US011074083B2

(12) United States Patent (10) Patent No.:
Hu 45) Date of Patent:

US 11,074,083 B2
Jul. 27, 2021

(54) FAST LOADING KERNEL IMAGE FILE FOR (56) References Cited

BOOTING |
U.S. PATENT DOCUMENTS

(71) Applicant: HUAWEI TECHNOLOGIES CO.,

6,446,238 B1* 9/2002 Canestaro GO6F 11/1004
LTD., Guangdong (CN) 714/200
6,941,403 B2* 9/2005 Cedar GOO6F 13/385
(72) Inventor: Huifeng Hu, Hangzhou (CN) e 710/301
(73) Assignee: Huawei Technologies Co., Ltd., (Continued)
Shenzhen (CN) FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this CN 1818860 A 22006
patent 1s extended or adjusted under 35 CN 102236543 A 11/2011
Uu.s.C. 154(]3) by 191 days (Con‘[inued)

(21) Appl. No.: 16/387,341 OTHER PUBIICATIONS

(22) Filed: Apr. 17, 2019 PCT International Search Report and Written Opinion issued in
International Application No. PCT/CN2017/106554 dated Jan. 16,
(65) Prior Publication Data 2018, 16 pages (with English translation).

(Continued)

US 2019/0243663 Al Aug. 8, 2019

Primary Examiner — Benjamin C Wu

Related U.S. Application Data (74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(63) Continuation of application No.

PCT/CN2017/106554, filed on Oct. 17, 2017. (57) ABSTRACT
_ L o Example methods and apparatus for fast loading a kernel
(30) Foreign Application Priority Data image file are provided. A multi-core processor includes a
first core group and a second core group. The second core
Oct. 19, 2016 (CN) .oooiiiiiieeeee, 201610912248 4 oroup includes a plurality of cores. In one example method,
(51) Int. CI the first core group obtains a plurality of data blocks 1n a
GOE?F 9 /44 (2018.01) compressed kernel image file from a nonvolatile storage,
GO6F 9/4401 (2018.01) and checks the currently obtained current data block. The

(Continued)

(52) U.S. CL
CPC ... GOGF 9/4405 (2013.01); GO6F 3/0608

(2013.01); GOGF 9/50 (2013.01); GOGF 21/51
(2013.01); HO3M 7/6005 (2013.01)

(58) Field of Classification Search

CPC e GO6F 9/4405
See application file for complete search history.

current data block 1s put into a decompression queue 1n
response to determiming that the data block 1s correct. At
least two of the plurality of cores 1n the second core group
obtain the data block from the decompression queue, and
alter obtaining a plurality of data blocks, decompress the
plurality of obtained data blocks 1into a memory 1n parallel
to obtain the kernel image file.

19 Claims, 5 Drawing Sheets

KSI

A multi-core processor starts, first loads a boot program by using a core, to
complete processing of the multi-core processor, and performs functions in
the following steps

l [®

A small core A continucusly reads blocks of a compressed image file from

a storage. Each time a block 1s read, the block is sent to a small core B for

CRC calculation. After all the blocks are read, and a total CRC 15 read, so
as 1o complete reading of the entire compressed image

i ®

The small core B i3 responsible for CRC caleulation. Each ime obtaining a
block sent by the small core A, the small core B calculates a CRC
checksum of the block according to block data and a decompression
address, and compares the calculated CRC checksum with a CRC —
checksum cerresponding to the block that is stored in the compressed
image, If the two CRC checksums are different, perform step 37, if the two
CRC checksums are the same, add the block to a decompression queue

I [

Cther cores continuously cbtain blocks in the decompression queue, and
perform decompression in parallel

' S

Complete decompression of all the blocks, and obtain a kernel image file in
a memory

' -

After knowing that decompression is completed, a boot core starts a kernel
based on the kemel image file

/-'S?

Process an exception -

US 11,074,083 B2
Page 2

(51) Int. CL

GO6EF 3/06
HO3M 7/30
GO6F 21/51
GO6F 9/50

(56)

0,965,989
7,549,042
9,779,240
2004/0064457
2010/0325523
2011/0099544
2013/0125107

2015/0106609
2015/0110202

2015/0381203
2016/0077871
2016/0117221
2016/0149669

2016/0350171

(2006.01
(2006.01
(2013.01
(2006.01

LML N S

References Cited

U.S. PATENT DOCUMENTS

Bl *
B2 *
B2 *
Al

Al*
Al*
Al*

Al
Al*

Al*

Al*

Al*

Al*

Al*

11/2005

6/2009

10/2017
4/2004
12/2010

4/2011

5/2013

4/2015
4/2015

12/2015

3/2016

4/2016

5/2016

12/2016

Strange GO6F 1/24
709/220
Glaum GO6F 11/1433
713/100
Ferozcocovvvvininn, GO6F 21/566

Zimmer et al.
Slyz oo GO6F 11/1433
714/773
Haramiisht GO6F 8/654
717/168
Bandakka GO6F 11/1448
717/171

Koszek

Tuckerocovvenn. HO4N 19/85
375/240.26
Mastercovvvvunnn. HO3M 7/42
341/67
Kaplan GO6F 1/3246
718/102
Nair ..oooovvvvvvienennnn, GO6F 11/108
714/764
Meversoo...... HO4L 1/0073
714/750
Reschcoovvinin, GO6F 3/0619

2017/0039075 Al 2/2017 L1 et al.
2017/0161148 Al1* 6/2017 Vairavanathan
2019/0310859 Al1* 10/2019 Kopfstedt

... GO6F 11/1076
GO6F 3/0661

ttttttttttttt

FOREIGN PATENT DOCUMENTS

CN 102244518 A 11/2011
CN 103077043 A 5/2013
CN 103384884 A 11/2013
CN 103455345 A 12/2013
CN 103970557 A 8/2014
CN 104156659 A 11/2014
CN 104750492 A 7/2015
CN 105117246 A 12/2015
EP 2487583 Al 8/2012
WO 2015200760 A1 12/2015

OTHER PUBLICATTONS

Office Action 1ssued 1n Chinese Application No. 201610912248 4
dated Jun. 19, 2020, 7 pages.

Collet [online], “LZ4 Frame Format Description,” XP055614349,
Feb. 13, 2016, 8 pages.

