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SYSTEM AND METHOD FOR EGOMOTION
ESTIMATION

CROSS-REFERENCE TO RELATED
APPLICATIONS D

This application claims the benefit of U.S. Provisional
Application No. 62/963,754, filed 21 Jan. 2020, which 1s
incorporated 1n its entirety by this reference.

10
TECHNICAL FIELD

This mvention relates generally to the visual odometry
field, and more specifically to a new and useful system and

method 1n the visual odometry field. 15

BACKGROUND

Conventional visual odometry methods require distinc-
tive, stationary scene features for operation, and fail when
applied to largely featureless scenes (such as highways or
rural roads) or scenes with dynamic objects (such as city
scenes). As such, conventional visual odometry methods
cannot be reliably used in unstructured applications with
dificult scenes. Thus, there 1s a need in the visual odometry
field to create a new and useful system and method for
enabling visual odometry to be used with dithicult scenes.
This mvention provides such a new and useful system and
method.

20

25

30
BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 1s a schematic representation of the system.

FIG. 2 1s a schematic representation of the method.

FIGS. 3A and 3B are schematic representations of a first
and second example of a cyclic consistency criterion,
respectively.

FIG. 4 1s a schematic representation of an example of the
method.

FIG. 5 15 a flow diagram representation of an example of
the method.

FIG. 6 1s a flow diagram representation of an example of
the method.

FIG. 7 1s a schematic representation of an example of
tollowing a feature track.

FIG. 8 1s a schematic representation of an example of
sparsiiying features based on inconsistent motion.

FIG. 9 15 a tlow diagram representation of an example of
determining a system yaw, roll, pitch, and acceleration from
inertial data.

FIG. 10 1s an 1illustrative example of the system.

FIG. 11 1s an 1illustrative example of an image and the
corresponding depth map determined using variants of the
method.

FIG. 12 1s an illustrative example of the images sampled 55
by the 1mage sensors ol the system at each of a set of
timesteps.

FIGS. 13A and 13B are illustrative examples of using a
plurality of accelerometers as virtual gyroscopes to deter-
mine a yaw and roll of an 1image acquisition system, respec-
tively.
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60

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

65
The following description of the preferred embodiments
ot the invention 1s not intended to limit the invention to these

2

preferred embodiments, but rather to enable any person
skilled 1n the art to make and use this 1nvention.
1. Overview.

As shown 1n FIG. 2, the method 20 can include receiving
images S100, determining correspondence maps between
images S200, determining features in the images S300, and
determining system egomotion based on the features S500.
The method can optionally include: sparsifying the features
S400, processing the images, determining a pose of the
system from the egomotion, determining inertial measure-
ments, selecting an egomotion solution, determining motion
ol transient objects, and/or any steps.

As shown 1n FIG. 1, the system 10 can include a com-
puting system 200. The system can optionally include an
image acquisition system 100, one or more sensors 300, an
external system 400, and/or any components.

The system 10 and method 20 preferably function to
determine a pose and/or egomotion of an 1mage acquisition
system 100. The image acquisition system 100 egomotion
and/or pose can be used to determine the egomotion and/or
pose of an external system 400, used for image stabilization,
and/or otherwise used.

2. Benefits.

Varniations of the technology can confer several benefits
and/or advantages.

First, in contrast with conventional visual odometry sys-
tems that identify the specific visual odometry features
before correlation, this system and method can generate
dense correspondence maps between 1mages before 1denti-
tying the specific features to use n visual odometry. This
allows for correspondences to be 1dentified across the entire
image Irame, instead of just looking for pre-identified fea-
tures. This 1s possible because this system and method,
unlike conventional methods that use computationally
expensive and slow correlation methods, can efliciently
generate the correspondence maps 1n real or near-real time
(e.g., contemporaneous with image acquisition). This allows
the typical process to be mverted, which can result 1n a
denser set of odometry features.

Second, variants of this technology can 1dentily, match,
and/or otherwise determine nondistinct features (e.g., 1n
largely featureless scenes) that can be used for visual odom-
etry and/or visual inertial odometry.

Third, varniants of this technology can be compatible with
conventional odometry systems, despite generating an
overly-dense set of odometry features, by selectively spar-
sitying the features before odometry system provision.

Fourth, variants of this technology can estimate the odom-
etry of transient objects 1n the scene. For example, the
motion of transient objects in the scene can be determined
(e.g., 1n the same or a similar manner as the motion of
permanent objects) and then the absolute motion of the
transient objects can be determined by subtracting the ego-
motion of the external system (and/or i1mage acquisition
system) from the transient object motion.

