaging software 570, email
software 572, FTP software 574 and database software 574
operates as a client, peer and/or server.

The messaging soitware 570, when executed by the
host-application server 324, provides an engine (“host-
messaging engine”) for exchanging one or more messages
between the worktlow-application software 338 and one or
more ol the remote devices, such as the remote-message
store 512. The messaging engine 1s/are capable of exchang-
ing the messages using any messaging protocol, such as Java
Messaging Service (“JMS”), Session Initiation Protocol
(“SIP”), SIP for Instant Messaging and Presence Leveraging
Extensions (“SIMPLE”), Application Exchange (“APEX"),
Presence and Instant Messaging Protocol (“PRIM™), Exten-
sible Messaging and Presence Protocol (“XMPP”), Instant
Messaging and Presence Service (“IMPS”), Internet Mes-
sage Access Protocol (“IMAP”) and the like.

The email software 572, when executed by the host-
application server 324, provides the host-application server
324 with an engine (“host-email engine”) for exchanging
one or more email messages (with or without attachments)
with the service-email server 517, and for transferring such
email messages to and from the memory 328. The email
engine 1s/are capable of interfacing with service-email
server 518 according to any version of Simple Mail Trans-
port Protocol (“SMTP”), Post Oflice Protocol (“POP”),
Internet Message Access Protocol (“IMAP”), and other
email service types.

The FTP software 574, when executed by the host-
application server 324, provides the host-application server
324 with an engine (“host-F'TP engine”). This FTP engine
performs, 1n accordance with FTP, one or more transiers of
files between one or more remote devices, such as the
service-FTP server 510 and the memory 328.

The database software 576, when executed by the host-
application server 324, provides the host-application server
324 with an interface (“host-database interface”) {for
exchanging one or more database records from one or more
remote devices, such as the service-database server 508, and
for transierring such database records to and from the
memory 328. The database software 576 1s/are, for example,
a client iterface, such as a Java Database Connectivity

US 11,087,249 B2

25

(“JDBC”) API, a Root Database Connectivity (“RDBC”)
API and the like. This client interface 1s/are operable to
interface to any of an Oracle, DB2, Microsoit Access,
Microsoit SQL Server, MySQL, 4th Dimension, FileMaker
and the like database applications. In any case, the database °
soltware 376 1s/are capable of interfacing with any number

ol databases including those formed using a Oracle, DB2,
Microsoit Access, Microsolt SQL Server, MySQL, 4th
Dimension, FileMaker, etc. database application.

The memory 328 includes, 1n addition to above, a number
of records or other data structures (collectively, “records”).
The records are used by and/or obtained for use by one or
more of the tasks during an execution of the worktlow.
Examples of the records include messages records 518,
template records 520, service-definition records 522, content
records 526 and recorded-workflow records 528.

The message records 518 includes a repository (“message
repository”’), which 1s/are configured to hold one or more
messages for retrieval by one or more of the tasks of the 2¢
worktlow. The message repository, for example, include one
or more messages (“‘source messages’) lfor transfer or
retrieval from the host-application server 324 and/or one or
more messages (“‘target messages”) transier to or retrieved
by the host-application server 324. 25

The template records 520 include one or more conversion
templates, schema templates, validation templates and/or
message templates. As described 1n more detail below, the
conversion templates are used by the tasks to convert input
information from a native format into another format. To 30
tacilitate this, the conversion templates include one or more

conversion filters. Examples of such conversion {ilters
include a Microsoft® Excel® (“XLS”) to XML filter, a

delimited-field format to XML filter, a fixed-length field
format to XML filter, a XML to XLS filter, an XML to a 35
delimited-field format filter, a XML to a fixed-length field
filter, etc.

The schema templates 1s/are used by one or more of the
tasks of the workflow for identifying, evaluating and/or
validating whether certain imput information or results out- 40
put from such tasks conform to one or more schemas and/or
one or more semantic protocols. Examples of the schemas
and/or semantic protocols include: XML ; Financial Infor-
mation eXchange (“FIX”) protocol; customized versions of
the FIX protocol, standards promulgated by the Society for 45
Worldwide Interbank Financial Telecommunication SCRL
(“SWIFT”); Fiancial products Markup Language
(“FpML”) protocol; Simple Object Access Protocol or Ser-
vice Oriented Architecture Protocol (collectively, “SOAP”);
and the like. 50

In addition, the validation templates (as described 1n more
detail below) include one or more expressions and/or one or
more mappings that 1s/are used by one or more of the tasks
for evaluation of correctness and/or appropriateness of con-
tent 1nput 1nto such tasks. The expressions and/or mappings 55
1s/are used to create a series of rules that form a function for
determining 1f the content mput into the tasks 1s valid (e.g.,
the content conforms to expected criteria).

The message templates are configured as stencil-type
templates (e.g., mail merge templates), which 1s/are used by 60
one or more of the tasks for parsing the mput information.
The message templates include one or more entries into
which the mput mformation is/are parsed. The entries are
also populated with expressions (e.g., formulas) that are
evaluated using the input information. The message tem- 65
plates are used by one or more of the tasks to programmati-
cally generate any number of records. For example, the

10

15

26

message templates are used by the tasks to generate web
pages, company newsletters and the like.

The content records 526 include content for input 1nto the
task; results generated from execution of the tasks; one or
more expressions (€.g., formulas, procedures, rules, etc.) for
cvaluation by one or more of the tasks; the task parameters;
one or more variables for use with the expressions and/or the
task parameters; email records; and other information used,
processed and/or stored by the tasks, including network
settings required for executing the tasks of the workflow.
The network settings are incorporated as a network setting
record 1n the content record 526. The network setting record
includes network setting configurations related to task and/
or sequencing parameters of the workflow. In some embodi-
ments (not shown), the network setting record 1s/are 1mple-
mented separately from the content record 526 while
preserving similar functionality.

Further, each of the email records include (1) a first field
that 1s/are populated with an email address assigned to or
otherwise associated with a sender of an email message, (11)
a second field that 1s/are populated with an email address
assigned to or otherwise associated with a recipient of the
email message, (111) a third field that 1s/are populated with a
subject of the email message, (1v) a fourth field that 1s/are
populated with a body of the email message, and/or (v)
information for retrieving or otherwise obtaining any attach-
ment to the email message, 11 any.

The recorded-worktlow records 528 include one or more
records (“recorded-workflow records™) for accomplishing a
previously recorded workilow (“recorded worktlow™).
These recorded-workilow records include mformation for
accessing the content records 526 so as to (1) obtain mput
information for execution of the recorded worktlow, and/or
(11) store 1n the content records 526 any results from execu-
tion of the recorded worktlow.

GUI Dasplay Screen Example

FIG. 6 15 a graphical diagram illustrating an example of a
display screen 600 of a graphical-user interface. The display
screen 600 1s similar to the display screen 124 of FIG. 5,
except as described herein. For convenience, the display
screen 600 1s described with reference to the system 500 of
FIG. 5. The display screen 600, however, 1s/are rendered
using other architectures as well.

The display screen 600 includes the widget pane 126, the
widget toolbar 128 and the workilow pane 130. The widget
pane 126 includes a start widget 132,, a stop widget 132,
a display widget 132,, a conditional-statement widget 132,
a parse-template widget 132, an expression widget 132, a
send-email widget 132, a get-ttp widget 132, a send-ftp
widget 132,, a get-dB widget 132,,, a send-dB widget
132, ,, a http-listen widget 132, ,, a http-send widget 132, ,,
a http-respond widget 132,.,, a get-MQ widget 132,., a
send-MQ widget 132,., a web-service widget 132,,, a
transtorm widget 132, ., a convert widget 132, ., a semantic-
protocol widget 132,,, a delete widget 132,,, a validate
widget 132,,, a tcp-listen widget 132,,, a tcp-get widget
132,., a tcp-send widget 132,., a wait widget 132,., a
get-email widget 132,-,, a copy widget 132,,, an iterate
widget 132,,, and a launch-workflow widget 132,,.

These widgets 132,-132,, correspond to start, stop, dis-
play, conditional-statement, parse-template, expression,
send-email, get-itp, send-Itp, get-dB, send-dB, http-listen,
http-send, http-respond, get-MQ, send-M(Q, web-service,
transiform, convert, semantic-protocol, delete, validate, tcp-
listen, tcp-get, tcp-send, wait, get-email, copy, iterate and
launch-workflow tasks (collectively, “tasks™) and are asso-
ciated with workflow-operation records 116,-116,,, respec-

US 11,087,249 B2

27

tively. The worktlow-operation records 116,-116,, 1n turn,
include the respective task parameters.

As described above, the GUI software 110 obtain, for
cach instance of the widgets 132,-132,, in the graphical
workilow 134, the corresponding task parameters via
manipulation of the GUI by the I/O device 106 (e.g., entered
via a keyboard). The workilow-application software 338
obtains such task parameters from the worktlow record 114
dispatched from the GUI software 110, and uses these task
parameters to execute the workflow. In some embodiments,
the workflow-application soiftware 338 also receive the
network setting configurations associated with the worktlow
from the GUI software 110, for example, in the manner
described above. The following describes, with respect to
cach of the widgets 132,-132,,, (1) the task that the work-
flow-application soitware 338 execute 1f such task were to
be 1mncluded 1n the worktlow (and graphical workilow 134),
and (1) examples of the task parameters with respect to
executing the workflow and provisioning the host 502 for
executing the workflow.

Start Task Example

The start task, as represented by the start widget 132,,
functions as a starting point for executing the worktlow, and
causes host-application server 324 to begin accomplishing
the tasks of the worktflow. Typically, the worktlow includes
only one start task.

Some of start task parameters 1s/are common to other
tasks and/or the workflow as a whole. The common start task
parameters mclude a workflow-name entry, a worktlow-
description entry, a worktlow-author entry, a workilow-
version entry and a log-level entry.

The workflow-name entry includes a name given to the
workilow to i1dentily the worktlow. The worktlow-descrip-
tion entry 1s/are populated with a description given of the
workilow to describe, for example, a purpose for the work-
flow. The worktlow-author entry 1s/are populated with a
name of an author that authors the worktlow. The worktlow-
version entry 1s/are populated with an indicator (e.g., a
number) to indicate a version assigned to the worktflow. Each
of the workflow-name, worktlow-description, workilow-
author and worktlow-version entries 1s/are expressed as a
character or a string of characters.