Extended European Search Report 1ssued in European Application
No. 17862572.9 dated Sep. 2, 2019, 14 pages.

Sitaridi et al., “Massively-Parallel Lossless Data Decompression,”
2016 45th International Conference on Parallel Processing (ICPP),
IEEE, Aug. 16, 2016, XP032969651, pp. 242-247.

ARM, “ARM Cortex-A Series, Version: 4.0,” Programmers Guide,
XP055598633, 2013, 422 pages.

EPO Communication pursuant to Article 94(3) EPC 1ssued 1n
European Application No. 178625729 dated May 17, 2021, 5

pages.

* cited by examiner

U.S. Patent Jul. 27, 2021 Sheet 1 of 5 US 11,074,083 B2

Single core

Read a file » (CRC calculation » Decompression
A
Compressed Kernel
kernel image file image file
Nonvolatile
Memory
storage
FIG. 1

Original image (uncompressed)

Block
compression
\/

= = =
— 2 N 2 cn 2

) e o oI @N| ’p!
S 8% — £ | §g o § By of«
e o o | O o o O @, O S, L SER®
S5 E3S ¥ 3 | EZS A ¥ | E5 &z
2 3% |Y = 8% |©¢ 2 1838 9|0
as L as L as L

- - -

‘ Block 1 Block 2 \ ‘ Block 3 \

FIG. 2

U.S. Patent Jul. 27, 2021 Sheet 2 of 5 US 11,074,083 B2

/ S1

A multi-core processor starts, first loads a boot program by using a core, to
complete processing of the multi-core processor, and performs functions in
the following steps

S2
v 4

A small core A continuously reads blocks of a compressed image file from
a storage. Each time a block 1s read, the block 1s sent to a small core B for
CRC calculation. After all the blocks are read, and a total CRC 1s read, so

as to complete reading of the entire compressed 1image

S3
v 4

The small core B 1s responsible for CRC calculation. Each time obtaining a
block sent by the small core A, the small core B calculates a CRC
checksum of the block according to block data and a decompression
address, and compares the calculated CRC checksum with a CRC
checksum corresponding to the block that 1s stored 1n the compressed
image. If the two CRC checksums are different, perform step S7; 1f the two
CRC checksums are the same, add the block to a decompression queue

v [

Other cores continuously obtain blocks in the decompression queue, and
perform decompression 1n parallel

S
v -

Complete decompression of all the blocks, and obtain a kernel 1mage file in
a memory

S
v -

After knowing that decompression 1s completed, a boot core starts a kernel
based on the kernel image file

/87

Process an exception -

FIG. 3

US 11,074,083 B2

Sheet 3 of 5

Jul. 27, 2021

U.S. Patent

v OIld

Uo1SSAIdWOod9(J

uo1ssaIdwod9(g

uo1SSAIdtoda(

R~

UOISSAIdWOod9(]

N

(] 109 koE/) 8@? (] 2100 381 W V 2100 93187

’ .

uo1SSaIdwod9(g

N

(] 2109 [[eWiS

uo1SSAIdWod9(J

7

) 210D [[BWIS

ananb uorssardwoaa(

1] ATLWI [IUIY PAsSAIdWOIA(]

AJOWIIIN

|

A201d

ananb uorssardwodap
€ 03Ul O0[q ay3 ind
10391109 SI M201q Y1 J]

%

DD B W0

] 9109 JJRWIS

A90ld

¢] 2100 [[BWS
€«———F— £ 0100[q Y1 PUSS
put 20[q & UIelqO)

V 2109 [[eWiS

0

A901d
|

33LI0]S JNBJOAUON

U.S. Patent Jul. 27, 2021 Sheet 4 of 5 US 11,074,083 B2

Enqueue Dequeue
direction g Block 3 | Block 2 | Block 1 direction
Large core Large core Large core
C B A
FIG. 5

KZI

//F 211 //F 212
First core group Second core group
Core | ... | Core Core Core
i Baseband processing module i i [mage processor i
i Digital signal processor i i Graphics processing unit i

FIG. 6

U.S. Patent Jul. 27, 2021 Sheet 5 of 5 US 11,074,083 B2

f 31
r 311 f 312

Nonvolatile storage Memory

313
r

Central processing unit

FIG. 7

41

411

R

Code

FIG. 8

US 11,074,083 B2

1

FAST LOADING KERNEL IMAGE FILE FOR
BOOTING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of International Appli-
cation No. PCT/CN2017/106554, filed on Oct. 17, 2017,
which claims priority to Chinese Patent 201610912248 4,
filed on Oct. 19, 2016. The disclosures of the aforemen-
tioned applications are hereby incorporated by reference in
their entireties.

TECHNICAL FIELD

The present disclosure relates to the field of computer
technologies, and in particular, to a method and an apparatus
for fast loading a kernel image {ile.

BACKGROUND

To start up various electronic devices and communica-
tions devices such as an intelligent terminal (such as a
mobile phone, a tablet, or a smartwatch), a set top box, an
embedded device, and a server on which operating systems
are running, a kernel (kernel) image file usually needs to be
loaded from a nonvolatile storage to a memory by using a
boot program (boot program), and then the boot program
starts a kernel based on the kernel image file.

Referring to FIG. 1, FIG. 1 1s a schematic diagram of
loading a kernel image file 1n the prior art. Regardless of
whether a device 1s based on a multi-core processor or a
single-core processor, a boot process 1s performed by one
core 1n the processor. The core first reads an entire com-
pressed kernel image file from a nonvolatile storage (for
example, a disk or a flash memory), and then checks (for
example, perform a check and calculation by using a CRC)
the entire file to determine whether the read file 1s correct.
If the read file 1s correct, a decompression operation 1s
performed to obtain a decompressed kernel image file, and
the decompressed kernel image file 1s stored 1n the memory.

In the foregoing solution, there 1s a problem that 1t takes
an excessively long time to load a kernel 1mage {ile, result-
ing 1n an excessively long startup time of the entire device,
and aflecting user experience.

SUMMARY

Embodiments of the present disclosure provide a method
for fast loading a kernel image file, so as to resolve a
prior-art problem that an excessively long loading time
results 1n an excessively long startup time of an entire device
and aflects user experience.

