United States Patent

US011074077B1

(12) 10) Patent No.: US 11,074,077 B1
Al Sheikh et al. 45) Date of Patent: Jul. 27, 2021
(54) REUSING EXECUTED, FLUSHED g%gja;gg E% ggg% Tfevit-‘:m ot 7:111
,, ,, ensen €t al.
INSTRUCTIONS AFTER AN INSTRUCTION 8028151 B2 92011 Abernathy of al.
PIPELINE FLUSH IN RESPONSE TO A 8,417,925 B2 4/2013 Neuyen
HAZARD IN A PROCESSOR TO REDUCE 9,495,167 B2* 11/2016 Alexander .......... GOG6F 9/30043
INSTRUCTION RE-EXECUTION 10,884,749 B2 * 1/2021 Sadasivam ............ GO6F 9/3846
2006/0282829 Al* 12/2006 Mcllvaine ............. GOO6F 9/3867
(71) Applicant: Microsoft Technology Licensing, LLC, _ 717131
Redmond, WA (US) (Continued)
(72) Inventors: Rami Mohammad Al Sheikh, OTHER PUBLICATTONS
Morrsville, NC (US); Michael Scott c Cale Compiler-Directed D . N
. ' onnors €L dl., COmMpIlCr-121recic ydamic COmpuldllon KCUscC.
Mcllvaine, Raleigh, NC (US) Rationale and Initial Results; IEEE; 1999 *
(73) Assignee: Microsoft Technology Licensing, LLC, (Continued)
Redmond, WA (US) _ _
Primary Examiner — Corey S Faherty
( *) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm — Withrow & Terranova,
patent 1s extended or adjusted under 35 PLLC
U.S.C. 1534(b) by 0 days.
(37) ABSTRACT
(21)  Appl. No.: 16/911,901 Reusing executed, flushed instructions after an instruction
_ pipeline flush in response to a hazard in a processor to
(22) Filed: Jun. 25, 2020 reduce instruction re-execution is disclosed. An instruction
processing circuit detects fetched performance degrading
(51) Int. Cl ; . . . . ..
e instructions (PDIs) 1n an instruction pipeline that may cause
GO6x 9/50 (2018.01) a flushing of the mstruction pipeline. In response to detect-
GO6F 9/36 (2018.01) ing a PDI, the instruction processing circuit 1s configured to
(52) US. Cl store the PDI and/or 1ts successor younger instructions in a
CPC .. GO6F 9/3808 (2013.01); GO6F 9/30181 pipeline execution refill circuit. In response to successiul
_ _ (2(_)13-01)5 GOor 9/3867 (2013.01) execution of such PDI and/or younger instructions, infor-
(38) Field of Classification Search mation about their mput value(s) and produced output
None o | value(s) when executed are captured 1n the pipeline execu-
See application file for complete search history. tion refill circuit. If a newly fetched instruction and its same
_ input value(s) has been previously captured from the pipe-
(56) References Cited line execution refill circuit, the instruction processing circuit

U.S. PATENT DOCUMENTS

12/2006 Mcllvaine et al.
1/2007 Filippo ..coeevvvvnnne... GO6F 9/3842

712/225

7,152,155 B2
7,165,167 B2 *

220\\

1s configured to inject the previously captured produced
output value into the instruction pipeline without having to
re-execute the newly fetched instruction.

35 Claims, 6 Drawing Sheets

GENERATE A PIPELINE FLUSH EVENT (138) TO FLUSH THE INSTRUCTION PIPELINE {lg-N) IN
RESPONSE TO THE EXECUTING OF AN INSTRUCTION {1080) AMONG THE PLURALITY OF 799
INSTRUCTIONS (108D) GENERATING A HAZARD AS A PERFORMANCE DEGRADING
INSTRUCTION {PD1) {108D)

IR RESPONSE TO THE PIPELINE FLUSH EVENT {138): I'Eﬂ

DETERMINE IF A SOUIRCE IDENTIRCATION {148} OF THE FETCHED INSTRUCTION {108D) MATCHES A
SOURCE IDENTIFICATION {156{0}-156{R])} IN A REAILL TAG [150{0}-150{R}} IN AN EXECUTION REFILL
ENTRY {146{0)-146{R)) AS A MATCHING DECUTION REALL ENTRY {146{0)-146(R})) AMOMG A PLURALITY
OF EXECUTION REFILL ENTRIES (146(0}-146{R)} OF THE PIPELINE FETCH REFILL QIRCUIT (144)

228

IN RESPONSE TO THE SOURCE IDENTIFICATION {148) OF THE FETCHED INSTRUCTICN (108D)
MATCHING THE SOURCE IDENTIFCATION (156{0}-136(R}} IN THE REAILL TAG {150{0}-150(R})
OF THE MATCHING EXECUTION REFILL ENTRY {146(0)-146{R]), DETERMINE IF INPUT
INFORMATION {152} OF THE FETCHED INSTRUCTION {108D) MATCHES INPUT INFORMATION
(158(0}-158{R}) IN THE MATCHING EXECUTION REFILL ENTRY {146{0)-146{R))

228

[N RESPONSE TO THE INPUT INFORMATION (152) OF THE FETCHED INSTRUCTION {108D}
MATCHING THE INPUT INFORMATION (158{0)-158{R)} IN THE MATCHING REFILL ENTRY | 290
(146{0)-146(R)), CAUSE OUTPUT INFORMATION {160{0)-160(R)) FOR THE FETCHED
INSTRUCTION {1080} IN THE MATCHING EXECUTION REFILL ENTRY {146(0)-146(R}) FOR
THE FETCHED INSTRUCTION {108D) TO BE COMMNTTED




US 11,074,077 B1

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2016/0239308 Al1* 8/2016 Alexander ............ GOG6F 9/3861

OTHER PUBLICATIONS

Mutlu et al.; On Reusing the Results of Pre-Executed Instructions

in a Runahead Execution Processor; IEEE; 2005.*

Monoharan et al.; Dynamic Exploitation of Redundancy in Pro-
grams Using Value Prediction and Instruction Reuse; 2003.*
Wolft et al.; Re-examining Instruction Reuse in Pre-execution
Approaches ; 2011.*

Gandhi, et al., “Reducing Branch Misprediction Penalty via Selec-
tive Branch Recovery”, In Proceedings of 10th International Sym-
posium on High Performance Computer Architecture, Feb. 14,
2004, 11 Pages.

Naresh, et al., “SPF:Selective Pipeline Flush”, In Proceedings of
IEEE 36th International Conference on Computer Design (ICCD),
Oct. 7, 2018, pp. 152-155.

Pilla, et al., “A Speculative Trace Reuse Architecture with Reduced
Hardware Requirements”, In Proceedings of 18th International

Symposium on Computer Architecture and High Performance Com-
puting, Oct. 17, 2006, 8 Pages.

* cited by examiner



US 11,074,077 B1

Sheet 1 of 6

Jul. 27, 2021

U.S. Patent

E@E@%ﬁ L (4971

(L)o9L] (L)8SL] (1)9SL J(1)osL |(1)9¥
[(0)091| (0)8sL| (0)951 | (0)osL [(0)9 L
3

i

(bi 1) LINDYD TII3Y (971) {344} 71 (¥Z1)

NOLLND3Xd INT13d1d LIS TIISAHd e v sy
INIWYNIY

15N4Y "ISNI ‘D40 10d IN3dI
14n0S)
480l

9€1 HAZED | 0Ll
1D UMD | | umEn 00730 7 | AHOWIW
1TWWO0) INSSI TV HOIDNEISK! * NOLDEISHI

e (801)
1801 SNOLDAYISH!



U.S. Patent Jul. 27, 2021 Sheet 2 of 6 US 11,074,077 B1

200 ™~

FETCH A PLURALITY OF INSTRUCTIONS (108) FROM A PROGRAM CODE INTO AN INSTRUCTION

PIPELINE (Ig-Iy) TO BE EXECUTED

DETECT IF A FETCHED INSTRUCTION (108D) IN THE INSTRUCTION PIPELINE {1}
S A PDI (108D}

IN RESPONSE TO DETECTING THE FETCHED INSTRUCTION (108D) AS A PDI (108D), DETERMINE

IF A SOURCE IDENTIFICATION {148) OF THE DETECTED PDI {108D) MATCHES A SOURCE

IDENTIFICATION (156(0)-156(R)) IN A REFILL TAG (150(0)-150(R)) IN AN EXECUTION REFILL

ENTRY (146(0)-146(R)) AMONG THE PLURALITY OF EXECUTION REFILL ENTRIES
(146(0)-146(R)) IN THE PIPELINE EXECUTION REFILL CIRCUIT {144)

IN RESPONSE TO THE SOURCE IDENTIFICATION (148) OF THE DETECTED PDI (108D) NOT
MATCHING A SOURCE IDENTIFICATION (156(0)-156(R)) IN A REFILL TAG (150(0)-150(R)}
IN AN EXECUTION REFILL ENTRY (146{0)-146(R):

STORE THE SOURCE IDENTIFICATION {148) OF ONE OR MORE FETCHED INSTRUCTIONS (108D)
COMPRISING AT LEAST ONE OF THE DETECTED PDI (108D} AND ONE OR MORE SUCCESSOR

INSTRUCTIONS {108D) FOLLOWING THE DETECTED PDI {108D) IN A RESPECTIVE ONE OR MORE
REFILL TAGS {150(0)-150(R)) OF ONE OR MORE EXECUTION REFILL ENTRIES (146(0)-146(R)}

STORE ONE OR MORE INPUT INFORMATION (152) FOR EXECUTION OF THE ONE OR MORE
FETCHED INSTRUCTIONS (108D} AS RESPECTIVE ONE OR MORE INPUT INFORMATION
(158(0)-158(R)) IN THE ONE OR MORE EXECUTION REFILL ENTRIES (146(0)-146(R))

STORE ONE OR MORE OUTPUT INFORMATION (154) GENERATED BY THE EXECUTION CIRCUIT

(116) IN EXECUTION OF THE ONE OR MORE DETECTED INSTRUCTIONS (108D) AS RESPECTIVE

ONE OR MORE OUTPUT INFORMATION (160(0)-160(R)) IN THE ONE OR MORE EXECUTION
REFILL ENTRIES (146(0)-146(R))

EXECUTE THE FETCHED INSTRUCTION (108D) AMONG THE PLURALITY OF FETCHED
INSTRUCTIONS (108D) IN THE INSTRUCTION PIPELINE (1g-IN)

HE. ZA

202

204

206

208

210

212

214

216



U.S. Patent Jul. 27, 2021 Sheet 3 of 6 US 11,074,077 B1

M~
GENERATE A PIPELINE FLUSH EVENT (138) TO FLUSH THE INSTRUCTION PIPELINE (1q-lxy) IN
RESPONSE TO THE EXECUTING OF AN INSTRUCTION {108D) AMONG THE PLURALITY OF -
INSTRUCTIONS {108D) GENERATING A HAZARD AS A PERFORMANCE DEGRADING
INSTRUCTION (PDI) (108D)
IN RESPONSE TO THE PIPELINE FLUSH EVENT (138): 924

DETERMINE IF A SOURCE IDENTIFICATION (148) OF THE FETCHED INSTRUCTION (108D) MATCHES A
SOURCE IDENTIFCATION(156(0}156(R})INA REFILL TAG (150(0}IS0(R)) N AN EXECUTIONREFLL |
ENTRY (146(0}-146(R)) AS A MATCHING EXECUTION REFILL ENTRY {146{0)-146(R)) AMONG A PLURALITY
OF EXECUTION REFILL ENTRIES (146(0)-146{R)) OF THE PIPELINE FETCH REFILL CIRCUIT (144)

‘IN RESPONSE TO THE SOURCE IDENTIFICATION 148) OF THE FETCHED INSTRUCTION (108D}
MATCHING THE SOURCE IDENTIFCATION (156(0)-156(R)) IN THE REFILL TAG (150(0}-150(R))

OF THE MATCHING EXECUTION REFILL ENTRY {146(0)-146(R)), DETERMINE IF INPUT
INFORMATION (152) OF THE FETCHED INSTRUCTION {108D) MATCHES INPUT INFORMATION
(158(0)-158(R)) IN THE MATCHING EXECUTION REFILL ENTRY {146(0)-146(R))

228

IN RESPONSE TO THE INPUT INFORMATION (152) OF THE FETCHED INSTRUCTION (108D)
MATCHING THE INPUT INFORMATION (158(0)-158(R)) IN THE MATCHING REFILL ENTRY [ 230
(146(0)-146(R)). CAUSE OUTPUT INFORMATION {160{0}-160(R)) FOR THE FETCHED
INSTRUCTION (108D) IN THE MATCHING EXECUTION REFILL ENTRY (146(0)-146(R)) FOR
THE FETCHED INSTRUCTION (108D) TO BE COMMITTED

FIG. 2B




g Jld

US 11,074,077 B1

(b¥€) LINDYD TIHIY
)13 INMTAdId

(8€1) INIAT HSN yL€

(Zv€) LI (0¥€) LY
150134 NOLLDNYLSNI NOID)313d 104

Sheet 4 of 6

9€1

D | LINAD H)134 “ISNI

Jul. 27, 2021

7/

2601 " L3801 Ny
(K0€) LINDYD ONISSTI0¥d NOILINYLSNI

(20€) ¥0S51)0Y¢ ™
(00€) WILSAS QISYE-40SS1)04d

U.S. Patent



US 11,074,077 B1

Sheet 5 of 6

Jul. 27, 2021

U.S. Patent

v

» m &
% »
& &

| | | | |

(09€) ONI (8S€)0NI  (0cE) (89¢) (9¢¢)  (0S¢€)

N NI JLLE ] QR
Ao A g ama o Dinos i

\.\
(¥¥€) LI T1H3Y NOILMIXT INTIdId




U.S. Patent Jul. 27, 2021 Sheet 6 of 6 US 11,074,077 B1

532

532

NETWURK

INSTRUCHOR
PROCESSING CIRCUIT (526)

330
518
532
SYSTEM MEMORY 514 590
MEMORY (ONTROLLER
1 516
MEMORY
ARRAY
i 530 324
8 DISPLAY



US 11,074,077 Bl

1

REUSING EXECUTED, FLUSHED
INSTRUCTIONS AFTER AN INSTRUCTION
PIPELINE FLUSH IN RESPONSE TO A

HAZARD IN A PROCESSOR TO REDUCE
INSTRUCTION RE-EXECUTION

FIELD OF THE DISCLOSURE

The technology of the disclosure relates to computer
processors (“‘processors’), and more particularly to fetching
of computer program instructions to be executed in the
Processor.

