US011074519B2

a2 United States Patent (10) Patent No.: US 11,074,519 B2
Hu et al. 45) Date of Patent: Jul. 27, 2021

(54) QUANTUM ALGORITHM CONCATENATION (56) References Cited
U.S. PATENT DOCUMENTS

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

7,383,235 B1* 6/2008 Ulyanov B82Y 10/00
706/13
(72) Inventors: Shaohan Hu, Yorktown Heights, NY 0,663,358 BL* 52017 COIY ovvvrercercrrrernn.. GO6F 7/38
(US); Antonio Mezzacapo, 10,248,491 B1* 4/2019 Zengcococvvvvvvnnnn, GO6N 10/00
Westchester, NY (US): Marco Pistoia 10,325,218 B1* 6/2019 Zengcccc..... GOIR 31/3177
A Ik 1<TY Q). I; I j 10,831,455 B2* 11/2020 Gambetta GO6F 9/54
mawalk, NY (US); Peng Liu, 10,846,366 B1* 11/2020 Otterbach GOGF 17/17
Yorktown Heights, NY (US); Richard 2006/0224547 Al 10/2006 Ulyanov et al.
Chen, Mount Kisco, NY (US); Stephen (Continued)
Wood, Thornwood, NY (US); Jay M.
Gambetta, Yorktown Heights, NY (US) FOREIGN PATENT DOCUMENTS
(73) Assignee: INTERNATIONAL BUSINESS WO 2008151427 Al 12/2008
MACHINES CORPORATION,
Armonk, NY (US) OTHER PUBLICATIONS

Huang et al, “Performing Homomorphic Encryption Experiments
on IBM’s Cloud Quantum Computing Platform”, Nov. 2016, IBM
Technical paper, pp. 1-5 (Year: 2016).*

(Continued)

*) Notice: Subject to any disclaimer, the term of this
] y
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 386 days.

(21) Appl. No.: 16/137,215 Primary Examiner — Viet Q Nguyen

(22) Filed: Sep. 20, 2018 (74) Attorney, Agent, or Firm — Amin, Turocy & Watson,

LLP
(65) Prior Publication Data (57) ABSTRACT
US 2020/0097859 A1l Mar. 26, 2020 Techniques regarding quantum algorithm concatenation are
provided. For example, one or more embodiments described
(51) Int. CL herein can comprise a system, which can comprise a
GO6N 5/04 (2006.01) memory that can store computer executable components.
GO6N 10/00 (2019.01) The system can also comprise a processor, operably coupled
GO6F 9/30 (2018.01) to the memory, and that can execute the computer executable
(52) U.S. Cl components stored in the memory. The computer executable
CPC GO6N 10/00 (2019.01); GO6F 9/3001 components can comprise a concatenation component,
""""""" 7 (2013.01) operatively coupled to the processor, that can concatenate a
(58) Field of Classification Search | first quantum algorithm and a second quantum algorithm by
CPC GOEN 10/00: GOGF 9/2001 using an output of the first quantum algorithm as an initial
USP(i """""""""""""""" ’ 706/45 parameter in the second quantum algorithm.
See application file for complete search history. 20 Claims, 10 Drawing Sheets
400
'} A6} =
| SECOND | e
QUANTUM | | “LrcanD\
| arGoriTEM e TS
| COMPONENT 200 | ~
408 - |
406
{13 ; - ;i
W TEmrsTQUANTUM | |

| ALGORITHM |
| COMPONENT 112 |

445

A1) =

QUANILM 1§ /7 THIRD N\
| ALGORITHM B puaiip

[Rr——

US 11,074,519 B2
Page 2

(56)

2008/0140749

2012/0254586

2014/0187427

201
201
201
201
201
201
201
201
201
201
201

201

6/0283857
6/03 14406
7/0351967
8/0096085
8/0137422
8/0165601
8/0189653
8/0232652
9/0164059
9/0164079
9/0361675
9/0378033

Al*

Al*

A

AN G AN A AN A

¥ ¥ % %

1=I=

References Cited

6/2008

10/2012

7/2014

9/201
10/201
12/201

4/201

5/201

6/201

7/201

8/201

5/201

5/201
11/201
12/201

O OND D ND 0 00 00 00 00 ~1 O O

Macready

Babl
Wie

U.S. PATENT DOCUMENTS

iiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiii

bush et al.
he

tttttttttttttttttttt

Babl

Rubin

hush et al.

Wiebe et al.
Wiebe et al.
Burchard

Curtis et al.

Denchev

tttttttttttttttt

tttttttttttttt

tttttttttttttttttt

ttttttttttttttt

ttttttttttttttttttttt

iiiiiiiiiiiiiiiiiiii

B82Y 10/00

708/490
GO6N 10/00

712/29
GO6N 5/02

505/170
GOO6N 10/00

GOO6F 30/20

10/00
10/00
10/00
GOOF 7/501

2020/0210755 Al* GO6K 9/6232

tttttttttttttttt

7/2020 Luongo

OTHER PUBLICATTONS

Martin Giles, “Running quantum algorithms in the cloud just got a
lot faster”, Sep. 2018, MIT Technology Review article, Cloud

Computing, https://www.technologyreview.com/2018/09/07/66564/
faster-quantum-computing-in-the-cloud/ (Year: 2018).*

Zhang, Gengyan, et al. “Suppression of photon shot noise dephasing
in a tunable coupling superconducting qubit.” arXiv:1603.01224v3
[quant-ph] Jan. 20, 2017. 5 pages.

Ahmadi, Hamed, et al. “Quantum Phase Estimation with Arbitrary
Constant-precision Phase Shift Operators.” arXiv:1012.4727v4 [quant-
ph] Sep. 22, 2011. 14 pages.

Mell, Peter, et al. “The NIST Definition of Cloud Computing.”
National Institute of Standards and Technology. Sep. 2011. 7 pages.
“Qiskit Aqua—DBuilding algorithms for near-term quantum appli-
cations.” https://qiskit.org/aqua. Last Accessed Sep. 20, 2018. 7

pages.

* cited by examiner

U.S. Patent Jul. 27, 2021 Sheet 1 of 10 US 11,074,519 B2

11
11

CONCATENATION COMPONENT 108

-

RECEPTION | | FIRST QUANTUM |

| COMPONENT 110 | | ALGORITHM |
%% % | COMPONENT 112 |

111
111

o
=’
A
e
[T
<
o
-
5
o

, MEMORY
| PROCESSOR 114

118

FIG. 1

INPUT DEVICE(S)

100

U.S. Patent Jul. 27, 2021 Sheet 2 of 10 US 11,074,519 B2

| RECEPTION | | FIRST QUANTUM | | SECOND
| COMPONENT 110 | | ALGORITHM || QUANTUM

} | COMPONENT 112 1 | ALGORITHM ¢ |
* | COMPONENT 200 11 |

, MEMORY
| PROCESSOR 114

118

(NETWORK(S) 1049

FIG. 2

INPUT DEVICE(S)

100

U.S. Patent Jul. 27, 2021 Sheet 3 of 10 US 11,074,519 B2

SECOND

| FIRST QUANTUM |
< 5 QUANTUM

BY-

ALGORITHM = PRODUC

| COMPONENT 112 ALGORITHM

| COMPONENT 200 |

7 FIRST ™

FIG. 3

U.S. Patent Jul. 27, 2021 Sheet 4 of 10 US 11,074,519 B2

400}
410 -

SECOND

QUANTUM

- ALGORITHM
O

408 —~

wd DY~ W
|

- £l
111111111

SECOND

ALGORITHM P N RESULT
. COMPONENT 200

1111111111111 1 1 1713171271 TTETTREATTETT ETTRETTREITTETTRETTT R

FIG. 4

U.S. Patent Jul. 27, 2021 Sheet 5 of 10 US 11,074,519 B2

100 ==

SERVER 102 SECOND SERVER
i i 500

SECOND
QUANTUM
I ALGORITHM | |
| | COMPONENT 200 | |

| | FIRST QUANTUM | |
| | COMPONENT 112 | |

INPUT DEVICE(S)
106

FIG. 5

U.S. Patent Jul. 27, 2021 Sheet 6 of 10 US 11,074,519 B2

RECEIVING, BY A SYSTEM OPERATIVELY COUPLED TO A
PROCESSOR, AN INPUT REGARDING A QUANTUM COMPUTING
PROBLEM

CONCATENATING, BY THESYNSTEM, A FIRST QUANTUM

| ALGORITHM AND A SECOND QUANTUM ALGORITHM BY USING |g¢
| AN OUTPUT OF THE FIRST QUANTUM ALGORITHM AS AN |
INITIAL PARAMETER IN THE SECOND QUANTUM ALGORITHM

U.S. Patent Jul. 27, 2021 Sheet 7 of 10 US 11,074,519 B2

RECEIVING, BY A SYSTEM OPERATIVELY COUPLED TO A o 702

PROCESSOR, AN INPUT REGARDING A QUANTUM COMPUTING
PROBLEM zé

| EXECUTING, BY THE SYSTEM, A FIRST QUANTUM ALGORITHM |4
BASED ON THE INPUT 5;

