12 United States Patent

Hagen et al.

US011080398B2

(10) Patent No.: US 11,080,398 B2
45) Date of Patent: Aug. 3, 2021

(54) IDENTIFYING SIGNATURES FOR DATA
SETS

(71) Applicant: Trend Micro Incorporated, Tokyo (JP)

(72) Inventors: Josiah Dede Hagen, Austin, TX (US);
Jonathan Edward Andersson, Austin,
TX (US)

(73) Assignee: Trend Micro Incorporated, Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 276 days.

(21) Appl. No.: 15/988,949
(22) Filed: May 24, 2018

(65) Prior Publication Data
US 2018/0268141 Al Sep. 20, 2018

Related U.S. Application Data

(63) Continuation of application No.
PCT/US2015/067169, filed on Dec. 21, 2015.

(51) Int. CL

GOGF 21/56 (2013.01)
GOGF 21/64 (2013.01)
GOGF 16/13 (2019.01)
HO3M 7/30 (2006.01)
(52) U.S. CL
CPC ... GO6F 21/564 (2013.01); GOG6F 16/137

(2019.01); GO6F 21/64 (2013.01); GO6F
2221/034 (2013.01); HO3M 7/30 (2013.01)

(58) Field of Classification Search
CPC GO6F 21/564; GO6F 16/137; GO6F 21/64
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,624,446 B1* 11/2009 Wilhelm HO4L 63/1416
380/255
7,802,303 Bl 9/2010 Zhao et al.
9,094,288 B1* 7/2015 Nucctcooeeeen, HO4L 43/026
2004/0157556 Al 8/2004 Barnett et al.
2009/0132461 Al 5/2009 Garg et al.
2009/0320133 Al* 12/2009 Viljoen GOO6F 21/564
726/24
2011/0067106 Al 3/2011 Evans et al.
2011/0154495 Al 6/2011 Stranne
2014/0201836 Al1* 7/2014 Amsler HO4L 63/20
726/23
(Continued)

Primary Examiner — Farid Homayounmehr
Assistant Examiner — Suman Debnath

(74) Attorney, Agent, or Firm — Okamoto & Benedicto
LLP

(57) ABSTRACT

Examples relate to identitying signatures for data sets. In
one example, a computing device may: for each of a
plurality of first data sets, obtain a data set signature;
generate a first data structure for storing each data set
signature that 1s distinct from each other data set signature;
for each of a plurality of second data sets, obtain at least one
data subset; generate a second data structure for storing each
data subset; remove, from the first data structure, each data
set signature that matches a data subset included in the
second data structure; and for each data set signature
removed from the first data structure, 1dentify each first data
set from which the data set signature was obtained; and for
cach identified first data set, obtain a new data set signature.

11 Claims, 5 Drawing Sheets

100~

HDxL HARDWARE PROCESSOR

COMPUTING DEVICE

T

MACHINE-READASBLE STORAGE MED{UM

INSTRUCTIONS TO OBTAIN A DATA SET
SIGMATURE FOR EACH OF A PLURALITY OF
FIRST DATA SETS

INSTRUCTIONS TO GENERATE A FIRST DATA |

STRUCTURE FOR STORING EACH DATA SET
SIGNATURE THAT 1S DISTINCT FROM EACH
OTHER BATA SET SIGNATURE OBTAINED
FORTHE PLURALITY OF FIRST DATA SETS

INSTRUCTICONS TO OBTAIN AT LEAST ONE
DATA SUBSET FROM EACH OF A PLURALITY
OF SECOND DATA SETS

INSTRUCTIONS TC GENERATE A SECCND
DATA STRUGCTURE FOR STORING EAGH DATA
SUBSET THAT I8 DISTINGT FROM EAGH
OTHER DATA SUBSET OBTAINED FOR THE
SECOND DATA SETS

INGTRUCTIONS TO REMOVE, FROM THE
FIRST DATA STRUCTURE, EACH DATA SET
SIGNATURE THAT MATCHES A DATA SUBSET
INCLUDED IN THE SECCND DATA
STRUCTURE

INSTRUCTIONS TO {DENTIFY, FOR EACH
DATA SET SIGNATURE REMOVED FROM THE !
FIRST DATA STRUCTURE, EACH FIRST DATA

SET FROM WHICH THE DATA SET SIGNATURE
WAS DBTAINED

120
]r _________ : 1427 i
1 FIRST SOURCE | 122
A beviE L] DATASET =
i | | SIGNATURES
: 140 :
_________ 124~4_|
e ; 1522
1 SECOND | | 1es
| SOURCE || DATA N
| DEVICE | | SUBSETS
T B
—————————— 128 ~f._
130 —_|
132~
144
1 134 e
NEW DATA SET
SIGNATLURE(S)

INGTRUCTIONS TO OBTAIN A MEW DATA SET

SIGNATURE FOR EAGH IDENTIFIED FIRST
DATA SET l

US 11,080,398 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2014/0279808 Al* 9/2014 Strassner G06Q) 10/10
706/47
2015/0244733 Al* 8/2015 Mohaisen GOG6F 21/561
726/23
2017/0300691 Al1* 10/2017 Upchurch GOG6F 21/563

* cited by examiner

U.S. Patent Aug. 3, 2021 Sheet 1 of 5 US 11,080,398 B2

100
COMPbT NB D‘VICE

110~d | mRDMRE: PRCGESSC

142 - 20N] MACHINE-READABLE STORAGE MEDIUM

122 - INSTRUCTIONS TO OBTAIN A DATA SET
> SIGNATURE FOR EACH OF A PLURALITY OF
FIRST DATA SETS }

| FIRST SOURCE |
- DEVICE
| 140 ;
E

DATA SET
SIGNATURES

—

124~ NQTRUP*[OPHS O GENERATE AFIRST DATA
STRUCTURE FOR STORING EACH DATA SET
SIGNATURE THAT IS DISTINCT FROM EACH I
THER DATA SET SIGNATURE OBTAINED
FuR Hllr PL UQAL%TY OF FIRST DATA SETS

s o Ly oLl L

Y26 INSTRUCTIONS TO OBTAIN AT LEAST ONE
»| DATA SUBSET FROM EACH OF A PLURALITY
' _OF SECOND DATA SETS

i SECOND
' SourceE !