Background

Microprocessors, also known as “processors,” perform
computational tasks for a wide variety of applications. A
conventional microprocessor includes a central processing
unit (CPU) that includes one or more processor cores, also
known as “CPU cores.” The CPU executes computer pro-
gram 1nstructions (“instructions™), also known as “software
instructions,” to perform operations based on data and
generate a result, which 1s a produced value. The handling
of each 1nstruction 1n the processor 1s split into a series of
different stages or steps known as instruction pipelining.
This allows multiple instructions to be processed at the same
time in different stages to increase instruction processing
throughput, as opposed to each instruction being processed
sequentially and fully executed before processing a next
instruction. Instruction pipelining steps are executed in one
or more 1nstruction pipelines 1 the processor each com-
posed of multiple processes stages.

Optimal processor performance can be achieved 1f all
pipeline stages 1n an instruction pipeline are able to process
instructions concurrently in the instruction pipeline. How-
ever, hazards can occur 1n an instruction pipeline where an
instruction cannot be executed without leading to incorrect
computation results. One example of a hazard that can cause
an instruction pipeline to be flushed is a structural hazard.
An example of a structural hazard 1s a load instruction that
fails to load an entry into a load queue that may be full. If
the load instruction cannot execute, a deadlock could occur
in the instruction pipeline. Another example of a hazard that
can cause a pipeline to be flushed 1s a control hazard
resulting from execution of a control flow instruction that
causes a precise interrupt 1n the processor. One example of
a control flow instruction that can cause a control hazard is
a conditional branch instruction. A conditional branch
instruction includes a predicate condition that 1s not fully
evaluated 1n a later execution stage in an instruction pipeline
to determine 1f the istruction flow will branch or not
branch. So as to not have to stall the fetching of successor,
younger instructions behind the conditional branch mnstruc-
tion into an 1instruction pipeline before the conditional
branch 1nstruction 1s executed, a control flow prediction
circuit can be provided i the processor to speculatively
predict the branch target address of the conditional branch
instruction. The processor can then speculatively fetch suc-
cessor nstructions in the fetch stages of an instruction
pipeline following the fetch of a conditional branch nstruc-
tion based on the prediction of a branch target address.

If the actual resolved branch target address 1s determined
in execution to match the predicted branch address, a stall 1s
not mncurred 1n instruction pipeline. This 1s because the
successor instructions started at the predicted branch target
address will have been correctly fetched and already be
present in the instruction pipeline when the conditional

10

15

20

25

30

35

40

45

50

55

60

65

2

branch 1nstruction reaches the execution stage of an instruc-
tion pipeline. However, 1f the predicted and resolved branch

target addresses do not match, a mispredicted branch hazard
occurs 1n the instruction pipeline that causes a precise
interrupt. As a result, the mstruction pipeline 1s flushed of
existing, previously fetched instructions in the various
stages of the instruction pipeline. The fetch stage of the
instruction pipeline 1s instructed to fetch new instructions
starting from the correct, resolved branch target. Thus,
stages 1n the instruction pipeline will remain dormant until
the newly fetched instructions make their way through the
istruction pipeline to be processed and executed, thereby
reducing instruction throughput performance.

There are also other situations encountered when process-
ing 1nstructions beyond branch that can cause structural
hazards and thus cause a flush of an instruction pipeline.
Examples include deadlocks and instructions that cannot be
executed due to lack of resources, such as available space 1n
a queue.

SUMMARY

Exemplary aspects disclosed herein include reusing
executed, flushed instructions after an instruction pipeline
flush 1n response to a hazard 1n a processor to reduce
instruction re-execution. The processor includes an instruc-
tion processing circuit that 1s configured to fetch instructions
into an 1nstruction pipeline to be processed and executed 1n
an execution stage as part of instruction pipelining. The
execution circuit in the istruction processing circuit 1s
configured to generate a precise interrupt in response to
encountering a hazard (e.g., a structural or control flow
hazard) when executing an instruction. For example, the
precise interrupt may have been generated as a result of a
mispredicted conditional branch instruction wherein
younger, control dependent instructions on the conditional
branch instruction from an incorrect instruction flow path
are already fetched into the istruction pipeline. In response
the precise interrupt, the instruction processing circuit 1s
configured to flush the instruction that caused the precise
interrupt and 1ts younger instructions in the instruction
pipeline to overcome the hazard. This results 1 a reduced
instruction throughput 1n the instruction pipeline by having
to re-execute these flushed instructions. However, 1f these
flushed 1nstructions had been previously successiully
executed 1n the mnstruction pipeline and execution mforma-
tion about their execution was captured when previously
executed, this execution information could be reused and
injected 1nto in the instruction pipeline after the flush,
without the need to re-execute these instructions.

In this regard, 1n exemplary aspects disclosed herein, the
istruction processing circuit in the processor i1s configured
to detect fetched instructions in a pre-execution stage 1n an
instruction pipeline that may cause a precise mterrupt that
would cause flushing of an instruction pipeline. These
instructions can be referred to as performance degrading
instructions (PDIs). For example, the instruction processing
circuit 1s configured to detect a PDI to be executed 1n an
execution stage of the instruction pipeline. In response to
detecting the PDI 1n the mstruction pipeline, the instruction
processing circuit 1s configured to capture execution infor-
mation for the detected PDI and/or its successor, younger
instructions processed 1n the mstruction pipeline behind the
PDI as detected instructions in a pipeline execution refill
circuit. The instruction processing circuit information 1s also
configured to capture mput information as execution infor-
mation used to execute the captured detected instructions



US 11,074,077 Bl

3

and the output information (e.g., output value) generated
when the detected instructions are executed, 1n the pipeline
execution refill circuit. The mput information of the
executed 1nstructions can be the actual resolved 1input values
or information about the iput operand(s) of the instructions,
as examples. The instruction processing circuit 1s configured
to determine 11 an instance of newly fetched instructions in
a pre-execution stage of the instruction pipeline have already
been captured 1n the pipeline execution refill circuit, and 1t
s0, 11 the 1information about 1nput information captured for
such fetched nstruction 1n the pipeline execution refill
circuit matches the mput information for the newly fetched
instruction. If the input information matches, this means that
the previously captured, produced output information (e.g.,
output value) as part of the execution information for the
instruction 1n the instruction execution refill circuit when
previously executed can be reused in the current execution
of the newly fetched instruction in the nstruction pipeline.
This 1s because for a given instruction, the produced output
information generated by 1ts execution will be the same 11 1ts
input information 1s the same. The instruction processing
circuit can inject the previously captured output information
in the pipeline execution refill circuit determined to be
applicable to the instance of the newly fetched instruction to
a commit or write-back stage for the newly fetched instruc-
tion without having to re-execute the newly fetched 1nstruc-
tion 1n the instruction pipeline to generate 1ts output value.

The 1nstruction processing circuit 1s configured to capture
execution nformation for detected instructions (i.e., the
detected PDI and/or 1ts successor, younger instructions) in
the pipeline execution refill circuit based on detecting a PDI,
because PDIs are most likely to encounter a hazard that
causes a flush of the mnstruction pipeline. Younger instruc-
tions that follow an instruction that does not encounter a
hazard and cause a flush of the struction pipeline will be
successiully executed from their mnitial fetch and thus are not
re-executed. However, younger instructions processed
behind a PDI that were flushed as a result of a hazard
generated by execution of a PDI will need to be re-executed.
Thus, 1f the previous output information generated by execus-
tion of such successor, younger instructions was captured
when the younger instructions were not flushed, this output
information can be reused when re-processing the younger
instructions as a result of flushing without having to re-
execute such instructions. As a result and as an example,
instructions that are dependent on the younger instruction
that does not have to be re-executed, may be able to be
1ssued for execution sooner.

As an example, execution information for PDIs, such as
memory load operations, that are conventionally flushed and
then re-fetched for re-execution if their execution causes a
flush event, 1s captured in response to detecting the PDI.
This 1s so that this captured output information can be later
injected in the instruction pipeline when such PDI 1s re-
tetched for re-execution to avoid the need for re-execution.
As another example, execution information for PDIs, such
as conditional branch instructions, that are conventionally
not flushed and thus not re-fetched for re-execution 11 their
execution causes a flush event, need not be captured in
response to detecting the PDI.

In this regard, in one exemplary aspect, a processor 1s
disclosed, comprising an instruction processing circuit. The
instruction processing circuit comprises an instruction fetch
circuit configured to fetch a plurality of instructions as a
plurality of fetched instructions from a program code 1nto an
instruction pipeline to be executed, and an execution circuit
coupled to the 1nstruction fetch circuit. The execution circuit

10

15

20

25

30

35

40

45

50

55

60

65

4

1s configured to execute a fetched instruction among the
plurality of fetched instructions in the instruction pipeline,

and generate a pipeline flush event to flush the instruction
pipeline 1n response to the execution of a fetched mstruction
among the plurality of fetched instructions comprising a PDI
generating a hazard. The processor also comprises an
instruction reuse circuit coupled to the instruction pipeline
between the instruction fetch circuit and the execution
circuit. The 1nstruction reuse circuit 1s configured to deter-
mine 1f a source identification of the fetched instruction
matches a source 1dentification 1n a refill tag 1n an execution
refill entry as a matching execution refill entry among a
plurality of execution refill entries of a pipeline execution
refill circuit. In response to the source identification of the
fetched instruction matching the source 1dentification in the
refill tag in the matching execution refill entry, the mnstruc-
tion reuse circuit 1s configured to determine 1f mnput nfor-
mation of the fetched 1nstruction matches mput information
in the matching execution refill entry. In response to the
input information of the fetched instruction matching the
input information 1n the matching execution refill entry, the
instruction reuse circuit 1s configured to cause output infor-
mation for the fetched instruction 1n the matching execution
refill entry for the fetched instruction to be commuitted.

In another exemplary aspect, a method of reusing
executed, flushed mstructions in an mstruction pipeline 1n a
processor 1s disclosed. The method comprises fetching a
plurality of instructions as a plurality of fetched instructions
from a program code into an instruction pipeline to be
executed and executing a fetched instruction among the
plurality of fetched instructions in the instruction pipeline.
The method also comprises generating a pipeline tlush event
to tlush the instruction pipeline 1n response to the execution
of a fetched nstruction among the plurality of fetched
istructions comprising a PDI generating a hazard, and
determining if a source i1dentification of the fetched instruc-
tion before being executed matches a source 1dentification in
a refill tag 1n an execution refill entry as a matching
execution refill entry among a plurality of execution refill
entries of a pipeline execution refill circuit. In response to
the source 1dentification of the fetched nstruction matching
the source identification 1n the refill tag as a matching
execution refill entry, the method also comprises determin-
ing 1i mput mformation of the fetched instruction matches
input iformation 1 the matching execution refill entry. In
response to the input information of the fetched struction
matching the input information 1n the matching execution
refill entry, the method also comprises causing output infor-
mation for the fetched instruction 1n the matching execution
refill entry for the fetched instruction to be commuitted.

Those skilled in the art will appreciate the scope of the
present disclosure and realize additional aspects thereof after
reading the following detailed description of the pretferred
embodiments 1n association with the accompanying drawing
figures.

BRIEF DESCRIPTION OF TH.
FIGURES

(L]

DRAWING

The accompanying drawing figures incorporated 1n and
forming a part of this specification 1llustrate several aspects
of the disclosure, and together with the description serve to
explain the principles of the disclosure.

FIG. 1 1s a diagram of an exemplary processor-based
system that includes a processor with an instruction pro-
cessing circuit that includes one or more 1nstruction pipe-
lines for processing computer instructions, wherein the



US 11,074,077 Bl

S

instruction processing circuit 1s configured to reuse output
information for a newly fetched instruction (i.e., a fetched

PDI and/or its fetched, successor, younger instructions)
previously captured from a previous successiul execution of
the newly {fetched instruction following a preceding,
detected PDI 1n the 1nstruction pipeline, to avoid the need to
re-execute the newly fetched instruction;

FIG. 2A 1s a flowchart illustrating an exemplary process
ol the instruction processing circuit in FIG. 1 detecting and
capturing execution information for fetched instructions in
the 1nstruction pipeline 1nto the pipeline fetch refill circuait;

FIG. 2B 1s a flowchart 1llustrating an exemplary process
of the instruction processing circuit in FIG. 1 reusing output
information in captured execution information for a previ-
ously fetched and executed instruction from a pipeline
execution refill circuit in an 1nstruction pipeline 1n response
to a flush event caused by execution of the PDI;

FI1G. 3 1s a diagram of another exemplary processor-based
system that includes a processor with an instruction pro-
cessing circuit that includes one or more 1nstruction pipe-
lines for processing computer instructions, wherein the
instruction processing circuit 1s configured to reuse output
information of previously captured execution information
for a newly fetched instruction previously captured from a
previous successiul execution of the newly fetched 1nstruc-
tion to avoid the need to re-execute the newly fetched
instruction;

FI1G. 4 1s a diagram of an exemplary pipeline execution {ill
circuit 1n FIG. 3 configured to store captured input infor-
mation and output information as execution mnformation of
previously executed instructions for reuse 1f such instruc-
tions are again fetched for execution; and

FIG. 5 1s a block diagram of an exemplary processor-
based system that includes a processor with an 1nstruction
processing circuit configured to reuse output information in
previously captured execution information for a newly
fetched instruction previously captured from a previous
successiul execution of the newly fetched mstruction 1n the
instruction pipeline, to avoid the need to re-execute the
newly fetched instruction, including but not limited to the
exemplary 1nstruction processing circuits i FIGS. 1 and 3

and according to, but not limited to, the exemplary processes
in FIGS. 2A and 2B.