Fifth, vaniants of this technology can enable accurate
measurements of rotations (e.g., pitch, yaw, roll) by com-
bining accelerometer measurements. For instance, acceler-
ometer readings from two accelerometers (at different loca-
tions) can be used to generate a virtual gyroscope enabling
angular velocity measurements about two axes (as shown for
example 1n FIGS. 13A and 13B) and (generally) accelerom-
eter readings from three or more accelerometers can be used
to generate a virtual gyroscope enabling angular velocity
measurements about three axes (e.g., using a lever arm
ellect). In specific examples of the technology, each camera
of an 1mage acquisition system can include an accelerom-
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cter. In these examples, because the relative camera posi-
tions are known (particularly the baseline), the relative
accelerometer positions are known (e.g., calculated or
inferred from the respective camera positions), enabling the
use of the lever arm effect to simulate a virtual gyroscope
¢.g., without independently calibrating the relative acceler-
ometer positions, without verifying that the accelerometer
poses have changed, etc.).

However, variants of the technology can confer any other
suitable benefits and/or advantages.

3. System.

As shown 1n FIG. 1, the system 10 can include a com-
puting system 200. The system can optionally include an
image acquisition system 100, one or more sensors 300, an
external system 400, and/or any components.

The 1image acquisition system 100 preferably functions to
acquire 1images. The images can be still images, a timeseries
of 1images, frames of one or more videos, and/or any suitable
image(s). The images can be monocular 1mages, 1mage
pairs, 1mage triplets, image quartets, 1mage quintets, image
sextets, 1image octets, and/or any number of 1images. Diiler-
ent 1mages preferably capture diflerent perspectives of the
same scene (e.g., taken from different horizontal perspec-
tives, taken from different vertical perspectives, etc.), but
can capture the same perspective of the scene (e.g., using
different imaging modalities, different imaging wavelengths,
etc.).

The 1image acquisition system is preferably coupled to the
computing system 200. However, additionally or alterna-
tively, the computing system can be integrated into the
image acquisition system, the image acquisition system can
be 1n communication with the computing system (e.g., via a
wired or wireless connection), and/or the 1mage acquisition
system and computing system can be otherwise connected or
disconnected. Fach image acquisition system can be asso-
ciated with one or more computing systems. Each comput-
ing system can be associated with one or more image
acquisition systems.

The 1mage acquisition system can include one or more
cameras. The image acquisition system preferably includes
two or more cameras (e.g., 3, 5, 10, 30, etc.); however,
additionally or alternatively, the image acquisition system
can include a single camera (e.g., configured to capture
video, configured with variable apertures, configured to
capture 1images ol distinct portions of a scene on the camera
sensor, configured to capture images from different posi-
tions, etc.). The cameras can be digital cameras, SLR
cameras, thermal cameras, optical cameras, inirared cam-
eras, low light cameras, x-ray detectors, ultraviolet cameras,
global shutter cameras, rolling shutter cameras, event cam-
eras, neuromorphic imagers, and/or any suitable camera
technology.

The camera(s) can be statically mounted relative to each
other (e.g., by a ngd rail, rack, shared housing, external
system housing, etc.), semi-rigidly mounted (e.g., fixed such
that during normal operation they reorient and/or move by
less than 1°, 2°, 5°, 10°, etc. pixel dimensions such as length
and/or width), rigidly mounted (e.g., during normal opera-
tion, the camera and/or sensor elements of the camera move
by less than 1 pixel dimension), flexibly mounted relative to
cach other (e.g., via an external system housing, by actuation
mechanisms, etc.) loosely mounted, actuatably mounted
(c.g., mounted to a movable arm or a track), unmounted
(e.g., freechand), and/or mounted 1n any suitable manner. The
cameras are preferably mounted to each other (e.g., via an
intermediary housing, mounting substrate, bar, etc.), but can
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alternatively be mounted to a common mounting surface
(e.g., an external system), or other surface.

The separation between the camera(s) (e.g., between two
cameras, between 1images captured with one camera wherein
the camera has moved between the 1image acquisition, “base-
line”, etc.) 1s preferably known; however, the separation can
be unknown (e.g., 1n variants configured to determine odom-
etry). The baseline 1s preferably at least a minimum distance
(e.g., 10 cm, 50 cm, 1 m, 5 m, etc.). However, the cameras
can alternatively be arranged within a predetermined dis-
tance and/or otherwise be arranged. The cameras can be
arranged along a common horizontal reference (e.g., image
sensors for each camera are aligned to the same horizontal
reference line), a common vertical reference, arranged 1n a
orid, and/or be otherwise arranged.