The log-level entry 1s/are populated with an indicator that
indicates a level (e.g., an error, warning or debug level) for
triggering a logging of events during execution of the
workilow. The log-level entry 1s/are expressed as one of a
given number of settings.

For each of the following tasks, the task parameters
include respective name entries and description entries.
Except as otherwise described, each of the name entries
include a name assigned to the corresponding task so to
identily a particular instance of 1t, and 1s/are expressed as a
character, a string of characters, a variable, an expression,
etc.

In addition, each of the description entries includes a
description assigned to the corresponding task for describing
a particular instance of the corresponding task. These
description entries are expressed as a character, a string of
characters, a variable, an expression, etc. Other task param-
eters are described 1n more detail below.

Stop Task Example

The stop task, as represented by the stop widget 132,,
functions as an ending point or termination of the workilow,
and causes the host-application server 324 to terminate the
workilow. The stop task’s definitions include termination
parameters. The termination parameters include a setting for
indicating either a normal or abnormal termination of the

10

15

20

25

30

35

40

45

50

55

60

65

28

worktlow (“termination setting”), and a flag for indicating
that the any mput information that undergoes processing by
the worktflow 1s considered either fully processed by the
workilow or not.

The workilow 1includes more than one stop task, when, for
example, the worktlow includes more than one alternative
path of execution or “branch” of tasks (“workflow
branches”). By way of example, the workilow branches
include first and second branches. The first branch termi-
nates with a first stop task, and the second branch terminates
with a second stop task. In this case, the GUI software 110
configure the first and second stop task parameters by setting
the termination settings of both the first and second stop
tasks to normal terminations so as to cause the worktlow to
terminate respective worktlow branches only. When so
configured, the GUI software 110 sets the flag so as to
indicate that the mnput information that undergoes processing
by the tasks of the first and second branches are considered
fully processed.

Alternatively, the GUI software 110 configure either or
both of the first and second stop task parameters by setting
the termination settings to abnormal termination so as to
cause the worktlow to terminate upon performing either the
first or second stop tasks. When so configured, the GUI
software 110 sets the flag to indicate that the input infor-
mation undergoing processing by the worktlow are not
considered fully processed.

Display Task Example

The display task, as represented by the display widget
132, causes the host-application server 324 to send, via the
host-messaging engine, a message to the message records
518 for retrieval and/or to the second endpoint device 506.
This message 1n the message records 318 1s/are retrieved by
other tasks, another workflow, the user device 302, the host
306, and/or the second endpoint device 506, etc.

Examples of display task parameters include a message-
queue entry and a message entry. The message-queue entry
include information for accessing and/or communicating
with the message records 518 and/or the second endpoint
device 506 to deliver the message. This information 1s/are,
for example, a name or address assigned to or otherwise
associated with message records 518 and/or the second
endpoint device 506. Alternatively, the information 1s/are a
reference, pointer, uniform-resource identifier (‘URI”) or
other 1indicator to a location of the message records 518 1n
the memory 328 and/or to name or address of the second
endpoint device 506.

The message entry include (1) a first field that 1s/are
populated with a subject of the message (“the message
subject”) and (11) a second field that 1s/are populated with a
body or content of the message (“the message body”). The
message-queue and message entries 1s/are expressed as
1s/are expressed as characters, strings of characters, expres-
sions, templates, variables and/or the like. In addition, the
message body 1s/are specified using the messaging template
noted above.

Conditional-Statement Task Example

The conditional-statement task, as represented by condi-
tional-statement widget 132, functions as decision point for
causing the host-application server 324 to execute one or
more of the worktlow branches as a function of a conditional
statement. The conditional-statement task parameters
include a conditional-expression entry.

The conditional-expression entry 1s/are populated with
the conditional statement. The conditional statement 1s
expressed as a logical expression, such as an 1f-then state-
ment and/or a BOOLEAN expression, and specifies one or

US 11,087,249 B2

29

more of the workflow branches and/or tasks for execution
upon an evaluation (e.g., a true or false determination) of the
conditional statement.

Parse-Template Task Example

The parse-template task, as represented by the parse-
template widget 132, causes the host-application server 324
to select a template (“selected template”) from the message
templates, parse at least a portion of its mput information
with the selected template. To parse the mput information,
the host-application server 324 (1) populate the variables in
the selected template with the mput information that corre-
sponds thereto, (1) evaluate the expressions specified 1n the
selected template so as to form a result, and (111) output
and/or store the result 1n the content records 526.

The parse-template task parameters include a template
entry. The template entry 1s/are expressed 1s/are expressed as
characters, strings ol characters, expressions, templates,
variables and/or the like.

The template entry includes information for retrieving or
otherwise obtaining the selected template for parsing the
input information. This information 1s/are, for example, a
name assigned to or otherwise associated with the selected
template. Alternatively, the information is/are a reference,
pointer, URI or other indicator to a location of the selected
template stored in the template records 520 on the memory
328.

Expression Task Example

The expression task, as represented by the expression
widget 132, cause the host-application server 324 to evalu-
ate one or more of the expressions specified 1n the expres-
sion’s task parameters, and store one or more results of the
cvaluation 1 the content records 3526 for subsequent
retrieval and/or analysis. The expression task causes the
host-application server 324 to apply an order execution
when the expression entry includes more than one expres-
sion. This order of execution 1s/are based on time of entry,
order of entry, mathematical hierarchy, analytical hierarchy,
arithmetical hierarchy, statistical analysis, etc.

Examples of expression task parameters include an
expression entry and a result-location entry. The expression
entry includes one or more expressions (€.g., formulas). The
result-location entry include information for retrieving or
otherwise obtaining from the content records 526 a previ-
ously stored result, and for storing a current result back to
the content records 526. This information 1s/are, for
example, a name assigned to or otherwise associated with
the current results in the content records 526 and/or the
previously stored result stored 1n the content records 526.
Alternatively, the information for the result-location entry
is/are a relerence, pointer, URI or other indicator of a
location (1) of the content records 526, (11) of the previously
stored result stored 1n the content record 526 and/or (111) for
storing the current result 1n the content records 526. The
result-location entry 1s/are expressed as characters, strings of
characters, expressions, templates, variables and/or the like.

Send-Email Task Example

The send-email task, as represented by the send-email
widget 132-, causes the host-application server 324 to create
an email message (with or without attachment) and transmut
1t, via the email software 572 and/or the service-email server
517, to at least one recipient, such the second endpoint
device 506. Examples of send-email task parameters include
an email-service-definition entry and an email entry.

The email-service-defimition entry includes a reference to
a previously configured service definition that identifies an
email service (“email-service definition™) that 1s/are used to
perform the send-email task. The email-service definition

10

15

20

25

30

35

40

45

50

55

60

65

30

includes a number of parameters (“email-service param-
eters”), which 1s/are stored on the memory 338 in service-
definition records 522. The email-service parameters include
information for configuring the email software 572 and/or
the service-email server 517 to perform the send-email task.
This information include, for example, URIs and/or other
addresses of the email software 572 and/or the service-email
server 317, protocols to be used for accomplishing the email
service, and the like.

The email entry includes information for populating the
email. This imnformation 1s/are expressed as a character, sets
of characters and/or variables. As an alternative, the infor-

mation for the email entry i1s/are expressed as expressions;
the evaluation of which determines the contents of the email.
In etther case, the mformation for the email entry include,
for example, names assigned to or otherwise associated with
one or more portions of the email, which is/are obtained
from the email records stored in the content records 526.
Alternatively, the information for the email entry 1s/are a
reference, pointer, URI or other indicator to locations of the
email records stored in the content records 526 the email.

Although the email-service definition and associated
email-service parameters are described herein as being
included in the service definition records 522, the service
definition records 522 1s/are dispensed with. If dispensed
with, the send-email task parameters include information
analogous to the email-service definition and associated
email-service parameters for configuring the email service.

Get-FTP Task Example

The get-ftp task, as represented by the get-ftp widget
132, cause the host-application server 324 to retrieve a {lile
(“target-itp file”) from the service-F1P server 508 via the
host-F'TP engine, and store the target-itp file to the memory
328. Examples of get-1tp task parameters include a get-itp-
service-definition entry, a target file entry, a destination-
location entry, and a get-additional-files entry. The get-Itp-
service-definition, target file, destination-location and get-
additional-files entries 1s/are expressed as characters, strings
of characters, expressions, templates, variables and/or the
like.

The get-ftp-service-definition entry includes a reference
to a previously configured service definition that 1dentifies
an FTP service that i1s/are used to perform the get-itp task.
This service definition (“F'TP-service definition™) includes a
number of parameters, which is/are stored on the memory
338 in the service-definition record 522. These parameters
(“F'TP-service parameters”) include information for config-
uring the FTP software 574 and/or the service-FTP server
510 to perform the get-itp task. This information includes,
for example, a name or address assigned to or otherwise
associated with the service-FTP server 308; a setting for
speciiying a type of transfer mode (e.g., ASCII or binary) to
be used; and the like.

The target file entry includes information for retrieving or
otherwise obtaining the target-itp file from the service-FTP
server 508 using the FTP-service. This information includes
a name or address assigned to or otherwise associated with
the target-itp file. Alternatively, the information for the
target file entry 1s/are a reference, pointer, URI or other
indicator to a location of the target-itp file on the service-
F'1P memory 560.

The destination-location entry includes information for
indicating where to store the target-itp file on the memory
328. This mmformation includes, for example, a reference,
pointer, URI or other indicator to a location of the on the
memory 328.

US 11,087,249 B2

31

The get-additional-files entry includes a setting for speci-
tying whether or not to retrieve more than one file from the
service-FTP memory 560. Although the destination-location
entry and get-additional-files entry are described herein as
being included 1n the get-itp task parameters, either or both
of such entries (and the parameters included therein) 1s/are
included as FTP-service parameters 1 the FTP-service
definition instead of 1n the get-ftp task parameters. In such
a case, the get-1tp task parameters optionally include param-
cters for overriding, moditying, adjusting or otherwise
changing such FTP-service parameters. As another alterna-
tive, the information in or information analogous to the
FTP-service definition and associated FTP-service param-
eters 1s/are included 1n the get-1tp task parameters instead of
the service definition records 522.