TERMINATING, BY THE SYSTEM, THE EXECUTION EARLY TO s 100

| DETERMINE AN OUTPUT DEVELOPED BY THE FIRST QUANTUM
ALGORITHMS ;;

EXECUTING, BY THE SYSTEM, A SECOND QUANTUM
ALGORITHM USING THE OUTPUT AS AN INITIAL PARAMETER |

US 11,074,519 B2

Sheet 8 of 10

Jul. 27, 2021

U.S. Patent

R R -
g AT I I FFF IR F T S
] 18 -

FIG. 8

U.S. Patent Jul. 27, 2021 Sheet 9 of 10 US 11,074,519 B2

2 Nl

‘a’&rﬁuaﬁuﬂm
9*0/ M=l - ¢
7 gos ogs 9fs omh 912 oi4 916 918//
| Hmﬁw.ﬁmﬂmiﬁﬁﬁwm
902

*

FIG. 9

U.S. Patent Jul. 27, 2021 Sheet 10 of 10 US 11,074,519 B2

1000 =

boooszaacacs 1012

OUTPUT

n =P QUTPUT
| ADAPTER(S) I

DEVICE

111111111111111111111111111111

SYSTEM 1\ |
ME}L\/IO RY ,,,,,,,,,,,,,,,,

DEVICE

NETWORK |

| INTERFACE |

COMMUNICATION H_
CONNECTION H

111

-
|

REMOTE
COMPUTER

ME:MO RY |
TORAGE S —— 1044

US 11,074,519 B2

1
QUANTUM ALGORITHM CONCATENATION

BACKGROUND

The subject disclosure relates to quantum algorithm con-
catenation, and more specifically, concatenating a plurality
ol quantum algorithms that can share one or more common
components.

The field of quantum computing comprises a variety of
quantum algorithms, which can run on one or more models
of quantum computation (e.g., a quantum circuit model of
computation). Quantum algorithms can be performed on a
quantum computer and/or can be characterized by the use of
a feature of quantum computation, such as quantum super-
position and/or quantum entanglement.

Respective quantum algorithms can be designed to
achieve specific analysis features. For example, quantum
algorithms can be developed for use with a random 1nitial
trial state, wherein the quantum algorithms can rely on
classical optimization iterations to achieve one or more
results. In another example, quantum algorithms can be
developed to achieve highly accurate results while minimiz-
ing dependency on classical operations. However, achieve-
ment of these analysis features can come with one or more
disadvantages. For instance, quantum algorithms that utilize
classical optimization 1terations can take a substantially long
time to execute. In another instance, quantum algorithms
that mimmize dependency on classical operations can
require an accurate initial parameter to reach a highly
accurate result. Thus, the use of a single quantum algorithm
to address one or more computations can inherently com-
prise one or more drawbacks.

SUMMARY

The following presents a summary to provide a basic
understanding of one or more embodiments of the invention.
This summary 1s not intended to identity key or critical
clements, or delineate any scope of the particular embodi-
ments or any scope of the claims. Its sole purpose 1s to
present concepts 1n a simplified form as a prelude to the
more detailed description that 1s presented later. In one or
more embodiments described herein, systems, computer-
implemented methods, apparatuses and/or computer pro-
gram products that can facilitate concatenation of multiple
quantum computing algorithms are described.

According to an embodiment, a system 1s provided. The
system can comprise a memory that stores computer execut-
able components. The system can also comprise a processor,
operably coupled to the memory, and that executes the
computer executable components stored 1n the memory. The
computer executable components can comprise a concat-
enation component, operatively coupled to the processor,
that can concatenate a first quantum algorithm and a second
quantum algorithm by using an output of the first quantum
algorithm as an 1initial parameter in the second quantum
algorithm. An advantage of such a system can be the
utilization of multiple quantum algorithms to solve a quan-
tum computing problem.

In some examples, the system can concatenate the first
quantum algorithm and the second quantum algorithm to
perform a quantum phase estimation. An advantage of such
a system can be the generation of a highly accurate quantum
phase estimation within a runtime that 1s shorter than typical
techniques.

According to an embodiment, a computer-implemented
method 1s provided. The computer-implemented method can

5

15

20

25

30

35

40

45

50

55

60

65

2

comprise concatenating, by a system operatively coupled to
a processor, a first quantum algorithm and a second quantum

algorithm by using an output of the first quantum algorithm
as an 1nitial parameter in the second quantum algorithm. An
advantage of such a computer-implemented method can be
that the 1inherent strengths of respective quantum algorithms
can be aggregated to solve a quantum computing problem.

In some examples, the computer-implemented method
can comprise terminating, by the system, an execution of the
first quantum algorithm early to determine the output. An
advantage of such a computer-implemented method can be
a reduction in the runtime of the first quantum algorithm.

According to an embodiment, a computer program prod-
uct for a quantum algorithm concatenation 1s provided. The
computer program product can comprise a computer read-
able storage medium having program instructions embodied
therewith. The program instructions can be executable by a
processor to cause the processor to concatenate, by a system
operatively coupled to the processor, a first quantum algo-
rithm and a second quantum algorithm by using an output of
the first quantum algorithm as an initial parameter n the
second quantum algorithm. An advantage of such a com-
puter program product can be that inherent limitations of
respective quantum algorithms can be overcome by the
function of one or more other concatenated quantum algo-
rithms.

In some examples of the computer program product, the
system can concatenate the first quantum algorithm and the
second quantum algorithm in a cloud computing environ-
ment. An advantage of such an embodiment can be the
utilization of multiple computing devices to expedite con-
catenation and/or calculation processes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of an example, non-
limiting system that can concatenate a plurality of quantum
algorithms 1n accordance with one or more embodiments
described herein.

FIG. 2 illustrates a block diagram of an example, non-
limiting system that can concatenate a plurality of quantum
algorithms in accordance with one or more embodiments
described herein.

FIG. 3 illustrates a flow diagram of an example, non-
limiting concatenation processes that can facilitate an
autonomous concatenation of a plurality of quantum algo-
rithms 1n accordance with one or more embodiments
described herein.

FIG. 4 illustrates a flow diagram of an example, non-
limiting concatenation processes that can facilitate an
autonomous concatenation of a plurality of quantum algo-
rithms 1n accordance with one or more embodiments
described herein.

FIG. 5 1llustrates a block diagram of an example, non-
limiting system that can concatenate a plurality of quantum
algorithms in accordance with one or more embodiments
described herein.

FIG. 6 illustrates a flow diagram of an example, non-
limiting method that can facilitate an autonomous concat-
enation of a plurality of quantum algorithms 1n accordance
with one or more embodiments described herein.

FIG. 7 illustrates a flow diagram of an example, non-
limiting method that can facilitate an autonomous concat-
enation of a plurality of quantum algorithms 1n accordance
with one or more embodiments described herein.

FIG. 8 depicts a cloud computing environment 1n accor-
dance with one or more embodiments described herein.

US 11,074,519 B2

3

FIG. 9 depicts abstraction model layers in accordance
with one or more embodiments described herein
FIG. 10 illustrates a block diagram of an example, non-

limiting operating environment in which one or more
embodiments described herein can be facilitated.

DETAILED DESCRIPTION

The following detailed description 1s merely 1llustrative
and 1s not mtended to limit embodiments and/or application
or uses of embodiments. Furthermore, there 1s no intention
to be bound by any expressed or implied information
presented in the preceding Background or Summary sec-
tions, or 1n the Detailed Description section.

One or more embodiments are now described with refer-
ence to the drawings, wherein like referenced numerals are
used to refer to like elements throughout. In the following
description, for purposes of explanation, numerous specific
details are set forth in order to provide a more thorough
understanding of the one or more embodiments. It 1s evident,
however, 1n various cases, that the one or more embodiments
can be practiced without these specific details.

(Given the above problems with the conventional quantum
algorithms, the present disclosure can be implemented to
produce a solution to one or more of these problems in the
form of an autonomous concatenations of a plurality of
quantum algorithms. For example, concatenation of multiple
quantum algorithms can achieve the advantages of respec-
tive quantum algorithms while minimizing respective dis-
advantages of the individual quantum algorithms. Advanta-
geously, through one or more concatenation processes, one
or more outputs (e.g., byproducts) of a first quantum algo-
rithm can be utilized to optimize the performance of a
second quantum computing algorithm. Additionally, concat-
cnation can facilitate 1n minimizing undesirable features
typically experienced using single quantum algorithm by
using the strengths of one quantum algorithm to compensate
for the weaknesses of another quantum algorithm.