According to a first aspect, an embodiment of the present
disclosure provides a method for fast loading a kernel image
file, and the method 1s executed by a multi-core processor,
where the multi-core processor 1s connected to a nonvolatile
storage and a memory, the multi-core processor mcludes a
first core group and a second core group, the first core group
includes at least one core, the second core group 1ncludes a
plurality of cores, and the method includes:

obtaining, by the first core group, a plurality of data
blocks 1n a compressed kernel image file from the nonvola-
tile storage, where the compressed kernel image file includes
a plurality of data blocks obtained after block compression
1s performed on the kernel image file;

10

15

20

25

30

35

40

45

50

55

60

65

2

checking, by the first core group each time obtaining a
data block, the currently obtained current data block, and
when 1t 1s checked that the data block 1s correct, putting, by
the first core group, the current data block into a decom-
pression queue; and

obtaining, by at least two of the plurality of cores in the
second core group when there 1s a data block 1n the decom-
pression queue, the data block 1n the decompression queue,
and decompressing data blocks into the memory 1n parallel
to finally obtain the kernel image file.

In the method provided in the first aspect, the one or more
cores 1n the first core group are configured to: obtain the
kernel image file and perform a check and calculation. The
plurality of cores in the second core group are configured to
perform decompression. A person skilled in the art may
understand that the first core group continuously obtains
data blocks, checks the data blocks, and then outputs the data
blocks to the second core group for decompression. A
pipeline operating manner 1s formed, a degree of parallelism
1s 1increased, and a processing speed can be improved.

It should be noted that a core in the first core group and
a core 1n the second core group are grouped from a per-
spective of functions. When different functions are executed,
a core originally in one core group may be switched to
another core group. For example, a core A 1s originally
configured to obtain a data block. In this case, the core A
belongs to the first core group. Subsequently, after obtaining
all the data blocks, the core A completes the data block
obtaining function and is reused to perform decompression.
In this case, the core A belongs to the second core group.

In the first aspect, performing block compression and a
check on the kernel image file belongs to the prior art. For
example, compression may be performed by using an algo-
rithm such as LZO or LZ4. A cyclic redundancy check
(CRC) method may be used for a check. Details are not
described herein.

In the first aspect, the person skilled in the art may
understand that, to speed up processing, each core completes
its own task (for example, tasks such as obtaining a block,
checking, obtaining data in a decompression queue, and
decompressing) “as quickly as possible”. The person skilled
in the art may also understand that when a CPU core
completes tasks by executing an instruction, due to an
instruction length and an operating frequency, zero delay 1s
impossible, and a delay 1s 1nevitable. In practice, the person
skilled 1n the art may implement tasks as quickly as possible
in combination with various methods in the prior art, and
details are not described herein.

In the first aspect, when there 1s a data block in the
decompression queue, the at least two cores in the second
core group may obtain the data block 1n the decompression
queue, and perform “parallel decompression™ after obtaining
a plurality of blocks, that 1s, the cores 1n the second core
group do not decompress data blocks one after another, but
perform parallel decompression. When parallel decompres-
s10n 1s performed, decompression processes overlap 1n terms
of time. For example, after a core obtains a data block at a
first second, the core performs decompression at a second
second to a 10th second. After a second core obtains a data
block at the second second, the second core performs
decompression at the third second to an 11th second. The
decompression operations of the first core and the second
core overlap 1n terms of time from the third second to the
10th second, that 1s, a “parallel decompression” effect exists.

In addition, 1t may be understood that, to increase the
ellect, during parallel decompression, each core in the

US 11,074,083 B2

3

second core group needs to obtain data from the decom-
pression queue as quickly as possible, and performs decom-
pression.

In the embodiment provided in the first aspect of the
present disclosure, operations such as compressed image file
obtaining, checking and calculation, and decompression are
jointly completed by using a plurality of core groups (a
plurality of cores). To speed up processing, a compressed
kernel 1image file 1s divided into several data blocks. In this
way, each time reading some data blocks, the first core group
may perform check processing on the data blocks, and then
put the checked data blocks into the decompression queue.
Decompression processing does not need to be performed
after all of the file 1s read and checked, so that reading/
checking steps may be performed in parallel with a decom-
pression step, thereby speeding up processing. In addition,
when there 1s data in the decompression queue during
decompression, the data 1s obtained by a plurality of cores
and decompressed 1n parallel, so that the cores can obtain
data blocks 1n a shortest time, and perform parallel decom-
pression on the data blocks, to finally obtain the kernel
image file, thereby further improving a processing speed,
reducing a loading time, shortening a startup time of an
entire device, and 1improving user experience.

Based on the first aspect, in a first implementation of the
first aspect, the first core group includes a first core and a
second core, and correspondingly, in the first aspect:

the obtaining, by the first core group, a plurality of data
blocks 1n a compressed kernel image file from the nonvola-
tile storage includes: obtaining, by the first core, the plurality
of data blocks 1n the compressed kernel image file from the
nonvolatile storage; and
the checking, by the first core group each time obtaining
a data block, the currently obtained current data block
includes: checking, by the second core each time obtaining
a data block sent by the first core, the currently obtained
current data block.

In the first implementation of the first aspect of the present
disclosure, the first core group includes two cores, one core
1s configured to obtain a data block, and the other core 1s
configured to perform a check. In this way, a data block
obtaining action and a check action are also performed 1n
parallel, thereby further improving a processing speed com-
pared with a solution 1n which one core 1s configured to
obtain a block and perform a check at the same time.

Based on the first implementation of the first aspect, in a
second implementation of the first aspect, the first core and
the second core are small cores. A large core 1s a core with
a relatively high clock speed among all cores 1n the proces-
sor. In contrast, a small core 1s a core with a relatively low
clock speed among all the cores 1in the processor. For
example, 1n e1ght cores, four cores with a clock speed of 2.0
GHz are large cores, and the other four cores with a clock
speed of 1.5 GHz are small cores.

In an application scenario of a multi-core processor, a core
needs to obtain a data block from a nonvolatile storage. In
this process, a main factor that affects a speed 1s a trans-
mission rate of an interface between the core and the
nonvolatile storage (that 1s, a bottleneck lies 1n the trans-
mission rate of the interface), instead of a clock speed of
cach core. Therefore, even 1f a large core i1s chosen to
perform the obtaiming operation, an increased eflect 1s
extremely small. In the second implementation of the first
aspect, choosing a small core to perform the operation may
save large core resources for a subsequent scenario in which
a large core computing capability really needs to be used
(that 1s, a scenario 1n which a core with a high clock speed

10

15

20

25

30

35

40

45

50

55

60

65

4

needs to be used to perform processing, for example, per-
forming decompression), so that tasks of the cores are more
cllectively allocated, and an overall processing speed 1is
further improved.