Send-FTP Task Example

The send-ftp task, as represented by the send-itp widget
132, cause the host-application server 324 to transier a file
(“source-Itp file””) from memory 328 to the service-device
memory 556 of the first-endpoint device 504 using the FTP
soltware 574. Examples of send-1tp task parameters include
a send-ftp-service-definition entry, a source {lile entry, a
destination-location entry, and a send-additional-files entry.

The send-ftp-service-definition entry includes a reference
to a previously configured FTP service definition that 1s/are
used to perform the send-ftp task. This FTP-service defini-
tion includes a number of parameters, which 1s/are stored on
the memory 338 1n the service-definition record 522. These
parameters (“FTP-service parameters™) include imnformation
for configuring the FTP software 574 and/or the first-
endpoint device 504 to perform the send-ftp task. This
information 1include, for example, a name or address
assigned to or otherwise associated with the FTP software
574 and/or the first-endpoint device 3504; a setting for
specilying a type of transfer mode (e.g., ASCII or binary) to
be used; and the like.

The source file entry includes information for retrieving
or otherwise obtaining the source-itp file from the memory
328. This information includes a name or address assigned
to or otherwise associated with the source-itp file. Alterna-
tively, the information for the source file entry 1s/are a
reference, pointer, URI or other indicator to a location of the
source-Itp file on the memory 328.

The destination-location entry includes information for
storing the source-ftp file on the service-device memory
556. This information is/are, for example, a reference,
pointer, URI or other indicator to a location of the service-
device memory 356 and/or the first-endpoint device 504.

The send-additional-files entry includes a setting for
specilying whether or not to transier more than one file on
the service-device memory 556 of first-endpoint device 504.
The send-ftp-service-definition, source file, destination-lo-
cation and send-additional-files entries 1s/are expressed as
characters, strings of characters, expressions, templates,
variables and/or the like.

Although the destination-location entry and send-addi-
tional-files entry are described herein as being included in
the send-1tp task parameters, either or both of such entries
(and the parameters included therein) is/are included as
FTP-service parameters 1 the FTP-service definition
instead of in the send-Itp task parameters. In such case, the
send-1tp task parameters optionally include parameters for
overriding, modifying, adjusting or otherwise changing such
FTP-service parameters. As another alternative, the infor-
mation in or information analogous to the FTP-service

5

10

15

20

25

30

35

40

45

50

55

60

65

32

definition and associated FTP-service parameters 1s/are
included 1n the get-ftp task parameters instead of the service
definition records 522.

Get-Database Task Example

The get-dB task, as represented by the get-dB widget
132, ,, causes the host-application server 324 to retrieve or
otherwise obtain target data from the target records 1in
memory 338 of the service-database server 508, and to store
such target data 1n the content record 526. The get-dB task
causes such transfer of the target data responsive to the
host-application server 324 submitting a query (e.g., one or
more SQL commands) to the service-database server 508.

Examples of get-dB task parameters include a get-dB-
service-definition entry, a data request entry and a destina-
tion-location entry. The get-dB-service-definition, data
request and destination-location entries 1s/are expressed as
characters, strings of characters, expressions, templates,
variables and/or the like.

The get-dB-service-definition entry includes a reference
to a previously configured service defimition that identifies a
database service that 1s/are used to perform the get-dB task
(“dB-service defimtion™). This dB-service definition
includes a number of parameters, which 1s/are stored on the
memory 338 in the service-definition record 522. These
parameters (“dB-service parameters”) include information
for configuring the database software 576 and/or the service-
database server 508 to perform the get-dB task. This infor-
mation includes, for example, names or addresses assigned
to or otherwise associated with the database software 576
and/or the service-database server 508; one or more settings
for specilying at least one database management systems

(“DBMS”), such as any of a Oracle, DB2, Microsoit Access,
Microsoit SQL Server, Postgres, MySQL, 4th Dimension,
FileMaker and Alpha Five DBMS, for querying the service-
database server 508: and the like.

The information for the dB-service parameters also
include a name, address, reference, pointer, URI or other
indicator to a location of the source records 1n memory 558
of the service-dB server 508. The information for the
dB-service parameters further include a reference to a tem-
plate or schema into which the target data i1s/are parsed,
transformed, converted and/or validated betfore transfer to
the content records 526.

This template or schema, for example, defines an XML
sequence ol elements. An example of such elements 1s as
follows:

<rowset>
<IOW -~
<ColumnlName></Column1Name>
<Column2Name></Column2Name=>

<ColumnNName></ColumnNName>
</rOwW>
</rowset>

The <row> pair demarcates <column,-column, > pairs,
and corresponds, for example, to a row of the source data
stored 1n the source-database records or a row of the target
data stored in the service-database server 508. The <col-
umn, -column > pairs demarcate a respective number of
placeholders. These placeholders are parsed with the content
that corresponds to respective columns of the row of source
data.

Although the foregoing example includes only one <row>
pair, the XML sequence, however, include more than one
<row> paitr. These additional <row> pairs demarcate one or

US 11,087,249 B2

33

more additional <column> pairs. In addition, the foregoing
example includes more than one column pair, namely,
<column, -column, >. The XML sequence, however, include
only one column pair.

The data request entry include information for causing the
database soltware 376 to generate a query for execution
against the source records 1 memory 558 of the service-
database server 508 so as to obtain the target data from the
target records 1n memory 558 of the service-database server
508. The destination-location entry includes information for
storing the target data in the vanables records 526. This
information includes a name, address, reference, pointer,
URI or other indicator to a location of the content records
526.

Although the destination-location entry 1s described
herein as being included 1n the get-dB task parameters, this
entry (and the parameters included therein) 1s/are included
as dB-service parameters in the dB-service definition instead
of in the get-dB task parameters. In such case, the get-dB
task parameters optionally include parameters for overrid-
ing, modifying, adjusting or otherwise changing such dB-
service parameters. As another alternative, the information
in or information analogous to the dB-service definition and
associated dB-service parameters i1s/are included in the
get-dB task parameters instead of the service definition
records 3522.

Send-Database Task Example

The send-dB task, as represented by the send-dB widget
132, ,, cause the host-application server 324 to perform one
or more operations with the service database server 508 so
as to 1sert, update, delete, retrieve or otherwise modify data
or a schema on the service-database server 308. For
example, the send-dB task causes the host-application server
324 to transfer source data obtained from the content records
526 to the service-database server 508 via the database
software 376. Alternatively, the send-dB task cause the
database soitware 376 to (1) execute a query against the
content records 526 to obtain the source data, and (11)
transier the source data to the service-database server 508.

Examples of send-dB task parameters include a send-dB-
service-definition entry and a database operation entry. Each
of the send-dB-service-definition and database operation
entry 1s/are expressed as a character, a string of characters,
an expression, a template and/or a vanable.

The send-dB-service-definition entry includes a reference
to a previously configured dB-service definition for accom-
plishing the send-dB task. This information include, for
example, names or addresses assigned to or otherwise asso-
ciated with the database solftware 576 and/or the service-
database server 308; one or more settings for speciiying at
least one DBMS {for interfacing with the service-database
server 508; one or more settings for specifying at least one
DBMS for querying the content records 526; and the like.

The nformation for the dB-service parameters also
include a name, address, reference, pointer, URI or other
indicator to a location in the target records of memory 558
of the service-database server 508 for storing the source
data. The information for the dB-service parameters also
include a reference to a template or schema (e.g., an XML
sequence) mmto which the source data 1s/are parsed before
transier to the target records of memory 338 of the service-
database server 508.

The database operation entry include information insert-
ing, updating, deleting, retrieving or otherwise modilying
the data and/or schema of the service-database server 508
(e.g., information for causing the database soitware 576 to
generate a query for execution by the database software 576.

10

15

20

25

30

35

40

45

50

55

60

65

34

Alternatively, the database operation entry include a name,
address, reference, pointer, URI or other indicator to a
location of the source data in the content records 526.

To facilitate providing the source data to the service-
database server 508, the send-dB task causes the host-
application server 324 to parse the source data in accordance
with semantics, such as replace-type semantics. For
example, the send-dB task cause the host-application server
324 to update <row> elements of the target data 1n memory
558 of the service-database server 508 with the source data
that corresponds to such <row> elements. On the other hand,
the send-dB task causes the host-application server 324 to
isert <row> elements for such source data when the target
data in memory 558 of the service-database server 508 does
not include such <row> elements.

As an alternative, the information 1n or information analo-
gous to the dB-service definition and associated dB-service
parameters 1s/are included in the send-dB task parameters

instead of the service defimition records 522.

HTTP-Listen Task Example

The http-listen task, as represented by the http-listen
widget 132, ,, cause the host-HTTP server 564 to (1) listen
for a given service-HTTP request from one or more appli-
cations of a service device, such as a web browser of the
second endpoint device 506; (11) establish a communication
between the host-HTTP server 564 and the application of the
second endpoint device 506 responsive to the given service-
HTTP request, and (111) cause the host-application server 324
to execute a given set of the tasks (“given-task set”) selected
from one or more sets of the tasks queued for execution
(“queued-task sets™).

The http-listen task also causes the host-application server
324 to extract information from the given service-HTTP
request and/or the communication between the host-HTTP
server 564 and the application of the second endpoint device
506 (collectively “HTTP-connection details™). The http-
listen task uses the HI'TP-connection details for selecting
the given-task set from the queued-task sets and for accom-
plishing the given-task set.

Examples of the http-listen task parameters include an
http-listen-service-definition entry and a destination-loca-
tion entry. The http-listen-service-definition entry and the
destination-location entry 1s/are expressed as characters,
strings of characters, expressions, templates, variables and/
or the like.

The http-listen-service-defimition entry includes a refer-
ence to a previously configured service definition that 1den-
tifies a service that 1s/are used to perform the http-listen task
(“HTTP-service definition™). This HI'TP-service definition
includes a number of parameters, which 1s/are stored on the
memory 338 in the service-definition record 522. These
parameters (“HTTP-service parameters™) include informa-
tion designating an internet protocol (“IP”) address and a
port of host-HTTP server 564 for listening for the request.
This information includes, for example, a URI associated

with the domain of the service-HTTP server 514. This URI
1s/are full or partial. The URI 1s/are prefixed with the IP
and/or name of the service-HTTP server 514 that 1s assigned
by a domain-name server (“DNS”). The mnformation for the
http-service definition also include (1) one or more IP
addresses associated with the service-HTTP server 514; and
(1) information for designating the applications and/or ser-
vice devices that the http-listen task listens for.