. ; DEVICE :
5 150 :]

[—— 128 ~

INSTRUCTIONS TO GENERATE A SECOND
 DATA STRUCTURE FOR STORING EACH DATA
| SUBSET THAT 18 DISTINCT FROM EACH

OTHER DATA SUBSET OBTAINED FOR THE

SECOND DATA SETS

180+ INSTRUCTIONS TO REMOVE FROM THE
| FIRST DATA s*ﬁ?ucwr—?_ EACH DATA SET

| SIGNATURE THAT MATCHES A DATA SUBSET

INCLUDED IN THE SECOND DATA
SIRUCTURE

i

132 —4 INS TRUCTIONS TO IDENTIFY, FOR “#mi-‘
. DATA SET SIGNATURE REMOVED FROM THE
- FIRST DATA STRUCTURE, EACH FIRST DATA
St FROMWHICH THE DATA SET SIGNATURE
WAS OBTAINED

134 ™ INSTRUCTIONS TO OBTAIN A NEW DATA SET |

| NEW DNASE ' ; SiGN&TUF{hFDREAuH IDENTIFIED FIRST

US 11,080,398 B2

Sheet 2 of §

Aug. 3, 2021

U.S. Patent

013

JOVHOLS
THNLYNSIS

Ve Did

GB. ¥ 0(¢ Q001

9L 01 0001
T b6 000)
Ya 008 0001

8o | 108 JO0

GE | 008 000}

OlEy UOISS8IaioT 9218 OIS0 1S)-8l

A

(S)ainmeublq

0be
40IAIC

INERER
[TLYNDIS

il

IN " G¥Z6 ‘€46 ‘This
LI-N " €426 THT6 1926

9G] 196 995 ‘595 | |4

(g |
2001 ™ Gyl
100} " v'E'E]
000} ™ €74
SMOPUIAR BTAE STIONDTLUC

90¢

Weshs 9Ad

¢0¢

00¢

US 11,080,398 B2

Sheet 3 of 5

Aug. 3, 2021

U.S. Patent

G&c
SFUNLYNDIS

SNOIMYA
40 FYNLONYLS
¥1v(

SINjONAS Ble(;
jesqng elAg

09¢

JOIAA(
NOILO4140
NOISITTOO

saineubig

| o)Ag lepipue?) |

el e - A

4%

H4OIAGC
NOLLYNIBNOO
HdVD

2Ineubig

ajig sjepipue”) |

BUILoIE

0le
30IAFA
NOLL V3N
FUNLYNDIS

CLe

g & *
L N mw E

S19SANG BIAG

Loy

3

SWEBIS
SIAG SNOIEIN |

onljeiunseIday

AN/

———
arilranl

I

ONIGOON:

A

VAELS

0€¢

OIAZ

&

dNCHD

_ SIS §JAG

swieals |
ajAg ubiuey |

slesys SIAg

UROUYUI

gl e i,

SNOIIEN

e

0dc

US 11,080,398 B2

Sheet 4 of 5

Allg. 39 2021

U.S. Patent

J

IDIAAG
NOILYNILS3Q

& OIA

POL

wesng 9Ag

09¢
HTIONYH
INIAT ALRINOAS

| UOfjealon
WeAd Ajunges /MW

0t
4OIAS{

| (shovord ylomjoy |

s

¢0t

$

e

MAOMLIN
AAVIOFN LN

Olt
SAANLYNDIS

SHOIONVA

WeallS 8iAg

(S J1ov0Bd HOMBN

Al

4OIAA(
434N0S

L

U.S. Patent Aug. 3, 2021 Sheet 5 of 5 US 11,080,398 B2

Obtain, for each of a pluraiity ¢f malicious byte BTy
streams, a byte signature

Generate a first data structure for storingeach §—404
obiained byte signature

Obtain, for each of a plurality of second byte 408
streams, at ieast one byle subset :

rrr

- Generate a second data struciure for storing each §

optained byle subset 408

..
--

Remove, from the first data structure, each byte

- 8 410
signature that maiches a byte subset included In § 10

the second data structure

dentify, for each byte signature removed from the §
first data structure, a maiicious byte stream from §
which the byle signature was obtained

412

--

- (Obtain, for each identified malicicus byte stream,

o L 414
a New pyie signature :

US 11,080,398 B2

1

IDENTIFYING SIGNATURES FOR DATA
SETS

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a continuation of International Appli-
cation No. PCT/US2015/067169, with an International Fil-
ing Date of Dec. 21, 2015, which 1s incorporated herein by
reference in 1ts entirety.

BACKGROUND

Data signatures are often used when attempting to identify
or match sets of data without the need to compare full data
sets. For example, computer virus signatures may be calcu-
lated by hashing known computer viruses and using the hash
results as signatures. Unknown computer files can be hashed
and the results may be compared to the computer virus
signatures, and matches may indicate that the unknown files
are computer viruses. Data signatures may also be used 1n
other contexts, such as the detection of plagiarism and
biometric 1dentification using fingerprinting or DNA.

BRIEF DESCRIPTION OF THE DRAWINGS

The following detailed description references the draw-
ings, wherein:

FIG. 1 1s a block diagram of an example computing
device for i1dentifying signatures for data sets.

FIG. 2A 1s an example data flow for identilying a signa-
ture for a data set.

FIG. 2B 1s an example data flow for identifying signatures
for data sets.

FIG. 3 1s an example data flow for using signatures
identified for data sets.

FIG. 4 1s a flowchart of an example method for identifying,
signatures for data sets.

DETAILED DESCRIPTION

To assist with i1dentifying and matching data sets, data
signatures are often smaller than their corresponding data
sets, e.g., to reduce the amount of data to be compared. By
selecting a portion of a data set as a data signature, the
relatively small signature may be matched against unknown
data sets more quickly than comparing entire data sets. To
reduce false positives, relatively complex portions of data
sets may be selected as signatures, 1n a manner designed to
reduce the likelihood that data signature would match dif-
ferent data sets. While false positives may be reduced by
using complex portions of data sets as signatures, matches
may be increased relative to other signature methods, such
as hashing, because the likelihood of complex portions of
data sets matching may be greater than the likelihood of file
hashes matching.