Adjacent cameras preferably have overlapping fields of
view (e.g., such that the cameras can capture overlapping
features), but can have any other suitable field of view. In
specific examples, the separation distance i1s preferably
chosen such that the pairwise 1images overlap by at least V4
of the images’ view; however, the two or more 1images or
captured frames can be otherwise related. The field of view
for the image acquisition system 1s preferably between about
180° and 360°, but can be less than 180°. The field of view
for each camera 1s preferably at least about 100° (e.g., 100°,
120°, 150°, 180°, 200°, 210°, 235°, 250°, 270°, 300°, 330°,
360°, values therebetween), but can be less than 100°. The
field of view can refer to the horizontal field of view, vertical
field of view, diagonal field of view, and/or any suitable field
of view. Each camera can have the same field of view or a
different field of view. In a first i1llustrative example, each
camera can have an approximately 360° field of view. In a
second 1llustrative example, one camera of the 1image acqui-
sition system can have an approximately 360° field of view
and the remaining camera(s) can have a field of view that 1s
less than 360°. In a third illustrative example, an i1mage
acquisition system can include at least four cameras, each
camera having a field of view that 1s approximately 100°
(e.g., £1°, 5°, +10°, +420°, etc.), which can enable the 1mage
acquisition system to have up to an approximately 360° field
of view (e.g., by having the cameras pointing in or facing
different directions). In a fourth illustrative example, each
camera can have an approximately 1000 field of view, which
can enable the 1mage acquisition system to have a field of
view between about 110° and 200°. However, the image
acquisition system and/or cameras thercof can have any
suitable field of view.

The position of the 1image acquisition system relative to
the external system 1s preferably known (e.g., during cali-
bration, during setup, dynamically determined during opera-
tion, etc.) and represented by one or more transiormation
matrices, but can alternatively be unknown.

The system can include one or more image acquisition
systems 100 (example shown 1n FIG. 10). In a first example,
the system includes a single 1image acquisition system (e.g.,
a stereocamera pair, a single monocular camera, etc.). In a
second example, the system includes multiple 1mage acqui-
sition systems (e.g., multiple stereocamera pairs, multiple
monocular cameras, etc.). In the second example, the mul-
tiple 1mage acquisition systems can be statically mounted
(e.g., to the same mounting surface, same rail, same housing,
etc.), actuatably mounted (e.g., via gimbals, arms, linkages,
etc.), flexibly mounted, or otherwise related. The locations
of the 1mage acquisition systems relative to each other is
preferably known (e.g., determined during calibration,
setup, dynamically determined, etc.), unknown, or otherwise
determined.
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The sensor(s) 300 preferably function to acquire auxiliary
data that can be used to determine and/or improve determi-
nation of features. The sensor data can optionally be used to
determine the system egomotion. The sensors are preferably
collocated with the 1mage acquisition system, which can
function to generate a known sensor position. The sensors
can be mounted to: the camera’s printed circuit board (PCB),
the 1mage acquisition system’s housing, a mounting surface
shared with the 1image acquisition system, mounted within a
predetermined distance of the camera (e.g., 10 inches, 10
cm, etc.), and/or otherwise collocated with the camera(s).
The relative pose of each IMU to its respective camera 1s
preferably known (e.g., from a calibration), but can be
unknown, determined during operation, and/or otherwise be
determined. However, the sensor(s) can be otherwise
mounted to the image acquisition system and/or separate
from the mmage acquisition system (e.g., mdependently
mounted to the external system). In a first example, each
camera of the image acquisition system 100 includes an
independent sensor set. In a second example, the 1mage
acquisition system 100 includes a sensor set, wherein the
sensor set 1s shared between the cameras of the image
acquisition system 100.

The sensors 300 are preferably inertial sensors (e.g.,
inertial measurement unmit (IMU) sensors, accelerometers,
gyroscopes, etc.), but can additionally or alternatively be
altimeters, magnetometers, wheel encoders, depth sensors
(e.g., ultrasound, LIDAR, etc.), location sensors (e.g., GPS
system, trilateration systems, etc.), acoustic sensors, (€.g.,
microphones, ultrasound, radar, etc.), and/or any suitable
sensors. Examples of IMU sensors can be: mechanical (e.g.,
MEMS, gyrostat, hemispherical resonator, vibrating struc-
ture gyroscope or Coriolis vibrator, dynamaically tune gyro-
scope, etc.), gas-bearing, optical (e.g., ring laser gyroscope,
fiber optic gyroscope, etc.), quantum (e.g., London moment
gyroscope), crystal (e.g., piezoelectric), electromechanical,
and/or other IMU technology(s). When more than one
sensor 1s present, each sensor 1s preferably the same, but the
sensor(s) can be different.