The destination-location entry includes information for
storing the HT'TP-connection details 1n the content records
526. This information includes, for example, a name,

US 11,087,249 B2

35

address, reference, pointer, URI or other indicator to a
location of the content records 526.

HTTP-Send Task Example

The http-send task, as represented by the http-send widget
132, ;, causes the host-application server 324 to (1) send a
given HTTP request to the service-HTTP server 514, (11)
establish a communication between the host-HTTP server
564 and the service-HTTP server 514, (111) receive a HI'TP
reply from the service-HTTP server 3514, and (1v) store
content associated with the HTTP reply in the content
records 3526. Examples of the http-send task parameters
include an http-send-service-definition entry and an http-
send-operation entry. Each of the http-send-service-defini-
tion and http-send-operation entries 1s/are expressed as a
character, string of characters, expression, template, variable
and/or the like.

The http-send-service-definition entry includes a refer-
ence to a previously configured HTTP-service definition.
This HT'TP-service defimition includes a number of HTTP-
service parameters, which 1s/are stored on the memory 338
in the service-definition record 522. As an alternative, the
information in or information analogous to the HTTP-
service definition and associated parameters (“HTTP-ser-
vice parameters”) 1s/are included in the http-send task
parameters mstead of the service definition records 522. The
HTTP-service parameters include information designating
an IP address and/or a port of the service-HTTP server 514
configured to receive the given host-HTTP request.

The http-send-operation entry include (1) a URL (full or
partial) associated with the domain of the service-HTTP
server 314, which 1s/are prefixed with the IP and/or name of
the service-HTTP server 514 that 1s assigned by a DNS; (11)
information for indicating to the service-HTTP server 514 a
method of transter, e.g., a HI'TP GET, POST and/or PUT;
(111) information for retrieving and/or obtaining from the
content records 526 source data (e.g., variables, expressions
and/or templates) for generating the given HI'TP request;
(1v) information for storing the content associated with the
communication in the message channels for subsequent
retrieval; and (v) information for storing the content asso-
ciated with the HTTP reply in the content records 526.

Although the http-send-operation entry 1s described
herein as being included 1n the HTTP-send task parameters,
this entry (and the parameters included therein) is/are
included as HT'TP-service parameters 1n the HI'TP-service
definition instead of 1n the HITP-send task parameters. In
such case, the HTTP-send task parameters optionally
include parameters for overriding, modilying, adjusting or
otherwise changing such HTTP-service parameters. As
another alternative, the information 1n or information analo-
gous to the HI'TP-service definition and associated HTTP-
service parameters 1s/are included in the HT'TP-send task
parameters istead of the service definition records 522.

HTTP-Respond Task Example

The http-respond task, as represented by the http-respond
widget 132, ., cause the host-HTTP server 564 to 1ssue a
given host-HTTP reply to a given service-HTTP request
1ssued from one or more applications of a service device,
such as the web browser of the second endpoint device 506.
This 1include causing the host-HTTP server 564 to (1) obtain
content from the content records 526 for inclusion in the
given host-HTTP reply, and (1) send the content to the
service-HTTP server 514. The content included in the given
host-HTTP reply 1s/are selected from information stored in
the content records 526 or, alternatively, constructed from
such information as a function of an expression, template,
etc.

10

15

20

25

30

35

40

45

50

55

60

65

36

Examples of the http-respond task parameters include an
http-connection-definition entry and a source file entry. Each
of the http-connection-definition and source {file entries
1s/are expressed as a character, a string of characters, an
expression, a template and/or a variable.

The http-connection-definition entry includes a reference
to HT'TP-connection details stored on the memory 338 in the
content records 526. The HTTP-connection details include,
as noted above, information for designating an IP address
and a port of the web browser of the second endpoint device
506 to receive the given host-HTTP reply.

The source file entry includes information for obtaining
the content from the content records 526. This information
includes a name or address assigned to or otherwise asso-
ciated with the content 1n the content records 526. Alterna-
tively, the information includes a reference, pointer, URI or
other indicator to a location of the content in the content
records 526.

Get-Message-Queue Task Example

The get-MQ task, as represented by the get-MQ widget
132, ., causes the host-application server 324 to retrieve and
transfer a message (“target message”) from the remote
message queue 512 to the content records 526 via the
messaging software 570. Examples of the get-MQ task
parameters nclude a get-MQ-service-definition entry, a tar-
get-message entry and a destination-location entry. The
get-MQ-service-definition, get-message and destination-lo-
cation entries are expressed as characters, strings of char-
acters, expressions, templates, variables and/or the like.

The get-MQ-service-definition entry includes a reference
to a previously configured service definition that identifies a
message-queue service that 1s/are used to perform the get-
MQ task. This service definition (“MQ-service definition™)
includes a number of parameters, which 1s/are stored on the
memory 338 in the service-definition record 522. These
parameters (“MQ-service parameters”) mclude information
for configuring the messaging software 570 and/or the
remote-message store 512 to perform the get-MQ task. This
information include, for example, a URI associated with the
domain of the remote-message store 512; and/or one or more
IP addresses associated with the remote-message store 512.

The target message entry includes information for ditler-
entiating the target message from other messages in the
remote-message store 512. This mformation includes, for
example, terms for searching and monitoring the remote-
message store 512 for the target message.

The destination-location entry includes information for
storing the target message 1n the content records 526. This
information includes, for example, a name, address, refer-
ence, pointer, URI or other indicator to a location of content
records 526.

Although the destination-location entry 1s described
herein as being included 1n the get-MQ) task parameters, this
entry (and the parameters included therein) 1s/are included
as MQ-service parameters in the MQ-service definition
instead of 1n the get-dB task parameters. In such case, the
get-MQ task parameters optionally include parameters for
overriding, moditying, adjusting or otherwise changing such
MQ-service parameters.

As another alternative, the information in or information
analogous to the MQ-service definition and associated MQ)-
service parameters 1s/are included in the get-MQ task
parameters instead of the service definition records 522.

Send-Message-Queue Task Example

The send-MQ task, as represented by the send-MQ widget
132, ., cause the host-application server 324 to obtain con-
tent from the content records 526; populate one or more of

US 11,087,249 B2

37

the source messages with the content obtained from the
content records 526; and transfer the source messages to the
remote message queue 512, via the messaging software 570.
The content obtained from the content records 526 1s/are
selected from information stored in the content records 526
or, alternatively, constructed from such information as a
function of an expression, template, efc.

Examples of the send-MQ task parameters include a
send-MQ-service-definition entry and a message entry. The
send-MQ-service-definition entry and the message entry
1s/are expressed as characters, strings of characters, expres-
sions, templates, variables and/or the like.

The send-MQ-service-definition entry includes a refer-
ence to a previously configured MQ-service definition that
1s/are used to perform the send-MQ task. This MQ-service
definition includes a number of MQ-service parameters,
which 1s/are stored on the memory 338 in the service-
definition record 522. These MQ-service parameters include
information for configuring the messaging software 570
and/or the remote message queue 512 to perform the send-
MQ task. This information include, for example, the URI
associated with the domain of the remote message queue
512, or alternatively, one or more IP addresses associated
with the remote message queue 3512.

The MQ-service parameters also include information for
obtaining the content from the content records 526. This
information includes a name or address assigned to or
otherwise associated with information stored in the content
records 526. Alternatively, the information includes a retfer-
ence, pointer, URI or other indicator to a location of such
information in the content records 526. In addition, the
MQ-service parameters include terms and/or istructions for
constructing the content from information stored in the
content records 526.

The message entry includes (1) a first field that 1s/are
populated with a subject of the message and (1) a second
field that 1s/are populated with a body of the message. The
message entry includes other fields as well.

Although the MQ-service definition and associated MQ)-
service parameters are described herein as being included 1n
the service definition records 522, the MQ-service definition

and the parameters included therein 1s/are dispensed with. If

dispensed with, the send-MQ) task parameters include infor-
mation for configuring the MQ) service.

Web-Service Task Example

The web-service task, as represented by the web-service
widget 132, ., cause the host-application server 324 to (1)
obtain content from the variables records 526, and (11)
transier the content to trigger execution of a web service on
the remote-web server 516. The web-service task also causes
the host-application server 324 to store 1n one of the content
records 526 any results returned from the web service. The
content obtained from the content records 526 1s/are selected
from information stored in the content records 526 or,
alternatively, constructed from such information as a func-
tion of an expression, template, etc.

Examples of the web-service task parameters include a
web-service-definition entry and a content entry. The web-
service-definition entry and content entry 1s/are expressed as
characters, strings ol characters, expressions, templates,
variables and/or the like.

The web-service-definition entry includes a reference to a
previously configured service defimition that identifies a
service for accomplishing the web-service task. This service

10

15

20

25

30

35

40

45

50

55

60

definition (*web-service definition™) includes a number of 65

parameters, which 1s/are stored on the memory 338 1n the
service-definition record 3522. These parameters (“web-ser-

38

vice parameters”) include mformation for configuring the
host-application server 324 and/or the remote-web server
516 to perform the web-service task. The configuration
information include, for example, information for accom-
plishing transiers of the iput information between the
host-application server 324 and other devices, such as the
web server 516, such as IP addresses, parameters, type of
data, key value pairs, posting of 1mages, etc.

The web-service parameters also include information for
selecting the web-service from a set of web services offered
by the remote-web server 516; and/or information for des-
ignating a method of execution of the web-service. The
web-service parameters further include information for stor-
ing the results, i any, in the content records 3526. Such
information includes a name, address, reference, pointer,
URI or other indicator to a location 1n the content records
526.

The content entry 1ncludes the information for obtaining
the content from the content records 526. This information
includes a name or address assigned to or otherwise asso-
ciated with the content in the content records 526. Alterna-
tively, the information 1ncludes a reference, pointer, URI or
other indicator to a location of the content 1n the content
records 526.

Although the web-service definition and associated web-

service parameters are described herein as being included 1n
the service definition records 522, the web-service definition
and the parameters included therein 1s/are dispensed with. If
dispensed with, the web-service task parameters include
information for configuring the web service.
Transtorm Task Example
The transform task, as represented by the transform
widget 132,., cause the host-application server 324 to (1)
obtain content from the content records 526, (1) apply a
transform against the content to vyield results, and (i11)
transier the results to the content records 526. Examples of
the transform task parameters include a transform entry, a
content entry and a destination-location entry. The trans-
form, content and destination-location entries are expressed
as characters, strings of characters, expressions, templates,
variables and/or the like.