DETAILED DESCRIPTION

Exemplary aspects disclosed herein include reusing
executed, flushed instructions after an instruction pipeline
flush 1n response to a hazard 1n a processor to reduce
instruction re-execution. The processor includes an nstruc-
tion processing circuit that 1s configured to fetch mnstructions
into an struction pipeline to be processed and executed 1n
an execution stage as part of instruction pipelining. The
execution circuit in the struction processing circuit 1s
configured to generate a precise interrupt i response to
encountering a hazard (e.g., a structural or control flow
hazard) when executing an instruction. For example, the
precise interrupt may have been generated as a result of a
mispredicted conditional branch 1nstruction wherein
younger, control dependent instructions on the conditional
branch instruction from an incorrect mstruction flow path
are already fetched into the istruction pipeline. In response
the precise interrupt, the instruction processing circuit 1s
configured to flush the instruction that caused the precise
interrupt and its younger instructions in the instruction
pipeline to overcome the hazard. This results 1n a reduced
instruction throughput 1n the instruction pipeline by having

5

10

15

20

25

30

35

40

45

50

55

60

65

6

to re-execute these flushed instructions. However, 1l these
flushed 1nstructions had been previously successiully
executed 1n the mnstruction pipeline and execution iforma-
tion about their execution was captured when previously
executed, this execution information could be reused and
injected 1nto in the instruction pipeline after the flush,
without the need to re-execute these instructions.

In this regard, 1n exemplary aspects disclosed herein, the
istruction processing circuit in the processor i1s configured
to detect fetched instructions in a pre-execution stage 1n an
instruction pipeline that may cause a precise mterrupt that
would cause flushing of an instruction pipeline. These
istructions can be referred to as performance degrading
instructions (PDIs). For example, the instruction processing
circuit 1s configured to detect a PDI to be executed 1n an
execution stage of the istruction pipeline. In response to
detecting the PDI 1n the mnstruction pipeline, the instruction
processing circuit 1s configured to capture execution nfor-
mation for the detected PDI and/or its successor, younger
instructions processed 1n the mstruction pipeline behind the
PDI as detected instructions in a pipeline execution refill
circuit. The 1nstruction processing circuit information 1s also
configured to capture mput information as execution infor-
mation used to execute the captured detected instructions
and the output information (e.g., output value) generated
when the detected instructions are executed, in the pipeline
execution refill circuit. The input information of the
executed 1nstructions can be the actual resolved input values
or information about the input operand(s) of the instructions,
as examples. The instruction processing circuit 1s configured
to determine 11 an instance of newly fetched instructions in
a pre-execution stage of the mstruction pipeline have already
been captured 1n the pipeline execution refill circuit, and 1
so, 11 the mformation about input information captured for
such fetched nstruction i1n the pipeline execution refill
circuit matches the mput information for the newly fetched
instruction. If the mput information matches, this means that
the previously captured, produced output information (e.g.,
output value) as part of the execution information for the
instruction 1n the instruction execution refill circuit when
previously executed can be reused in the current execution
of the newly fetched instruction in the instruction pipeline.
This 1s because for a given instruction, the produced output
information generated by its execution will be the same 11 1ts
input information i1s the same. The instruction processing
circuit can inject the previously captured output information
in the pipeline execution refill circuit determined to be
applicable to the instance of the newly fetched instruction to
a commit or write-back stage for the newly fetched instruc-
tion without having to re-execute the newly fetched nstruc-
tion 1n the mnstruction pipeline to generate its output value.

The 1nstruction processing circuit 1s configured to capture
execution information for detected instructions (i.e., the
detected PDI and/or 1ts successor, younger instructions) in
the pipeline execution refill circuit based on detecting a PDI,
because PDIs are most likely to encounter a hazard that
causes a flush of the instruction pipeline. Younger instruc-
tions that follow an instruction that does not encounter a
hazard and cause a flush of the instruction pipeline will be
successiully executed from their 1nitial fetch and thus are not
re-executed. However, vyounger instructions processed
behind a PDI that were flushed as a result of a hazard
generated by execution of a PDI will need to be re-executed.
Thus, 1 the previous output information generated by execu-
tion of such successor, younger instructions was captured
when the younger mstructions were not tlushed, this output
information can be reused when re-processing the younger



US 11,074,077 Bl

7

instructions as a result of flushing without having to re-
execute such instructions. As a result and as an example,
instructions that are dependent on the younger instruction
that does not have to be re-executed, may be able to be
issued for execution sooner.

As an example, execution information for PDIs, such as
memory load operations, that are conventionally flushed and
then re-fetched for re-execution 1if their execution causes a
flush event, 1s captured 1n response to detecting the PDI.
This 1s so that this captured output information can be later
injected in the instruction pipeline when such PDI 1s re-
tetched for re-execution to avoid the need for re-execution.
As another example, execution information for PDIs, such
as conditional branch instructions, that are conventionally
not flushed and thus not re-fetched for re-execution 11 their
execution causes a flush event, need not be captured in
response to detecting the PDI.

In this regard, FIG. 1 1s a schematic diagram of an
exemplary processor-based system 100 that includes a pro-
cessor 102. As will be discussed 1n more detail below, the
processor 102 1s configured to reuse executed instructions to
process a newly fetched instruction 1n an nstruction pipeline
to avoid the need to re-execute the newly fetched mstruction.
The output information used to process the newly fetched
instruction was previously captured from a previous execu-
tion of the fetched instruction following a preceding,
detected PDI 1n the instruction pipeline. The newly fetched
instruction may have been re-fetched for execution as a
result of being previously flushed from the instruction
pipeline in response to a hazard encountered when execution
a predecessor instruction. Before discussing the reuse of
executed instructions in response to another instance of the
executed 1nstruction being newly fetched for re-execution,
other components of the processor 102 are first discussed
below.

With reference to FIG. 1, the processor 102 includes an
instruction processing circuit 104 that includes one or more
instruction pipelines 1,-1,, for processing computer mstruc-
tions for execution. The processor 102 1s an out-of-order
processor (OoP) shown in FIG. 1, but could also be an
in-order processor. The instruction processing circuit 104
includes an 1nstruction fetch circuit 106 that 1s configured to
tetch instructions 108 from an mstruction memory 110. The
instruction memory 110 may be provided 1n or as part of a
system memory 1n the processor-based system 100 as an
example. An instruction cache 112 may also be provided 1n
the processor 102 to cache the instructions 108 fetched from
the instruction memory 110 to reduce timing delay in the
instruction fetch circuit 106. The instruction fetch circuit
106 1n this example 1s configured to provide the instructions
108 as fetched instructions 108F into the one or more
instruction pipelines 1,-1,; as an nstruction stream 114 1n the
istruction processing circuit 104 to be pre-processed,
before the fetched instructions 108F reach an execution
circuit 116 to be executed. The struction pipelines I1,-1, are
provided across different processing circuits or stages of the
instruction processing circuit 104 to pre-process and process
the fetched instructions 108F 1n a series of steps that can be
performed concurrently to increase throughput prior to
execution of the fetched instructions 108F by the execution
circuit 116.

A control flow prediction circuit 118 (e.g., a control flow
prediction circuit) 1s also provided in the instruction pro-
cessing circuit 104 in the processor 102 m FIG. 1 to
speculate or predict the outcome of a predicate of a fetched
conditional control instruction 108F, such as a conditional
branch instruction, that affects the instruction control flow

10

15

20

25

30

35

40

45

50

55

60

65

8

path of the instruction stream 114 processed 1n the instruc-
tion pipelines I,-I,. The prediction of the control tlow
prediction circuit 118 can be used by the instruction fetch
circuit 106 to determine the next fetched instructions 108F
to fetch based on the predicted branch target address. The
instruction processing circuit 104 also includes an instruc-
tion decode circuit 120 configured to decode the fetched
instructions 108F fetched by the mstruction fetch circuit 106
into decoded instructions 108D to determine the instruction
type and actions required. The instruction type and action
required encoded 1n the decoded instruction 108D may also
be used to determine in which istruction pipeline 1,-1,; the
decoded mstructions 108D should be placed.

In this example, the decoded instructions 108D are placed
in one or more of the instruction pipelines I,-1,; and are next
provided to a rename circuit 122 in the instruction process-
ing circuit 104. The rename circuit 122 1s configured to
determine 1f any register names 1n the decoded instructions
108D need to be renamed to break any register dependencies
that would prevent parallel or out-of-order processing. The
rename circuit 122 1s configured to call upon a renaming
access table circuit 124 to rename a logical source register
operand and/or write a destination register operand of a
decoded instruction 108D to available physical registers P,
P,, ..., P, 1 a physical register file (PRF) 126. The
renaming access table circuit 124 contains a plurality of
register mapping entries 128(0)-128(P) each mapped to (1.¢.,
associated with) a respective logical register R,-R,. The
register mapping entries 128(0)-128(P) are each configured
to store respective mapping information for corresponding
to the logical registers R,-R » pointing to a physical register
P,-P.. 1n the PRF 126. Each physical register P,-P, 1s
configured to store a data entry 130(0)-130(X) for the source
and/or destination register operand of a decoded instruction
108D.

The instruction processing circuit 104 1n the processor
102 1 FIG. 1 also includes a register access circuit 132
located 1n the instruction pipelines I,-I., prior to an 1ssue
circuit 134. The register access circuit 132 1s configured to
access a physical register P,-P,. in the PRF 126 based on a
register mapping entry 128(0)-128(P) mapped to a logical
register R,-R , 1n the renaming access table circuit 124 to use
as an put value for a named source register operand of a
decoded nstruction 108D to be executed 1n the execution
circuit 116. The issue circuit 134 1s configured to store
decoded instructions 108D 1n reservation entries in the
istruction pipeline O-IN until all their respective source
register operands are available for consumption 1 execu-
tion. The 1ssue circuit 134 i1ssues decoded nstructions 108D
ready to be executed to the execution circuit 116. A commit
circuit 136 1s also provided in the instruction processing
circuit 104 to commit or write-back produced values gen-
cerated by execution of decoded instructions 108D to
memory, such as the PRF 126, cache memory, or system
memory.

The execution circuit 116 in the instruction processing
circuit 104 1n the processor 102 1n FIG. 1 1s configured to
generate a precise interrupt in response to encountering a
hazard (e.g., a structural or control flow hazard) when
executing an 1struction 108D. Instructions 108D that when
executed cause or are determined to likely cause a hazard 1n
the processor 102 are referred to heremn as “performance
degrading instructions (PDIs).” By the time the execution
circuit 116 encounters the hazard from executing a PDI
108D, successor, younger instructions 108D have already
been fetched into an instruction pipeline I,-1., and poten-
tially decoded to be processed. In response the precise




US 11,074,077 Bl

9

interrupt, the instruction processing circuit 104 1s configured
to generate a tlush event 138 to cause the instruction 108D
that caused the precise iterrupt as well as its successor,
younger instructions 108D already fetched 1n the instruction
pipelines I-1,; to be flushed and re-executed overcome the
hazard. Re-fetching of the PDI 108D and its younger,
successor 1nstructions 108D reduces throughput in the
instruction processing circuit 104 in an undesired manner.

To avoid the need to re-execute flushed instructions 108D
that were flushed by the mstruction processing circuit 104 in
response to a flush event 138, the instruction processing
circuit 104 1n the example 1 FIG. 1 includes a PDI detection
circuit 140 and an instruction reuse circuit 142. The PDI
detection circuit 140 and instruction reuse circuit 142 can be
included as part of the instruction processing circuit 104 or
outside of the mstruction processing circuit 104. The PDI
detection circuit 140 and instruction reuse circuit 142 are
both coupled to the instruction pipelines 1,-1,,. As will be
discussed in more detail below, the PDI detection circuit 140
1s configured to detect PDIs 108 among the fetched instruc-
tions 108F that have been fetched into an mnstruction pipe-
line I,-1,, of the instruction processing circuit 104 to be
processed and executed. For example, the PDI detection
circuit 140 may be configured detect PDIs 108D after being
decoded by the instruction decode circuit 120. In response to
the PDI detection circuit 140 detecting a PDI 108 in an
instruction pipeline I,-1,, which 1n this example 1s a decoded
PDI 108D, the mnstruction processing circuit 104 1s config-
ured to capture execution information for previously
executed 1nstructions, which may include the detected PDI

108D and/or successor, younger fetched istructions 108D,
processed in the instruction pipeline I-1,, following (i.e.,
behind) the PDI 108D. This 1s so that this execution infor-
mation can be later reused by the instruction reuse circuit
142 to process such instructions 108 previously executed
and 1n which their execution information was captured, that
are re-fetched, as 1n response to a flush event 138, without
the need for re-execution. This 1s so that this captured
execution information for such instructions 108 can also be
later reused by the instruction reuse circuit 142 to process
the mstructions 108, such as in response to a flush event 138,
without the need for re-execution.

A PDI 108D that 1s flushed may or may not be re-fetched
for re-execution depending on 1ts type of PDI. A PDI 108D
that 1s re-fetched for re-execution 1n response to a flush event
138 1s a memory load instruction that encountered a dead-
lock. For such a PDI 108D, the instruction processing circuit
104 1s configured to capture the execution information for
such PDI 108D, so that this captured output information can
be later injected in the mstruction pipeline 1,-1,, when and 1t
the PDI 108 1s re-fetched to avoid the need for its re-
execution. An example of a PDI 108D that need not be
re-fetched and re-executed when flushed in response to a
flush event 138 1s a conditional branch instruction. For such
a PDI 108D, the instruction processing circuit 104 does not
need to capture execution information for such PDI 108D to
avoid the need for 1ts re-execution, because this type of PDI
108D i1s not re-fetched for re-execution. As discussed in
more detail below, captured execution information for
tetched instructions 108F is stored in a pipeline execution
refill circuit 144. The pipeline execution refill circuit 144 can
be a table circuit for example that includes a plurality of
execution refill entries 146(0)-146(R) configured to store
execution information about the detected PDI 108D and/or
successor, younger fetched instructions 108D as detected
instructions 108D.

10

15

20

25

30

35

40

45

50

55

60

65

10

In one example, the PDI detection circuit 140 1s config-
ured to use a source 1dentification 148 (e.g., source address,
program counter (PC)) of the detected PDI 108D and/or its
successor, younger fetched mstructions 108D in the nstruc-
tion pipeline 1,-1,; to register the detected PDI 108D and/or
its successor, younger Ifetched instructions 108D 1n the
pipeline execution refill circuit 144. This allows the PDI
108D and/or 1ts successor, younger fetched instructions
108D to be later 1identified by their source 1dentification 148
by the instruction reuse circuit 142, to reuse their previous
execution information, such as after their re-fetching in
response to the flush event 138, to avoid the need for their
re-execution. The PDI detection circuit 140 1s configured to
store a source 1dentification 148 for a PDI 108D and/or 1ts
successor, younger fetched instructions 108D 1n a refill tag
150(0)-150(R) 1n a respective allocated execution refill entry
146(0)-146(R) 1 the pipeline execution refill circuit 144
based on the source 1dentification 148 of the detected PDI
108D and/or 1ts successor, younger fetched instructions
108D. This registers execution information for detected PDI
108D and/or 1ts successor, younger fetched instructions
108D 1n the pipeline execution refill circuit 144, 1n response
to the PDI detection circuit 140 detecting a PDI 108D 1n the
istruction pipeline 1,-1,,. This allows the pipeline execution
refill circuit 144 to consult the instruction reuse circuit 142
if and when the detected PDI 108D and/or its successor,
younger fetched instructions 108D are re-fetched, to then be
able to later re-use the captured execution information about
their previous execution for re-use without their need to be
re-executed.