In some situations, matching a signature for one data set
against multiple other data sets may be desirable. For
example, 1n the context of malicious computer files, a data
signature generated via hashing the malicious file 1s likely to
only match against the exact same malicious file. Even an
insignificant change to the malicious file would likely
change the hash value of the file, and anti-malware measures
designed to match based on file hashes may, due to the minor
change, miss malicious files. In situations where a complex
portion of a malicious file 1s selected as the signature,
changes to any other portion of the malicious file would still

10

15

20

25

30

35

40

45

50

55

60

65

2

result in a match. For example, 11 20 lines of obfuscated code
in a malicious file, out of 1,000 lines, are used as a signature
for the malicious file, a different file with changes to any of
the other 980 lines of code wouldn’t avoid detection by a
device using the signature to detect malware.

In some situations, signatures that are distinct from other
data signatures are desirable, e.g., to avoid false positives 1n
identifying data sets and to accurately 1dentify data sets that
match a signature. Depending on the data sets, truly unique
data signatures may be diflicult to 1dentily; however 1den-
tifying data signatures that are more likely to be distinct 1s
still advantageous. As used herein, data signatures are dis-
tinct, or more distinct, from other data signatures if they
match less data signatures or data subsets, or 1f they match
data subsets of a lower cost. For example, when data
signatures are compared with many millions of data subsets
and other data signatures, some collisions, or matches, may
occur. A data signature that collides with, or matches, 10
other data subsets or data signatures may be considered
more distinct than another data signature that collides waith,
or matches, 20 other data subsets or data signatures. In
another example, data subsets that data signatures are
matched against may have an associated cost based on the
type of data subset, e.g., matching a known benign subset
may have a relatively high cost compared to matching an
unknown/unfamiliar subset. Distinct data signatures are
designed to match less data subsets and, 1 matches do occur,
match data subsets of a relatively low cost.

To 1dentily distinct data signatures for data sets, a com-
puting system may collect many data sets for which signa-
tures are desired and identily, for each data set, multiple
candidate signatures. The candidate signatures may be
placed into a data structure suitable for matching, such as a
list, tree, or graph. Separate from this first data structure that
includes candidate signatures of the data sets for which
distinct signatures are desired, a second data structure may
be filled with data subsets from other data sets, e.g., data sets
that may include the original data sets for which signatures
are desired as well as other data sets. The computing system
may then compare each candidate signature in the first data
structure to the data subsets 1n the second data structure to
determine how distinct each candidate signature 1s. Candi-
date signatures that are unique, e.g., those that do not match
any other data subsets included 1n the second data structure,
are left 1n the first data structure. Candidate signatures that
are not unique may be replaced by one of the other candidate
signatures that were identified for the data set associated
with the non-umque candidate signature. The process may
continue, €.g., 1 an iterative fashion, until only umique data
signatures are included in the first data structure, or until
another stopping point has been reached, e.g., until a most
distinct data signature 1s selected for data signatures that do
not have any unique data signatures.

Data signatures may be identified for a data set 1n a variety
of ways. In some contexts, more complex portions of data
are more likely to be distinct, and the computing system may
seek to identity complex portions of a data set to use as
potential candidate signatures for that data set. One way to
measure the complexity of data 1s by using compressibility.
Relatively simple portions of data may be compressed more
casily, e.g., to a smaller size, than more complex portions of
data from the same data stream. For example, many com-
pression algorithms compress data by taking advantage of
repeated data or patterns, which may occur often in certain
contexts, such as malicious files, creative writings, and
biometric data. Another way to measure complexity of data
1s using entropy, where data having high entropy 1s more

US 11,080,398 B2

3

likely to be complex than data having low entropy. Mali-
cious byte streams often attempt to hide malicious code
within more traditional code, e.g., using obfuscation. Obfus-
cated portions of code are one example type of data that 1s
more likely to be complex than un-obfuscated portions of
code.

In some implementations, a computing device may be
used to determine complexity by iteratively compressing,
portions of a data set. Using the results of the compression,
the least compressible portions of the data set, e.g., the most
complex portions, may be selected for use as candidate
signatures for the data set. As indicated above, these candi-
date signatures may be stored and compared to other data
subsets to 1dentity one of the candidate signatures as a
distinct signature for the corresponding data set. A data
structure that includes distinct signatures may be used to
attempt to match portions of other sets of data. Further
details regarding the 1dentification of distinct signatures for
data sets are described in the paragraphs that follow.

Referring now to the drawings, FIG. 1 1s a block diagram
of an example computing device 100 for identiiying signa-
tures for data sets. Computing device 100 may be, for
example, a server computer, a personal computer, an inter-
mediary network device, a mobile computing device, or any
other electronic device suitable for processing data. In the
embodiment of FIG. 1, computing device 100 includes
hardware processor 110 and machine-readable storage
medium 120.

Hardware processor 110 may be one or more central
processing units (CPUs), semiconductor-based micropro-
cessors, FPGA, and/or other hardware devices suitable for
retrieval and execution of instructions stored 1n machine-
readable storage medium 120. Hardware processor 110 may
fetch, decode, and execute instructions, such as 122-134, to
control the process for identifying signatures for data sets.
As an alternative or 1n addition to retrieving and executing,
instructions, hardware processor 110 may include one or
more electronic circuits that include electronic components
for performing the functionality of one or more instructions.

A machine-readable storage medium, such as 120, may be
any electronic, magnetic, optical, or other physical storage
device that contains or stores executable instructions. Thus,
machine-readable storage medium 120 may be, for example,
Random Access Memory (RAM), an FElectrically Erasable
Programmable Read-Only Memory (EEPROM), a storage
device, an optical disc, and the like. In some 1mplementa-
tions, storage medium 120 may be a non-transitory storage
medium, where the term “non-transitory” does not encom-
pass transitory propagating signals. As described 1n detail
below, machine-readable storage medium 120 may be
encoded with a series of executable instructions: 122-134,
for 1dentifying signatures for data sets.