Various embodiments of the present invention can be
directed to computer processing systems, computer-imple-
mented methods, apparatus and/or computer program prod-
ucts that facilitate the eflicient, effective, and autonomous
(e.g., without direct human guidance) concatenation of a
plurality of quantum algorithms. One or more embodiments
can regard the use of a first quantum algorithm to generate
one or more outputs that can then be utilized to improve the
performance of a second quantum algorithm. For example,
various embodiments can comprise identifying one or more
common components ol different quantum algorithms and
arranging the executions of the quantum algorithms 1n a
sequential order to facilitate concatenation.

The computer processing systems, computer-imple-
mented methods, apparatus and/or computer program prod-
ucts employ hardware and/or software to solve problems
that are highly technical in nature (e.g., the concatenation of
multiple quantum algorithms), that are not abstract and
cannot be performed as a set of mental acts by a human. For
example, an individual, or a plurality of individuals, cannot
readily perform one or more quantum algorithms as
described herein. Even where a quantum algorithm utilizes
one or more classical operations, a human cannot derive said
operations with the level of eflectiveness and/or efliciency
that can be achieved by the computer processing systems,
computer-implemented methods, and/or computer program
products described herein.

FIG. 1 illustrates a block diagram of an example, non-
limiting system 100 that can concatenate a plurality of

10

15

20

25

30

35

40

45

50

55

60

65

4

quantum algorithms i1n accordance with one or more
embodiments described herein. Repetitive description of
like elements employed in other embodiments described
herein 1s omitted for sake of brevity. Aspects of systems
(e.g., system 100 and the like), apparatuses or processes in
various embodiments of the present invention can constitute
one or more machine-executable components embodied
within one or more machines, ¢.g., embodied 1n one or more
computer readable mediums (or media) associated with one
or more machines. Such components, when executed by the
one or more machines, e.g., computers, computing devices,
virtual machines, etc. can cause the machines to perform the
operations described.

As shown 1n FIG. 1, the system 100 can comprise one or
more servers 102, one or more networks 104, and/or one or
more input devices 106. The server 102 can comprise
concatenation component 108. The concatenation compo-
nent 108 can further comprise reception component 110
and/or first quantum algorithm component 112. Also, the
server 102 can comprise or otherwise be associated with at
least one memory 114. The server 102 can further comprise
a system bus 116 that can couple to various components such
as, but not limited to, the concatenation component 108 and
associated components, memory 114 and/or a processor 118.
While a server 102 is 1llustrated 1n FIG. 1, 1n other embodi-
ments, multiple devices of various types can be associated
with or comprise the features shown in FIG. 1. Further, the
server 102 can communicate with one or more cloud com-
puting environments via the one or more networks 104.

The one or more networks 104 can comprise wired and
wireless networks, mcluding, but not limited to, a cellular
network, a wide area network (WAN) (e.g., the Internet) or
a local area network (LAN). For example, the server 102 can
communicate with the one or more input devices 106 (and
vice versa) using virtually any desired wired or wireless
technology including for example, but not limited to: cel-
lular, WAN, wireless fidelity (Wi-F1), Wi-Max, WLAN,
Bluetooth technology, a combination thereof, and/or the
like. Further, although 1n the embodiment shown the con-
catenation component 108 can be provided on the one or
more servers 102, 1t should be appreciated that the archi-
tecture of system 100 1s not so limited. For example, the
concatenation component 108, or one or more components
ol concatenation component 108, can be located at another
computer device, such as another server device, a client
device, etc.

The one or more mput devices 106 can comprise one or
more computerized devices, which can include, but are not
limited to: personal computers, desktop computers, laptop
computers, cellular telephones (e.g., smart phones), com-
puterized tablets (e.g., comprising a processor), smart
watches, keyboards, touch screens, mice, a combination
thereof, and/or the like. A user of the system 100 can utilize
the one or more mput devices 106 to imnput data into the
system 100, thereby sharing (e.g., via a direct connection
and/or via the one or more networks 104) said data with the
server 102. For example, the one or more mput devices 106
can send data to the reception component 110 (e.g., via a
direct connection and/or via the one or more networks 104).
Additionally, the one or more mput devices 106 can com-
prise one or more displays that can present one or more
outputs generated by the system 100 to a user. For example,
the one or more displays can include, but are not limited to:
cathode tube display (“CRT”), light-emitting diode display
(“LED”), electroluminescent display (“ELD”), plasma dis-

US 11,074,519 B2

S

play panel (“PDP”), liquid crystal display (“LCD”), organic
light-emitting diode display (“OLED”), a combination
thereot, and/or the like.

A user of the system 100 can utilize the one or more input
devices 106 and/or the one or more networks 104 to: select
one or more quantum algorithms for concatenation, provide
one or more parameters to be analyzed via one or more
quantum algorithms, input one or more quantum algorithms
for concatenation, a combination thereof, and/or the like.
Additionally, a user of the system 100 can utilize the one or
more mput devices 106 and/or one or more networks 104 to
view one or more outputs generated from respective quan-
tum algorithms and/or a concatenation of multiple quantum
algorithms.

The reception component 110 can receive the data entered
by a user of the system 100 via the one or more 1nput devices
106. The reception component 110 can be operatively
coupled to the one or more mput devices 106 directly (e.g.,
via an electrical connection) or mdirectly (e.g., via the one
or more networks 104). Additionally, the reception compo-
nent 110 can be operatively coupled to one or more com-
ponents of the server 102 (e.g., one or more component
associated with the concatenation component 108, system
bus 116, processor 118, and/or memory 114) directly (e.g.,
via an electrical connection) or mdirectly (e.g., via the one
or more networks 104). In one or more embodiments, the
one or more mputs (e.g., settings, commands, data, and/or
selections) received by the reception component 110 can be
communicated to the associate components of the concat-
enation component 108 (e.g., directly or indirectly) and/or
can be stored 1n the memory 114 (e.g., located on the server
102 and/or within a cloud computing environment).

The first quantum algorithm component 112 can execute
one or more first quantum algorithms. In one or more
embodiments, the one or more first quantum algorithms can
be stored in the memory 114, and the first quantum algo-
rithm component 112 can select the one or more first
quantum algorithms for execution based on an 1nput
received by the one or more mput devices 106 and/or
networks 104 (e.g., a user defined selection). In one or more
embodiments, the one or more first quantum algorithms can
be mputted into the system 100 via the one or more nput
devices 106 and/or the one or more networks 104. Addi-
tionally, the first quantum algorithm component 112 can run
the one or more {irst quantum algorithms in accordance with
one or more variables defined by a user of the system 100
(e.g., mputted mnto the system 100 via the one or more 1nput
devices 106 and/or networks 104).

In various embodiments, the one or more first quantum
algorithms can be vanational quantum algorithms and/or
adiabatic quantum algorithms. Example first quantum algo-
rithms can include, but are not limited to: a variational
quantum Figensolver (“VQE”) algorithm, a varnational
quantum (k-)Eigensolver (“VQ(K)E”) algorithm, a quantum
adiabatic state preparation algorithm, a quantum preparation
ol gaussian states algorithm, a combination thereof, and/or
the like. The one or more first quantum algorithms can be
selected (e.g., by the first quantum algorithm component 112
and/or by a user of the system 100) based on one or more
advantages provided by the subject quantum algorithm. For
example, the first quantum algorithm component 112 can
execute one or more VQ(K)E algorithms to take advantage
of the VQ(K)E algorithms’ ability to begin performance with
a random 1nitial trial state. For instance, an 1nitial trial state
can be randomly generated by the first quantum algorithm
component 112 to begin execution of the one or more
VQ(K)E algorithms, and/or a random 1nitial trial state can be

10

15

20

25

30

35

40

45

50

55

60

65

6

received by the concatenation component 108 (e.g., via the
one or more input devices 106 and/or the one or more
networks 104).

By executing the one or more first quantum algorithms,
the first quantum algorithm component 112 can determine
one or more outputs. The one or more outputs can be results
achieved by the one or more first quantum algorithms and/or
one or more by-products developed to achieve the results,
such as one or more parameters developed through one or
more evolutions of the one or more first quantum algorithms.
For example, wherein the one or more {irst quantum algo-
rithms are VQ(K)E algorithms, one or more quantum state
wave functions can be evolved through the execution of the
subject quantum algorithm. For instance, a VQ(K)E algo-
rithm executed by the first quantum algorithm component
112 can evolve a quantum state wave function to approach
the Figenvector corresponding to the target Eigenvalue via
a quantum subroutine run inside of a classical optimization
loop. In various embodiments, one or more of the outputs
(e.g., a by-product such as a parameterized quantum state
wave fTunction) determined by the first quantum algorithm
component 112 can be a common component in one or more
second algorithms executed later 1n the concatenation pro-
cesses facilitated by the concatenation component 108.