However, to reuse captured execution information about
PDIs 108D and/or 1ts successor, younger fetched instruc-
tions 108D when subsequently re-fetched, this execution
information needs to be captured for the instructions 108D
in their allocated execution refill entry 146(0)-146(R) in the
pipeline execution refill circuit 144 when previously
executed. In this regard, output information 154 (e.g., output
operand value) generated by execution of the detected PDI
108D and/or 1ts successor, younger fetched instructions
108D 1n the execution circuit 116 1s captured and stored as
output information 160(0)-160(R) 1n a corresponding execu-
tion refill entry 146(0)-146(R) 1in the pipeline execution refill
circuit 144. This allows such output information 160(0)-160
(R) to be able to be later reused when such PDI 108D and/or
its successor, younger fetched instructions 108D are re-
fetched and detected by the instruction reuse circuit 142 to
avold the need to re-execute the PDI 108D and/or its
successor, younger fetched instructions 108D in a subse-
quent fetching. If a subsequently fetched PDI 108D and/or
its successor, younger fetched instructions 108D is deter-
mined to be contained 1n the pipeline execution refill circuit
144, the previously stored output information 160(0)-160(R)
(1.e., the actual output value) generated by execution of the
detected PDI 108D and/or its successor, younger fetched
instructions 108D can be used again to avoid the need to
re-execute the PDI 108D and/or its successor, younger
fetched instructions 108D. For example, the output infor-
mation 160(0)-160(R) captured in the pipeline execution
refill circuit 144 for a re-fetched PDI 108D and/or its
successor, younger fetched instructions 108D can be pro-
vided to the commuit circuit 136 to be committed without
being re-executed in the execution circuit 116. The output
information 160(0)-160(R) captured 1n the pipeline execu-
tion refill circuit 144 for a re-fetched PDI 108D and/or its
successor, younger fetched instructions 108D can also be
written back to a physical register P,-P, that 1s mapped to an
output register operand of the detected PDI 108D and/or 1ts




US 11,074,077 Bl

11

successor, younger fetched instructions 108D. The output
information 160(0)-160(R) captured in the pipeline execu-
tion refill circuit 144 for a re-fetched PDI 108D and/or its
successor, younger fetched instructions 108D can also be
written back to a physical register P,-P, that 1s mapped to an
output register operand of the PDI 108D and/or 1ts successor,
younger fetched instructions 108D. However, the previous
output nformation 154 generated by execution of the
detected PDI 108D and/or its successor, younger fetched
instructions 108D 1s only known to be applicable for use 1n
a re-fetched PDI 108D and/or its successor instructions
108D 1if the input values consumed by the re-fetched PDI
108D and/or 1ts successor mstructions 108D are the same as
were consumed when the detected PDI 108D and/or its
successor 1nstructions 108D were previously executed as
previously captured 1n the pipeline execution refill circuit
144.

In this regard, with reference to FI1G. 1, when the detected
PDI 108D and its successor, younger fetched instructions
108F are processed and executed 1n the mstruction pipeline
I[,-1,» the 1nstruction processing circuit 104 1s also config-
ured to capture mput information 152 about the detected PDI
108D and/or 1ts successor, younger fetched instructions
108F. The input information 152 can be input operand values
that were consumed 1n the execution of the PDI 108D and/or
its successor, younger fetched instructions 108F 1n their
execution. The input information 152 could also be the
logical register numbers of input registers named 1n the PDI
108D and successor, younger fetched instructions 108F as
input operands for registers containing input data to be
consumed 1n the execution of the PDI 108D and successor,
younger fetched instructions 108F. The mput information
152 is recorded in the pipeline execution refill circuit 144
associated with PDI 108D and/or its successor, younger
tetched instructions 108D 1n the pipeline execution refill
circuit 144 1n response to the PDI 108D detection by the PDI
detection circuit 140. Also, the instruction processing circuit
104 1s configured to capture output information 154 gener-
ated by execution of the detected PDI 108D and/or the
successor, younger fetched instructions 108F 1n the execu-
tion circuit 116 as output information 160(0)-160(R) in a
corresponding execution refill entry 146(0)-146(R) 1in pipe-
line execution refill circuit 144 allocated for its respective
PDI 108D and the successor, younger fetched instruction
108D. The output information 154 can be the actual output
operand value produced by the execution circuit 116 1n
execution of the re-fetched PDI 108D and/or the successor,
younger fetched instructions 108F.

Then, as new, next instructions 108D are fetched and
processed by the istruction processing circuit 104 1n the
instruction pipeline 1,-1,, the instruction reuse circuit 142
can momnitor such next mstructions 108D 1n the instruction
pipeline I,-1,. For example, the instruction reuse circuit 142
can be configured to monitor such new 1nstructions 108D 1n
response to a flush event 138, because 1t 1s known that a tlush
event 138 will cause successor, younger fetched instructions
108D to be re-fetched that followed the PDI 108D whose
execution caused the flush event 138. The instruction reuse
circuit 142 can use the source 1dentification 148 of the next
instructions 108D being processed 1n the mstruction pipeline
[,-1,, to consult the pipeline execution refill circuit 144. The
istruction reuse circuit 142 1s configured to receive the
source 1dentification 148 of the next instructions 108D from
the mstruction pipeline 1,-1,. The instruction reuse circuit
142 determines based on the source identification 148 of the
new 1nstruction 108D if execution information about such
next mnstructions 108D was previously captured in one or

10

15

20

25

30

35

40

45

50

55

60

65

12

more execution refill entries 146(0)-146(R) 1n the pipeline
execution refill circuit 144. The instruction reuse circuit 142
1s configured to compare the source 1dentification 148 of the
next instruction 108D to a source identification 156(0)-156
(R) 1n a corresponding refill tag 150(0)-150(R) 1n a corre-
sponding execution refill entry 146(0)-146(R) 1n the pipeline
execution refill circuit 144.

In this example, 11 the instruction reuse circuit 142 deter-
mines that the source identification 148 of the next nstruc-
tions 108D matches the source 1dentification 156(0)-156(R )
in a refill tag 150(0)-150(R) 1n an execution refill entry
146(0)-146(R), the instruction reuse circuit 142 1s also
configured to compare the input information 152 of the next
instruction 108D (e.g., its input register operand or input
operand value) to input information 158(0)-158(R) con-
tained 1n the matching execution refill entry 146(0)-146(R)
in the pipeline execution refill circuit 144 that was used to
previously execute the next mstructions 108D. If the input
information 152 of the next instruction 108D matches the

input information 158(0)-158(R) 1n the matching execution
refill entry 146(0)-146(R) 1n the pipeline execution refill
circuit 144, the instruction reuse circuit 142 knows that
execution of the next instruction 108D will generate the
same output information 154 when executed as was gener-
ated when the next instruction 108D was previously
executed. As discussed above, the previous output informa-
tion 154 of the next instruction 108D when previously
executed 1n the execution circuit 116 was captured as output
information 160(0)-160(R) 1n the matching execution refill
entry 146(0)-146(R) associated with the next instruction
108D based on its source 1dentification 148. Thus, the
istruction reuse circuit 142 can reuse the same output
information 160(0)-160(R) that was previously captured 1n
the matching execution refill entry 146(0)-146(R ) associated
with the next instruction 108D based on its source 1dentifi-
cation 148 in the struction pipeline 1,-1,, for the next
instruction 108D to be processed without having to be
re-executed. For example, as discussed above, the mnstruc-
tion reuse circuit 142 can cause the output information
160(0)-160(R) previously captured 1n the pipeline execution
refill circuit 144 for the next instruction 108D to be com-
mitted by the commut circuit 136 without re-executing 1n the
execution circuit 116. The corresponding output information
160(0)-160(R) 1n the pipeline execution refill circuit 144 for
a re-fetched PDI 108D and/or 1ts successor, younger fetched
instructions 108D can also be written back to a physical
register P,-P .. that 1s mapped to an output register operand
of the PDI 108D and/or its successor, younger fetched
instructions 108D.

Thus, by re-using execution information to process the
PDI 108D and/or its successor instructions 108D 1n the
istruction pipeline I,-1,, based on previously captured
execution information of such instructions 108D, latency
associated with re-execution of such instructions 108D
would not be mcurred 1n the instruction throughput of the
instruction processing circuit 104. As discussed above, the
PDI detection circuit 140 1s configured to capture execution
information about a PDI 108D and/or 1ts successor instruc-
tions 108D 1in the 1nstruction pipeline 1,-1,; based on detect-
ing a PDI 108, because a PDI 108 1s an instruction that 1s
more likely to cause a hazard when executed that causes a
flush event 138 to occur. The instruction processing circuit
104 re-fetches instructions 108 in the instruction pipeline
I,-1.; for execution that were flushed. The 1nstruction reuse
circuit 142 can be configured to momtor all instructions
108D being processed to determine 11 execution information
exists 1n the pipeline execution refill circuit 144 for re-use.




US 11,074,077 Bl

13

Alternatively, the instruction reuse circuit 142 can start to
monitor 1structions 108D 1n response to a flush event 138
to determine 11 execution information exists 1n the pipeline
execution refill circuit 144 for re-use. Configuring the
instruction reuse circuit 142 to only start monitoring instruc-
tions 108D for re-use of execution information 1n response
to a tlush event 138 may be desired 11 1t 1s more desired to
avoid re-execution of re-fetched instructions in response to
a tlush event 138. This 1s because 11 all instructions 108D are

monitored i the istruction pipeline I,-1., more power
consumption and/or resources may be incurred by the
instruction reuse circuit 142 and/or in the mstruction pro-
cessing circuit 104 to momitor all mstructions 108D.

FIG. 2A 1s a flowchart 1llustrating an exemplary process
200 of the nstruction processing circuit 104 i FIG. 1
detecting a PDI 108D 1n the instruction pipeline I,-1,; into
the pipeline execution refill circuit 144 1 FIG. 1. As
discussed above, the 1s so that one or more execution refill
entries 146(0)-146(R) can be allocated 1n the pipeline execu-
tion refill circuit 144 to capture execution information about
PDI 108D and/or its successor, younger instructions 108D
for later reuse. This allows PDI 108D and/or its successor,
younger istructions 108D that are re-fetched and re-pro-
cessed into the instruction pipeline I5-I,, to be processed
without execution 1f the same input information 1352 for the

re-fetched PDI 108D and/or 1ts successor, younger instruc-
tions 108D was previously captured in the pipeline execu-
tion refill circuit 144. As discussed above, PDIs 108D that
are not flushed and re-fetched for re-execution (e.g., a
conditional branch instruction) in response to the tlush event
138 need not be captured in the pipeline execution refill
circuit 144 1n response to being detected. The process 200 1n
FIG. 2A 1s discussed below 1n conjunction with the proces-
sor 102 1n FIG. 1.

In this regard, the process 200 includes fetching a plural-
ity of instructions 108 as a plurality of fetched instructions
108F from a program code into an instruction pipeline 1,-1,;
to be executed (block 202 1n FIG. 2A). The process 200 also
includes the PDI detection circuit 140 detecting 11 a fetched
instruction 108D 1in the instruction pipeline I,-1,, 1s a PDI
108D (block 204 in FIG. 2A). There are a number of ways
that the PDI detection circuit 140 can detect 11 the fetched
instruction 108D in the instruction pipeline I,-1,, 1s a PDI
108D, examples of which are discussed in more detail
below. The PDI detection circuit 140 then optionally deter-
mines 1I execution information for the detected instruction
108D was previously captured in the pipeline execution
refill circuit 144 so that 1t can be determined whether the PDI
108D and 1ts younger, successor fetched instructions 108D
have already been captured previously. In this regard, in this
example, 1 response to the PDI detection circuit 140
detecting the fetched instruction 108D as a detected nstruc-
tion, which can be a PDI 108D and/or a younger, successor
instruction 108D of the PDI (block 204 1n FIG. 2A), the PDI
detection circuit 140 determines if a source 1dentification
148 (e.g., a source address, a program counter (PC)) of the

detected instruction 108D matches a source i1dentification
156(0)-156(R) (e.g., a source address, PC) 1n a refill tag

150(0)-150(R) 1n an execution refill entry 146(0)-146(R) 1n
the pipeline execution refill circuit 144 (block 206 1n FIG.

2A). This 1s to determine if execution information for the
detected fetched instruction 108D has already been previ-
ously captured 1n the pipeline execution refill circuit 144 by
the PDI detection circuit 140. If so, execution information
for the detected fetched instruction 108D does not have to be
re-captured 1n the pipeline execution refill circuit 144.

10

15

20

25

30

35

40

45

50

55

60

65

14

In one example, the mstruction processing circuit 104 1s
configured to capture execution information for the fetched

PDI 108D 1tself 1n the pipeline execution refill circuit 144 1n
response to the detected PDI 108D, 1f the PDI 108D 1s a type
ol instruction that would also be flushed in response to a
flush event 138 and thus would need to be re-fetched. This
1s so that this captured execution information for the fetched
PDI 108 can also be later reused by the instruction reuse
circuit 142 as a re-fetched PDI 108, such as in response to
a tlush event 138, without the need for re-fetching the PDI
108. An example of a PDI 108 that 1s flushed and thus

re-fetched for re-execution in response to a flush event 138
1s a memory load istruction that encountered a deadlock. In
another example, the instruction processing circuit 104 is
not configured to capture the execution information for the
tetched PDI 108D 1n the pipeline execution refill circuit 144
in response to the detected PDI 108D 11 the PDI 108D, 1s a

type of mnstruction that would not be flushed in response to
a flush event 138 and thus would need to be re-fetched. This
1s because the captured fetched PDI 108D does not need to
be re-executed 1f of a type of PDI that is not flushed if its
execution causes a hazard that generates the flush event 138.
An example of a PDI 108 that 1s not flushed and thus not
re-fetched for re-execution in response to a tlush event 138
1s a conditional branch instruction that was mispredicted.