As shown 1n FIG. 1, the computing device 100 executes
istructions 122 to obtain a data set signature for each of a
plurality of first data sets. FIG. 1 depicts the data signatures
142 being provided by a first source device 140, which may
be any device capable of communicating data signatures to
the computing device 100, such as a data storage device,
separate computing device, or user mput device. The actual
data included 1n the data signatures 142 may vary depending
on the context. For example, 1n the context of malicious code
detection, the data signatures 142 may include a subset of
bytes from a malicious file or other source of malicious
code. In the context of plagiarism detection, the data signa-
ture 142 may include a portion of the text of a novel, article,
or essay. In the context of biometric identification, the data
signatures may be a portion of a DNA sequence, fingerprint

5

10

15

20

25

30

35

40

45

50

55

60

65

4

pattern, retinal or facial mapping, or the like, which may be
expressed 1n a variety of ways.

The computing device 100 executes instructions 124 to
generate a first data structure for storing each data set
signature that 1s distinct from each other data set signature
obtained for the first data sets. In some implementations, the
first data structure 1s a deterministic acyclic finite state
automata (DAFSA). For example, in the context of mali-
cious data streams, the computing device 100 may obtain
malicious byte signatures from a storage device and generate
a DAFSA that includes each of the malicious byte signa-
tures. In situations where malicious byte signatures collide
with one another, or match, a new malicious byte signature
may be obtained for one or both of the corresponding
malicious byte streams. In some implementations, multiple
data signatures are stored and ranked according to their
complexity and, when needed, the computing device 100
may choose new signatures for data sets i order of their
complexity. For example, when two malicious byte signa-
tures match, the computing device may select the next most
complex byte signature and use 1t to replace matching byte
signature 1n the DAFSA.

In some implementations, prior to generating the first data
structure, a collection of data sets are grouped based on
measures of similarity. In this situation, a representative data
set may be chosen from each group, and the chosen repre-
sentative data sets may be the ones for which data signatures
are obtained and placed into the first data structure. In some
implementations, a set of data signatures may be chosen
from a group of data sets. The grouping and selecting of
representative data sets may be performed 1n a variety of
ways. For example, data sets with matching signatures may
be grouped together. In the malicious byte stream context, a
malicious file may have many similar variants that have
complex portions that are the same. In this situation, 1t may
be desirable to use one byte signature from one of the
variants, rather than one from each variant, due to potential
difficulties in finding distinct signatures among the variants
and the potential benefits of being able to i1dentily new
variants based on a byte signature common among a par-
ticular malicious file and 1ts known variants. Some data sets
may be grouped based on other measures of similarity. For
example, 1n a gene sequencing context, data signatures that
are known to represent certain genetic traits may be grouped
together, e.g., to 1dentily the most distinct data signatures
that the groups have 1 common.

The computing device 100 executes instructions 126 to
obtain at least one data subset 152 from each of a plurality
of second data sets. FIG. 1 depicts the data subsets 152 being
provided by a second source device 150, which may be any
device capable of communicating data subsets to the com-
puting device 100, such as a data storage device, separate
computing device, or user input device. As with the data
signatures 142, the actual data included 1n the data subsets
152 may vary depending on the context. For example, 1n the
malicious code detection context, the data subsets 152 may
be subsets selected from a variety of byte streams, including
malicious byte streams, benign byte streams, and/or
unknown byte streams. Generally, each data subset 1s com-
parable 1n size to the data signatures stored 1in the first data
structure. In some implementations, data subset sizes/
lengths are selected to match the sizes/lengths of the data set
signatures.

The computing device 100 executes instructions 128 to
generate a second data structure for storing each data subset
that that was obtained from the second data sets. For
example, the second data structure may be a tree generated

US 11,080,398 B2

S

by performing pairwise unification ol DAFSAs generated
for each data set. The DAFSAs for each data set include a
plurality of subsets of the data set, and can be combined with
other DAFSAs of other data sets to create one tree that
includes data subsets from all data sets included in the
second data sets, e.g., the malicious, benign, and unknown
byte streams. DAFSAs may be combined, for example, by
performing a union of the byte transitions that each allows.
This may be performed iteratively, to construct a tree of
DAFSAs, so that the root node of the tree 1s the union of all
DAFSAs, corresponding to all of the byte subsets obtained
from the second data sets. In some implementations, the tree
may be organized so that data subsets that are expected to
match the data signatures—e.g., the malicious byte signa-
tures—are on one side of the tree, and data subsets that are
not expected to match—e.g., byte subsets from bemgn
and/or unknown byte streams—are on another side of the
tree.

The computing device 100 executes instructions 130 to
remove, from the first data structure, each data set signature
that matches a data subset included in the second data
structure. Data set signatures are selected for inclusion 1n the
first data structure i a manner designed to ensure the
signatures are distinct. A signature that matches a data subset
included 1n the second data structure 1s not unique, except in
implementations where signatures are intentionally included
in the second data structure. In situations where unique
signatures are desired, a signature that matches any data
subset of the second data structure, except itself, 1s removed
from the first data structure so that another data signature for
the corresponding data set can be selected.

The computing device 100 executes mnstructions 132 to
identify, for each data set signature removed from the first
data structure, each first data set from which the data set
signature was obtained. In situations where data set signa-
tures are removed, the first data sets that corresponded to
those removed data set signatures are 1dentified so that new
data signatures can be selected.

The computing device 100 executes instructions 134 to
obtain a new data set signature 144 for each of the identified
first data sets. For example, 1n situations where data set
signatures are ordered by complexity for a data set, the next
most complex data set signature may be selected. The new
data set signature(s) 144 may be added to the first data
structure 1n a manner similar to that described above for the
original data set signatures 142. In some implementations,
steps 130-134 may be repeated while 1nserting new data
signatures to the first data structure for each signature
removed.

In some 1implementations, the most distinct data set sig-
natures are selected for inclusion in the first data structure,
and the most distinct data set signatures, 1n some situations,
may not be unique. For example, 1n situations where a
unique data set signature 1s not found among the most
complex data set signatures obtained for a particular data set,
the computing device 100 may select the data set signature
with the least collisions, or matches, with data subsets
included 1n the second data structure. For example, 11 a first
signature matches a first data subset included in the second
data structure, and that first data subset occurred 1n five of
the second data sets used to generate the second data
structure, that first signature may be considered more dis-
tinct than a second signature that matches a second data
subset included 1n the second data structure that occurred 1n
ten of the second data sets used to generate the second data
structure. In this implementation, additional information,

10

15

20

25

30

35

40

45

50

55

60

65

6

such as the number of occurrences of each data subset, may
be included 1n the second data structure.