The transform entry includes information for retrieving or
otherwise obtaining from the content records 526 a trans-
form for transforming (e.g., rearranging and/or changing the
structure of) the content. This information includes a refer-
ence to the transtorm. The reference refers to one of a
number of transforms stored in the content records 526. The
content entry includes information for obtaining the content
from the content records 526. This information includes a
name or address assigned to or otherwise associated with the
content 1n the content records 526. Alternatively, the infor-
mation includes a reference, pointer, URI or other indicator
to a location of the content in the content records 526.

The destination-location entry includes information for
storing the results to the content records 526. Such infor-
mation includes a name, address, reference, pointer, URI or
other 1indicator to a location in the content records 526.

Conversion Task Example

The conversion task, as represented by the transform
widget 132,,, cause the host-application server 324 to (1)
obtain content from the content records 526, (11) select a
conversion template from the template records 520 (“se-
lected-conversion template™), (111) apply the selected-con-
version template to the content to convert such content, and
(1v) store results therefrom in the content records 326.
Examples of the conversion task parameters include a con-

version-template entry, a content entry and a destination-

US 11,087,249 B2

39

location entry. The conversion-template, content and desti-
nation-location entries are expressed as characters, strings of
characters, expressions, templates, variables and/or the like.

The conversion-template entry includes a reference to the
selected-conversion template. This reference refers to any
one of the conversion templates stored in the template
records 3520. The content entry includes information for
obtaining the content from the content records 526. This
information includes a name and/or an address assigned to
or otherwise associated with the content in the content
records 526. Alternatively, the information includes a refer-
ence, pointer, URI or other indicator to a location of the
content 1n the content records 526.

The destination-location entry includes information for
storing the results 1n the content records 526. This informa-
tion includes a name, address, reference, pointer, URI or
other indicator to a location 1n the content records 526.

Semantic-Protocol Task Example

The semantic-protocol task, as represented by the seman-
tic-protocol widget 132, ,, includes an input and at least two
outputs; and each of the outputs 1s/are connected to a
different branch of the workilow. In operation, the semantic-
protocol task cause the host-application server 324 to
execute one or more ol the branches of the worktlow
responsive to receiving or otherwise obtaiming content (“in-
put content”) that matches or otherwise conforms to a given
schema template.

To facilitate this, the semantic-protocol task cause the
host-application server 324 to (1) select from the template
records 520 a schema template (“selected-schema tem-
plate”); (1) compare the mput content to some or all of the
schema of the selected-schema template to determine 1t the
input content matches or otherwise conforms to such
schema; and (111) enable or otherwise activate the output(s)
of the semantic-protocol task that coincide with the deter-
mination of matches between the mput content and the
schema.

The semantic-protocol task parameters include a refer-
ence to the selected validation template. This reference
includes a name, address, reference, pointer, URI or other
indicator to a location of the validation template i the
templates records 520.

Delete Task Example

The delete task, as represented by the delete widget 132,
causes the host-application server 324 to delete or mark for
deletion one or more records and/or files stored on the
memory 328. The delete task parameters include a reference
to the records or files that are to be deleted or marked for
deletion. This reference includes names and/or address of
the records and/or files, and/or pointers, URIs or other
indicators to a location of the records and/or files on the
memory. The reference 1s/are expressed as a character, a
string of characters, an expression, a variable and/or the like.

Validate Task Example

The validate task, as represented by the validate widget
132, cause the host-application server 324 to verity that a
structure (e.g., a logical structure) of a record (“evaluation
record”) obtained from the content records 526 conforms to
the validation template specified in the validate task. Alter-
natively and/or additionally, the validate task causes the
host-application server 324 to validate that content 1n the
evaluation record conforms to a set of rules specified in the
validate task parameters. The validate task also causes the
host-application server 324 to execute one or more of the
tasks as a function of an outcome of the validation. For
instance, the host-application server 324 performs one or
more of the tasks 1f the outcome of the validation indicates

10

15

20

25

30

35

40

45

50

55

60

65

40

a successful validation. If, however, the outcome of the
validation indicates an unsuccessiul validation, then the
host-application server 324 issues an error message ndicat-
ing such unsuccessiul validation.

Examples of the validate task parameters include a vali-
dation entry, a content entry and a destination-location entry.
The validation, content and destination-location entries are
expressed as characters, strings of characters, expressions,
templates, variables and/or the like.

The validation entry includes information for retrieving or
otherwise obtaining from the template records 3520 the
validation template and/or the wvalidation rules. This
includes, for example, names and/or addresses associated
with the validation template and/or the wvalidation rules.
Alternatively, the information includes a reference, pointer,
URI or other indicator to a location of the validation
template and/or the validation rules 1n the template records
520. The wvalidation entry also includes information for
speciiying one or more of the tasks for execution responsive
to the outcome (e.g., success or failure) of the validation.

The content entry includes imnformation for retrieving or
otherwise obtaining the evaluation record and content
therein from the content records 526. This information
includes a name and/or an address assigned to or otherwise
associated with the evaluation record in the content records
526. Alternatively, the miformation includes a reference,
pointer, URI or other indicator to a location of the evaluation
record 1n the content records 526.

The destination-location entry includes information for
storing the results generated 1n response to executing the
validation task. This information includes a name, address
and/or reference, pointer, URI or other indicator to a location
in the content records 526.

TCP-Listen, TCP-Get and TCP-Send Tasks Examples
The tcp-listen, tep-get and tep-send tasks, as represented
by the tcp-listen, tcp-get and tep-send widgets 132,,-132,
are similar to the http-listen, http-respond and http-send
tasks described above, except for application of details for
accomplishing differences between TCP and HI'TP commu-
nication protocols (e.g., TCP typically does not have a URL
parameter). Such details are known, and are not included
here for simplicity of exposition.

Wait Task Example

The wait task, as represented by the wait widget 132,
causes the host-application server 324 to pause the execution
of the workflow and/or one or more of the workflow
branches for a given amount of time. The wait task param-
cters mclude an entry for specilying an amount of time to
pause the execution. This parameter 1s/are expressed as a
character, a string of characters, a variable, an expression
and/or the like.

Get-Email Task Example

The get-email task, as represented by the get-email widget
132,., cause the host-application server 324 to retrieve or
otherwise obtain an email message (with or without attach-
ment) from the service-email server 518, via the host-email
engine, and transfer the email message to the email records
for subsequent retrieval. Examples of send-email task
parameters include a get-email-service-definition entry. The
get-email-service-definition entry 1s/are expressed as a char-
acter, string of characters and/or varnables.

The get-email-service-definition entry includes a refer-
ence to a previously configured service definition that 1den-
tifies an email service for accomplishing the get-email task.
This service definition (“get-email-service definition™)
includes a number of parameters, which 1s/are stored on the

memory 338 in the service-definition record 522. As an

US 11,087,249 B2

41

alternative, the imnformation in or information analogous to
the get-email-service definition and associated parameters
(“get-email-service parameters”) 1s/are included 1n the get-
email task parameters instead of the service definition
records 522.

The get-email-service parameters include a setting i1den-
tifying service-email server 318. This setting 1s/are a domain
of the service-email server 517, for example, and/or type of
service, e.g., POP, IMAP, and other email service types. The
get email-service parameters also include information for
storing the email message and/or email attachments 1n the
content records 526. This information includes a name,
address and/or reference, pointer, URI or other indicator to
a location 1n the content records 526.

Although the email-service definition and associated
email-service parameters are described herein as being
included 1n the service definition records 522, the email-
service definition and the parameters included therein 1s/are
dispensed with. If dispensed with, the get-email task param-
eters 1include information for configuring the email service.

Copy Task Example

The copy task, as represented by the copy widget 132,
causes the host-application server 324 to evaluate an expres-
sion to produce results, and transier the results to one or
more of the results records 1n the content records 526. The
copy task also causes the host-application server 324 to
create results records; and/or overwrite any of the results
records 1n the content records 526.

Examples of the copy task parameters include an expres-
sion entry and location-destination entry. The expression
definition includes an expression (e.g., a formula).

The location-destination entry includes information for
storing the results 1n one or more of the results records. This
information includes a name or address assigned to or
otherwise associated with results records. Alternatively, the
information for the location-destination entry includes a
reference, pointer, URI or other indicator to a location in the
content records 526.

Iterate Task Example

The 1terate task, as represented by the copy widget 132,
cause the host-application server 324 to iterate a specified
number of times one the tasks (“iterated task™) using a set of
content obtained from the content records 526. Alternatively,
the iterate task cause the host-application server 324 to
iterate the iterated task over an entire set of content obtained
from the content records 526. By way of example, the 1terate
task cause the host-application server 324 to iterate the
send-email task so as to create and transmit an email to email
addresses of multiple recipients contained within the set of
content (e.g., a mailing list) obtained from the content
records 526. This iteration 1s/are performed a specified
number of times or for so long as content remains in the set
ol content obtained from the content records 526.

Examples of the iterate task parameters include a collec-
tion entry and an iterate-flag entry. The collection and

iterate-flag entries are expressed as characters, strings of

characters, expressions, templates, variables and/or the like.
The collection entry includes information for retrieving or

otherwise obtaining from the content records 526 the set of

content for input to the iterated tasks. This information
includes a name and/or an address assigned to or otherwise
assoclated with the set of content 1n the content records 526.
Alternatively, the information includes a reference, pointer,
URI or other indicator to a location of the set of content in
the content records 526.

5

10

15

20

25

30

35

40

45

50

55

60

65

42

The iterate-flag entry include information for defining a
flag for indicating completion of the iterate task (e.g., no
unprocessed content remains 1n the set of content).

Launch-Workflow Task Example

The launch-worktlow task, as represented by the work-
flow widget 132, causes the host-application server 324 to
(1) select the recorded worktlow from the recorded-workilow
records 528, and (1) trigger an execution of the recorded
workilow. To trigger the execution, the launch-workflow
task causes the host-application server 324 to obtain from
the content records 526 the imnput information for the execu-
tion of the recorded workflow. In addition, the launch-
worktlow task causes the host-application server 324 to
execute the recorded workilow i a synchronous or an
asynchronous mode.