With continuing reference to FIG. 2A, i response to the
source 1dentification 148 of the detected instruction 108D
not matching a source 1dentification 156(0)-156(R) 1n a refill
tag 150(0)-150(R) 1n an execution refill entry 146(0)-146(R )
(block 208 1n FI1G. 2A), the PDI detection circuit 140 stores
the source identification 148 of the detected instruction
108D, which 1s the detected PDI 108D and/or one or more
younger, successor instruction 108D following the detected
PDI 108D, in one or more refill tags 150(0)-150(R) of one
or more respective execution refill entries 146(0)-146(R) 1n
the pipeline execution refill circuit 144 (block 210 1n FIG.
2A). The PDI detection circuit 140 1s then configured to
store one or more mput information 152 for execution of the
one or more detected mstructions 108D as respective one or
more mput information 158(0)-158(R) in the one or more
execution refill entries 146(0)-146(R) (block 212 1n FIG.
2A). The 1nstruction processing circuit 104 1s then config-
ured to store one or more output information 154 generated
by the execution circuit 116 1n execution of the one or more
detected 1nstructions 108D as respective one or more output
information 160(0)-160(R) in the one or more execution
refill entries 146(0)-146(R) (block 214 1 FIG. 2A). The
detected instruction 108D and/or 1ts one or more successor,
younger fetched instructions 108D are then processed and
executed 1n the execution circuit 116 (block 216 1n FIG. 2A).

FIG. 2B 1s a flowchart illustrating an exemplary process
220 of the instruction reuse circuit 142 1 FIG. 1 reusing
execution nformation, and more specifically output infor-
mation 160(0)-160(R) previously captured in the pipeline
execution refill circuit 144 from a previously execution of a
tetched mstruction 108D to avoid having to re-execute such
fetched istruction 108D. The output mmformation 160(0)-
160(R) was previously captured by the PDI detection circuit
140 and/or the instruction processing circuit 104 for the
tetched 1nstruction 108D (i.e., a detected PDI 108D and/or
tetched, successor, younger instructions 108D following the
PDI 108D). As an example, the instruction reuse circuit 142
can reuse execution information previously captured for the
tetched instruction 108D in response to the flush event 138.
The process 220 1n FIG. 2B 1s discussed below 1n conjunc-
tion with the processor 102 1n FIG. 1.



US 11,074,077 Bl

15

In this regard, the process 220 includes the processor 102
generating a pipeline flush event 138 to flush the 1nstruction
pipeline I,-1,, 1n response to the executing of an instruction

108D among the plurality of mstructions 108D generating a
hazard as a PDI 108D (block 222 1in FIG. 2B). In response

to the pipeline tflush event 138 (block 224 in FIG. 2B), the
instruction reuse circuit 142 determines if a source i1denti-
fication 148 of the fetched instruction 108D matches a
source 1dentification 156(0)-156(R) 1n a refill tag 150(0)-
150(R) in an execution refill entry 146(0)-146(R) as a
matching execution refill entry 146(0)-146(R) of the pipe-
line execution refill circuit 144 (block 226 1in FIG. 2B). In
response to the source identification 148 of the fetched
istruction 108D matching the source 1dentification 156(0)-
156(R) in the refill tag 150(0)-150(R) of the matching
execution refill entry 146(0)-146(R), the struction reuse
circuit 142 1s configured to determine 1f 1nput information
152 of the fetched mstruction 108D matches input informa-
tion 158(0)-158(R) 1n the matching execution refill entry
146(0)-146(R) (block 228 in FIG. 2B). In response to the
input information 152 of the fetched instruction 108D
matching the imput information 158(0)-158(R) 1n the match-
ing execution refill entry 146(0)-146(R), the instruction
reuse circuit 142 1s configured to cause output information
160(0)-160(R) for the fetched instruction 108D 1n the
matching execution refill entry 146(0)-146(R) for the
tetched 1nstruction 108D to be commutted (block 230 1n FIG.
2B). In this manner, the previously captured output infor-
mation 160(0)-160(R) for the fetched instruction 108D 1s
reused without having to re-execute the fetched instruction
108D.

There are different options and features that can be
provided in the mstruction processing circuit 104 to support
reuse of execution information for detected instructions
108D (1.e., a detected PDI 108D and/or its successor,
younger instructions 108D) in an instruction pipeline in
response to a pipeline tlush caused by execution of the PDI,
to avoid the need to re-execute the detected instructions. In
this regard, FIG. 3 1s diagram of another exemplary proces-
sor-based system 300 that includes a processor 302 with an
instruction processing circuit 304 that 1s similar to the
instruction processing circuit 104 in FIG. 1. Common cir-
cuits and components between the instruction processing
circuit 104 1n FIG. 1 and the instruction processing circuit
304 in FIG. 3 are shown with common element numbers and
are not re-described.

As shown 1n FIG. 3, the mstruction processing circuit 304
includes a PDI detection circuit 340 that 1s similar to the PDI
detection circuit 140 1n FIG. 1. The mstruction processing
circuit 304 1n FIG. 3 also includes an instruction reuse
circuit 342 that 1s similar to the instruction reuse circuit 142
in FIG. 1. The PDI detection circuit 340 1s configured to
detect PDIs 108D among the fetched instructions 108D that
have been fetched into an instruction pipeline I1,-1,, to be
processed and executed. For example, the PDI detection
circuit 340 may be configured to detect PDIs 108D after
being decoded 1n the 1nstruction decode circuit 120. The PDI
detection circuit 340 1n the example 1 FIG. 3 1s coupled to
the mstruction pipelines I,-1., between the instruction
decode circuit 120 and the rename circuit 122 1n an 1n-order
stage of the instruction pipelines I,-I,, so that the PDI
detection circuit 340 can receive decoded information about
decoded structions 108D to detect a decoded PDI 108D.
The PDI detection circuit 340 1n this example 1s configured
to receive decoded instructions 108D 1n an 1n-order stage of
the nstruction pipelines 1,-1., so that 1f the decoded nstruc-

tion 108D 1s detected as a PDI 108D, the PDI detection

10

15

20

25

30

35

40

45

50

55

60

65

16

circuit 340 can be configured to capture execution informa-
tion for subsequent decoded instructions 108D 1n the
instruction pipelines I,-I1,, that are known to follow the
detected PDI 108D 1n the program code from which the
instruction stream 114 was fetched from.

There are diflerent ways that the PDI detection circuit 340
can detect if a fetched instruction 108F or a decoded
istruction 108D 1s a PDI. In one example, 11 the decoded
instruction 108D 1s a branch instruction that has a branch
behavior that 1s resolved at execution, such as a conditional
branch instruction, indirect branch instruction, or condi-
tional, indirect branch instruction, the PDI detection circuit
340 can be configured to use a branch predictor confidence
362 updated by the control flow prediction circuit 118. The
branch predictor confidence 362 1s a measure of the confi-
dence that a branch behavior of the branch instruction 108D
can be correctly predicted. The control flow prediction
circuit 118 may be configured to predict a branch behavior
of the branch struction 108D, and update the branch
predictor confidence 362 based on whether the predicted
branch behavior matches a resolution of the branch behavior
determined by the execution circuit 116 when the branch
instruction 108D was previously executed 1n the past. Thus,
the PDI detection circuit 340 can use the branch predictor
confidence 362 to predict or determine if a branch instruc-
tion 108D 1s a PDI. Branch instructions 108D that have a
low branch predictor confidence 362 are more likely to be
mispredicted and thus more likely to cause a hazard when
executed 1n the execution circuit 116 that causes a flush
cevent 138 to be generated.

The PDI detection circuit 340 can also be configured to
determine 1f a memory operation nstruction 108D, such as
a load struction, 1s a PDI. The memory operation instruc-
tion 108D 1nvolves performing a memory operation at a
specified memory address, which may be a direct memory
address or an indirect memory address. The execution circuit
116 can be configured to store a PDI indicator corresponding,
to a memory operation instruction 108D when a hazard
occurs when the memory operation imnstruction 108D 1s
executed and a flush event 138 occurs. The execution circuit
116 may be configured to store the PDI indicator in a PDI
indicator circuit 364 that contains a plurality of PDI 1ndi-
cator entries 366(0)-366(1) in which a PDI indicator can be
stored corresponding to a memory operation instruction.
When the PDI detection circuit 340 receives a memory
operation 1nstruction 108D to determine 11 1t 1s a PDI, the
PDI detection circuit 340 can consult the PDI indicator
circuit 364 to determine 11 a PDI indicator 1s present 1n a PDI
indicator entry 366(0)-366(1) for the memory operation
instruction 108D. The PDI detection circuit 340 can use the
PDI indicator to determine 1f the corresponding memory
operation instruction 108D should be considered a PDI for
PDI detection purposes.

With continuing reference to FIG. 3, in response to the
PDI detection circuit 340 detecting a received 1nstruction
108D 1n an instruction pipeline I,-I,, as a PDI, the PDI
detection circuit 340 1s configured to capture execution
information, such as source identification 348 and input
information 352 of detected instructions 108D. The source
identification 348 can be a PC of a detected instruction
108D. The input information 352 can be an mput operand
value(s) used by the execution circuit 116 to execute the
detected instruction 108D, or mput operands named in the
detected mstruction 108D. The instruction processing circuit
304, such as the PDI detection circuit 340, 1s also configured
to capture output information 354 from execution of
detected 1instructions 108D by the execution circuit 116. The




US 11,074,077 Bl

17

detected instructions 108D can be the detected PDI 108D
and/or 1ts successor, younger fetched instructions 108D that
tollow the fetched PDI 108D in the instruction pipeline I5-1,;
in a pipeline execution refill circuit 344. As previously
discussed, 1t the detected PDI 108D 1s a type of PDI that 1s
not flushed and re-fetched for re-execution, the PDI detec-
tion circuit 340 does not need to capture execution infor-
mation for the detected PDI 108D. The PDI detection circuit
340 may just capture execution information for successor,
younger fetched instructions 108D that follow the fetched
PDI 108D 1n the pipeline execution refill circuit 344. As
discussed below, this allows the instruction reuse circuit 342
to obtain execution information about these fetched nstruc-
tions 108D when re-fetched, such in response to a tlush
event 138, to be reused and injected into the instruction
pipeline I,-1,, for processing to avoid the need to re-execute
the detected 1nstructions 108D. The pipeline execution refill
circuit 344 can be a memory table circuit that includes a
plurality of execution refill entries 346(0)-346(R) each con-
figured to store information about detected instructions
108D, including a detected PDI 108D and/or its successor,
younger fetched instructions 108D. A more detailed example
of the pipeline execution refill circuit 344 i FIG. 3 1s
illustrated in FIG. 4 and discussed below.

FIG. 4 15 a diagram of the exemplary pipeline execution
refill circuit 344 1n FIG. 3 configured to store captured
execution information for fetched, detected instructions
108D (1.e., a detected PDI 108D and/or 1ts fetched, succes-
sor, younger instructions 108D) present 1n the instruction
pipeline 1.-1,; 1n the processor 302 in FIG. 3. The pipeline
execution refill circuit 344 includes a plurality of execution
refill entries 346(0)-346(R) that are each configured to be
allocated to store a source 1dentification 348 (e.g., a PC) of
a detected instruction 108D (1.e., the detected PDI 108D
and/or 1ts successor, younger instruction 108D) 1n response
to detection of a PDI 108D by the PDI detection circuit 340.
The execution refill entries 346(0)-346(R) are configured to
store a source 1dentification 356 of a detected instruction
108D that 1s later used to i1dentily the detected instruction
108D by the instruction reuse circuit 342 when the detected
instruction 108D 1s re-fetched for execution in the nstruc-
tion pipeline I,-1,. The execution refill entries 346(0)-346
(R) are also configured to store input information 358 used
to execute the detected mstructions 108D processed in the
instruction pipeline I,-1,, as part of the execution mforma-
tion. The execution refill entries 346(0)-346(R) are also
configured to store output information 360 generated by
execution of such detected instructions 108D in the instruc-
tion pipeline I.-1,, for later reuse by the instruction reuse
circuit 342 when the detected instruction 108D 1s re-fetched
for execution. The pipeline execution refill circuit 344 will
be discussed 1n conjunction with discussing exemplary
operation of the PDI detection circuit 340 in FIG. 3.

In this regard, when the PDI detection circuit 340 detects
a recerved decoded instruction 108D being processed in the
instruction pipeline I,-1,, as a PDI as discussed above, the
PDI detection circuit 340 can first determine 11 an execution
refill entry 346(0)-346(R) 1n the pipeline execution refill
circuit 344 has already been allocated for the PDI 108D
and/or 1ts successor, younger instructions 108D. It so, there
1s no need to reallocate another execution refill entry 346
(0)-346(R) for such detected instruction 108D. In this
example, to determine if an execution refill entry 346(0)-
346(R) in the pipeline execution refill circuit 344 has already
been allocated and 1s storing a detected instruction 108D, the
PDI detection circuit 340 1s configured to determine if a
source 1dentification 348 of the detected instruction 108D

10

15

20

25

30

35

40

45

50

55

60

65

18

(1.e., the PDI 108D and/or its younger, successor mstruction
108D) in FIG. 3 matches a source 1dentification 356(0)-356
(R) 1n a respective refill tag 350(0)-350(R) 1n an execution
refill entry 346(0)-346(R) 1n the pipeline execution refill
circuit 344. The source i1dentification 348 of the detected
instruction 108D can be the program counter (PC) of the
detected 1instruction 108D, which uniquely identifies 1its
presence 1n a program code from which it was fetched nto
the istruction stream 114 of the instruction processing
circuit 304. IT the source 1dentification 348 of the detected
instruction 108D 1s contained 1n a source identification
356(0)-356(R) 1n a respective refill tag 350(0)-350(R) 1n an
execution refill entry 346(0)-346(R) 1n the pipeline execu-
tion refill circuit 344, this means that the detected instruction
108D (1.e., a PDI 108D and/or 1ts successor, younger instruc-
tion 108D) 1s already stored in the execution refill entry
346(0)-346(R) which included the respective refill tag 350
(0)-350(R) having the matching source identification 356
(0)-356(R). In this case, the PDI detection circuit 340 does
not need to further process storing information about the
detected instruction 108D 1n the pipeline execution refill
circuit 344,

However, 11 the source 1dentification 348 of the detected
instruction 108D 1s not contained 1n a source 1dentification
356(0)-356(R) 1n a respective refill tag 350(0)-350(R) 1n an
execution refill entry 346(0)-346(R) 1n the pipeline execu-
tion refill circuit 344, the PDI detection circuit 340 1s
configured to process the detected instruction 108D. The
PDI detection circuit 340 1s configured to allocate an avail-
able execution refill entry 346(0)-346(R) in the pipeline
execution refill circuit 344 to store the source identification

348 of the detected nstruction 108D 1n a respective source
identification 356(0)-356(R) for the allocated execution

refill entry 346(0)-346(R) for later identification by the
instruction reuse circuit 342 discussed 1n more detail below.
If the detected instruction 108D 1s a PDI 108 that 1s not
flushed and re-executed 1n response to a tlush event 138, an
execution refill entry 346(0)-346(R) 1s not allocated for the
PDI 108D. An execution refill entry 346(0)-346(R) 1s allo-
cated for the successor, younger mstructions 108D following
the PDI 108D as detected instructions 108D. The PDI
detection circuit 340 1s also configured to store the source
identification 348 of the detected instruction 108D 1n the
source 1dentification 356(0)-356(R) 1n the allocated execu-
tion refill entry 346(0)-346(R) in the pipeline execution refill
circuit 344.