As a result of steps 122-134, the first data structure
includes distinct data set signatures that can be matched
against unknown and/or new data sets to i1dentify the
unknown/new data sets as being the same as or similar to the
first data sets from which the data set signatures were
obtained. This may be usetul, for example, 1n the context of
malicious byte stream detection, where unknown data
streams may be compared to a data structure that includes
malicious byte signatures to determine whether the unknown
data streams are potentially malicious. An example imple-
mentation of the identification of signatures for data sets, in
the context of malicious byte stream detection, 1s described
below with respect to FIGS. 2A, 2B, and 3.

FIG. 2A 1s an example data flow 200 for identifying a
signature for a data set. The data flow 200 depicts an
example method of signature generation using a signature
generation device 210, which may be implemented by a
computing device, such as the computing device 100
described above with respect to FIG. 1. The example data
set, byte stream 202, may be provided by any input device,
such as one of the source devices 140, 150 described above
with respect to FIG. 1.

During operation, the signature generation device 210
receives the byte stream 202. The byte stream 202 1s
depicted as including N bytes, labeled from byte 1 to byte N.
The byte stream 202 may be, for example, a malicious
soltware script provided to the signature generation device
210 1n order to identity malicious byte signatures for 1den-
tifying other occurrences of the malicious software script
and/or 1ts variants.

The signature generation device 210 iteratively deter-
mines a measure ol complexity for windows of bytes
included 1n the byte stream 202. Each window includes a
distinct portion of the bytes included 1n the byte stream 202.
The example data flow 200 depicts the i1terative compression
of various contiguous byte windows 204 to determine com-
plexity. Each window has the same pre-compression size,
e.g., 1,000 bytes, and a post-compression size and compres-
sion ratio that depends upon the bytes imcluded in each
window and the compression algorithm(s) used. The type of
compression, €.g2., compression algorithm used, may vary.
By way of example, the signature generation device 210
may use zlib compression to compress distinct byte subsets
of the byte stream. Other compression algorithms may also
be used, for example, bz2, Lempel-Ziv-Markov chain
(Izma), and Lempel-Ziv-Welch (1zw).

For example, the first window—irom byte 1 to 1,000—is
compressed to a size of 800 bytes for a 1.25 compression
ratio, the second window—irom byte 2 to 1,001—1s com-
pressed to 801 bytes for a compression ratio of 1.248, and
the third window—_trom byte 3 to 1,002—i1s compressed to
800 bytes for a compression ratio of 1.25. The data tlow 200
also depicts a window—1irom byte 565 to 1,564—as being
compressed to 974 bytes for a compression ratio of 1.027,
and the last two windows—1Irom byte 9,241 to N-1 and
9,242 to N—as being compressed to 210 and 209 bytes for
compression ratios of 4.762 and 4.785, respectively. While
the example described with respect to FIG. 2 uses com-
pressibility of bytes as a measure ol complexity, other
measures of complexity, such as entropy, may also be used,
alone or 1n combination with compression, to determine a
measure of complexity for the windows of bytes.

In the example data flow 200, the windows of bytes begin
from the first byte and goes to the last byte, shifting by one
byte each time. In some 1mplementations, other methods

US 11,080,398 B2

7

may be used to perform iterative determinations of com-
plexity on windows of bytes. For example, windows may be
shift by more than one byte at a time, or even less, e.g., one
bit at a time. In the implementation depicted in the example
data tlow 200, complexity 1s determined for windows 1n a
manner designed to determine complexity of every distinct
window of the byte stream. For example, no bytes are
skipped or excluded from being compressed in at least one
window. In some implementations, bytes may be skipped.
For example, when working in a particular context, the
signature generation device 210 may skip compression of
portions of byte streams previously 1dentified as benign. In
some 1mplementations, particular data units may be
excluded. For example, 1n some particular context, data
units with specific values may be excluded from complexity
calculations.

The signature generation device 210 identifies, based on
the 1terative determinations, a most complex window 206 of
bytes for the byte stream 202. This i1dentification may be
performed, for example, by determining which of the com-
pressed windows has the smallest compression ratio. In the
example data flow 200, the window 206 compressed from
1,000 bytes to 974 bytes for a compression ratio of 1.027 1s
identified as the least compressible window, e.g., because
cach other window of the byte stream 202 was compressed
to a ratio greater than or equal to 1.027. In some 1implemen-
tations, the signature generation device 210 identifies mul-
tiple complex windows of bytes that are candidates for byte
signatures. For example, the signature generation device
may 1dentity the five most complex, e.g., least compressible,
windows of bytes.

The signature generation device 210 identifies the most
complex windows, including window 206, as a candidate
byte signatures 208 for the byte stream 202. In the example
data tflow 200, the signature generation device 210 provides
the candidate byte signatures 208 to a signature storage
device 215. The signature storage device 215 may be any
device suitable of storing the candidate byte signatures 208,
such as a separate network storage device, separate network-
ing device, separate computing device, or a user output
device. As noted above, signatures generated by the signa-
ture generation device 210 may be used to construct data
structures which may be used in anti-malware devices to
identily potentially malicious byte streams by matching
unknown byte streams against malicious byte signatures.

FIG. 2B 1s an example data flow 220 for identifying
signatures for data sets. The example data flow 220 depicts
one example implementation of a system for generating a
data structure of malicious signatures using distinct byte
signatures of malicious data streams. Varations of the data
flow 220 could be used for a vaniety of data sets and for
generating a variety of data set signatures. The example data
flow 220 depicts several example devices for i1dentifying
malicious byte signatures, such as the grouping device 230,
signature generation device 210, stream encoding device
240, graph combination device 250, and collision detection
device 260. These example devices may be implemented 1n
one or more computing devices, such as the computing
device 100 described with respect to FIG. 1. The example
devices may, in some implementations, be modules, e.g.,
implemented 1n hardware, soltware, or a combination
thereol, included 1n a single computing device. Some of the
operations described as being performed by some of the
devices, such as the grouping device 230 and stream encod-
ing device 240 may or may not be performed, or may be
performed differently, depending upon the implementation.
For example, operations described as being performed by

10

15

20

25

30

35

40

45

50

55

60

65

8

separate devices may, in some implementations, be per-
formed by one device or multiple devices. In addition, when
operating 1n a context other than one involving malicious
byte streams, example actions and devices described with
respect to the data flow 220 may differ.