In the synchronous mode, the launch-worktlow task cause
the host-application server 324 to execute and complete the
recorded workiflow before executing another task in the
workilow or 1n the workflow branch contaiming the launch
workilow task. Following the execution of the recorded
workilow, the launch-workflow task cause the host-applica-
tion server 324 to store in content records 526 the results
from the execution of the recorded workflow as 1nput
information for another of the tasks.

In asynchronous mode, the launch-worktlow task cause
the host-application server 324 to execute the recorded
worktlow, and without waiting for completion of the
recorded workflow, continue execution of other tasks of the
worktlow or in the workflow branch containing the launch-
workilow task. The launch-workflow task might not cause
the host-application server 324 to obtain the mput informa-
tion for another task.

Examples of the launch-workilow task’s definitions
include a recoded-workflow definition, recorded-workflow-
input definition, a launch-worktlow mode and a return-
information definition. The recorded workflow and return
information definitions 1s/are expressed as characters,
strings of characters, expressions, templates, variables and/
or the like.

The recorded-workilow definition includes information
for retrieving or otherwise obtaining the recorded worktlow
from the recorded-worktlow records. This 1information
include a name or address assigned to or otherwise associ-
ated with the recorded-workilow file 528 or, alternatively, a
pointer to a location of the recorded-worktlow file 528 on the
memory 328.

The recorded-workilow-input definition includes infor-
mation for retrieving or otherwise obtaining from content
records 526 the input information for the recorded-worktlow
input. This information 1include a name or address assigned
to or otherwise associated with the content records 526 or,
alternatively, a pointer to a location of the content records
526 on the memory 328.

The launch-worktflow-mode definition includes 1informa-
tion for designating the synchronous or asynchronous mode.
The return information definition includes information for
obtaining the results from the content records 3526. This
information include a name or address assigned to or oth-
erwise assoclated with the content records 526 or, alterna-
tively, a pointer to a location of the content records 526 on
the memory 328.

Example Architecture for Triggering a Workilow Deploy-
ment and/or Execution

FIG. 7 1s a block diagram illustrating a system 700 for
triggering a deployment and/or execution of a workflow. The
system 700 1s similar to the system 300 of FIG. 3, except as
described herein. The system 700 includes the user device

US 11,087,249 B2

43

302, the host 306, a second user device 702, remote devices
350,, 350,, . . . 350, (collectively “350”), and a network
setting library 7350, each of which are communicatively
coupled to another via the network 304.

To not obscure the following description with details
and/or features of elements of the system 300 described
above, some of these details and/or features are not repeated
in the following description or shown in FIG. 7. Other
details and/or features not described and/or not shown 1n
FIG. 3 are presented.

The second user device 702 1s similar to the user device
300 of FIG. 3, except as described herein below. The second
user device 702 1s/are any computing device, system and the
like, and 1s formed 1n a single unitary device and concen-
trated on a single server, client, peer or other type node.
Alternatively, the second user device 702 1s formed from one
or more separate devices, and as such, 1s distributed among
a number of server, client, peer or other type nodes. In
addition, the second user device 702 1s scalable (i.e., employ
scale-up and/or scale-out approaches).

The second user device 702 includes a large number of
clements; many of which are not shown in FIG. 7 for
simplicity of exposition. As shown 1n FIG. 7, the second user
device 702 includes a second processor 710 that 1s operable
to control, manipulate or otherwise interact with a second
monitor 704 and/or a second I/O device 706, via respective
couplings.

The second monitor 704 1s any suitable device that
displays viewable images generated by the second process-
ing platform 708, such as listed above with respect to the
second monitor 704. The second I/O device 708 1s any
device that accepts mput from a user (man or machine) to
control, manipulate or otherwise interact with the operation
of the second processing platiorm 708, such as listed above
with respect to the 1/0O device 706.

The second processing platform 708 includes one or more
processors (collectively “second processor”) 710, a second
memory 712, second support circuits 714 and a second bus
716. The second processor 710 1s one or more conventional
processors, microprocessors, multi-core processors and/or
microcontrollers. The second support circuits 714 facilitate
operation of the second processor 710 and include well-
known circuitry or circuits, including, for example, an I/O
interface; one or more network-mterface units (“NIUs™);
cache; clock circuits; power supplies; and the like.

The second processor 710 uses the NIUs for exchanging
content with the host 306 via the network 304. Accordingly,
the NIUs are adapted for communicating over any of the
terrestrial wireless, satellite, and/or wireline media.

The second memory 712 stores user-device soitware 718
and various other stored software packages, such as a second
operating system 720. The memory 712 1s, or employs,
random access memory, read-only memory, optical storage,
magnetic storage, removable storage, erasable program-
mable read only memory and variations thereof, content
addressable memory and vaniations thereof, tflash memory,
disk drive storage, removable storage, any combination
thereot, and the like. In addition, the memory 712 stores
(and receive requests from the second processor 710 to
obtain) one or more records 722, operands, operators,
dimensional values, configurations, and other data that are
used by the operating system 720 and the user-device
soltware 718 to control the operation of and/or to facilitate
performing the functions of the second user device 702.

The second bus 716 provides for transmissions of digital
information among the second processor 710, the second
memory 712, the second support circuits 714 and other

10

15

20

25

30

35

40

45

50

55

60

65

44

portions of the second user device 702 (shown and not
shown). The I/O interface 1s adapted to control transmissions
of digital imformation between (shown and not shown)
components of the user device 702. In addition, the 1/0
interface 1s adapted to control transmissions of digital infor-
mation between I/O devices disposed within, associated
with or otherwise attached to the user device 702. Examples
of the I/O devices include the second I/O device 706, the
second monitor 704, and any or any combination of (1)
storage devices, including but not limited to, a tape drive, a
floppy drive, a hard disk drive or a compact disk drive, (11)
a recerver, (1) a transmitter, (111) a speaker, (1v) a display, (v)
a speech synthesizer, (vi) an output port, and (vi1) the like.

The second operating system 720 includes code for oper-
ating the second user device 702 and for providing a
platform onto which the user-device software 718 can be
executed. The user-device software 718 perform the
exchange of the workflow content using communication and
security protocols compatible with the second user and host
devices 702, 306.

The user-device software 718 1s/are 1 any of a stand-
alone, client/server, peer-to-peer and other format, and
includes, 1 a standalone or peer-to-peer format, code for
accessing services oflered by the host 306. Through this
code, the user-device solftware 718 1s operable to substan-
tiate 1ts 1dentity, and 1n turn, receive authorization to obtain
one or more of the services offered by the host 306 or the
remote devices 350.

The user-device software 718 includes user-application
soltware 724. The user-application software 724 includes,
for example, software for one or more (or any combination)
of word-processing, spreadsheet, database, email applica-
tion, messaging application, text messaging interface appli-
cation, presentation application, Internet-browser applica-
tion, calendar application, media application, multimedia
application, file management programs, operating system
shells, a compiled application without a graphical user
interface, a compiled programming application, a time-
based job scheduler, a job scheduler application (e.g.
CRON), a compiled macro-language application, a macro-
language application (e.g. a Visual Basic for Applications
(VBA) application for Microsoit Excel), at least one of a
sensor or actuator based application deployed a device or a
computer, micro-controller based application, SoC applica-
tion, a MQ Telemetry Transport (MQTT) application, a
WIFI based application, a mobile application, or an RTOS
based application and/or other applications capable of being
executed by a user device.

An MQTT application 1s an application using MQTT to
transier data between computers and devices. MQTT 1s an
ISO standard (ISO/IEC PRF 2092) publish-subscribe based
“light weight” messaging protocol for use on top of TCP/IP
protocol, and 1s designed for connections with remote loca-
tions where a “small code footprint” 1s required or the
network bandwidth 1s limited. Publish-subscribe messaging
pattern 1n MQTT applications requires a message broker,
which 1s responsible for distributing messages to interested
clients based on the topic of a message. An application that
runs on one of the several wireless communications, for
example, WIFI, BLUETOOTH, ZIGBEE, ZWAVE,
THREAD, LORA, 6LOWPAN, SIGFOX, among others. A
WIFI application uses WIFI as the protocol to connect
devices to the Internet. A real-time operating system (RTOS)
1s an operating system (OS) intended to serve real-time
application process data as it comes 1n, typically without
buflering delays. Processing time requirements (including
any OS delay) are measured 1n tenths of seconds or shorter,

US 11,087,249 B2

45

and RTOS applications use RTOS to run code on different
devices. A mobile application 1s an application running on a
mobile device, for example, using a mobile device (e.g. a
smartphone) as a remote control for a television, or other
home appliances.

The user-application software 724 also includes software
for client-side applications, such as client-side applications
that interact with or access other client or remote applica-
tions (for example, a web-browser executing on the second
user device 702 that interacts with a remote e-mail server to
access e-mail).

A user of the second user device 702 can interact with the
user-application soiftware 724 and records 722 associated
with such user-application software 724 via the various I/O
devices, such as the /O device 706. These records 722
include, for example, one or more (or any combination of)
word-processor documents, spreadsheet documents, data-
base documents, presentation documents, emails, nstant-
messenger messages, database entries, calendar entries,
appointment entries, task manager entries, source code files,
and other user application program content, files, messages,
items, web pages of various formats, such as HITML, XML,
extensible HTML (“XHTML”), Portable Document Format
(“PDFE”) files, and media files, such as image files, audio
files, and video files, or any other documents or items or
groups of documents or items or information 1n electronic
form suitable for storage access 1n the second memory 712.

The user’s interaction with the records 722, user-applica-
tion software 724 and/or the second user device 702 creates
data (“‘event data™) that 1s observed, recorded, analyzed or
otherwise used, responsive to an event. Such event 1s any
occurrence possible associated with the records 722, user-
application software 724 and/or second user device 700,
such as inputting text into one or more of the records 722,
displaying one or more of the records 722 on the second
monitor 704, sending one or more of the records 722,
receiving one or more of the records 722, manipulating the
I/0 devices, opening one or more of the records 722, saving
one or more of the records 722, printing one or more of the
records 722, closing one or more of the records, opening the
user-application software 724, closing the user-application
soltware 724, idle time, processor load, disk access, memory
usage, bringing the user-application software 724 to a fore-
ground, changing visual display details of the user-applica-
tion software 724 (such as resizing or minimizing), inter-
acting with windows associated with the user-application
software 724, and any other suitable occurrence associated
with the records 722, user-application soiftware 724 and/or
second user device 700, whatsoever.