In one or more embodiments, the one or more outputs can
be determined by the first quantum algorithm component
112 prior to a complete processing of the subject one or more
first quantum algorithms. For example, the first quantum
algorithm component 112 can determine one or more desired
outputs (e.g., one or more parameterized quantum state
wave fTunctions) during execution of the one or more first
quantum algorithms and subsequently perform an early
termination of the execution. The early termination point
enforced by the first quantum algorithm component 112 can
be determined based on one or more factors, which can
include, but are not limited to: a user defined maximum
number of iterations, a tolerance of inaccuracy, a conver-
gence criteria, a combination thereof, and/or the like. For
instance, wherein the one or more first quantum algorithms
are VQ(K)E algorithms, a parameterized quantum state wave
function can be developed during execution of the subject
algorithms but prior to completion of the classical optimi-
zation loop. Therefore, the first quantum algorithm compo-
nent 112 can terminate execution of the VQ(K)E algorithm
carly and/or utilize the last evolved version of the quantum
state wave function as an output to be utilized in a concat-
enation process (e.g., as a common component to facilitate
concatenation).

In one or more embodiments, the first quantum algorithm
component 112 can minimize one or more disadvantages
inherent 1n the one or more first quantum algorithms by
focusing on a determination of the one or more outputs (e.g.,
common components of concatenation) rather than the con-
ventional results achieved by the subject quantum algo-
rithms. For example, wherein the one or more {irst quantum
algorithms are VQ(K)E algorithms, a disadvantage of the
subject quantum algorithms can be the substantial run time
necessitated to complete a full execution of the quantum
algorithm (e.g., complete the optimization loop). However,
the first quantum algorithm component 112 can reduce the
run time and thereby minimize the VQ(K)E algorithm’s
disadvantage by terminating the VQ(k)E early. By perform-
ing an early termination, the first quantum algorithm com-
ponent 112 can determine one or more outputs (e.g., one or
more evolutions of a parameterized quantum state wave
function) while minimizing one or more disadvantages (e.g.,
minimizing the run time) of the VQ(K)E algorithm.

US 11,074,519 B2

7

FIG. 2 illustrates another diagram of the example, non-
limiting system 100 further comprising a second quantum
algorithm component 200 1n accordance with one or more
embodiments described herein. Repetitive description of
like elements employed in other embodiments described
herein 1s omitted for sake of brevity. The second quantum
algorithm component 200 can facilitate in concatenating the
one or more first quantum algorithms with one or more
second quantum algorithms.

In various embodiments, the second quantum algorithm
component 200 can execute one or more second quantum
algorithms based on the one or more outputs determined by
the first quantum algorithm component 112. The one or more
outputs determined by the first quantum algorithm compo-
nent 112 can be stored in the memory 114 and thereby
retrieved by the second quantum algorithm component 200.
Additionally, and/or alternatively, the second quantum algo-
rithm component 200 can receive the one or more outputs
from the first quantum algorithm component 112 directly
(e.g., via electrical connection) and/or indirectly (e.g., via
the one or more networks 104).

The one or more second quantum algorithms can be
stored 1n the memory 114, and the second quantum algo-
rithm component 200 can select the one or more second
quantum algorithms for execution based on an 1nput
received by the one or more mput devices 106 and/or
networks 104 (e.g., a user defined selection). In one or more
embodiments, the one or more second quantum algorithms
can be inputted into the system 100 via the one or more 1nput
devices 106 and/or the one or more networks 104. Addi-
tionally, the second quantum algorithm component 200 can
run the one or more second quantum algorithms 1n accor-
dance with one or more variables defined by a user of the
system 100 (e.g., mputted into the system 100 via the one or
more input devices 106 and/or networks 104).

The one or more second quantum algorithms can be one
or more quantum algorithms that are distinct from the one or
more first quantum algorithms. Example second quantum
algorithms can include, but are not limited to: quantum
phase estimation (“QPE”) algorithms, (iterative) quantum
phase estimation (“(1)QPE”) algorithms, approximate quan-
tum phase estimation (“aQPE”) algorithms, a combination
thereotf, and/or the like. In one or more embodiments, the
one or more second quantum algorithms can be selected
(e.g., by the second quantum algorithm component 200
and/or a user of the system 100) based on one or more
strengths of the second quantum algorithms and/or one or
more common components with the one or more first
quantum algorithms. For example, the second quantum
algorithm component 200 can execute one or more (1)QPE
algorithms to take advantage of the algorithms’ high level of
accuracy and/or mimimal dependency on classical opera-
tions. Additionally, wheremn the first quantum algorithm
component 112 executes a VQ(K)E algorithm, the second
quantum algorithm component 200 can execute one or more
(1)QPE algorithms to utilize one or more common compo-
nents between the two algorithms, such as the use of a
quantum state wave function.

In various embodiments, the second quantum algorithm
component 200 can utilize the one or more outputs deter-
mined by the first quantum algorithm component 112 to
execute the one or more second quantum algorithms. For
example, the second quantum algorithm component 200 can
utilize the one or more outputs to develop an 1nitial trial state
to begin execution of the one or more second quantum
algorithms. For instance, wherein the first quantum algo-
rithm component 112 executes one or more VQ(K)E algo-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

rithms and determines one or more parameterized quantum
state wave functions, the second quantum algorithm com-
ponent 200 can use the parameterized quantum state wave
functions as an 1nitial state of analysis by the one or more
second quantum algorithms (e.g., (1)QPE algorithms). Thus,
the second quantum algorithm component 200 can substitute
the one or more outputs determined by the first quantum
algorithm component 112 with one or more common com-
ponents of the one or more second quantum algorithms to
facilitate execution of the one or more second quantum
algorithms.

Additionally, 1n various embodiments the second quan-
tum algorithm component 200 can minimize one or more
disadvantages inherent to the one or more second quantum
algorithms by utilizing the one or more outputs of the first
quantum algorithm component 112 as a common component
in the execution of the one or more second quantum algo-
rithm components. For example, wherein the one or more
second quantum algorithms are (1)QPE algorithms, a disad-
vantage of the subject quantum algorithms can be that the
accuracy of the results achieved by the (1)QPE algorithms
can be dependent on the quality of mmitial parameters
selected to develop an 1nitial state of analysis (e.g., accuracy
of the result can depend on a proximity between the result
and the mtial state utilized to begin execution of the
algorithm). For instance, random 1mitial trial states can lead
to 1naccurate results achieved by the (1)QPE algorithm.
Thus, the enhanced accuracy capabilities of the (1)QPE
algorithm can be difhicult to realize where one or more 1itial
state parameters are unknown. However, the disadvantages
of the (1)QPE algorithms can be minimized by utilizing the
one or more outputs of the first quantum algorithm compo-
nent 112 to delineate an 1nitial state for execution, wherein
the one or more first quantum algorithms (e.g., VQ(K)E,
VQE, and/or adiabatic algorithms) can develop one or more
initial state parameters (e.g., parameterized quantum state
wave Tunctions) from random values. By utilizing the one or
more outputs determined by the first quantum algorithm
component 112 as one or more 1nitial parameters for execu-
tion of the one or more second quantum algorithms, the
second quantum algorithm component 200 can overcome
one or more inherent disadvantages of the one or more
second quantum algorithms and achieve one or more accu-
rate results. Additionally, the second quantum algorithm
component 200 can send one or more results generated by
the execution of the one or more second quantum algorithms
to the one or more input devices 106 (e.g., directly and/or via
the one or more networks 104) for review by a user of the
system 100.

For instance, in exemplary embodiment described to
articulate one or more of the features described herein, the
first quantum algorithm component 112 can execute a
VQ(K)E algorithm with a random 1nitial trial state. Subse-
quently, the first quantum algorithm component 112 can
perform an early termination of the execution of the VQ(K)E
algorithm. During the shortened execution of the VQ(K)E
algorithm, the first quantum algorithm component 112 can
determine one or more parameterized quantum state wave
functions that can serve as common components for con-
catenation with one or more second quantum algorithms.
The second quantum algorithm component 200 can utilized
the parameterized quantum state wave functions to prepare
an 1nitial state for the execution of a (1)QPE algorithm.
Additionally, the second quantum algorithm component 200
can execute the prepared (1)QPE algorithm (e.g., based on
the parameterized quantum state wave function developed
by the VQ(K)E algorithm) to generate a quantum phase

US 11,074,519 B2

9

estimation. One of ordinary skill in the art will recognize
that the various embodiments described herein are not
limited to the quantum algorithms and/or common compo-
nents of the quantum algorithms described with regards to
this exemplary embodiment. Rather, the principals delin-
cated through the description of this exemplary embodiment
are applicable to a variety of quantum algorithms and/or
common components (e.g., outputs) as described herein.

FIG. 3 1llustrates a diagram of an example, non-limiting
concatenation process 300 that can be performed by the
concatenation component 108 1n accordance with one or
more embodiments described herein. Repetitive description
ol like elements employed 1n other embodiments described
herein 1s omitted for sake of brevity.

At 302 of the concatenation process 300, the concatena-
tion component 108 can receive one or more inputs. For
instance, the one or more inputs can be generated by a user
of the system 100 via the one or more mput devices 106.
Example mputs can include, but are not limited to: target
problem configurations, termination and/or convergence cri-
teria for subject quantum algorithms, a combination thereof,
and/or the like.