During operation, malicious byte streams 222 in the
example data flow 220 are provided to both the grouping
device 230 and the stream encoding device 240. Malicious
byte streams 222 may be, for example, computer files,
scripts, or other instructions previously i1dentified as mali-
cious. The grouping device 230 may perform a variety of
different types of grouping of the malicious byte streams 222
to group malicious byte streams 222 into groups based on
theirr stmilarity. This may be, for example, based on previ-
ously i1dentified features or types associated with the mali-
cious byte streams 222, direct comparisons of the byte
streams, and/or signature comparisons when signatures have
been created for the byte streams.

One representative malicious byte stream 232 from each
group of malicious byte streams 222 1s provided to the
signature generation device 210. For example, a malicious
byte stream 222 that 1s most similar to each other malicious
byte stream 222 within its group may be selected as a
representative malicious byte stream 232. In implementa-
tions where no grouping device 230 i1s used and/or no
grouping 1s performed, every malicious byte stream 222
may be provided to the signature generation device 210 as
a representative malicious byte stream 232.

The signature generation device 210 may, for example,
perform the operations described with respect to FIG. 2A on
the representative malicious byte streams 232. In this situ-
ation, the signature generation device 210 i1dentifies one
candidate byte signature 234 for each representative mali-
cious byte stream 232, e.g., based on the complexity of
subsets of the representative malicious byte streams 232. In
some 1mplementations, the signature generation device 210
generates multiple signatures for each representative mali-
cious byte stream 232. In this situation, the signatures may
be stored, e.g., 1n a signature storage device 215, and ranked
for each byte stream based on their complexity. The signa-
ture generation device 210 may then use the most complex
byte signature of each representative malicious byte stream
232 as the candidate signature for the byte stream.

The signature generation device 210 produces a data
structure of malicious signatures 2355 using the candidate
byte signatures 234. For example, the signature generation
device 210 may create a DAFSA {for storing each candidate
byte signature. In some 1implementations, the signature gen-
eration device 210 may perform some collision detection
designed to ensure that candidate byte signatures are distinct
from one another. For example, in a situation where the
signature generation device 210 attempts to add a candidate
byte signature 234 to the malicious signature DAFSA, and
it already exists, the signature generation device 210 may
select the next most complex byte signature 1dentified for the
corresponding malicious byte stream 222. The next most
complex byte signature may then be added to the malicious
signature data structure 255. As noted above, uniqueness of
data signatures 1s not required, and most distinct byte
signatures may, 1n some situations, be used to create the data
structure ol malicious signatures 255.

In the example data flow 220, the malicious byte streams
222 are also provided to the stream encoding device 240,
along with unknown byte streams 224 and benign byte
streams 226. In some implementations, the stream encoding
device 240 may be provided with any combination of one or
more of the different types of byte streams, e.g., malicious

US 11,080,398 B2

9

byte streams 222, unknown byte streams 224, and/or benign
byte streams 226. Benign byte streams 226 are byte streams
which are previously identified as likely to be non-mali-
cious, or byte streams provided by a source trusted to be
non-malicious. Unknown byte streams 224 may be any byte
streams for which maliciousness 1s not known within a
reasonable measure of certainty.

The stream encoding device 240 1dentifies byte subsets
242 for byte streams. Any number of byte subsets 242 may
be 1dentified for each byte stream provided to the stream
encoding device 240. In some implementations, byte subsets
242 are i1dentified 1n a manner similar to that of byte
signatures, €.g., the stream encoding device selects, as byte
subsets of a byte stream, contiguous windows ol bytes
included 1n the byte stream. The byte subsets 242 may, 1n
some 1implementations, be of the same or similar 1n size to
the candidate byte signatures 234. This may be usetul, for
example, when candidate byte signatures 234 are compared
to data subsets 242 later 1n the process depicted 1n the data
flow 220. In some implementations, the stream encoding
device 240 provides byte subsets 242 of the byte streams 1n
the form of DAWGs for each byte stream.

The graph combination device 250 generates a byte subset
data structure 252 for storing distinct byte subsets provided
by the stream encoding device 240. For example, in situa-
tions where byte subsets 242 are provided to the graph
combination device 250 1n the form of DAFSAs, the graph
combination device 250 may perform pairwise unification of
the provided DAFSAs. The DAFSAs may be combined to
create a tree that includes all byte subsets of all byte streams
provided to the stream encoding device 240, e.g., the mali-
cious, bemign, and unknown byte streams. DAFSAs may be
combined, for example, by performing a union of the byte
transitions that each allows. This may be performed itera-
tively, to construct a tree of DAFSAs, so that the root node
of the tree 1s the union of all DAFSAs, corresponding to all
byte subsets in the provided byte streams. In some 1mple-
mentations, the tree may be organized so that the malicious
byte signatures—which would also be identified by the
stream encoding device as a byte subset—are on one side of
the tree, while all other byte subsets—e.g., byte subsets from
benign and/or unknown byte streams, or non-signature byte
subsets from malicious byte streams—are on another side of
the tree.

The collision detection device 260 has access to both the
byte subset data structure 252, e.g., the byte subset tree
described above, and the data structure of malicious signa-
tures 255, e.g., the DAFSA of malicious candidate byte
signatures 234. The collision detection device 260 removes,
from the data structure of malicious signatures 255, each
candidate byte signature 234 that matches a byte subset
included 1n the byte subset data structure 252. For example,
the collision detection device 260 may, for each candidate
byte signature 234 included in the data structure of mali-
cious signatures 255, determine whether the candidate byte
signature matches any other byte subset included 1n the byte
subset tree. Any collision with a data subset that did not
come from the same malicious data stream would indicate
that the candidate byte signature was not unique. In some
implementations, the collision detection device 260 may
remove a matching candidate byte signature 272 by instruct-
ing the signature generation device 210 to replace the
matching candidate byte signature 272.