Additionally, event data can be generated when the sec-
ond user device 700 interacts with an article independent of
interaction with the user, such as when recerving an email or
performing a scheduled task. Some or all of the event data
1s used as iput information and/or used to populate, during
execution of the workflow-executable code, one or more of
the task parameters.

In addition, any of the user-application software 724
includes an ability to 1ssue the execution command or
otherwise trigger activation of the workilow. The user-
application software 724 1s also adapted to exchange with
the host 306, event data, records and other content, which 1s
used as mput iformation and/or used to populate, during
execution of the worktlow-executable code, one or more of
the task parameters.

Alternatively, the user-application software 724 1s fitted or
otherwise associated with a module 726 (e.g. a plug-in
module) that adds functionality that 1s not native to such

10

15

20

25

30

35

40

45

50

55

60

65

46

user-application software 724. This module 726, {for
example, adds to the user-application software 724, an
ability to 1ssue the execution command or otherwise trigger
activation of the workflow, providing network settings
required for execution of the worktlow, and, 1ssue a com-
mand to apply such network settings, for example, between
the remote devices 350, and or the remote devices 350 and
the host 306, before the execution of the workflow. In
addition, the module 726 1s adapted to exchange with the
host 306 event data, records and other content, which 1s used
as mput information and/or used to populate, during execu-
tion of the workflow-executable code, one or more of the
task parameters.

The module 726, when executed by the second processor
710, registers with, embed 1nto, link to, integrate mto or
otherwise combine (collectively “register”) with any of the
user-application soiftware 724. The module 726 1s also
updated or otherwise modified, including being disabled
and/or removed from the user-application software 724, at
any time during execution of the user-application software
724.

To facilitate the foregoing, the module 726 includes or be
formed from code for adding the functionality that 1s not
native to the user-application soitware 724. This code 1s 1n
the form of (or any combination and/or multiple of) a
plug-in, an add-on, an applet, a shared library, an extension,
and the like.

The remote devices 740 are similar to remote devices of
FIG. 5, and include other devices that are remote to the
host-application server 324 and the user devices 302, 702. In
some embodiments, one or more remote devices may pro-
vide remote services and functions, for example, services
provided by AMAZON, FACEBOOK, INSTAGRAM,

DROPBOX, or include configured services such as mail
server, an FTP server, a file server, a database server, an
HTTP server, a web server, custom web service to expose
custom applications or databases, and the like, among sev-
eral other such commercially available or on-site configured
services. Such remote devices include devices upon which
one or more tasks of a workilow are deployed and/or
executed. The remote devices 350 (350, 350,, ... 350,,) are
communicably coupled to each other, for example, via the
network 304. The remote devices 350 may also be commu-
nicatively coupled to each other via communication chan-
nels other than the network 304, which for example, include
one of the possible networks described with respect to the
network 304 above. For example, two remote devices
located 1n physical proximity communicate with each other
via a local network or a peer-to-peer network, mstead of the
network 304.

The network setting library 750 1s similar to the network
setting library 341, and 1s implemented on a device or
database (not shown separate from the network settings
library 750) communicably coupled to the network 304. In
some embodiments, the network settings or profiles com-
prising network settings are comprised in the network set-
ting library 750.

Although the system 700, as shown, includes both the
user device 302 and the second user device 702, the user
device 302 and the second user device 702 1s formed mto a
single device having functionality of both of the devices
302, 702. Alternatively, the user device 302 (or the second
user device 702) 1s adapted to include the architecture and
functionality of the second user device 702 (or the user
device 302) to obviate having both of the devices 302, 702.

Triggering Implementation of Network Setting Configu-
ration and a Worktlow Deployment and/or Execution

US 11,087,249 B2

47

Referring now to FIG. 8, a flow diagram illustrating an
example tlow or a process or a method 800 for triggering a
deployment and/or execution of a workflow 1s shown. For
convenience, the flow 800 1s described with reference to the
system 700 of FIG. 7. The flow 800, however, 1s/are per-
formed using other architectures as well.

The flow 800 starts at termination block 802. After
termination block 802, the flow 800 transitions to process
block 806.

As shown 1n process block 806, the second user device
702, via the user-application software 724, issues to the host
306 the execution command or other instruction to trigger
activation of the workiflow and/or application of network
configuration settings prior to activation of the worktlow
(collectively ““triggering instructions™). The second user
device 702 does so via the application software 724 directly
and/or via the module 726.

For example, the second processor 710 executes the
user-application software 724 so as to enable creation of
event data, and 1n turn, the records 722. Responsive to (user
or other) interaction, the user-application software 724
issues the triggering command to the host 306 via the
network 304. Alternatively, the second processor 710
executes the module 726. As such the module 726 registers
with the user-application software 724 to provide the ability
to 1ssue the triggering 1nstructions.

As an alternative to user interaction causing the 1ssuance
of the triggering instructions, the user-application software
724 and/or the module 726 1s/are configured to 1ssue the
triggering nstructions as a result of a condition, such as one
of the events noted above. As another alternative, the
user-application software 724 and/or the module 726 1s/are
configured to 1ssue the triggering instructions on a periodic
or continuous basis.

To facilitate flow control, the user-application software
724 and/or the module 726 forms an interrupt request and
await a confirmation of completion of the execution of the
workilow before resuming other activities. Alternatively, the
user-application software 724 and/or the module 726 forms
an interrupt request but resume other activities while await-
ing confirmation of completion of the execution of the
worktlow. After process block 806, the flow 800 transitions
to process block 812.

As discussed earlier, the host 306 applies the network
settings and executes the workflow. The host 306 does so 1n
accordance with the process blocks 411, 412 and 414 of FIG.
4.

To facilitate flow control, the host 306 signals to the
user-application software 724 that the workflow 1s execut-
ing, completed execution and/or 1n another condition so as
to attend to the interrupt request.

As shown 1n process block 812, the user-application
software 724 provides, from the event data, records 722 and
other content associated with the user-application software
724 and/or the module 726, information for input into the
worktlow during execution of the workflow. This informa-
tion include task parameters, including network settings,
employed for the execution of tasks. To facilitate this, the
host 306 requests and receive from user-application software
724 and/or the module 726 the event data (e.g., via inter-
action with the user), the records 722 and/or portions thereof
for use as the input information.

For example, the application soitware 724 1s/are embod-
ied as spreadsheet and/or database application. The module
726, as registered with the spreadsheet and/or database
application, obtains the input information from specified
coordinates associated with one or more cells of a spread-

10

15

20

25

30

35

40

45

50

55

60

65

48

sheet and/or a database table. These cells include fixed
numbers, variables, formulas, etc. The i1nput information
obtained from the cells 1s/are 1n the same form as the cells.
Alternatively, the input information obtained from the cells
1s/are values resulting from application of the formulas or
variables included within such cells.

The process block 810 1s implemented during the execu-
tion of the worktlow by the host 306, however, the process
block 810 1s/are implemented before execution of the work-
flow begins.

After the process block 812, and upon execution of the
workilow, for example, by the host 306, the flow 800
transitions to process block 814. At process block 814, the
user-application software 724 and/or the module 726
obtains, from the host 306, information output (“output
information”) from the worktlow. To {facilitate this, the
user-application software 724 and/or the module 726 request
and receive the output information from the host 306.

For example, the application software 724 1s/are embod-
ied as spreadsheet and/or database application. The module
726, as registered with the spreadsheet and/or database
application, obtains the input information from specified
coordinates associated with one or more cells of a spread
sheet and/or a database table. These cells include fixed
numbers, variables, formulas, etc. The module 726 updates
the cells with the output information obtained from the host
306.

After the process block 814, the flow 800 transitions to
termination block 816, at which point the flow 800 termi-
nates. Alternatively, the flow 800 1s repeated periodically, in
continuous fashion, or upon being triggered as a result of a
condition, such as a command or trigger. As another alter-
native, the process blocks 806-810 1s/are repeated periodi-
cally, 1n continuous fashion, or upon being triggered as a
result of a condition, such as 1ssuance of additional trigger-
ing instructions, so as to re-execute the worktlow.

Workflow Deployment and/or Execution with Applied
Network Configuration Settings Enabling a Connection
Between Remote Devices and Tasks

Referring now to FIG. 9, a flow diagram illustrating an
example tlow or a process or a method 900 for triggering a
deployment and/or execution of a workilow 1s shown. For
convenience, the flow 900 1s described with reference to the
system 700 of FIG. 7. The flow 800, however, 1s/are per-
formed using other equivalent architectures as well.

The flow 900 starts at termination block 902. After
termination block 902, the tlow 900 transitions to optional
process block 906, at which an mstruction to apply network
settings to remote devices. The mnstruction 1s 1ssued from the
user devices 302, 702, for example, by either the GUI
software 110, or the user application software 724 and/or the
module 726, respectively.

The flow 900 then transitions to process block 906 at
which the flow 900 1ssues an instruction to execute the
workilow at the host 306. The instruction 1s 1ssued from the
user devices 302, 702, for example, by either the GUI
soltware 110, or the user application software 724 and/or the
module 726, respectively.

The flow 900 then transitions to process block 908, at
which the host 306 receives the instruction to execute the
workilow, for example, according to process block 906, or
according to several examples as described above.

The flow 900 then transitions to process block 910, at
which the host 306 applies network settings to the remote
devices for execution of the workilow. In some embodi-
ments, 1 an mstruction according to process block 904 1s not
provided, the flow 900 automatically applies network set-

US 11,087,249 B2

49

tings through the host 306 according to the process block
910, to enable connectivity between remote devices 740, for

example, for execution of tasks, and for calls and data
exchange between tasks. In such embodiments, the flow 900
additionally queries the network settings 750 to determine
network settings for applying to the remote devices accord-
ing to the workflow tasks.