At 304 of the concatenation process 300, the first quantum
algorithm component 112 can execute one or more {first
quantum algorithms based on the received inputs to generate
one or more first results. In one or more embodiments, the
execution of the one or more first quantum algorithms can be
a shortened execution, wherein the first quantum algorithm
component 112 can perform an early termination of the one
or more first quantum algorithms.

At 306 of the concatenation process 300, the first quantum
algorithm component 112 can determine one or more by-
products developed during the execution (e.g., shortened
execution) of the one or more first quantum algorithms. The
one or more by-products can be common components shared
by the one or more first quantum algorithms executed by the
first quantum algorithm component 112 and/or one or more
second quantum algorithms to be executed by the second
quantum algorithm component 200. For example, the one or
more by-products can be one or more parameterized quan-
tum wave functions (e.g., parameterized for an Eigenvector).

At 308 of the concatenation process 300, the first quantum
algorithm component 112 can output the one or more
by-products to the second quantum algorithm component
200. For example, the first quantum algorithm component
112 can output the one or more by-products through a direct
clectrical connection and/or via one or more networks 104.

At 310 of the concatenation process 300, the second
quantum algorithm component 200 can execute one or more
second quantum algorithms utilizing the one or more by-
products to generate one or more second results. For
example, the one or more by-products can be utilized by the
second quantum algorithm component 200 to prepare an
in1tial state for execution of the one or more second quantum
algorithms. In various embodiments, the second result can
be more accurate than the first result.

FIG. 4 1llustrates a diagram of an example, non-limiting,
concatenation process 400 that can be performed by the
concatenation component 108 1n accordance with one or
more embodiments described herein. Repetitive description
of like elements employed 1n other embodiments described
herein 1s omitted for sake of brevity.

At 402 of the concatenation process 400, the concatena-
tion component 108 can receive one or more mputs. For
instance, the one or more inputs can be generated by a user
of the system 100 via the one or more mput devices 106.
Example mputs can include, but are not limited to: target

10

15

20

25

30

35

40

45

50

55

60

65

10

problem configurations, termination and/or convergence cri-
teria for subject quantum algorithms, a combination thereof,
and/or the like.

At 404 of the concatenation process 400, the first quantum
algorithm component 112 can execute one or more {irst
quantum algorithms based on the received inputs to generate
one or more first results. In one or more embodiments, the
execution of the one or more first quantum algorithms can be
a shortened execution, wherein the first quantum algorithm
component 112 can perform an early termination of the one
or more first quantum algorithms.

At 406 of the concatenation process 400, the first quantum
algorithm component 112 can determine one or more by-
products developed during the execution (e.g., shortened
execution) of the one or more first quantum algorithms. The
one or more by-products can be common components shared
by the one or more first quantum algorithms executed by the
first quantum algorithm component 112 and/or one or more
second quantum algorithms to be executed by the second
quantum algorithm component 200. For example, the one or
more by-products can be one or more parameterized quan-
tum wave functions (e.g., parameterized for an Eigenvector).

At 408 of the concatenation process 400, the first quantum
algorithm component 112 can output the one or more
by-products to a plurality of second quantum algorithm
components 200. For example, the first quantum algorithm
component 112 can output the one or more by-products
through a direct electrical connection and/or via one or more
networks 104. In one or more embodiments, the first quan-
tum algorithm component 112 can output respect by-prod-
ucts to respective second quantum algorithm components
200, which can execute the same one or more second
quantum algorithms. In one or more embodiments, the first
quantum algorithm component 112 can output the same
by-products to respective second quantum algorithm com-
ponents 200 that can run respective second quantum algo-
rithms. In one or more embodiments, the first quantum
algorithm component 112 can output respective by-products
to respective second quantum algorithm components 200
that can run respective second quantum algorithms.

At 410 of the concatenation process 400, the respective
second quantum algorithm component 200 can execute one
or more second quantum algorithms utilizing the one or
more by-products to generate one or more respective second
results. For example, the one or more by-products can be
utilized by the respective second quantum algorithm com-
ponent 200 to prepare one or more 1nitial state for execution
of the one or more second quantum algorithms. In various
embodiments, the respective second results can be more
accurate than the first result.

FIG. 5 illustrates a diagram of the example, non-limiting
system 100 comprising a second server 500 in accordance
with one or more embodiments described herein. Repetitive
description of like elements employed 1n other embodiments
described herein 1s omitted for sake of brevity. FIG. 5
exemplifies that one or more concatenation operations can
be performed by a plurality of servers working in conjunc-
tion with each other.

The second server 500 can comprise the same compo-
nents and/or can perform the same features as the server 102.
As depicted 1n FIG. 5, one or more outputs and/or determi-
nations formed at a first server (e.g., server 102) can be
shared with one or more other servers (e.g., second server
500) to facilitate concatenation of multiple quantum algo-
rithms at an expedited rate. For example, one or more
outputs (e.g., common components such as a parameterized
quantum state wave function) determined by a first quantum

US 11,074,519 B2

11

algorithm component 112 comprised within a first server
(e.g., server 102) can be outputted (e.g., via a direct elec-
trical connection and/or via the one or more networks 104)
to a second quantum algorithm component 200 comprised
within another server (e.g., server 500). By sharing the
computation workload across multiple servers (e.g., server
102 and/or one or more second servers 300), the system 100
can expedite one or more concatenation processes and/or the
generation of one or more results.

FIG. 6 illustrates a flow diagram of an example, non-
limiting method 600 that can be implemented by the system
100 to facilitate the concatenation of a plurality of quantum
algorithms 1n accordance with one or more embodiments
described herein.

At 602, the method 600 can comprise receiving, by a
system 100 (e.g., via the reception component 110 and/or the
one or more networks 104) operatively coupled to a pro-
cessor 118, one or more inputs regarding one or more
quantum computing problems (e.g., a problem that can be
solved through the implementation of quantum computing
techniques). In one or more embodiments, a user of the
system 100 can enter the one or more 1puts via one or more
input devices 106. Example mputs that can be received at
602 can include, but are not limited to: target problem
configurations, termination and/or convergence criteria for
subject quantum algorithms, a combination thereof, and/or
the like.

At 604, the method 600 can comprise concatenating, by
the system 100 (e.g., via the concatenation component 108),
one or more first quantum algorithms and one or more
second quantum algorithms by using one or more outputs of
the one or more first quantum algorithms as one or more
initial parameters 1n the one or more second quantum
algorithms. Example first quantum algorithms can include,
but are not limited to: VQE algorithms, VQ(k)E algorithms,
adiabatic algorithms, a quantum adiabatic state preparation
algorithm, a quantum preparation of gaussian states algo-
rithm, a combination thereof, and/or the like. Example
second quantum algorithms can include, but are not limited
to: QPE algorithms, (1)QPE algorithms, aQPE, a combina-
tion thereol, and/or the like. The one or more outputs can be
one or more by-products (e.g., parameterized quantum state
wave functions) developed during the execution of the one
or more {irst quantum algorithms. Additionally, the one or
more outputs can regard common components shared
between the quantum algorithms subject to concatenation.

In various embodiments, the concatenation at 604 can
comprise performing (e.g., via the first quantum algorithm
component 112) a shortened execution of the one or more
first quantum algorithms via an early termination procedure.
For example, an early termination enforced by the first
quantum algorithm component 112 can be determined based
on one or more factors, which can include, but are not
limited to: a user defined maximum number of iterations, a
tolerance of 1naccuracy, convergence criteria, a combination
thereof, and/or the like. Additionally, in one or more
embodiments, the concatenation at 604 can comprise pre-
paring (e.g., via the second quantum algorithm component
200) an mitial state for the one or more second quantum
algorithms with the one or more outputs. Advantageously,
the concatenation facilitated by method 600 can combine
one or more advantages (e.g., enhanced accuracy) of respec-
tive quantum algorithms to solve the quantum computing
problem.

FIG. 7 illustrates a flow diagram of an example, non-
limiting method 700 that can be implemented by the system

5

10

15

20

25

30

35

40

45

50

55

60

65

12

100 to facilitate the concatenation of a plurality of quantum
algorithms in accordance with one or more embodiments
described herein.

At 702, the method 700 can comprise receiving, by a
system 100 (e.g., via the reception component 110 and/or the
one or more networks 104) operatively coupled to a pro-
cessor 118, one or more inputs regarding one or more
quantum computing problems (e.g., a problem that can be
solved through the implementation of quantum computing
techniques). In one or more embodiments, a user of the
system 100 can enter the one or more 1puts via one or more
input devices 106. Example mputs that can be received at
702 can include, but are not limited to: target problem
configurations, termination and/or convergence criteria for
subject quantum algorithms, a combination thereof, and/or
the like.

At 704, the method 700 can comprise executing, by the
system 100 (e.g., via the first quantum algorithm component
112), one or more first quantum algorithms based on the one
or more inputs received at 702. Example first quantum
algorithms can include, but are not limited to: VQE algo-
rithms, VQ(K)E algorithms, adiabatic algorithms, a quantum
adiabatic state preparation algorithm, a quantum preparation
of gaussian states algorithm, a combination thereof, and/or
the like.