Based on the first aspect and the implementations of the
first aspect, 1n a third implementation of the first aspect, the
cores included 1n the second core group are large cores.

Because the cores are large cores, processing speeds of
the cores are higher, thereby further improving a processing,
speed.

Based on the third implementation of the first aspect, 1n a
fourth 1implementation of the first aspect, the large cores 1n
the second core group include all large cores in the multi-
COre pProcessor.

When the second core group includes all large cores, large
core resources may be used to a maximum extent, so that all
large cores perform decompression in parallel, and a pro-
cessing speed 1s further improved.

Based on the third or the fourth implementation of the first
aspect, 1n a {ifth implementation of the first aspect, a length
of each data block matches a speed of obtaining and check-
ing a fragment by the first core group and a speed of
performing decompression by a large core in the second core
group, so that when there 1s or there will be kernel image file
data 1n the decompression queue, at least two of the large
cores 1n the second core group are not 1dle at the same time.

In this implementation, all the big cores can maintain
operating 1n a full load mode before decompression tasks are
completed, so as to use large core resources to a maximum
extent, and further improve a processing speed.

Based on the first aspect and the implementations of the
first aspect, 1 a sixth implementation of the first aspect,

the compressed kernel image file further includes a check-
sum of each of the data blocks; and

the checking, by the first core group each time obtaining
a data block, the currently obtained current data block
includes: checking the current data block according to a
checksum of the current data block.

In this implementation, a checksum of each data block 1s
a checksum obtained by performing checksum calculation
on the data block, and one data block 1s corresponding to one
checksum. The check and calculation may use various
existing algorithms, and a cyclic redundancy check (CRC) 1s
a typical example. The first core group mainly checks the
data block to determine whether an error occurs on the
received data. If the check fails, an error occurs. Error
processing needs to be performed (Tor example, terminating
a loading procedure or giving alarm information). A check
1s implemented 1n this 1implementation and the implemen-
tation 1s simple, thereby reducing development costs.

Based on the sixth implementation of the first aspect, 1n
a seventh implementation of the first aspect, the compressed
kernel 1 Image file further includes a total checksum, the total
checksum 1s obtained by calculating a checksum of the
checksums of all the data blocks, and the method further
includes:

alter completing a check of a last data block, calculating,
by the first core group, the checksum of the checksums of all
the data blocks, determining whether the checksum 1s con-
sistent with the total checksum, and 1f the checksum 1is
inconsistent with the total checksum, performing error pro-
cessing.

In this implementation, rechecking is performed. That 1s,
checksum calculation 1s additionally performed on the
checksums of the blocks. In this way, a check capability may
be further enhanced (for example, a block loss may occur. In
this case, checksums of blocks that are not lost may be

US 11,074,083 B2

S

correct, and a lost block cannot be checked. However, 1f a
check 1s performed by using a total checksum, an error can
be found). In addition, checksum calculation 1s not per-
formed on all data, only the checksums are checked, thereby
reducing a workload and improving a processing speed.

The compressed kernel image file further includes a
decompression address of each data block, and the decom-
pression address 1s used to indicate a physical address that
1s 1n the memory and mto which the data block 1s decom-
pressed, and correspondingly,

the obtaining, by at least two of the plurality of cores 1n
the second core group when there 1s a data block in the
decompression queue, a plurality of data blocks in the
decompression queue, and decompressing the plurality of
obtained data blocks into the memory 1n parallel to obtain
the kernel image file includes:

obtaining, by the at least two of the plurality of cores in
the second core group when there 1s a data block in the
decompression queue, a plurality of data blocks in the
decompression queue, and decompressing the plurality of
obtained data blocks 1nto the memory 1n parallel according
to decompression addresses of the plurality of data blocks to
obtain the kernel 1mage file.

In this implementation, each block is further correspond-
ing to one decompression address, and a core used for
decompression can store a block 1n a corresponding location
according to a decompression address by using the decom-
pression address, so as to finally decompress the compressed
kernel image file all into the memory. In addition, the
implementation 1s simple, and development costs are
reduced.

In another implementation of the first aspect, after a core
in the first core group completes its own task, the core may
also be used as a core 1n the second core to obtain data from
the decompression queue for decompression, so as to
improve a quanfity of cores performing decompression
operations 1n parallel, and improve a processing speed.

In another implementation of the first aspect, when a
small core 1s used for decompression 1n the second core
group, the small core finds that there 1s data in the decom-
pression queue, and first waits a first time (for example, 10
instruction cycles) to determine whether there 1s an 1dle large
core within the time period. If there 1s an 1dle large core
within the time period, the large core preferably processes
data 1n the decompression queue. When both a large core
and a small core are used for processing, the small core may
become 1dle ahead of the large core, so as to obtain data in
the decompression queue first, but the large core may also
become 1dle within an extremely short instruction cycle (for
example, within 10 1nstruction cycles). In this case, if the
small core first performs processing without the use of a
large core resource (it may take a relatively long time before
the large core can perform processing), a processing speed
1s reduced. In this manner, even 1f the small core can obtain
data, the small core does not immediately obtain the data. It
takes a relatively small time for the small core to wait and
se¢ whether an 1dle large core appears within the time
period. It the 1dle large core appears within the time period,
the large core preferably performs processing, thereby
improving a processing speed.

In another implementation of the first aspect, based on the
first aspect and various implementations, a kernel image
may be further booted, that 1s, after decompression 1s
completed, a kernel 1s booted by a boot core based on a
decompressed kernel image file. The boot core may be a core

10

15

20

25

30

35

40

45

50

55

60

65

6

that 1s 1n the multi-core processor and that 1s specified to
complete a bootstrap function. A device may be started by
using a boot kernel.

Based on the first aspect and the implementations of the
first aspect, 1n a second aspect, an embodiment of the present
disclosure discloses a multi-core processor, including a first
core group and a second core group, where the {irst core
group and the second core group are configured to perform
the various methods 1n the first aspect and various 1mple-
mentations of the first aspect.