The flow 900 then transitions to the process block 920, at
which the host 306 executes the workilow. During execution
of the workflow, the host 306 causes execution of various
tasks on the remote devices 740. For example, as depicted in
process block 922, a first task 1s executed on a first remote
device, and the first task require calling additional task(s) via
a remote call, exchange data with additional task(s), or
initiate execution ol additional task(s). The additional tasks
are executed on different device(s) than the first device,
although some of the additional task(s) are also executed on
the first device. For example, as depicted 1n process block
024, the first task 1ssues a remote call and/or sends/receives
data with a second task on a second device. The 1ssuance of
a remote call and/or exchange of data between diflerent tasks
and/or remote devices 1s enabled by application of network
settings to the remote devices. The remote call and exchange
of data are conducted according to the network settings
applied to the remote devices, for example, according to the
process block 910, or according to other examples as
described above. The workflow completes execution at the
process block 920, for example, 1n a manner similar to that
described 1n process block 810 of FIG. 8, or other examples
discussed above.

After the process block 920, the flow 900 transitions to
termination block 930, at which point the tlow 900 termi-
nates. Alternatively, the tlow 900 1s repeated periodically, in
continuous fashion, or upon being triggered as a result of a
condition, such as a command or trigger. As another alter-
native, the process blocks 922, 924 are repeated for multiple
tasks according to the execution of the workilow.

CONCLUSION

Variations of the apparatus and method described above
are possible without departing from the scope of the inven-
tion. For instance, in the examples described above, con-
trollers and other devices containing processors are noted.
These devices contain at least one Central Processing Unit
(“CPU”) and a memory. In accordance with the practices of
persons skilled i the art of computer programming, refer-
ence to acts and symbolic representations of operations or
instructions 1s/are performed by the various CPUs and
memories. Such acts and operations or instructions are
referred to as being “executed,” “computer executed” or
“CPU executed.”

One of ordinary skill 1n the art will appreciate that the acts
and symbolically represented operations or instructions
include the manmipulation of electrical signals by the CPU.
An electrical system represents data bits that can cause a
resulting transformation or reduction of the electrical signals
and the maintenance of data bits at memory locations 1n a
memory system to thereby reconfigure or otherwise alter the
CPU’s operation, as well as other processing of signals. The
memory locations where data bits are maintained are physi-
cal locations that have particular electrical, magnetic, opti-
cal, or organic properties corresponding to or representative
of the data bits. It should be understood that the exemplary
embodiments are not limited to the above-mentioned plat-
torms or CPUs and that other platforms and CPUs support
the described methods.

10

15

20

25

30

35

40

45

50

55

60

65

50

The data bits also be maintained on a computer readable
medium including magnetic disks, optical disks, and any
other volatile (e.g., Random Access Memory (“RAM™)) or
non-volatile (e.g., Read-Only Memory (“ROM”)) mass stor-
age system readable by the CPU. The computer readable
medium 1nclude cooperating or interconnected computer
readable medium, which exist exclusively on the processing
system or are distributed among multiple nterconnected
processing systems that i1s/are local or remote to the pro-
cessing system. It should be understood that the examples
are not limited to the above-mentioned memories and that
other platforms and memories support the described meth-
ods.

In view of the wide variety of embodiments that can be
applied, 1t should be understood that the illustrated examples
are exemplary only, and should not be taken as limiting the
scope of the following claims. Further, the claims should not
be read as limited to the described order or elements unless
stated to that eftect. In addition, use of the term “means’ 1n
any claim 1s mtended to mvoke 35 U.S.C. § 112, 6, and any
claim without the word “means” 1s not so ntended.

What 1s claimed 1s:

1. A method for triggering execution of a worktlow over
a network, the method comprising:

recerving, at a host, from a user device, an nstruction to

execute a workflow comprising a first task for being
executed on a first remote device;

receiving, at the host, network settings from the user

device to enable communication of the first task to the
first remote device and execution of the first task on the
first remote device;

applying the network settings to at least one of the host or

the first remote device; and

executing the first task on the first remote device using the

network settings upon receiving the instructions from
the user device,

wherein the worktlow comprises a plurality of tasks for

being executed on a plurality of remote devices, the
plurality of tasks including the first task, and the
plurality of remote devices including the first remote
device, and

wherein the network settings include settings for estab-

lishing communication between two or more of the host
and the plurality of remote devices.

2. The method of claim 1, wherein the network settings
include information relating to at least one of a network
type, a connection mode, a connection settings, or connec-
tion parameters.

3. The method of claim 2, wherein the network type 1s at
least one of a Public Switch Telephone Network (“PSTN),
the Internet, a proprietary public network, a wireless voice
and packet-data network, 1G, 2G, 2.5G, 3G, 4G or LTE
telecommunication network, a wireless oflice telephone sys-
tem (“WOTS”), a wired or wireless local area network
(“LAN"), Bluetooth network, IEEE 802.11 WLAN, a wired
or wireless personal area network (“PAN™), or a wired or
wireless metropolitan area network (“MAN™).

4. The method of claim 2, wherein connection parameters
include at least one of a login and a password, access
credentials, a combination of a private and public key,
Hardware type, Processor type, Network Hardware, API
Key, API Secret, Connection Profile name, Type, Security
Type, SSID, Password, Transport Protocol, or Device Role.

5. The method of claim 1, wherein the host generates
network settings according to a status of the network con-
figuration of at least one of the user device, the host or the
plurality of remote devices.

US 11,087,249 B2

51

6. The method of claim 1, wherein the instruction to
execute the worktlow 1s received from an application sofit-
ware on the user device, or by manipulation of the GUI
soltware on the user device, further comprising:

receiving an instruction, from the application software on

the user device or from the GUI software on the user

device, to apply the network settings to at least one of

the plurality of remote devices.

7. The method of claim 6, wherein the application soft-
ware comprises at least one of word-processing application,
spreadsheet application, database application, email appli-
cation, messaging application, text messaging interface
application, presentation application, Internet-browser
application, calendar application, media application, multi-
media application, file management programs, operating
system shells, a compiled application without a graphical
user mterface, a compiled programming application, a time-
based job scheduler, a CRON, a macro-language applica-
tion, at least one of a sensor or actuator based application
deployed a device or a computer, micro controller based
application, SoC application, a MQTT application, a wire-
less communication based application, a mobile application,
or an RTOS based application.

8. The method of claim 7, wherein the workflow com-
prises a plurality of tasks for being executed on a plurality
of devices, wherein a second task of the plurality of tasks 1s
executed on a second remote device using task parameters
received from the application software on the user device.

9. The method of claim 8, wherein the task parameters
received from the application software on the user device are
input to the application software using the GUI on the user
device, or include an output resulting from execution of the
first task.

10. The method of claim 1, wherein execution of the first
task on the first remote device includes placing a call by the
first task to begin execution of a second task on a second
remote device, or execution of the first task and the second
task require exchange of data between the first task and the
second task,

wherein the placing a call and the data exchange are
implemented according to the network settings.

11. The method of claim 1, wherein the workflow 1s an
ordered sequence of the plurality of tasks designed graphi-
cally using a graphical user interface (GUI) application on
the user device.

12. The method of claim 1, wherein the network settings
are 1nput at the user device.

13. The method of claim 1, wherein the network settings
are obtained from a database remote to the host, the user
device and the remote device.

14. An apparatus for triggering execution of a worktlow
over a network, the apparatus comprising a host, the host
comprising:

at least one processor;

a memory coupled to the at least one processor compris-
ing nstructions, which when executed using the at least
one processor executes a method comprising;:

receiving, from a user device, an mnstruction to execute a
workilow comprising a first task for being executed on
a first remote device;

receiving network settings from the user device to enable
communication of the first task to the first remote
device and execution of the first task on the first remote
device;

applying the network settings to at least one of the host or
the first remote device:; and

10

15

20

25

30

35

40

45

50

55

60

65

52

executing the first task on the first remote device using the
network settings upon receiving the instructions from
the user device,

wherein the workiflow comprises a plurality of tasks for

being executed on a plurality of remote devices, the
plurality of tasks including the first task, and the
plurality of remote devices including the first remote
device,

wherein the network settings include settings for estab-

lishing communication between two or more of the host
and the plurality of remote devices.

15. The apparatus of claim 14, wherein the network
settings 1nclude information relating to at least one of a
network type, a connection mode, a connection settings, or
connection parameters,

wherein the network type 1s at least one of a Public Switch

Telephone Network (“PSTN™), the Internet, a propri-
ctary public network, a wireless voice and packet-data
network, 1G, 2G, 2.5G, 3G, 4G or LTE telecommuni-
cation network, a wireless oflice telephone system

(“WOTS”), a wired or wireless local area network
(“LAN”), Bluetooth network, IEEE 802.11 WLAN, a
wired or wireless personal area network (“PAN”), or a
wired or wireless metropolitan area network (“MAN),

wherein connection settings includes at least one of
standardized, proprietary, or open-source communica-
tion protocols, and

wherein connection parameters include at least one of a

login and a password, access credentials, a combination
of a private and public key, Hardware type, Processor
type, Network Hardware, APl Key, API Secret, Con-
nection Profile name, Type, Security Type, SSID, Pass-
word, Transport Protocol, or Device Role.

16. The apparatus of claim 14, wherein the host receives
an instruction from the user device to execute the worktlow
via an application software on the user device or the GUI
software on the user device, and wherein the host receives
an 1struction to apply the network settings to at least one of
the plurality of remote devices, from the application soft-
ware on the user device or from the GUI software on the user
device.

17. The apparatus of claim 16, wherein the application
soltware comprises at least one of word-processing appli-
cation, spreadsheet application, database application, email
application, messaging application, text messaging interface
application, presentation application, Internet-browser
application, calendar application, media application, multi-
media application, file management programs, operating
system shells, a compiled application without a graphical
user mterface, a compiled programming application, a time-
based job scheduler, a CRON, a macro-language applica-
tion, at least one of a sensor or actuator based application
deployed a device or a computer, micro controller based
application, SoC application, a MQT'T application, a wire-
less communication based application, a mobile application,
or an RTOS based application.

18. The apparatus of claim 14, wherein execution of the
first task on the first remote device includes placing a call by
the first task to begin execution of a second task on a second
remote device, or execution of the first task and the second
task require exchange of data between the first task and the
second task,

wherein the placing a call and the data exchange are

implemented according to the network settings.

19. The apparatus of claim 14, wheremn the network
settings are mput at the user device.

US 11,087,249 B2
53

20. The method of claim 14, wherein the network settings
are obtained from a database remote to the host, the user
device and the remote device.

G e x Gx ex

54

	Front Page
	Drawings
	Specification
	Claims