At 706, the method 700 can comprise terminating, by the
system 100 (e.g., via the first quantum algorithm component
112), the execution of 704 early to determine an output
developed by the one or more first quantum algorithms. The
terminating at 706 can be influenced by one or more factors,
including, but not lmmited to: a user defined maximum
number of 1terations, a tolerance of 1naccuracy, convergence
criteria, a combination thereodf, and/or the like. The one or
more outputs can be one or more by-products developed
during the execution of the one or more first quantum
algorithms. Additionally, the one or more outputs can regard
common components shared between the quantum algo-
rithms subject to concatenation. An example output that can
be developed by the one or more first quantum algorithms
during the shortened execution can be one or more param-
cterized quantum state wave functions (e.g., parameterized
for an Eigenvector).

At 708, the method 700 can comprise executing, by the
system 100 (e.g., via the second quantum algorithm com-
ponent 200), one or more second quantum algorithms using
the output as one or more nitial parameters. Example
second quantum algorithms can include, but are not limited
to: QPE algorithms, (1)QPE algorithms, aQPE, a combina-
tion thereof, and/or the like. In one or more embodiments,
the executing at 708 can comprise preparing (e.g., via the
second quantum algorithm component 200) an 1nitial state
with the one or more outputs to facilitate exaction of the one
or more second quantum algorithms. Advantageously, the
concatenation facilitated by method 700 can minimize one
or more inherent disadvantages (e.g., long run time) of
respective quantum algorithms while generating a solution
to the quantum computing problem.

It 1s to be understood that although this disclosure
includes a detailed description on cloud computing, 1imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable ol being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,

US 11,074,519 B2

13

network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
cllort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand seli-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(c.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specily
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale 1n. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased 1n any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer 1s to use the provider’s applications running on
a cloud inirastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer 1s to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deploved
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer 1s to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer 1s able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

10

15

20

25

30

35

40

45

50

55

60

65

14

Deployment Models are as follows:

Private cloud: the cloud infrastructure 1s operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or oil-premises.

Community cloud: the cloud infrastructure i1s shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or oll-premises.

Public cloud: the cloud mfrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrd cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
1zed or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment 1s service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing 1s
an infrastructure that includes a network of interconnected
nodes.

Referring now to FIG. 8, illustrative cloud computing
environment 800 1s depicted. As shown, cloud computing
environment 800 includes one or more cloud computing
nodes 802 with which local computing devices used by
cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 804, desktop computer
806, laptop computer 808, and/or automobile computer
system 810 may communicate. Nodes 802 may communi-
cate with one another. They may be grouped (not shown)
physically or virtually, in one or more networks, such as
Private, Commumnity, Public, or Hybrid clouds as described
hereinabove, or a combination thereof. This allows cloud
computing environment 800 to ofler inirastructure, plat-
forms and/or software as services for which a cloud con-
sumer does not need to maintain resources on a local
computing device. It 1s understood that the types of com-
puting devices 804-810 shown 1n FIG. 8 are intended to be
illustrative only and that computing nodes 802 and cloud
computing environment 800 can communicate with any type
of computerized device over any type ol network and/or
network addressable connection (e.g., using a web browser).

Referring now to FIG. 9, a set of functional abstraction
layers provided by cloud computing environment 800 (FIG.
8) 1s shown. Repetitive description of like elements
employed 1n other embodiments described herein 1s omitted
for sake of brevity. It should be understood 1n advance that
the components, layers, and functions shown in FIG. 9 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided.

Hardware and software layer 902 includes hardware and
soltware components. Examples of hardware components
include: mainirames 904; RISC (Reduced Instruction Set
Computer) architecture based servers 906; servers 908;
blade servers 910; storage devices 912; and networks and
networking components 914. In some embodiments, soft-
ware components mclude network application server soft-
ware 916 and database software 918.

Virtualization layer 920 provides an abstraction layer
from which the following examples of virtual entities may
be provided: virtual servers 922; virtual storage 924; virtual

US 11,074,519 B2

15

networks 926, including virtual private networks; virtual
applications and operating systems 928; and virtual clients
930.

In one example, management layer 932 may provide the
functions described below. Resource provisioning 934 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 936
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption ol these resources. In one example, these
resources may include application software licenses. Secu-
rity provides 1dentity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 938 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 940 provides cloud computing resource allo-
cation and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 942 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement 1s
anticipated 1n accordance with an SLA.

Workloads layer 944 provides examples of functionality
tor which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation 946;
software development and lifecycle management 948; vir-
tual classroom education delivery 950; data analytics pro-
cessing 952; transaction processing 954; and quantum algo-
rithm concatenation 956. Various embodiments of the
present mvention can utilize the cloud computing environ-
ment described with reference to FIGS. 8 and 9 to concat-
enate a plurality of quantum algorithms.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of mtegration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention. The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an mstruction execution device. The computer readable
storage medium may be, for example, but 1s not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an

10

15

20

25

30

35

40

45

50

55

60

65

16

external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1 any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
istructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational

US 11,074,519 B2

17

steps to be performed on the computer, other programmable
apparatus or other device to produce a computer 1imple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion of 1nstructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, 1n fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the

reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

In order to provide a context for the various aspects of the
disclosed subject matter, FIG. 10 as well as the following
discussion are intended to provide a general description of a
suitable environment 1n which the various aspects of the
disclosed subject matter can be implemented. FIG. 10 1llus-
trates a block diagram of an example, non-limiting operating,
environment in which one or more embodiments described
herein can be facilitated. Repetitive description of like
clements employed 1n other embodiments described herein
1s omitted for sake of brevity. With reference to FIG. 10, a
suitable operating environment 1000 for implementing vari-
ous aspects of this disclosure can include a computer 1012.
The computer 1012 can also include a processing unit 1014,
a system memory 1016, and a system bus 1018. The system
bus 1018 can operably couple system components including,
but not limited to, the system memory 1016 to the process-
ing unit 1014. The processing unit 1014 can be any of
various available processors. Dual microprocessors and
other multiprocessor architectures also can be employed as
the processing unit 1014. The system bus 1018 can be any
of several types of bus structures including the memory bus
or memory controller, a peripheral bus or external bus,
and/or a local bus using any variety of available bus archi-

tectures including, but not limited to, Industrial Standard
Architecture (ISA), Micro-Channel Architecture (MSA),

Extended ISA (EISA), Intelligent Drive Electronics (IDE),
VESA Local Bus (VLB), Peripheral Component Intercon-
nect (PCI), Card Bus, Universal Serial Bus (USB),
Advanced Graphics Port (AGP), Firewire, and Small Com-
puter Systems Interface (SCSI). The system memory 1016
can also include volatile memory 1020 and nonvolatile
memory 1022. The basic input/output system (BIOS), con-
taining the basic routines to transfer mmformation between
clements within the computer 1012, such as during start-up,
can be stored in nonvolatile memory 1022. By way of
illustration, and not limitation, nonvolatile memory 1022

can include read only memory (ROM), programmable ROM
(PROM), electrically programmable ROM (EPROM), elec-
trically erasable programmable ROM (EEPROM), flash

memory, or nonvolatile random access memory (RAM)

10

15

20

25

30

35

40

45

50

55

60

65

18

(e.g., ferroelectric RAM (FeRAM). Volatile memory 1020
can also 1include random access memory (RAM), which acts
as external cache memory. By way of illustration and not
limitation, RAM 1s available in many forms such as static
RAM (SRAM), dynamic RAM (DRAM), synchronous
DRAM (SDRAM), double data rate SDRAM (DDR
SDRAM), enhanced SDRAM (ESDRAM), Synchlink
DRAM (SLDRAM), direct Rambus RAM (DRRAM), direct
Rambus dynamic RAM (DRDRAM), and Rambus dynamic
RAM.