The PDI detection circuit 340 1n FIG. 3 1s then configured
to set a valid indicator 368(0)-368(R) for the corresponding
allocated execution refill entry 346(0)-346(R) 1n the pipeline
execution refill circuit 344 1 FIG. 4 to a valid state. This 1s
so that the instruction reuse circuit 342 will know it 1s valid
to consult a matching execution refill entry 346(0)-346(R) to
reuse previously captured execution information for mstruc-
tions 108D 1n the execution refill entry 346(0)-346(R)
corresponding to a PDI 108E that caused a flush event 138.

The PDI detection circuit 340 1s then configured to
capture mput information 352 used to execute a detected
instruction 108D and output information 354 generated by
the execution circuit 116 when executing the detected
instruction 108D. The PDI detection circuit 340 1s config-
ured to store mput information 3352 used to executed a
detected 1nstruction 108D from the instruction pipeline I5-1,;
in a respective mput nformation 338(0)-358(R) in the
execution refill entry 346(0)-346(R) in the pipeline execu-
tion refill circuit 344 allocated to the detected instruction
108D. Then, after the detected instruction 108D 1s executed,
the PDI detection circuit 340 or other circuit 1n the mnstruc-




US 11,074,077 Bl

19

tion processing circuit 104 1s configured to store the gener-
ated output information 354 produced by the execution
circuit 116 from execution of the detected instruction 108D
in a respective output information 360(0)-360(R) 1n the
execution refill entry 346(0)-346(R) 1n the pipeline execu-
tion refill circuit 344 allocated for the detected instruction
108D. In this manner, as discussed above and below, when
the instruction reuse circuit 342 determines that the source
identification 348 of a newly fetched instruction 108D
matches the source identification 3356(0)-356(R) of an
execution refill entry 346(0)-346(R) in the pipeline execu-
tion refill circuit 344, and the valid indicator 368(0)-368(R )
ol the execution refill entry 346(0)-346(R) indicates a valid
state 1n this example, the instruction reuse circuit 342 can

consult the input information 358(0)-358(R ) for such execu-
tion refill entry 346(0)-346(R). If the valid indicator 368(0)-

368(R) of the matching execution refill entry 346(0)-346(R)
indicates an invalid state, the detected instruction 108D 1s
allowed to be re-executed.

The PDI detection circuit 340 i1s then configured to
capture the mput information 352 for the detected instruc-
tion 108D as respective mput information 358(0)-358(R) in
the allocated execution refill entry 346(0)-346(R) for the
detected instruction 108D. The PDI detection circuit 340 or
other circuit 1n the 1nstruction processing circuit 304 1s also
configured to capture the output information 354 generated
by execution of the detected mstruction 108D 1n the execu-
tion circuit 116 as output information 360(0)-360(R) 1n the
execution refill entry 346(0)-346(R) for the fetched instruc-
tion 108D. It the detected PDI 108D does not cause a hazard
when later executed 1n the execution circuit 116 to cause
flush event 138 to be generated, the instruction processing
circuit 104 can optionally de-allocate the execution refill
entry 346(0)-346(R) for the fetched mstructions 108D allo-
cated 1n response to the detected PDI 108 since a re-fetch
and re-execution of the PDI 108 and its younger, successor
instructions 108D may not occur.

The PDI detection circuit 340 can be configured to stop
capturing execution mformation for subsequent, successor,
younger instructions 108D after a detected PDI 108D 1n the
pipeline execution refill circuit 344 in response to the
detected PDI 108D when a next PDI 108D 1s encountered by
the PDI detection circuit 340 in the 1nstruction stream 114 as
an example. As another example, the PDI detection circuit
340 can be configured to stop capturing execution mnforma-
tion for subsequent, successor, younger instructions 108D
alter a detected PDI 108D 1n the pipeline execution refill
circuit 344 in response to the detected PDI 108D once the
pipeline execution refill circuit 344 1s full. Or, the PDI
detection circuit 340 can be configured to stop capturing
execution information for subsequent, successor, younger
instructions 108D when a next PDI 108D 1s encountered or
the pipeline execution refill circuit 344 1s full, whichever
occurs first as another example.

Each execution refill entry 346(0)-346(R) 1n pipeline
execution refill circuit 344 1n FIG. 4 can also be configured
to store a respective usetul indicator 370(0)-370(R). As will
be discussed in more detail below, the useful indicator
370(0)-370(R) 1s configured to store a usefulness indicating
how useful the execution refill entry 346(0)-346(R) 1s.
Uselulness stored 1n the usetul indicator 370(0)-370(R) 1s a
measure of how likely the PDI 108D associated with a
respective execution refill entry 346(0)-346(R) will be used
by the instruction reuse circuit 342 to reuse the fetched
instructions 108D in the execution refill entry 346(0)-346
(R). The usefulness may be a count value, and the useful
indicator 370(0)-370(R) may be a counter, as examples. The

10

15

20

25

30

35

40

45

50

55

60

65

20

usetul indicator 370(0)-370(R) can allow a separate process
to update and monitor the usefulness stored 1n the usetul
indicator 370(0)-370(R) as a way to control deallocation of
execution refill entries 346(0)-346(R) to make room {for
execution information for future detected PDIs 108D and
their associated successor instructions 108D to be captured
for later reuse.

With reference back to FIG. 3, as discussed above, the
instruction reuse circuit 342 1s configured to reuse previ-
ously executed information for previously executed instruc-
tions 108D 1n an execution refill entry 346(0)-346(R) 1n the
pipeline execution refill circuit 344 corresponding to the
executed PDI 108E. In an example, in response to the flush
event 138, the instruction reuse circuit 342 1s configured to
determine a source i1dentification 348 of a detected instruc-
tion 108D (i.e., the PDI 108D and/or its younger, successor
mstructions 108D). For example, the source i1dentification
348 of the detected istruction 108D may be a PC. The
istruction reuse circuit 342 can be configured to determine

if the source i1dentification 348 of the detected instruction
108D matches (1.e., a hit) a source 1dentification 356(0)-356

(R) 1n a corresponding refill tag 350(0)-350(R) 1n a corre-
sponding execution refill entry 346(0)-346(R) 1n the pipeline
execution refill circuit 344. If so, the instruction reuse circuit
342 1s configured to determine 11 the mput information 352
for the detected instruction 108D matches the mnput infor-
mation 358(0)-358(R) in 1ts matching execution refill entry
346(0)-346(R). I1 so, this means that the previously captured
output information 360(0)-360(R) for 1ts execution refill
entry 346(0)-346(R) will be generated the same again by the
execution circuit 116 1f the newly fetched instruction 108D
1s executed. Thus, the instruction reuse circuit 342 can
commit the captured output information 360(0)-360(R) 1n
the matching execution refill entry 346(0)-346(R) for the
newly fetched imstruction 108D rather than having to re-
execute the newly fetched instruction 108D. This avoids the
need to re-execute the newly fetched instruction 108D. The
istruction reuse circuit 342 can also be configured to
provide the output information 360(0)-360(R) for the
fetched instruction 108D i1n the matching execution refill
entry 346(0)-346(R) for the fetched instruction 108D, to a
logical register named by an output operand of the fetched
instruction 108D to the register access circuit 132 to be
stored 1n a register. If the instruction reuse circuit 342
determines the source identification 348 of the detected
instruction 108D does match (1.e., a hit) a source 1dentifi-
cation 356(0)-356(R) i a refill tag 350(0)-350(R) of an
execution refill entry 346(0)-346(R), but the input informa-
tion 352 of the detected nstruction 108D does not match the
input mnformation 358(0)-358(R) of the matching execution
refill entry 3460)-346(R), the mstruction reuse circuit 342
can 1gnore the detected instruction 108D and 1t will be
re-executed.

If the mstruction reuse circuit 342 determines the source
identification 348 of the detected instruction 108D does not
match (1.e., a miss) a source 1dentification 356(0)-356(R) in
a refill tag 350(0)-350(R) of an execution refill entry 346
(0)-346(R) 1n the pipeline execution refill circuit 344, the
instruction reuse circuit 342 can 1gnore the detected nstruc-
tion 108D. The instruction fetch circuit 106 will re-execute
such detected 1nstruction 108D. As an option, 1 the instruc-
tion reuse circuit 342 determines the source identification
348 of the detected instruction 108D does not match (i.e., a
miss) a source identification 356(0)-356(R) in a refill tag
350(0)-350(R), the instruction reuse circuit 342 can also
then determine 1f the detected instruction 108D names an
output logical register as an output operand. If so, the




US 11,074,077 Bl

21

instruction reuse circuit 342 can be configured to set the
valid indicator 368(0)-368(R) in any execution refill entry
346(0)-346(R ) 1n the pipeline execution refill circuit 344 that
contains the same output logical register as input 1nforma-
tion 358(0)-358(R). This 1s to prevent another read-aiter-
write (RAW) hazard 11 execution information for another
detected 1nstruction 108D captured in the pipeline execution
refill circuit 344 1s re-fetched for re-execution, because its
input iformation 358(0)-358(R) may be invalid due to the
current detected instruction 108D being re-executed and
producing new output information 354 that i1s not the same
output information 360(0)-360(R) 1n the detected instruction
108D 1n the pipeline execution refill circuit 344.

As discussed above, 1t may be desirable to provide a
mechanism to de-allocate execution refill entries 346(0)-346
(R) 1n the pipeline execution refill circuit 344 to make room
for capturing newer detected instructions (1.e., PDIs 108D
that caused a flush event 138 and/or their successor, younger
istructions 108D) for potential re-use. Some execution
refill entries 346(0)-346(R) in the pipeline execution refill
circuit 344 may be allocated to detected instructions 108D
that are not as usetul (1.e., not as likely to occur 1n the future)
as newer executed PDIs 108E that caused a flush event 138.

As discussed above, the instruction reuse circuit 342
determines that the source 1dentification 348 of the detected
istruction 108D (1.e., a detected PDI 108D and/or its
younger, successor instructions 108D) 1s already contained
in a valid execution refill entry 346(0)-346(R ) 1n the pipeline
execution refill circuit 344 (1.e., the source 1dentification 348
matches a source 1dentification 356(0)-356(R)). I1 the source
identification 348 of the PDI 108D and/or its younger,
successor instructions 108D 1s already contained 1n a valid
execution refill entry 346(0)-346(R), the mnstruction reuse
circuit 342 can be configured to increase the usefulness 1n
the corresponding usetul indicator 370(0)-370(R) in the
corresponding execution refill entry 346(0)-346(R). For
example, 1 the usetul indicator 370(0)-370(R) 1s a counter,
the mstruction reuse circuit 342 can be configured to incre-
ment the usetul indicator 370(0)-370(R) to signily an
increased usefulness as an example. However, 11 the source
identification 348 of the executed PDI 108E 1s not already
contained 1n a valid execution refill entry 346(0)-346(R),
such that a new valid execution refill entry 346(0)-346(R)
needs to be allocated, the instruction reuse circuit 342 could
decrease the usefulness of all useful indicators 370(0)-370
(R) equally in the corresponding execution refill entry
346(0)-346(R) as one example. I the usefulness 1n a usetul
indicator 370(0)-370(R) of an execution refill entry 346(0)-
346(R) in the pipeline execution refill circuit 344 falls below
a set threshold usefulness, the instruction reuse circuit 342
or other circuit could be configured to de-allocate such
execution refill entry 346(0)-346(R) to free such execution
refill entry 346(0)-346(R) to be re-allocated for a new
detected 1nstruction 108D.

Alternatively, mstead of decreasing the usetulness of all
usetul indicators 370(0)-370(R) equally in the correspond-
ing execution refill entry 346(0)-346(R) right away 1n
response to a miss to the pipeline execution refill circuit 344,
if a source identification 348 of the detected instruction
108D (i.e., PDI 108D and/or 1ts younger, successor instruc-
tions 108D) 1s not already contained in a valid execution

refill entry 346(0)-346(R), a global allocation fail indicator
374 in FIG. 3 could be incremented or increased. Then, once

the global allocation fail indicator 374 exceeds a threshold

global allocation, the usefulness of the useful indicators
370(0)-370(R) 1n each execution refill entry 346(0)-346(R)
can be decreased. This mechanism controls the rate of

10

15

20

25

30

35

40

45

50

55

60

65

22

decrease 1n usefulness of the usetul indicators 370(0)-370
(R) 1n each execution refill entry 346(0)-346(R) to not
correspond on a per miss event basis to the pipeline execu-
tion refill circuit 344. Again, 1f the usefulness 1 a usetul
indicator 370(0)-370(R) of an execution refill entry 346(0)-
346(R) 1n the pipeline execution refill circuit 344 falls below
a set threshold usetfulness, the instruction reuse circuit 342
or other circuit could be configured to de-allocate such
execution refill entry 346(0)-346(R) to free such execution
refill entry 346(0)-346(R) to be re-allocated for a new
detected mstruction 108D.

As another alternative, the usefulness i1n the usetul indi-
cators 370(0)-370(R) of an execution refill entry 346(0)-346
(R) 1n the pipeline execution refill circuit 344 could be
decreased every so many instructions 108D processed in the
instruction pipeline I,-1,. As another alternative, the usetul-
ness 1n the useful mdicators 370(0)-370(R) of an execution
refill entry 346(0)-346(R) 1n the pipeline execution refill
circuit 344 could be decreased every so many detected
instructions 108D by the PDI detection circuit 340. As
another alternative, the usetulness 1n the useful indicators
370(0)-370(R) of an execution refill entry 346(0)-346(R) 1n
the pipeline execution refill circuit 344 could be decreased
every so many flush events 138.