In the example data flow 220, the collision detection
device 260 notifies the signature generation device 210 of
the matching candidate byte signature 272. The signature
generation device 210 may then 1dentity the malicious byte

10

15

20

25

30

35

40

45

50

55

60

65

10

stream 222, or representative malicious byte stream 232,
from which the matching candidate byte signature 272 was
obtained. A new candidate byte signature may then be
selected for the idenftified malicious byte stream. For
example, the signature generation device 210 may use a set
of previously 1dentified candidate byte signatures to choose
the next most complex byte signature as the candidate byte
signature for the malicious byte stream.

Various portions of the process described with respect to
the data tflow 220 may be repeated, e.g., until distinct
candidate byte signatures are 1dentified for the data structure
ol malicious signatures 255. As noted above, to be distinct,
candidate byte signatures need not be unmique. In some
implementations, a candidate byte signature 234 with the
least collisions, which may be determined based on the
number ol byte streams that include a byte subset that
collided with candidate byte signature 234, may be selected
as the distinct candidate byte signature for 1ts corresponding
malicious byte stream. In some implementations, other
combinations of distinctness and complexity may be used to
identify a distinct byte signature. For example, a cost may be
associated with each match or collision with byte subsets,
¢.g., with matches to known benign byte subsets having a
relatively high cost compared to matches to unknown byte
subsets from unknown or malicious byte streams. In this
situation, a cost ol matches/collisions may be used to
identify a distinct signature.

New byte streams, including malicious, unknown, and
benign byte streams, may be periodically added to a system
that implements the process for i1dentifying distinct byte
signatures described above. In this situation, new signatures
may be obtained, new byte subsets may be obtain, data
structures may be altered, and the collision detection may
cause new candidate byte signatures to be selected for
various malicious byte streams, both new malicious byte
streams and old malicious byte streams. In other data set and
data set signature contexts, the same 1s true. For example, 1n
the gene sequencing context, additional gene sequences may
be periodically added to a system that identifies distinct
signatures for particular gene sequences.

FIG. 3 1s an example data flow 300 for using signatures
identified for data sets. The uses for data signatures may vary
greatly, and the uses may depend upon the context. For
example, literature signatures may be used to detect plagia-
rism 1n new works of literature, gene signatures may be used
to determine traits likely to be associated with new gene
sequences, biometric signatures may be used to identily
when new biometric data matches a known biometric sig-
nature, and malicious byte signatures may be used to 1den-
tify previously unidentified byte streams as malicious byte
streams. In the example data tflow 300, a data structure of
malicious signatures 310 generated using the methods
described above 1s used to identily potentially malicious
byte streams.

The example data flow 300 includes an intermediary
network device 320, which may be any device capable of
using the data structure of malicious signatures 310 to
identify potentially malicious byte streams. Examples
include, for example, solftware defined network elements,
server computers, personal computers, or network switches.
The example intermediary network device 320 may be, for
example, a software defined network element that includes
programmable hardware, such as an FPGA, and 1s config-
ured to operate as a network switch.

In this example use case, the mtermediary network device
320 receives, from a source device 340, one or more network
packets 302 which include a byte stream 304. The source

US 11,080,398 B2

11

device 340 may be any device capable of network commu-
nications, e€.g., a network router or switch, a server com-
puter, or a personal computer. In some situations, the byte
stream 304 may be span multiple network packets 302 and
may, 1n some implementations, include the data comprising,
the network packets 302. Examples include files split across
multiple network packets and code included in particular
portion of a single network packet or spread across multiple
network packets 1n a particular portion of each network
packet.

The intermediary network device 320 uses the data struc-
ture of malicious signatures 310 to determine whether the
byte stream 304 matches a malicious byte signature included
in the data structure of malicious signatures 310. For
example, the data structure of malicious signatures 310 may
be 1n the form of a DAFSA through which the programmable
hardware of the intermediary network device 320 checks for
a match 1n byte subsets of the byte stream 304. In situations
where no match 1s detected, the network packet(s) 302 and
included byte stream 304 may be processed normally, e.g.,
by forwarding the network packet(s) 302 to their intended
destination, e.g., destination device 350.

In situations where a match 1s detected, the intermediary
network device 310 may perform a variety of actions, e.g.,
depending upon its configuration. In the example data tlow
300, the mtermediary network device 320 1s configured to
send a security event notification 306 to a security event
handler 360. The notification 306 may include a variety of
information, such as the identified byte stream 304, the
network packet(s) 302 that include the byte stream 304, an

identifier of the malicious byte signature that was matched,
and/or mformation related to the source device 340. Other
example actions taken by the mtermediary network device
320 1n response to 1dentifying a match with a malicious byte
signature may include preventing transmission of the net-
work packet(s) 302 that include the byte stream 304 and/or
preventing transmission of future network packets recerved
from the same source device 340 or from a same source
identified 1n the network packet(s) 302.

FIG. 4 1s a flowchart of an example method 400 for
identifving signatures for data sets. The method 400 may be
performed by a computing device, such as a computing
device described 1in FIG. 1. Other computing devices may
also be used to execute method 400. Method 400 may be
implemented 1n the form of executable mstructions stored on
a machine-readable storage medium, such as the storage
medium 120, and/or 1n the form of electronic circuitry, such
as a field-programmable gate array (FPGA) and/or an appli-
cation-specific imtegrated circuit (ASIC). Combinations of
one or more of the foregoing processors may also be used to
identily signatures for data sets.

For each of a plurality of malicious byte streams, a byte
signature 1s obtained (402). For example, the malicious byte
streams may be malicious computer files, and the malicious
byte signatures may be complex subsets of the malicious
byte streams.

A first data structure 1s generated for storing each obtained
byte signature (404). For example, a deterministic acyclic
finite state automata (DAFSA) may be generated for the
obtained byte signatures, and each byte signature 1s included
in the DAFSA.

For each of a plurality of second data streams, at least one
byte subset 1s obtained (406). The second data streams may
include, for example, any combination of benign, malicious,
and/or unknown computer files. The at least one byte subset
may include any or all byte subsets of the second data

10

15

20

25

30

35

40

45

50

55

60

65

12

streams, €.g., obtained by selecting multiple windows of
contiguous byte subsets from each computer file.