Computer 1012 can also include removable/non-remov-
able, volatile/non-volatile computer storage media. FIG. 10
illustrates, for example, a disk storage 1024. Disk storage
1024 can also include, but 1s not limited to, devices like a
magnetic disk drive, floppy disk drive, tape drnive, Jaz drive,
Z1p drnive, LS-100 drive, flash memory card, or memory
stick. The disk storage 1024 also can include storage media
separately or 1n combination with other storage media
including, but not limited to, an optical disk drive such as a
compact disk ROM device (CD-ROM), CD recordable drive
(CD-R Drive), CD rewritable drive (CD-RW Drive) or a
digital versatile disk ROM drive (DVD-ROM). To facilitate
connection of the disk storage 1024 to the system bus 1018,
a removable or non-removable interface can be used, such as
interface 1026. FIG. 10 also depicts software that can act as
an intermediary between users and the basic computer
resources described in the suitable operating environment
1000. Such software can also include, for example, an
operating system 1028. Operating system 1028, which can
be stored on disk storage 1024, acts to control and allocate
resources of the computer 1012. System applications 1030
can take advantage of the management of resources by
operating system 1028 through program modules 1032 and
program data 1034, e.g., stored either 1mn system memory
1016 or on disk storage 1024. It 1s to be appreciated that this
disclosure can be implemented with various operating sys-
tems or combinations ol operating systems. A user enters
commands or information into the computer 1012 through
one or more input devices 1036. Input devices 1036 can
include, but are not limited to, a pointing device such as a
mouse, trackball, stylus, touch pad, keyboard, microphone,
joystick, game pad, satellite dish, scanner, TV tuner card,
digital camera, digital video camera, web camera, and the
like. These and other input devices can connect to the
processing unit 1014 through the system bus 1018 via one or
more 1terface ports 1038. The one or more Interface ports
1038 can include, for example, a serial port, a parallel port,
a game port, and a umversal serial bus (USB). One or more
output devices 1040 can use some of the same type of ports
as mput device 1036. Thus, for example, a USB port can be
used to provide mput to computer 1012, and to output
information from computer 1012 to an output device 1040.
Output adapter 1042 can be provided to 1llustrate that there
are some output devices 1040 like monitors, speakers, and
printers, among other output devices 1040, which require
special adapters. The output adapters 1042 can include, by
way of 1llustration and not limitation, video and sound cards
that provide a means of connection between the output
device 1040 and the system bus 1018. It should be noted that
other devices and/or systems of devices provide both mput
and output capabilities such as one or more remote com-
puters 1044.

Computer 1012 can operate 1n a networked environment
using logical connections to one or more remote computers,
such as remote computer 1044. The remote computer 1044
can be a computer, a server, a router, a network PC, a
workstation, a microprocessor based appliance, a peer

US 11,074,519 B2

19

device or other common network node and the like, and
typically can also include many or all of the clements
described relative to computer 1012. For purposes of brev-
ity, only a memory storage device 1046 1s illustrated with
remote computer 1044. Remote computer 1044 can be
logically connected to computer 1012 through a network
interface 1048 and then physically connected via commu-
nication connection 1050. Further, operation can be distrib-
uted across multiple (local and remote) systems. Network
interface 1048 can encompass wire and/or wireless commu-
nication networks such as local-area networks (LAN), wide-
area networks (WAN), cellular networks, etc. LAN tech-
nologies include Fiber Distributed Data Interface (FDDI),
Copper Distributed Data Interface (CDDI), Ethernet, Token
Ring and the like. WAN technologies include, but are not
limited to, point-to-point links, circuit switching networks
like Integrated Services Digital Networks (ISDN) and varia-
tions thereon, packet switching networks, and Digital Sub-
scriber Lines (DSL). One or more communication connec-
tions 1050 refers to the hardware/software employed to
connect the network interface 1048 to the system bus 1018.
While communication connection 1050 1s shown for 1llus-
trative clarity inside computer 1012, 1t can also be external
to computer 1012. The hardware/software for connection to
the network interface 1048 can also include, for exemplary
purposes only, internal and external technologies such as,
modems including regular telephone grade modems, cable
modems and DSL modems, ISDN adapters, and Ethernet
cards.

Embodiments of the present invention can be a system, a
method, an apparatus and/or a computer program product at
any possible technical detail level of integration. The com-
puter program product can include a computer readable
storage medium (or media) having computer readable pro-
gram 1nstructions thereon for causing a processor to carry
out aspects of the present invention. The computer readable
storage medium can be a tangible device that can retain and
store structions for use by an 1nstruction execution device.
The computer readable storage medium can be, for example,
but 1s not limited to, an electronic storage device, a magnetic
storage device, an optical storage device, an electromagnetic
storage device, a semiconductor storage device, or any
suitable combination of the foregoing. A non-exhaustive list
of more specific examples of the computer readable storage
medium can also 1include the following: a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), a static random
access memory (SRAM), a portable compact disc read-only
memory (CD-ROM), a digital versatile disk (DVD), a
memory stick, a floppy disk, a mechanically encoded device
such as punch-cards or raised structures 1n a groove having
instructions recorded thereon, and any suitable combination
of the foregoing. A computer readable storage medium, as
used herein, 1s not to be construed as being transitory signals
per se, such as radio waves or other freely propagating
clectromagnetic waves, electromagnetic waves propagating
through a waveguide or other transmission media (e.g., light
pulses passing through a fiber-optic cable), or electrical
signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network can include
copper transmission cables, optical transmission fibers,

10

15

20

25

30

35

40

45

50

55

60

65

20

wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
istructions for storage i a computer readable storage
medium within the respective computing/processing device.
Computer readable program instructions for carrying out
operations of various aspects of the present invention can be
assembler 1nstructions, instruction-set-architecture (ISA)
istructions, machine instructions, machine dependent
instructions, microcode, firmware mstructions, state-setting
data, configuration data for integrated circuitry, or either
source code or object code written 1n any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++, or the
like, and procedural programming languages, such as the
“C” programming language or similar programming lan-
guages. The computer readable program instructions can
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer can be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection can
be made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) can
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to customize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart 1llustrations and/or block diagrams, can be imple-
mented by computer readable program instructions. These
computer readable program instructions can be provided to
a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified 1n the tlowchart and/or
block diagram block or blocks. These computer readable
program 1nstructions can also be stored in a computer
readable storage medium that can direct a computer, a
programmable data processing apparatus, and/or other
devices to function 1n a particular manner, such that the
computer readable storage medium having instructions
stored therein includes an article of manufacture including
istructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks. The computer readable program instructions can
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational acts to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or

US 11,074,519 B2

21

other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams can represent a module, segment, or
portion of mstructions, which includes one or more execut-
able structions for implementing the specified logical
function(s). In some alternative implementations, the func-
tions noted 1n the blocks can occur out of the order noted in
the Figures. For example, two blocks shown 1n succession
can, 1n fact, be executed substantially concurrently, or the
blocks can sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks 1in the block dia-
grams and/or flowchart i1llustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions

While the subject matter has been described above 1n the
general context of computer-executable instructions of a
computer program product that runs on a computer and/or
computers, those skilled in the art will recognize that this
disclosure also can or can be implemented 1n combination
with other program modules. Generally, program modules
include routines, programs, components, data structures, etc.
that perform particular tasks and/or implement particular
abstract data types. Moreover, those skilled in the art will
appreciate that the mventive computer-implemented meth-
ods can be practiced with other computer system configu-
rations, including single-processor or multiprocessor com-
puter systems, mini-computing devices, mainirame
computers, as well as computers, hand-held computing
devices (e.g., PDA, phone), microprocessor-based or pro-
grammable consumer or industrial electronics, and the like.
The 1illustrated aspects can also be practiced in distributed
computing environments where tasks are performed by
remote processing devices that are linked through a com-
munications network. However, some, 1f not all aspects of
this disclosure can be practiced on stand-alone computers. In
a distributed computing environment, program modules can
be located 1n both local and remote memory storage devices.

As used i1n this application, the terms *“component,”
“system,” “platform,” “interface,” and the like, can refer to
and/or can include a computer-related entity or an enfity
related to an operational machine with one or more specific
functionalities. The entities disclosed herein can be either
hardware, a combination of hardware and software, soft-
ware, or soitware 1n execution. For example, a component
can be, but 1s not limited to being, a process running on a
Processor, a processor, an object, an executable, a thread of
execution, a program, and/or a computer. By way of 1llus-
tration, both an application running on a server and the
server can be a component. One or more components can
reside within a process and/or thread of execution and a
component can be localized on one computer and/or dis-
tributed between two or more computers. In another
example, respective components can execute from various
computer readable media having various data structures
stored thereon. The components can communicate via local
and/or remote processes such as 1n accordance with a signal
having one or more data packets (e.g., data from one
component interacting with another component 1n a local
system, distributed system, and/or across a network such as

10

15

20

25

30

35

40

45

50

55

60

65

22

the Internet with other systems via the signal). As another
example, a component can be an apparatus with specific
functionality provided by mechanical parts operated by
clectric or electronic circuitry, which 1s operated by a
soltware or firmware application executed by a processor. In
such a case, the processor can be internal or external to the
apparatus and can execute at least a part of the software or
firmware application. As yet another example, a component
can be an apparatus that provides specific functionality
through electronic components without mechanical parts,
wherein the electronic components can include a processor
or other means to execute software or firmware that confers
at least 1n part the functionality of the electronic compo-
nents. In an aspect, a component can emulate an electronic
component via a virtual machine, e.g., within a cloud
computing system.