FIG. 5 1s a block diagram of an exemplary processor-
based system 500 that includes a processor 502 (e.g., a
microprocessor) that includes an instruction processing cir-
cuit 504 that includes a PDI detection circuit 505 for
detecting PDIs, and capturing execution information for
detected 1nstructions that are the PDI and/or its successor,
younger instructions that follow the PDI. The imstruction
processing circuit 504 includes an instruction reuse circuit
506 for reusing execution information previously captured
for such fetched instructions when re-fetched for re-execu-
tion, such as in response to a flush event caused by execution
of a corresponding PDI. For example, the processor 502 1n
FIG. 5 could be the processor 102 1n FIG. 1 or processor 302
in FIG. 3. As another example, the instruction processing
circuit 504 could be the mstruction processing circuit 104 1n
FIG. 1 or the mstruction processing circuit 304 in FIG. 3. As

another example, the PDI detection circuit 305 could be the
PDI detection circuit 140 in FIG. 1 or the PDI detection

circuit 340 1n FIG. 3. The PDI detection circuit 505 can
include components contained 1n and functions performed
by the PDI detection circuit 140 and/or the PDI detection
circuit 340 previously described. As another example, the
instruction reuse circuit 506 could be the instruction reuse
circuit 142 i FIG. 1 or the instruction reuse circuit 342 1n
FIG. 3. The instruction reuse circuit 506 can include com-
ponents contained 1n and functions performed by the mnstruc-
tion reuse circuit 142 and/or the instruction reuse circuit 342
previously described.

The processor-based system 500 may be a circuit or
circuits included in an electronic board card, such as a
printed circuit board (PCB), a server, a personal computer,
a desktop computer, a laptop computer, a personal digital
assistant (PDA), a computing pad, a mobile device, or any
other device, and may represent, for example, a server, or a
user’s computer. In this example, the processor-based sys-
tem 500 includes the processor 502. The processor 502
represents one or more general-purpose processing circuits,
such as a microprocessor, central processing unit, or the like.
More particularly, the processor 502 may be an EDGE
instruction set microprocessor, or other processor 1mple-
menting an istruction set that supports explicit consumer
naming for commumcating produced values resulting from
execution ol producer instructions. The processor 502 1is



US 11,074,077 Bl

23

configured to execute processing logic 1n instructions for
performing the operations and steps discussed herein. In this
example, the processor 502 includes an instruction cache
508 for temporary, fast access memory storage ol instruc-
tions accessible by the instruction processing circuit 504.
Fetched or pre-fetched instructions from a memory, such as
from a system memory 510 over a system bus 512, are stored
in the istruction cache 508. The instruction processing
circuit 504 1s configured to process mstructions fetched into
the mstruction cache 508 and process the instructions for
execution.

The processor 502 and the system memory 310 are
coupled to the system bus 512 and can intercouple periph-
eral devices included 1n the processor-based system 300. As
1s well known, the processor 302 communicates with these
other devices by exchanging address, control, and data
information over the system bus 3512. For example, the
processor 502 can communicate bus transaction requests to
a memory controller 514 1n the system memory 510 as an
example of a slave device. Although not illustrated 1n FIG.
5, multiple system buses 312 could be provided, wherein
cach system bus constitutes a different fabric. In this
example, the memory controller 514 1s configured to provide
memory access requests to a memory array 516 in the
system memory 510. The memory array 516 1s comprised of
an array ol storage bit cells for storing data. The system
memory 310 may be a read-only memory (ROM), tlash
memory, dynamic random access memory (DRAM), such as
synchronous DRAM (SDRAM), etc., and a static memory
(e.g., flash memory, static random access memory (SRAM),
etc.), as non-limiting examples.

Other devices can be connected to the system bus 512. As
illustrated 1n FIG. 5, these devices can include the system
memory 310, one or more mput device(s) 318, one or more
output device(s) 520, a modem 522, and one or more display
controllers 524, as examples. The input device(s) 518 can
include any type of input device, including but not limited
to input keys, switches, voice processors, etc. The output
device(s) 520 can 1nclude any type of output device, includ-
ing but not limited to audio, video, other visual indicators,
ctc. The modem 522 can be any device configured to allow
exchange of data to and from a network 526. The network
526 can be any type of network, including but not limited to
a wired or wireless network, a private or public network, a
local area network (LAN), a wireless local area network
(WLAN), a wide area network (WAN), a BLUETOOTH™
network, and the Internet. The modem 522 can be configured
to support any type of communications protocol desired. The
processor 502 may also be configured to access the display
controller(s) 524 over the system bus 512 to control infor-
mation sent to one or more displays 528. The display(s) 528
can 1nclude any type of display, including but not limited to
a cathode ray tube (CRT), a liqud crystal display (LCD), a
plasma display, eftc.

The processor-based system 500 1n FIG. 5 may include a
set of mstructions 530 to be executed by the processor 502
for any application desired according to the instructions. The
istructions 330 may be stored 1n the system memory 510,
processor 502, and/or instruction cache 508 as examples of
a non-transitory computer-readable medium 532. The
istructions 530 may also reside, completely or at least
partially, within the system memory 510 and/or within the
processor 502 during their execution. The instructions 530
may further be transmitted or received over the network 526
via the modem 522, such that the network 526 includes the
computer-readable medium 3532.

10

15

20

25

30

35

40

45

50

55

60

65

24

While the computer-readable medium 332 1s shown 1n an
exemplary embodiment to be a single medium, the term
“computer-readable medium™ should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers)
that stores the one or more sets of instructions. The term
“computer-readable medium” shall also be taken to include
any medium that 1s capable of storing, encoding, or carrying
a set of mstructions for execution by the processing device
and that causes the processing device to perform any one or
more of the methodologies of the embodiments disclosed
herein. The term “computer-readable medium” shall accord-
ingly be taken to include, but not be limited to, solid-state
memories, optical medium, and magnetic medium.

The embodiments disclosed herein include various steps.
The steps of the embodiments disclosed herein may be
formed by hardware components or may be embodied 1n
machine-executable instructions, which may be used to
cause a general-purpose or special-purpose processor pro-
grammed with the instructions to perform the steps. Alter-
natively, the steps may be performed by a combination of
hardware and software.

The embodiments disclosed herein may be provided as a
computer program product, or software, that may include a
machine-readable medium (or computer-readable medium)
having stored thereon instructions, which may be used to
program a computer system (or other electronic devices) to
perform a process according to the embodiments disclosed
herein. A machine-readable medium includes any mecha-
nism for storing or transmitting information in a form
readable by a machine (e.g., a computer). For example, a
machine-readable medium includes: a machine-readable
storage medium (e.g., ROM, random access memory
(“RAM”), a magnetic disk storage medium, an optical
storage medium, flash memory devices, etc.); and the like.

Unless specifically stated otherwise and as apparent from
the previous discussion, it 1s appreciated that throughout the
description, discussions utilizing terms such as “process-
ing,” “computing,” “determining,” “displaying,” or the like,
refer to the action and processes of a computer system, or
similar electronic computing device, that manipulates and
transforms data and memories represented as physical (elec-
tronic) quantities within the computer system’s registers into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage, transmission, or display devices.

The algorithms and displays presented herein are not
inherently related to any particular computer or other appa-
ratus. Various systems may be used with programs in
accordance with the teachings herein, or 1t may prove
convenient to construct more specialized apparatuses to
perform the required method steps. The required structure
for a variety of these systems will appear from the descrip-
tion above. In addition, the embodiments described herein
are not described with reference to any particular program-
ming language. It will be appreciated that a variety of
programming languages may be used to implement the
teachings of the embodiments as described herein.

Those of skill in the art will further appreciate that the
various 1llustrative logical blocks, modules, circuits, and
algorithms described in connection with the embodiments
disclosed herein may be implemented as electronic hard-
ware, structions stored 1n memory or 1n another computer-
readable medium and executed by a processor or other
processing device, or combinations of both. The components
of the distributed antenna systems described herein may be
employed 1n any circuit, hardware component, integrated



US 11,074,077 Bl

25

circuit (IC), or IC chip, as examples. Memory disclosed
herein may be any type and size of memory and may be
configured to store any type of information desired. To
clearly 1llustrate this interchangeability, various illustrative
components, blocks, modules, circuits, and steps have been
described above generally 1in terms of their functionality.
How such functionality 1s implemented depends on the
particular application, design choices, and/or design con-
straints imposed on the overall system. Skilled artisans may
implement the described functionality in varying ways for
cach particular application, but such implementation deci-
sions should not be interpreted as causing a departure from
the scope of the present embodiments.

The various illustrative logical blocks, modules, and
circuits described 1n connection with the embodiments dis-
closed herein may be mmplemented or performed with a
processor, a Digital Signal Processor (DSP), an Application
Specific Integrated Circuit (ASIC), a Field Programmable
Gate Array (FPGA), or other programmable logic device, a
discrete gate or transistor logic, discrete hardware compo-
nents, or any combination thereof designed to perform the
tunctions described herein. Furthermore, a controller may be
a processor. A processor may be a microprocessor, but in the
alternative, the processor may be any conventional proces-
sor, controller, microcontroller, or state machine. A proces-
sor may also be implemented as a combination of computing
devices (e.g., a combination of a DSP and a microprocessor,
a plurality of microprocessors, one or more miCroprocessors
in conjunction with a DSP core, or any other such configu-
ration).

The embodiments disclosed herein may be embodied in
hardware and 1n 1nstructions that are stored in hardware, and
may reside, for example, in RAM, flash memory, ROM,
Electrically Programmable ROM (EPROM), Electrically
Erasable Programmable ROM (EEPROM), registers, a hard
disk, a removable disk, a CD-ROM, or any other form of
computer-readable medium known in the art. An exemplary
storage medium 1s coupled to the processor such that the
processor can read mformation from, and write information
to, the storage medium. In the alternative, the storage
medium may be integral to the processor. The processor and
the storage medium may reside 1n an ASIC. The ASIC may
reside 1n a remote station. In the alternative, the processor
and the storage medium may reside as discrete components
In a remote station, base station, or server.

It 1s also noted that the operational steps described 1n any
of the exemplary embodiments herein are described to
provide examples and discussion. The operations described
may be performed i1n numerous different sequences other
than the illustrated sequences. Furthermore, operations
described 1n a single operational step may actually be
performed 1n a number of different steps. Additionally, one
or more operational steps discussed 1n the exemplary
embodiments may be combined. Those of skill 1n the art will
also understand that information and signals may be repre-
sented using any of a variety of technologies and techniques.
For example, data, instructions, commands, information,
signals, bits, symbols, and chips, that may be references
throughout the above description, may be represented by
voltages, currents, electromagnetic waves, magnetic fields,
or particles, optical fields or particles, or any combination
thereol.

Unless otherwise expressly stated, 1t 1s 1n no way intended
that any method set forth herein be construed as requiring,
that its steps be performed 1n a specific order. Accordingly,
where a method claim does not actually recite an order to be
tollowed by 1ts steps, or 1t 1s not otherwise specifically stated

10

15

20

25

30

35

40

45

50

55

60

65

26

in the claims or descriptions that the steps are to be limited
to a specific order, 1t 1s 1n no way intended that any particular
order be inferred.

It will be apparent to those skilled 1n the art that various
modifications and varations can be made without departing
from the spirit or scope of the mvention. Since modifica-
tions, combinations, sub-combinations and variations of the
disclosed embodiments incorporating the spirit and sub-
stance of the mvention may occur to persons skilled in the
art, the mvention should be construed to include everything
within the scope of the appended claims and their equiva-
lents.

What 1s claimed 1s:

1. A processor, comprising:

an instruction processing circuit, comprising:

an 1nstruction fetch circuit configured to fetch a plu-
rality of instructions as a plurality of fetched instruc-
tions ifrom a program code 1nto an instruction pipe-
line to be executed; and
an execution circuit coupled to the instruction fetch
circuit, the execution circuit configured to:
execute a fetched instruction among the plurality of
fetched instructions in the instruction pipeline;
and
generate a pipeline flush event to flush the mnstruction
pipeline 1n response to the execution of a fetched
instruction among the plurality of fetched instruc-
tions comprising a performance degrading instruc-
tion (PDI) generating a hazard; and
an 1nstruction reuse circuit coupled to the instruction
pipeline between the instruction fetch circuit and the
execution circuit, the instruction reuse circuit config-
ured to:
determine 1I a source identification of the fetched
instruction matches a source 1dentification in a refill
tag 1n an execution refill entry as a matching execu-
tion refill entry among a plurality of execution refill
entries of a pipeline execution refill circuit; and
in response to the source identification of the fetched
instruction matching the source i1dentification in the
refill tag 1n the matching execution refill entry:
determine 11 1nput information of the fetched instruc-
tion matches mput information in the matching
execution refill entry; and
in response to the mput information of the fetched
instruction matching the input information in the
matching execution refill entry:
cause output imnformation for the fetched instruc-
tion 1n the matching execution refill entry for
the fetched instruction to be committed.

2. The processor of claim 1, wherein the mstruction reuse
circuit 1s configured to, 1n response to the pipeline flush
event:

determine if the fetched instruction matches the source

identification in the refill tag 1n the execution refill
entry as the matching execution refill entry among the
plurality of execution refill entries of the pipeline
execution refill circuit; and

in response to the source identification of the fetched

instruction matching the source identification in the

refill tag as the matching execution refill entry:

determine 11 mput information of the fetched instruc-
tion matches input information 1n the matching
execution refill entry; and

in response to the iput information of the fetched
instruction matching input information in the match-
ing execution refill entry:



US 11,074,077 Bl

27

cause the output information for the fetched 1nstruc-
tion 1n the matching execution refill entry for the
tetched 1nstruction to be committed.

3. The processor of claim 1, wherein the instruction reuse
circuit 1s further configured to, in response to the input
information of the fetched instruction matching the input
information in the matching execution refill entry, cause the
fetched nstruction to not be executed in the execution
circuit.

4. The processor of claim 1, wherein the instruction
processing circuit 1s further configured to, 1n response to the
input information of the fetched instruction matching the
input information in the matching execution refill entry,
write the output information for the fetched instruction in the
matching execution refill entry for the fetched instruction to
a logical register named by an output operand of the fetched
istruction 1n a register file.