Based on the foregoing aspects and various implementa-
tions of the aspects, 1 a third aspect, an embodiment of the
present disclosure discloses an electronic device, including,
a nonvolatile storage, a memory, and the multi-core proces-
sor 1n the second aspect and various implementations of the
second aspect.

Based on the foregoing aspects and various implementa-
tions of the aspects, 1n a fourth aspect, an embodiment of the
present disclosure discloses a readable storage medium,
configured to store code that 1s performed when the multi-
core processor mentioned 1n the foregoing aspects performs
an operation. This code may be code of a boot program.

BRIEF DESCRIPTION OF DRAWINGS

To describe the technical solutions in the embodiments of
the present disclosure or 1n the prior art more clearly, the
following briefly describes the accompanying drawings
required for describing the embodiments or the prior art.
Apparently, the accompanying drawings in the following
description show merely some embodiments of the present
disclosure, and a person of ordinary skill 1n the art may still
derive other drawings from these accompanying drawings
without creative efforts.

FIG. 1 1s a schematic diagram of a method for obtaining
a kernel image file according to the prior art;

FIG. 2 1s a schematic diagram of performing block
compression on an original image according to Embodiment
1 of the present disclosure;

FIG. 3 1s a flowchart of a method for loading a kernel
image file according to Embodiment 1 of the present dis-
closure;

FIG. 4 15 a schematic diagram of a method for loading a
kernel image file according to Embodiment 1 of the present
disclosure:

FIG. 5 1s a schematic diagram of obtaining a block from
a decompression queue by each core according to Embodi-
ment 1 of the present disclosure;

FIG. 6 1s a schematic structural diagram of a multi-core
processor according to Embodiment 2 of the present disclo-
SUre;

FIG. 7 1s a schematic structural diagram of an electronic
device according to Embodiment 3 of the present disclosure;
and

FIG. 8 1s a schematic structural diagram of a readable
storage medium according to Embodiment 4 of the present
disclosure.

DESCRIPTION OF EMBODIMENTS

The following clearly describes the technical solutions 1n
the embodiments of the present disclosure with reference to
the accompanying drawings in the embodiments of the
present disclosure. Apparently, the described embodiments
are merely some but not all of the embodiments of the
present disclosure. All other embodiments obtained by a
person of ordinary skill in the art based on the embodiments

US 11,074,083 B2

7

of the present disclosure without creative efforts shall fall
within the protection scope of the present disclosure.

To make the objectives, technical solutions, and advan-
tages of the present disclosure clearer and more comprehen-
sible, the following further describes the present disclosure
in detail with reference to the specific embodiments and
accompanying drawings.

In an embodiment, an electronic device usually 1includes:

a multi-core processor, a memory, a nonvolatile storage,
an input/output device, and the like.

In this embodiment, the multi-core processor 1s a system
on chip (System on Chip, SoC) that includes a plurality of
functional modules. In addition to a plurality of processor
cores, the multi-core processor includes a plurality of mod-
ules such as a graphics processing unit (Graphics Processing
Unit, GPU), a baseband processing module, an image pro-
cessor (Image Signal Processor, ISP), a digital signal pro-
cessor (Digital Signal Processor, DSP), and a peripheral
interface. These modules are encapsulated mto a chip and
are connected to the memory, the nonvolatile storage, and
the input/output device by using corresponding interfaces. A
specific mterface type and a specific connection manner are
technologies well known to a person skilled 1n the art, and
details are not described in this embodiment.

In this embodiment, implementation of the memory, the
nonvolatile storage, and the mput/output device may be the
same as that in the prior art. For example, the nonvolatile
storage may be a storage medium such as a disk or a flash
memory. The input device may include devices such as a
mouse, a touchscreen, and a keyboard, and the output device
includes a display, and the like. It should be noted that, for
case of description, 1n the following, the “nonvolatile stor-
age” 1s also referred to as a “storage” for short. Unless
otherwise specified, the “storage” 1n the following indicates
the “nonvolatile storage”.

In this embodiment, the processor includes eight proces-
sor cores (referred to as “cores” below). The cores include
four large cores and four small cores. For ease of descrip-
tion, the four large cores are respectively named a large core
A, a large core B, a large core C, and a large core D. The four
small cores are respectively named a small core A, a small
core B, a small core C, and a small core D.

Based on an architecture of the multi-core processor
system and a kernel of the multi-core processor, before the
multi-core processor loads an 1image, the multi-core proces-
sor {irst needs to perform step SO.

S0. Before powered on, the multi-core processor {first
performs block compression on a kernel image file (referred
to as a “kernel 1image” or an “image” below), and then stores
the compressed kernel image file 1n the nonvolatile storage
(referred to as a “‘storage” below). This step 1s usually
implemented by a manufacturer before delivery of a device.

In this embodiment, to reduce a volume of a kernel 1image,
after block compression 1s performed on the kernel image,
the compressed kernel 1image 1s stored in the storage. For
case of description, 1n this embodiment, a compressed kernel
image file 1s referred to as a “compressed 1mage”.

Referring to FIG. 2, FIG. 2 1s a schematic structural
diagram of a compressed 1mage obtained by performing
block compression on an original kernel image file, adding
a checksum (for example, a CRC checksum), adding a
decompression address, and adding a total checksum. The
compressed 1mage includes a plurality of data blocks (re-
terred to as blocks below). Each block includes block data
of the block, a decompression address of each block, and a
checksum of each block (represented by a CRC 1 to a CRC

n in the figure, where a checksum of each block 1s obtained

10

15

20

25

30

35

40

45

50

55

60

65

8

by using a physical address and block data in the block). In
addition, the compressed file includes a total checksum
(represented by a CRC s 1 FIG. 2). The block data, the

decompression address, the checksum of each block, and the
total checksum are set according to an agreed-upon length
and sequence (as shown 1n FIG. 2, block data 1 1s located 1n
the forefront of the compressed file, and the CRC s 1s located
at the end).

A data block 1s a part of data obtained after data of the
original kernel image file 1s compressed (referred to as a
“block™), and a size of the block may be configured at a

compression phase. For example, 1n this embodiment, a size
of each block 1s 200 KB.