In addition, the term “or” 1s intended to mean an inclusive
“or” rather than an exclusive “or.” That 1s, unless specified
otherwise, or clear from context, “X employs A or B” 1s
intended to mean any of the natural inclusive permutations.
That 1s, 1T X employs A; X employs B; or X employs both
A and B, then “X employs A or B” 1s satisfied under any of
the foregoing instances. Moreover, articles “a” and “an” as
used i the subject specification and annexed drawings
should generally be construed to mean “one or more” unless
speciflied otherwise or clear from context to be directed to a
singular form. As used herein, the terms “example” and/or
“exemplary” are utilized to mean serving as an example,
instance, or illustration. For the avoidance of doubt, the
subject matter disclosed herein 1s not limited by such
examples. In addition, any aspect or design described herein
as an “example” and/or “exemplary” 1s not necessarily to be
construed as preferred or advantageous over other aspects or
designs, nor 1s 1t meant to preclude equivalent exemplary
structures and techniques known to those of ordinary skill 1n
the art.

As 1t 1s employed 1n the subject specification, the term
“processor’” can refer to substantially any computing pro-
cessing unit or device including, but not limited to, single-
core processors; single-processors with software multithread
execution capability; multi-core processors; multi-core pro-
cessors with software multithread execution capability;
multi-core processors with hardware multithread technol-
ogy; parallel platforms; and parallel platforms with distrib-
uted shared memory. Additionally, a processor can refer to
an integrated circuit, an application specific integrated cir-
cuit (ASIC), a digital signal processor (DSP), a field pro-
grammable gate array (FPGA), a programmable logic con-
troller (PLC), a complex programmable logic device
(CPLD), a discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to per-
form the functions described herein. Further, processors can
exploit nano-scale architectures such as, but not limited to,
molecular and quantum-dot based transistors, switches and
gates, 1n order to optimize space usage or enhance perfor-
mance of user equipment. A processor can also be 1mple-
mented as a combination of computing processing units. In
this disclosure, terms such as “store,” “storage,” “data
store,” data storage,” “database,” and substantially any other
information storage component relevant to operation and
functionality of a component are utilized to refer to
“memory components,” entities embodied 1n a “memory,” or
components including a memory. It 1s to be appreciated that
memory and/or memory components described herein can
be either volatile memory or nonvolatile memory, or can
include both volatile and nonvolatile memory. By way of
illustration, and not limitation, nonvolatile memory can

US 11,074,519 B2

23

include read only memory (ROM), programmable ROM
(PROM), electrically programmable ROM (EPROM), elec-

trically erasable ROM (EEPROM), flash memory, or non-
volatile random access memory (RAM) (e.g., ferroelectric
RAM (FeRAM). Volatile memory can include RAM, which

can act as external cache memory, for example. By way of

illustration and not limitation, RAM 1s available in many

forms such as synchronous RAM (SRAM), dynamic RAM
(DRAM), synchronous DRAM (SDRAM), double data rate
SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM),
Synchlink DRAM (SLDRAM), direct Rambus RAM (DR-
RAM), direct Rambus dynamic RAM (DRDRAM), and
Rambus dynamic RAM (RDRAM). Additionally, the dis-
closed memory components of systems or computer-imple-
mented methods herein are intended to include, without
being limited to including, these and any other suitable types
of memory.

What has been described above include mere examples of
systems, computer program products and computer-imple-
mented methods. It 1s, of course, not possible to describe
every conceivable combination of components, products
and/or computer-implemented methods for purposes of
describing this disclosure, but one of ordinary skill in the art
can recognize that many further combinations and permu-

tations of this disclosure are possible. Furthermore, to the
extent that the terms “includes,” “has,” “possesses,” and the
like are used 1n the detailed description, claims, appendices
and drawings such terms are intended to be inclusive 1n a
manner similar to the term “comprising” as “comprising” 1s
interpreted when employed as a transitional word 1n a claim.
The descriptions of the various embodiments have been
presented for purposes of 1llustration, but are not mtended to
be exhaustive or limited to the embodiments disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art without departing from the scope
and spirit of the described embodiments. The terminology
used herein was chosen to best explain the principles of the
embodiments, the practical application or technical
improvement over technologies found 1n the marketplace, or
to enable others of ordinary skill 1n the art to understand the
embodiments disclosed herein.

What 1s claimed 1s:

1. A system, comprising:

a memory that stores computer executable components;

a processor, operably coupled to the memory, and that
executes the computer executable components stored 1n
the memory, wherein the computer executable compo-
nents comprise:

a concatenation component, operatively coupled to the
processor, that concatenates a first quantum algorithm
and a second quantum algorithm by using an output of
the first quantum algorithm as an initial parameter 1n
the second quantum algorithm, wherein, prior to con-
catenation, the output of the first quantum algorithm 1s
selected as the mitial parameter for the second quantum
algorithm based on a determination that output 1s a
common component in the second quantum algorithm,
and wherein the output 1s a by-product generated
during execution of the first quantum algorithm and
wherein the output 1s a parameterized quantum state
wave Tunction.

2. The system of claam 1, wherein the concatenation
component concatenates the first quantum algorithm and the
second quantum algorithm and performs a quantum phase
estimation.

10

15

20

25

30

35

40

45

50

55

60

65

24

3. The system of claim 1, wherein the first quantum
algorithm 1s an algorithm selected from a group consisting
of a variational quantum algorithm and an adiabatic quan-
tum algorithm.

4. The system of claim 3, wherein the second quantum
algorithm 1s a quantum phase estimation algorithm.

5. The system of claim 4, wherein the second quantum
algorithm 1s an iterative quantum phase estimation.

6. The system of claim 1, wherein the computer execut-
able components further comprise:

a first quantum algorithm component, operatively coupled
to the processor, that executes the first quantum algo-
rithm and determines the output.

7. The system of claim 6, wherein the computer execut-

able components further comprise:

a second quantum algorithm component, operatively
coupled to the processor, that executes the second
quantum algorithm using the output as the 1nitial
parameter.

8. The system of claim 7, wherein the first quantum
algorithm component performs an early termination of the
first quantum algorithm to determine the output, and
wherein the early termination 1s determined based on a
defined tolerance of 1naccuracy.

9. The system of claim 8, wherein the output 1s a quantum
state wave function.

10. The system of claim 9, wherein the 1mitial parameter
1s an initial state of the second quantum algorithm, and
wherein the second quantum algorithm 1s a quantum phase
estimation algorithm.

11. A computer-implemented method, comprising:

concatenating, by a system operatively coupled to a
processor, a lirst quantum algorithm and a second
quantum algorithm by using an output of the first
quantum algorithm as an 1mitial parameter 1n the second
quantum algorithm, wherein, prior to the concatenat-
ing, the output of the first quantum algorithm 1s selected
as the mitial parameter for the second quantum algo-
rithm based on a determination that output 1s a common
component in the second quantum algorithm.

12. The computer-implemented method of claim 11,
wherein the first quantum algorithm 1s an algorithm selected
from a group consisting of a vanational quantum algorithm
and an adiabatic quantum algorithm.

13. The computer-implemented method of claim 12, fur-
ther comprising:

terminating, by the system, an execution ol the first
quantum algorithm early to determine the output,
wherein the terminating early 1s based on a user defined
maximum number of 1terations.

14. The computer-implemented method of claim 13,

wherein the output 1s a quantum state wave function.

15. The computer-implemented method of claim 14,
wherein the 1nitial parameter 1s an 1nitial state of the second
quantum algorithm, and wherein the second quantum algo-
rithm 1s a quantum phase estimation algorithm.

16. A computer program product for a quantum algorithm
concatenation, the computer program product comprising a
computer readable storage medium having program instruc-
tions embodied therewith, the program instructions execut-
able by a processor to cause the processor to:

concatenate, by a system operatively coupled to the
processor, a lirst quantum algorithm and a second
quantum algorithm by using an output of the first
quantum algorithm as an 1mitial parameter 1n the second
quantum algorithm, wherein, prior to concatenation,
the output of the first quantum algorithm is selected as

US 11,074,519 B2

25

the mitial parameter for the second quantum algorithm
based on a determination that output 1s a common
component in the second quantum algorithm, and
wherein the output 1s a parameterized quantum state
wave function.

17. The computer program product of claim 16, wherein
the program instructions further cause the processor to:

initialize, by the system, an execution of the first quantum

algorithm, wherein the first quantum algorithm 1s an
algorithm selected from a group consisting of a varia-
tional quantum algorithm and an adiabatic quantum
algorithm.

18. The computer program product of claim 17, wherein
the program 1nstructions further cause the processor to:

stopping, by the system, the execution of the first quantum

algorithm at an early termination point to determine the
output, wherein the output 1s a quantum state wave
function developed during the execution of the first
quantum algorithm.

19. The computer program product of claim 18, wherein
the program instructions further cause the processor to:

execute, by the system, the second quantum algorithm

using the quantum state wave function as the initial
parameter, wherein the second quantum algorithm 1s a
quantum phase estimation algorithm.

20. The computer program product of claim 16, wherein
the system concatenates the first quantum algorithm and the
second quantum algorithm in a cloud computing environ-
ment.

10

15

20

25

30

26

	Front Page
	Drawings
	Specification
	Claims