5. The processor of claim 1, wherein the instruction reuse
circuit 1s further configured to, in response to the source
identification of the fetched instruction not matching the
source 1dentification 1n the refill tag of the matching execu-
tion refill entry, cause the fetched 1nstruction to be executed
in the execution circuit.

6. The processor of claim 1, wherein the instruction reuse
circuit 1s further configured to, in response to the input
information of the fetched instruction not matching the input
information 1n the matching execution refill entry, cause the
fetched instruction to be executed 1n the execution circuit.

7. The processor of claim 1, wherein the instruction reuse
circuit 1s further configured to, in response to the input
information of the fetched instruction matching the input
information in the matching execution refill entry:

determine 11 a valid indicator in the matching execution

refill entry indicates an invalid state; and

in response to the valid indicator 1n the matching execu-

tion refill entry indicating a valid state:

cause the output information for the fetched instruction
in the matching execution refill entry for the fetched
instruction to be committed.

8. The processor of claim 7, wherein, the instruction reuse
circuit 1s further configured to, in response to the valid
indicator 1n the matching execution refill entry indicating an
invalid state:

cause the fetched instruction be re-executed in the execu-

tion circuit.

9. The processor of claim 1, wherein the instruction reuse
circuit 1s further configured to, in response to the source
identification of the fetched instruction not matching the
source 1dentification 1n the refill tag in an execution refill
entry among the plurality of execution refill entries of the
pipeline execution refill circuit:

determine 1f the fetched instruction names an output

logical register 1n an output operand; and

in response to the fetched instruction naming the output

logical register in the output operand:

set a valid indicator 1n an execution refill entry among,
the plurality of execution refill entries of the pipeline
execution refill circuit containing the output logical
register as mput information, to an mvalid state.

10. The processor of claim 9, wherein the instruction
reuse circuit 1s further configured to, 1 response to the input
information of the fetched instruction matching the input
information in the matching execution refill entry:

determine if the valid indicator 1n the matching execution

refill entry indicates an invalid state; and

in response to the valid indicator 1n the matching execu-

tion refill entry indicating a valid state:

10

15

20

25

30

35

40

45

50

55

60

65

28

cause the output information for the fetched mstruction
in the matching execution refill entry for the fetched
instruction to be commuitted.

11. The processor of claim 10, wherein the instruction
reuse circuit 1s further configured to, 1n response to the valid
indicator 1n the matching execution refill entry indicating an
invalid state:

cause the fetched 1nstruction be re-executed 1n the execu-

tion circuit.

12. The processor of claim 1, wherein the instruction
reuse circuit 1s configured to:

determine 11 the mput information of the fetched instruc-

tion comprising one or more mput operand values of
the fetched instruction matches the input information
comprising one or more input values in the matching
execution refill entry; and

in response to the one or more mput operand values of the

fetched 1nstruction matching the one or more nput

values 1n the matching execution refill entry:

cause the output information for the fetched instruction
in the matching execution refill entry for the fetched
instruction to be committed.

13. The processor of claim 1, wherein the istruction
reuse circuit 1s configured to:

determine 11 the mput information of the fetched instruc-

tion comprising one or more input logical registers of
the fetched instruction matches the input information
comprising one or more mput logical registers in the
matching execution refill entry; and

in response to the one or more input logical registers of

the fetched instruction matching the one or more input

logical registers 1n the matching execution refill entry:

cause the output information for the fetched instruction
in the matching execution refill entry for the fetched
instruction to be committed.

14. The processor of claim 1, wherein the istruction
reuse circuit 1s configured to, in response to the input
information of the fetched instruction matching the mput
information in the matching execution refill entry:

cause the output information comprising one or more

output operand values for the fetched instruction 1n the
matching execution refill entry for the fetched instruc-
tion to be commuitted.

15. The processor of claim 1, wherein:

the instruction reuse circuit 1s further configured to, 1n

response to the source identification of the fetched

instruction matching the source identification in the

refill tag 1n the matching execution refill entry:

increase a usefulness 1n a usetul indicator 1n the match-
ing execution refill entry indicating the usefulness of
the matching execution refill entry.

16. The processor of claim 15, wherein:

the instruction reuse circuit 1s further configured to, 1n

response to the source identification of the fetched

instruction not matching the source identification in the

refill tag 1n the matching execution refill entry:

decrease the usefulness in the useful 1indicator 1n each
of the plurality of execution refill entries in the
pipeline execution refill circuit.

17. The processor of claim 16, wherein:

the instruction reuse circuit 1s further configured to:

determine 11 the usetulness 1n the usetul indicator 1n an
execution refill entry among the plurality of execu-
tion refill entries 1n the pipeline execution refill
circuit falls below a threshold usetulness; and

in response to the usefulness 1n the usetul 1indicator 1n
the execution refill entry falling below the threshold




US 11,074,077 Bl

29

usefulness, deallocate the execution refill entry 1n the
pipeline execution refill circuit.

18. The processor of claim 15, wherein:

the instruction reuse circuit 1s further configured to, 1n

response to the source identification of the fetched
instruction not matching the source identification 1n the
refill tag 1n the matching execution refill entry, increase
a global allocation 1n a global allocation fail indicator
for the pipeline execution refill circuit; and

in response to the global allocation 1n the global allocation

fail indicator exceeding a threshold global allocation,
decrease the usefulness of the usetful indicator 1n each
execution refill entry among the plurality of execution
refill entries 1n the pipeline execution refill circuit.

19. The processor of claim 18, 1n response to the useful-
ness in the useful indicator 1n an execution refill entry among,
the plurality of execution refill entries in the pipeline execu-
tion refill circuit falling below a threshold usefulness, deal-
locate the execution refill entry 1n the pipeline execution
refill circuait.

20. The processor of claim 1, further comprising a PDI
detection circuit coupled to the struction pipeline, the PDI
detection circuit configured to:

detect 11 a fetched instruction among the plurality of

fetched 1nstructions 1n the mnstruction pipeline 1s a PDI;
and

in response to detecting the fetched instruction as a PDI:

store the source identification of one or more fetched
instructions comprising at least one of the detected
PDI and one or more successor mstructions follow-
ing the detected PDIs one or more detected instruc-
tions 1n the 1struction pipeline, 1n a respective one
or more refill tags of one or more execution refill
entries among the plurality of execution refill entries
in the pipeline execution refill circuit.

21. The processor of claim 20, wherein in response to
detecting the fetched instruction as a PDI, the PDI detection
circuit 1s further configured to:

determine 11 a source 1dentification of the detected nstruc-

tion matches a source i1dentification 1n a refill tag 1n an
execution refill entry among the plurality of execution
refill entries 1n the pipeline execution refill circuit; and
in response to the source identification of the detected
instruction not matching a source identification 1 a
refill tag 1n the plurality of execution refill entries in the
pipeline execution refill circuit, the PDI detection cir-
cuit 1s configured to:
store the source idenfification of the one or more
detected instructions in the respective one or more
refill tags 1n the pipeline execution refill circuit.

22. The processor of claim 20, wherein the PDI detection
circuit 1s further configured to, in response to the source
identification of the detected instruction not matching a
source 1dentification 1n a refill tag 1n the plurality of execu-
tion refill entries 1n the pipeline execution refill circuat:

determine if a detected instruction among the one or more

detected 1nstructions 1s a PDI; and

in response to determining the detected mstruction 1s a

PDI:

not capture the detected instruction determined to be a
PDI in the mstruction pipeline 1n an execution refill
entry in the pipeline execution refill circuat.

23. The processor of claim 20, wherein the PDI detection
circuit 1s further configured to, 1n response to detecting the
tetched instruction as a PDI:

determine 11 the pipeline fetch execution circuit 1s full;

and

5

10

15

20

25

30

35

40

45

50

55

60

65

30

in response to determining the pipeline execution refill
circuit 1s full:
not store the source identification of one or more
detected 1nstructions 1n one or more execution refill
entries among the plurality of execution refill entries
in the pipeline execution refill circuit.

24. The processor of claim 20, wherein:

the plurality of instructions comprises a branch instruction

having a branch behavior;

the instruction fetch circuit i1s configured to fetch the

branch instruction into the instruction pipeline as a
fetched branch instruction to be executed:;

the instruction processing circuit further comprises a

control flow prediction circuit configured to predict the
branch behavior of a fetched branch instruction of the
branch instruction as fetched branch instruction;

the execution circuit 1s configured to execute the fetched

branch instruction as an executed fetch instruction to
generate a resolved branch behavior of the executed
branch instruction;

the mstruction processing circuit 1s further configured to:

determine 1f the resolved branch behavior of the
executed branch instruction matches the predicted
branch behavior of the fetched branch instruction:
and

update a branch predictor confidence corresponding to
the branch instruction based on whether the resolved
branch behavior matched the predicted branch
behavior; and

the PDI detection circuit 1s configured to detect if the

fetched branch instruction in the 1nstruction pipeline 1s
a PDI based on the branch predictor confidence of the
branch instruction.

25. The processor of claim 20, wherein:

the plurality of instructions comprises a memory opera-

tion 1nstruction;

the instruction fetch circuit i1s configured to fetch the

memory operation instruction into the mstruction pipe-
line as a fetched memory operation instruction to be
executed;

the execution circuit 1s configured to execute the memory

operation 1nstruction at a memory address of the
memory operation instruction;

the struction processing circuit 1s further configured to

store a PDI indicator for the memory operation instruc-
tion as a PDI in response to the execution circuit
generating the pipeline flush event to flush the mstruc-
tion pipeline 1n response to the execution of the
memory operation instruction; and

the PDI detection circuit 1s configured to detect if the

memory operation instruction in the instruction pipe-
line 1s a PDI based on the PDI indicator for the memory
operation nstruction indicating a PDI.

26. The processor of claim 20, wherein the instruction
processing circuit 1s further configured to, 1n response to the
pipeline flush event generated by execution of the PDI
generating the hazard when executed:

de-allocate each execution refill entry among the plurality

of execution refill entries in the pipeline execution refill
circuit corresponding to the executed PDI.

27. The processor of claim 20, wherein the instruction
processing circuit 1s further configured to, 1n response to the
PDI detection circuit detecting the fetched instruction as a

PDI:




US 11,074,077 Bl

31

store one or more mput information for execution of the
one or more detected istructions as respective one or
more mput mformation in the one or more execution
refill entries; and
store one or more output mformation generated by the
execution circuit in execution of the one or more
detected 1nstructions as respective one or more output
information 1n the one or more execution refill entries.
28. The processor of claim 27, wherein the instruction
processing circuit 1s configured to, in response to the PDI
detection circuit detecting the fetched instruction as a PDI:
store one or more input information comprising one or
more mput operand values of the one or more detected
istructions as respective one or more mmput operand

values 1n the one or more execution refill entries.

29. The processor of claim 27, wherein the instruction
processing circuit 1s configured to, i response to the PDI
detection circuit detecting the fetched instruction as a PDI:

store one or more mput mformation comprising one or

more mput logical registers of the one or more detected
istructions as respective one or more input logical
registers 1n the one or more execution refill entries.

30. The processor of claim 27, wherein the instruction
processing circuit 1s configured to, i response to the PDI
detection circuit detecting the fetched instruction as a PDI:

store one or more output information comprising one or

more output operand values generated by the execution
circuit in execution of the one or more detected instruc-
tions as respective one or more output operand values
in the one or more execution refill entries.

31. A method of reusing executed, flushed 1nstructions in
an 1nstruction pipeline 1 a processor, comprising:

fetching a plurality of instructions as a plurality of fetched

istructions from a program code into an instruction
pipeline to be executed;
executing a fetched instruction among the plurality of
fetched 1nstructions 1n the instruction pipeline;

generating a pipeline flush event to flush the instruction
pipeline 1n response to the execution of a fetched
instruction among the plurality of fetched instructions
comprising a performance degrading instruction (PDI)
generating a hazard;

determining 1f a source identification of the fetched

instruction before being executed matches a source
identification 1n a refill tag 1n an execution refill entry
as a matching execution refill entry among a plurality
of execution refill entries of a pipeline execution refill
circuit; and

in response to the source identification of the fetched

instruction matching the source identification in the

refill tag as a matching execution refill entry:

determining 1f 1nput information of the fetched nstruc-
tion matches input information in the matching
execution refill entry; and

10

15

20

25

30

35

40

45

50

32

in response to the mput information of the fetched
instruction matching the mnput information in the
matching execution refill entry:
causing output information for the fetched instruc-
tion 1n the matching execution refill entry for the
fetched 1nstruction to be commatted.

32. The method of claim 31, comprising, 1n response to
the pipeline flush event:

determining if the fetched mstruction matches the source

identification in the refill tag 1n the execution refill
entry as the matching execution refill entry among the
plurality of execution refill entries of the pipeline
execution refill circuit; and

in response to the source identification of the fetched

instruction matching the source identification in the
refill tag as the matching execution refill entry:
determining 1f input information of the fetched nstruc-
tion matches input information in the matching
execution refill entry; and
in response to the mput information of the fetched
instruction matching input information in the match-
ing execution refill entry:
causing the output information for the fetched
instruction 1n the matching execution refill entry
for the fetched instruction to be commuitted.

33. The method of claim 31, further comprising, in
response to the input information of the fetched struction
matching the mput information in the matching execution
refill entry, causing the fetched instruction to not be
executed.

34. The method of claim 31, further comprising:

detecting 1f a fetched instruction among the plurality of

fetched 1nstructions 1n the nstruction pipeline 1s a PDI;
and

in response to detecting the fetched instruction as a PDI:

storing the source identification of the one or more
tetched instructions comprising at least one of the
PDI and one or more successor mstructions follow-
ing the detected PDI in the instruction pipeline as
one or more detected mstructions, 1n a respective one
or more refill tags of one or more execution refill
entries among the plurality of execution refill entries
in the pipeline execution refill circuit.

35. The method of claim 34, wherein in response to
detecting the fetched instruction as a PDI, further compris-
ng:

storing one or more mput information for execution of the

one or more detected instructions as respective one or
more input iformation in the one or more execution
refill entries; and

storing one or more output mformation generated by in

execution of the one or more detected instructions as
respective one or more output information 1n the one or
more execution refill entries.

¥ ¥ # ¥ ¥



	Front Page
	Drawings
	Specification
	Claims