A specific size of the block i1s not limited, and may be
configured at the compression phase. The block should not
be too small or too large, and may be roughly determined by
using the following formula:

Block size=Size of a compressed image/Quantity of
decompression cores/Quantity of blocks that can be decom-
pressed by each core on average

In the foregoing formula, the quantity of decompression
cores 1s a quantity of cores performing decompression. For
example, for an 8-core processor, four cores (mainly four
large cores) perform decompression for most of the time.
Therefore, for the 8-core processor, a quantity of decom-
pression cores may be usually set to 4 to 8.

In the foregoing formula, the quantity of blocks that can
be decompressed by each core on average may be usually set
to 10 to 20. If the block size 1s too large, an excessively small
quantity of blocks need to be decompressed by cores. In this
case, alter performing decompression, some cores become
idle and wait, and core resources are not used to a greater
extent. If the block size 1s too small, an excessively large
quantity of blocks need to be decompressed by cores. In this
case, cach time a block i1s processed, some additional
overheads unrelated to decompression (for example, reading
data) increase, thereby reducing processing efliciency.

It should be noted that the foregoing formula can produce
merely a relatively appropriate empirical value, and in
practice, an optimal block size for various multi-core pro-
cessors and for compressed 1mages of various sizes may be
constantly verified in combination with an experimental
means.

In this embodiment, the decompression address 1s a
physical address 1n a memory after final decompression, that
1s, some addresses are reserved 1n the memory for storing a
decompressed kernel image file. Decompressed addresses
may be consecutively numbered. For example, physical

address space [100 KB, 200 KB) of the memory may be
allocated to a block 1, and physical address space [200 KB,
300 KB] may be allocated to a block 2, and so on.

In this embodiment, a CRC checksum (for example, the
CRC 1 and the CRC n) of each block 1s a value obtained
after a CRC operation 1s performed on each data block and
a decompression address.

In this embodiment, a total CRC (the CRC s 1 FIG. 2) 1s
a value obtained after a CRC operation 1s performed on the
CRC checksums of all the blocks (which may be simply
indicated by a formula: CRC s=CRC 1+CRC 2+ . .. +CRC
n), and the total CRC 1s located at the end of the entire
compressed 1mage.

Referring to a flowchart imn FIG. 3 and a schematic
diagram 1n FIG. 4, 1n this embodiment, a method for loading
a kernel 1mage file into a memory by a multi-core processor
includes the following steps. It should be noted that
sequence numbers of the following steps do not indicate a

US 11,074,083 B2

9

strict execution sequence, and a person skilled 1n the art may
know an execution sequence of all the steps according to
content 1n the steps.

S1. The multi-core processor starts, first loads a boot
program by using a core, to complete processing of the
multi-core processor, and performs functions 1n the follow-
ing steps.

The boot program 1s a program that 1s used to boot an
operating system. A main function of the boot program
includes loading an 1mage from a storage into the memory,
and starting a kernel based on the image loaded in the
memory.

The core may be any specified core, and i1s usually
referred to as a “boot core”. Usually, the core 1s denoted as
a core 0, and 1s usually a small core.

S2. A small core A continuously reads blocks of a com-
pressed 1mage file from a storage. Each time a block 1s read,
the block 1s sent to a small core B for CRC calculation. After
all the blocks are read, and a total CRC 1s read, so as to
complete reading of the entire compressed 1mage.

During reading, each block, a decompression address of
each block, a checksum of each block, a total checksum, and
the like may be successively read by reading data of a fixed
length at a time. Specifically, the small core A puts data 1n
a cache receiving queue, and the small core B obtains data
from the cache receiving queue.

If reading 1s completed (including completion of reading
the total CRC), the small core A notifies the small core B that
reading of the compressed 1image has been completed. After
receiving the notification, the small core B knows that other
tasks may be performed subsequently provided that all data
in the cache receiving queue 1s processed. If an error occurs
in the reading process, perform step S7.

S3. The small core B 1s responsible for CRC calculation.
Each time obtaining a block sent by the small core A, the
small core B calculates a CRC checksum of the block (such
as a data block 1 1n FIG. 2) according to block data and a
decompression address 1n the block, and compares the
calculated CRC checksum with a CRC checksum corre-
sponding to the block that 1s stored in the compressed 1image
(such as a CRC 1 1n FIG. 2). I the two CRC checksums are
different, perform step S7; 11 the two CRC checksums are the
same, add the block to a decompression queue.

In terms of hardware, the decompression queue 1s located
in an area in the memory, and in terms ol soltware, the
decompression queue 1s managed by a boot program. A size
of the decompression queue may be determined according to
a rate of putting a block 1nto the decompression queue and
a decompression rate of each core, provided that the size
may prevent a case in which the queue overflows because
blocks are not read 1n time, and the queue does not occupy
much memory.

In this embodiment, to calculate a total CRC checksum,
after CRC checksums of blocks are calculated in this step,
the CRC checksums of the blocks are added together to a
variable used to calculate the total CRC checksum, as shown
in the following formula:

total CRC=total CRC+CRC[{], where

total CRC 1s a variable, and an 1nitial value of total CRC
1s 0; total CRC on the left of the equation indicates a
currently updated (that 1s, latest) total CRC checksum,
total_CRC on the right of the equation indicates an old total
CRC checksum (that 1s, a total CRC checksum used before
this update); and CR(CJ1] indicates a CRC checksum of each
block, and 1 may be a natural number (such as 0, 1, 2, . . .
). By using the foregoing calculation formula, each time a

10

15

20

25

30

35

40

45

50

55

60

65

10

CRC checksum of each block 1s calculated, the variable
total CRC 1s added to the CRC checksum of the block

together. In this way, when a CRC checksum of a last block
1s determined, a value of total_CRC (that 1s, the total CRC
checksum) 1s also determined.

I1 the small core B receives the notification that 1s sent by
the small core A and that 1s used to indicate that “reading of
the 1mage has been completed”, after the calculation of the

otal CRC checksum 1s completed, the small core B deter-
mines whether the total CRC checksum is the same as a total
CRC checksum 1n the compressed image. If the two total
CRC checksums are different, perform step S7. If the two
total CRC checksums are the same, a core used for decom-
pression knows, 1 a manner, that a total CRC check 1s
completed (that 1s, reading and a check of all data are
completed). The specific manner may be giving a notifica-
tion by using an interrupt, or setting a special tlag at the end
of the decompression queue. When the core used for decom-
pression reads the special tlag, the core knows that reading
and a check of all parts have been completed, so that the
queue no longer needs to be read from the queue to perform
a decompression operation.