A second data structure 1s generated for storing each
obtained byte subset (408). For example, each byte subset
obtained from each computer file may be included in a
DAFSA, and the DAFSAs of each computer file may be
combined into a single tree that includes all of the byte
subsets obtained for the computer files. In some implemen-
tations, the second data structure indicates, for each byte
subset, a number of the second byte streams that included
the byte subset. For example, each byte subset may be
associated with the number of computer files that included
the byte subset, e.g., determined when each computer file’s
DAWG 1s combined into the byte subset tree.

Each byte signature that matches a byte subset included 1n
the second data structure 1s removed from the first data
structure (410). For example, 11 a malicious byte signature 1s
included in the tree, 1t 1s removed from the malicious
signature DAFSA.

For each byte signature removed from the first data
structure, a malicious byte stream from which the byte
signature was obtained 1s identified (412). For example, the
malicious computer file from which the malicious byte
signature was obtained 1s 1dentified.

For each identified malicious byte stream, a new byte
signature 1s obtained (414). For example, a different byte
signature associated with the identified malicious computer
file 1s obtained, e.g., for inclusion 1n the malicious signature
DAFSA 1n place of the removed byte signature.

In some implementations, the method 400 includes 1den-
tifying a particular malicious byte stream for which each of
a plurality of candidate byte signatures match a byte subset
included 1n the second data structure. For example, a par-
ticular malicious computer file may have candidate byte
signatures that each match a byte subset included 1n the byte
subset tree, e.g., no unique candidate byte signatures. In this
situation, the method 400 may include adding, to the first
data structure, a distinct candidate byte signature of the
plurality of candidate byte signatures of the particular mali-
cious byte stream. The distinct candidate byte signature 1s
the candidate byte signature having a matching byte subset
for which a least cost of second byte stream matches are
indicated. For example, when a malicious computer file has
no unique byte streams, a candidate byte stream may still be
selected for the malicious computer file based on the number
of computer files that included byte subsets that matched the
candidate byte streams and the status of the matching byte
subsets, e.g., cost may be higher for matches with benign
subsets than matches with unknown or malicious subsets.

The foregoing disclosure describes a number of example
implementations for identilying signatures for data sets. As
detailed above, examples provide a mechanism for 1denti-
tying data signatures based on distinctiveness and potential
applications of a system that i1s capable of identifying
signatures for data sets.

We claim:

1. A non-transitory machine-readable storage medium
encoded with mstructions executable by a hardware proces-
sor of a computing device for identiiying signatures for data
sets, the machine-readable storage medium comprising
instructions to cause the hardware processor to:

for each of a plurality of first data sets, obtain a data set

signature;

generate a first data structure for storing each data set

signature that 1s distinct from each other data set
signature obtained for the plurality of first data sets;

US 11,080,398 B2

13

for each of a plurality of second data sets, obtain at least

one data subset;
generate a second data structure for storing each data
subset that 1s obtained from the second data sets;

remove, from the first data structure, each data set signa-
ture that matches a data subset included 1n the second
data structure; and

for each data set signature removed from the first data

structure, 1dentify each first data set from which the
data set signature was obtained; and

for each 1dentified first data set, obtain a new data set

signature.

2. The storage medium of claim 1, wherein the nstruc-
tions further cause the hardware processor to:

receive a new data set; and

determine, using the first data structure, whether the new

data set matches a data set signature.

3. The storage medium of claim 1, wherein each data set
signature has a signature length that matches a subset length
ol each data subset.

4. The storage medium of claim 1, wherein the first data
structure 1s a deterministic acyclic finite state automata.

5. The storage medium of claim 1, wherein:

cach of the plurality of first data sets has a plurality of data

set signatures, and for each first data set, data set
signatures are obtained based on a measure of com-
plexity associated with each data set signature.

6. The storage medium of claim 5, wherein:

data set signatures of each of the plurality of first data sets

are ranked based the measures of complexity associated
with the data set signatures.

7. The storage medium of claim 1, wherein the instruc-
tions further cause the hardware processor to:

obtain a collection of first data sets:

group each first data set included 1n the collection 1nto one

of a plurality of groups based on measures of similarity
between first data sets;

select, from each of the plurality of groups, one first data

set as a representative data set for the group, and
wherein each the plurality of first data sets includes the
selected first data sets.

8. The storage medium of claim 1, wherein the nstruc-
tions further cause the hardware processor to:

10

15

20

25

30

35

40

14

determine that each data set signature of a plurality of data
set signatures of a particular first data set matches a data
subset included 1n the second data structure; and

in response to the determination, select one of the plural-
ity of data set signatures of the particular first data set
for inclusion 1n the first data structure, the selection
being based on a number of second data sets that
include a data subset that matches the selected data set

signature.

9. A method for identifying byte signatures for byte
streams, 1mplemented by a hardware processor, the method
comprising;

obtaining, for each of a plurality of malicious byte

streams, a byte signature;

generating a first data structure for storing each obtained

byte signature that 1s distinct from each other obtained
byte signature;

obtaining, for each of a plurality of second byte streams,

at least one byte subset, the plurality of second byte
streams comprising malicious, benign, and unknown
byte streams;

generating a second data structure for storing each

obtained byte subset;

removing, from the first data structure, each byte signa-

ture that matches a byte subset included 1n the second
data structure; and

identifying, for each byte signature removed from the first

data structure, a malicious byte stream from which the
byte signature was obtained; and

obtaining, for each identified malicious byte stream, a

new byte signature.

10. The method of claim 9, wherein the second data
structure indicates, for each byte subset, a number of the
second byte streams that included the byte subset.

11. The method of claim 10, further comprising:

identifying a particular malicious byte stream for which

cach of a plurality of candidate byte signatures match
a byte subset included in the second data structure; and
adding, to the first data structure, a distinct candidate byte
signature of the plurality of candidate byte signatures of
the particular malicious byte stream, the distinct can-
didate byte signature being the candidate byte signature
having a matching byte subset for which a least cost of

second byte stream matches 1s indicated.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