The computing system 200 functions to perform all or
portions of the method. The computing system can addi-
tionally or alternatively function to process the image(s),
sparsity the {features, determine correspondence maps
between 1mages, perform any other step(s) of the method
and/or otherwise function. The computing system can be
local (e.g., to the 1mage acquisition system or one or more
cameras thereof, to a sensor, to the external system, etc.),
remote (e.g., cloud computing, server, etc.), and/or be dis-
tributed 1n any manner.

The computing system 200 can include one or more
modules configured to perform all or portions of the method.
For example, the computing system 200 can include: a
correspondence mapping module configured to perform
5100, a feature extraction module configured to perform
S300, a sparsification module configured to perform S400,
an egomotion module configured to perform S500, a com-
bination thereof, and/or any other suitable set of modules.

The external system 400 functions to traverse through a
scene. The external system 400 can optionally function as a
mounting surface for portions or all of the system. Examples
of external systems 400 include vehicles (e.g., cars, trucks,
locomotives, nautical vehicles, aerial vehicles, etc.), robots,
a navigation system, and/or any other system. The external
system 400 can be autonomous, a semi-autonomous, a
manually-controlled, remotely controlled, and/or be other-
wise controlled. The external system 400 can optionally
include a localization system, a navigation system, and/or
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any other suitable control system that can consume the
egomotion and/or pose output by the system.
4. Method.

As shown 1n FIG. 2, the method 20 can include receiving
images S100, determining correspondence maps between
images S200, determining features in the images S300, and
determining system egomotion based on the features S500.
The method can optionally include: sparsifying the features
S400, processing the images, determining a pose of the
system from the egomotion, determining inertial measure-
ments, selecting an egomotion solution, determining motion
ol transient objects, and/or any steps.

The method 20 preferably functions to determine an
cgomotion of a system (e.g., a system as described above, an
external system, an 1mage acquisition system, etc.). The
cgomotion can be an absolute motion (e.g. absolute motion
relative to an external reference frame, such as a global
reference frame), or a relative motion (e.g., relative to a
starting point, end point, reference point, a previous system
pose, etc.). The method can optionally function to determine
the system pose (e.g., image acquisition system pose, exter-
nal system pose). The system pose can be determined for
cach of a set of timepoints, and can be: absolute pose (e.g.,
within a global reference frame), a relative pose (e.g.,
relative to a reference), and/or any other suitable pose. The
method 1s preferably performed in real- or near-real time
with 1mage sampling and/or external system operation, but
can be performed asynchronously.

Receiving images S100 tunctions to receive a plurality of
images that can be used to determine the egomotion of the
system. The 1images are preferably acquired by the image
acquisition system, but can be retrieved from the computing
system (e.g., an 1image database, memory, etc.) and/or oth-
erwise be recerved. Each image 1s preferably associated with
a time stamp and/or time window (e.g., the time of acqui-
sition, the order of acquisition, etc.).

The 1mages can be grouped into odometry sets (e.g.,
analysis sets) where the odometry set can include sequential
images (e.g., from the same camera), contemporaneous
images (e.g., concurrently sampled images from cameras
with overlapping fields-of-view), both sequential and con-
temporaneous 1mages, and/or any 1mages. In an illustrative
example, the odometry sets 112 can include image pairs
from at A least two time stamps (example shown 1n FIG. 12).
The time stamps can be consecutive or nonconsecutive.
However, the odometry sets can include any number of
images and/or any suitable images. The odometry sets can
be redefined for each timestep (e.g., be a sliding window
applied to the image timeseries) or otherwise be defined. The
images within an 1mage pair can be sampled by a first and
second camera (e.g., with overlapping fields-of-view; adja-
cent cameras; nonadjacent cameras; etc.), a single camera, or
otherwise sampled. The images within the 1image pair at
distinct timestamps are preferably sampled using the same
cameras, but can be sampled with any camera(s).

The odometry set preferably includes at least four 1mages,
wherein the method can process 1images in quads (groups of
four), but can additionally or alternatively include more or
less (e.g., 2 1mages, 6 1mages, 7 1mages, etc.). The four
images can be referred to as the first, second, third, and
fourth images. The names are used to distinguish the images,
but do not indicate anything about the time or order at which
they were acquired, or their relative positioning. The ele-
ment numbering used herein for the images (110a, 1105,
110¢, 110d) 1s for illustrative purposes only; any image can
be mapped to the element numbering. The first and second
images can be a stereo-image pair acquired substantially
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concurrently (e.g., within at most 30 ms of one another)
and/or associated with a common time stamp. Similarly, the
third and fourth 1mages can be a stereo-image pair acquired
substantially concurrently and/or associated with a second
common time stamp (before or after the time stamp asso-
ciated with the first and second 1mage). The first and third
images can be acquired using the same camera (and/or a
camera 1n the same position), for instance as frames of a
video. Similarly, the second and fourth images can be
acquired using the same camera (e.g., a diflerent camera
from the camera used to acquire the first and third images,
a camera 1n a second position, etc.). However, the images
can be otherwise related. In vanations of this example, the
first and third 1mage can be consecutive or nonconsecutive
frames of a video (and similarly for the second and fourth
1mages).