S4. Other cores continuously obtain blocks 1n the decom-
pression queue, and perform decompression 1n parallel.

In this embodiment, large cores other than the small core
A and the small core B actively continuously query, at
intervals as small as possible, whether the decompression
queue 1s empty. 11 there 1s data in the decompression queue,
a data block i1s read from the decompression queue to be
decompressed, so that block data of the block 1s written into
a memory address indicated by a decompression address 1n
the block. If a decompression error occurs, perform step S7.
If the decompression queue i1s empty, new to-be-decom-
pressed data in the decompression queue continues to be
waited for. For example, referring to FIG. 5, FIG. 5 15 a
schematic diagram of obtaining a block from a decompres-
sion queue by a large core. When there 1s a block 1 1n the
decompression queue, the large core A obtains and processes
the block 1. When there 1s a block 2 1n the queue, the large
core B processes the block 2. Then, when there 1s a block 3
in the queue, the large core C processes the block 3.

When a core used for decompression obtains a block
image from the decompression queue, a lock flag 1s set for
the block, that 1s, a flag 1s set in the decompression queue in
the memory, to prevent another core from obtaining the
block i1mage. I decompression 1s completed, the block
image 1s deleted from the queue.

S5. Complete decompression of all the blocks, and obtain
a kernel 1image file 1n the memory.

S6. After knowing that decompression 1s completed, a
boot core starts a kernel based on the kernel image file.

The boot core may detect a completion tlag bit 1n a
progress table to determine whether decompression of all the
blocks 1s completed. Each flag bit in this progress table
corresponds to one data block. Each time a data block 1s
processed, a core that processes the block sets a correspond-
ing tlag bit 1n the progress table to a specific value (such as
0 or 1). When the boot core detects that all flag bits become
specific values, 1t indicates that decompression of all blocks

1s completed.

S7. Process an exception.

If an error or exception occurs, the error or exception may
be processed by means of restarting or an alarm. Details are
not described herein.

Embodiment 2

Referring to FIG. 6, based on Embodiment 1, an embodi-
ment discloses a multi-core processor 21, including a first

US 11,074,083 B2

11

core group 211 and a second core group 212. The first core
group and the second core group each include at least one
core, and are configured to perform the functions 1n the
foregoing embodiments. For example, a core 1n the first core
group may be configured to complete a function of reading
a compressed kernel image file from a nonvolatile storage
and a check function, and a core 1n the second core group
may be configured to complete a decompression function.

Embodiment 3

Referring to FI1G. 7, based on the foregoing embodiments,
an embodiment of the present disclosure discloses an elec-
tronic device 31, including a nonvolatile storage 311, a
memory 312, and a multi-core processor 313 1in Embodi-
ment 2. Connections and communication between the multi-
core processor, the nonvolatile storage, and the memory all
belong to the prior art, and details are not described 1n this
embodiment.

Embodiment 4

Referring to FIG. 8, based on the foregoing embodiments,
an embodiment of the present disclosure discloses a readable
storage medium 41, configured to store code that 1s used
when the multi-core processor 1n the foregoing embodi-
ments performs an operation. This code may be code 411 of
a boot program. The storage medium may be a nonvolatile
storage medium, for example, an optical disc, a flash
memory (tlash), or a disk.

In the foregoing example embodiments, the objectives,
technical solutions, and advantages of the present disclosure
are further described 1n detail. It should be understood that
the foregoing descriptions are merely example embodiments
of the present disclosure, but are not mtended to limit the
present disclosure. Any modification, equivalent replace-
ment, or improvement made without departing from the
spirit and principle of the present disclosure shall fall within
the protection scope of the present disclosure.

What 1s claimed 1s:
1. A method for fast loading a kernel image file, wherein
the method 1s executed by a multi-core processor, wherein
the multi-core processor 1s connected to a nonvolatile stor-
age and a memory, wherein the multi-core processor coms-
prises a {irst core group and a second core group, wherein the
first core group comprises at least one core, wherein the
second core group comprises a plurality of cores, and
wherein the method comprises:
obtaining, by the first core group, a plurality of data
blocks 1 a compressed kernel image file from the
nonvolatile storage, wherein the compressed kernel
image file comprises a plurality of data blocks obtained
alter block compression 1s performed on the kernel
image file;
checking, by the first core group each time obtaining a
data block, the currently obtained current data block;

in response to determining that the current data block 1s
correct, putting, by the first core group, the current data
block 1nto a decompression queue;

obtaining, by at least two of the plurality of cores 1n the

second core group when there 1s a data block in the
decompression queue, the data block 1n the decompres-
sion queue; and

in response to obtaining a plurality of data blocks, decom-

pressing the plurality of obtained data blocks 1n parallel
into the memory to finally obtain the kernel image file,

5

10

15

20

25

30

35

40

45

50

55

60

65

12

wherein a length of each data block matches a speed of
obtaining and checking a data block by the first core
group and a speed of performing decompression by a
core 1n the second core group.

2. The method according to claim 1, wherein the first core

group comprises a first core and a second core, and

wherein the obtaining, by the first core group, a plurality
of data blocks 1n a compressed kernel image file from
the nonvolatile storage comprises obtaining, by the first
core, the plurality of data blocks 1n the compressed
kernel image file from the nonvolatile storage; and

wherein the checking, by the first core group each time
obtaining a data block, the currently obtained current
data block comprises checking, by the second core each
time obtaining a data block sent by the first core, the
currently obtained current data block.

3. The method according to claim 2, wherein

the first core and the second core are small cores.

4. The method according to claim 1, wherein

the cores comprised in the second core group are large
cores.

5. The method according to claim 4, wherein

the large cores 1n the second core group comprise all large
cores 1n the multi-core processor.

6. The method according to claim 4, wherein

when the length of each data block matches the speed of
obtaining and checking the data block by the first core
group and the speed of performing decompression by
the core 1n the second core group, then when there 1s or
there will be a data block 1n the decompression queue,

at least two of the large cores 1n the second core group
are not 1dle at the same time.
7. The method according to claim 1, wherein
the compressed kernel image file further comprises a
checksum of each of the data blocks; and
wherein the checking, by the first core group each time
obtaining a data block, the currently obtained current
data block comprises checking the current data block
according to a checksum of the current data block.
8. The method according to claim 7, wherein
the compressed kernel image file further comprises a total
checksum, wherein a total check bit 1s obtained by
calculating a checksum of the checksums of all the data
blocks, and wherein the method further comprises:
in response to completing a check of a last data block,
calculating, by the first core group, the checksum of
the checksums of all the data blocks;
determining whether the checksum 1s consistent with
the total checksum; and
in response to determining that the checksum 1s incon-
sistent with the total checksum, performing error
processing.
9. The method according to claim 1, wherein
the obtaining, by at least two of the plurality of cores 1n
the second core group when there 1s a data block 1n the
decompression queue, the data block 1in the decompres-
sion queue, and decompressing a plurality of obtained
data blocks into the memory 1n parallel to obtain the
kernel 1image file comprises:
obtaining, by the at least two of the plurality of cores
in the second core group and when there 1s a data
block 1n the decompression queue, the data block 1n
the decompression queue; and
decompressing data blocks into the memory in parallel
according to decompression addresses of the data
blocks to obtain the kernel image file.

US 11,074,083 B2

13

10. A multi-core processor, comprising a first core group
and a second core group, wherein the first core group
comprises at least one core, and wherein the second core
group comprises a plurality of cores;

wherein the first core group 1s configured to obtain a

plurality of data blocks 1n a compressed kernel image
file from a nonvolatile storage connected to the multi-
core processor, wherein the compressed kernel image
file comprises a plurality of data blocks obtained after
block compression 1s performed on the kernel image
file;
wherein the first core group 1s further configured to:

in response to obtaining a data block, check the cur-

rently obtained current data block; and

in response to determining that the current data block 1s

correct, put the current data block 1nto a decompres-
s10n queue; and
wherein at least two of the plurality of cores 1n the second
core group are configured to:

in response to determining that there 1s a data block 1n
the decompression queue, obtain the data block 1n
the decompression queue; and

in response to obtaiming a plurality of data blocks,
decompress the plurality of obtained data blocks 1n
parallel mnto a memory connected to the multi-core
processor, to finally obtain the kernel image file,
wherein a length of each data block matches a speed of
obtaining and checking a fragment by the first core
group and a speed of performing decompression by a
core 1n the second core group.

11. The multi-core processor according to claim 10,
wherein the first core group comprises a first core and a
second core, and wherein that the first core group 1s con-
figured to obtain a plurality of data blocks 1n a compressed
kernel image file from a nonvolatile storage connected to the
multi-core processor comprises:

the first core obtains the plurality of data blocks 1n the

compressed kernel image file from the nonvolatile
storage; and

wherein that the first core group 1s configured to: in

response to obtaining a data block, check the currently
obtained current data block comprises:

the second core 1s configured to: 1n response to obtaining

a data block sent by the first core, check the currently
obtained current data block.

12. The multi-core processor according to claim 11,
wherein

the first core and the second core are small cores.

13. The multi-core processor according to claim 10,
wherein

the cores comprised in the second core group are large

cores.

14. The multi-core processor according to claim 13,
wherein

the large cores 1n the second core group comprise all large

cores 1n the multi-core processor.

15. The multi-core processor according to claim 13,
wherein

when the length of each data block matches the speed of

obtaining and checking the fragment by the first core
group and the speed of performing decompression by
the core 1n the second core group, then when there 1s or
there will be kernel image file data 1n the decompres-
s1on queue, at least two of the large cores 1n the second
core group are not idle at the same time.

16. The multi-core processor according to claim 10,
wherein

5

10

15

20

25

30

35

40

45

50

55

60

65

14

the compressed kernel image file further comprises a

checksum of each of the data blocks; and

wherein that the first core group 1s configured to: 1n

response to obtaining a data block, check the currently

obtained current data block comprises:

the first core group 1s configured to check the current
data block according to a checksum of the current
data block.

17. The multi-core processor according to claim 16,
wherein

the compressed kernel image file further comprises a total

checksum, wherein a total check bit 1s obtained by

calculating a checksum of check bits of all the data

blocks, and wherein the first core group i1s further

configured to:

after the first core group completes a check of a last
data block, calculate the checksum of the checksums
of all the data blocks;

determine whether the checksum 1s consistent with the
total checksum; and

in response to determining that the checksum 1s incon-
sistent with the total checksum, perform error pro-
cessing.

18. The multi-core processor according to claim 10,
wherein

the compressed kernel image file further comprises a

decompression address of each data block, and wherein
the decompression address 1s used to indicate a physi-
cal address that 1s 1n the memory and into which the
data block 1s decompressed, and wherein that the at
least two of the plurality of cores in the second core
group are configured to: when there 1s a data block 1n
the decompression queue, obtain the block in the
decompression queue, and decompress blocks into the
memory in parallel to obtain the kernel image file
COMpPrises:
the at least two of the plurality of cores in the second
core group are configured to: when kernel image file
data of a data block exists in the decompression
queue, obtain the block 1n the decompression queue
and decompress blocks into the memory in parallel
according to decompression addresses of the blocks
to obtain the kernel image file.

19. An electronic device, comprising a nonvolatile stor-
age, a memory, and a multi-core processor, wherein the
multi-core processor comprises a first core group and a
second core group, wherein the first core group comprises at
least one core, and wherein the second core group comprises
a plurality of cores;

wherein the first core group 1s configured to obtain a

plurality of data blocks 1n a compressed kernel image
file from a nonvolatile storage connected to the multi-
core processor, wherein the compressed kernel image
file comprises a plurality of data blocks obtained after
block compression 1s performed on the kernel image
file;
wherein the first core group 1s further configured to:

in response to obtaining a data block, check the cur-

rently obtained current data block; and

in response to determining that the current data block 1s

correct, put the current data block 1nto a decompres-
sion queue; and
wherein at least two of the plurality of cores in the second
core group are configured to:

in response to determining that there 1s a data block 1n
the decompression queue, obtain the data block 1n
the decompression queue; and

US 11,074,083 B2
15

in response to obtamning a plurality of data blocks,
decompress the plurality of obtained data blocks in
parallel into the memory connected to the multi-core
processor, to finally obtain the kernel image file,
wherein a length of each data block matches a speed of 5
obtaining and checking a data block by the first core
group and a speed of performing decompression by a
core 1n the second core group.

G x e Gx o

16

	Front Page
	Drawings
	Specification
	Claims