In an illustrative example, a first and second camera
sample a first and second image timeseries, respectively.
Odometry sets can be determined for each timestep, wherein
cach odometry set includes 1mages sampled at a first and
second timestep by the first and second cameras (e.g.,
images sampled at t and t—1 within the respective image
timeseries). In a second 1llustrative example, a stereocamera
pair can capture a timeseries of stereoimages, wherein the
odometry sets for each timestep can include stereoimages
from a first and second timestep.

S100 can include receiving auxiliary sensor data S150,
which can function to provide auxihiary data that can be used
to process the images (e.g., stabilize the 1images), validate
correspondence vectors, validate a visual odometry solution,
be indicative of component motion, and/or otherwise func-
tion. The auxiliary data (e.g., IMU data) can be acquired at
the same time as the images (e.g., concurrently, contempo-
raneously), more frequently than the images, less frequently
than the images, and/or at any suitable frequency. The
auxiliary sensor data 1s preferably associated with an image
acquisition system, more preferably an image sensor (e.g.,
the image sensor that the sensor shares a circuit board, clock,
mounting surface, housing, etc. with; 1image sensor that 1s
otherwise associated with auxiliary sensor), but can alter-
natively be associated with: an 1mage, a set ol i1mages,
multiple 1image sensors, the system as a whole, the external
system, and/or be associated with any other suitable data or
component. The auxiliary data can be received from a
sensor, from a sensing system, a computing system (e.g., a
database), and/or be received from any system. The auxil-
1ary sensor data can be synchronized between sensors and/or
be unsynchronized.

S150 can optionally include denoising the inertial mea-
surements, which can function to increase the accuracy
and/or precision of nertial measurements. The inertial mea-
surements can be denoised using: outlier rejection, filtering,
cross-correlation, computation of an inertial parameter using
disparate measurements (e.g., calculating rotation using
relative acceleration at two different system positions), and/
or otherwise be denoised. Acceleration measurements, rota-
tional velocity measurements, magnetic orientation, and/or
any suitable measurements can be denoised. For instance,
rotational velocity measurements can be denoised or redun-
dantly calculated 1 applications where rotational error is
more critical (e.g., compounds endpoint error more) than
other measurements (e.g., acceleration measurements).
However, any suitable measurements can be denoised.

In variants, the inertial measurements can be redundantly
calculated using different sensor types. For example, the
measurements from two or more IMU accelerometers (e.g.,
mounted to the cameras) can be used to augment and/or
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replace gyroscopic measurements, thereby cooperatively
functioning as a ““virtual gyroscope.” This example can
include: calculating a system yaw and/or roll based on the
relative motion of a first and second accelerometer, mounted
at a first and second position on the system (e.g., along a
common transversal axis). The system yaw and/or roll can
be calculated based on: the 1nertial measurements of the first
and second accelerometers, an extrinsic matrix describing
the relative pose of the sensor modules (e.g., the acceler-
ometers; the IMU-camera modules; etc.), and/or other data.
The extrinsic matrix can be calibrated online (e.g., during
external system operation), be factory-calibrated, be cali-
brated concurrently with the baseline calibration between
cameras, and/or otherwise be calibrated.

S100 can optionally include processing the images, which
functions to modity (e.g., translate, rotate, etc.) one or more
images to ensure that the images are co-planar and aligned
to have parallel epipolar lines, generate a rectified image set
(e.g., rectified 1image pair), modily one or more 1images (€.g.,
remove bad pixels, remove blur, change brightness and/or
contrast, etc.) and/or perform any suitable function. Process-
ing the images can include rectifying the image, scaling at
least one of the images (e.g., scaling the pixel size, scaling
the full image, to match another image size, etc.), converting
the 1images (e.g., from color 1mages to greyscale, compress
the 1image {file, interpolating between pixels of the 1mage(s)
etc.), and/or can include any suitable steps. In a specific
example, rectifying the images can include rectifying the
images using the Hartley method, which can include the
steps ol determining sparse correspondences, estimating a
fundamental matrix, and computing projective transforma-
tions to map the epipoles of the image pair to infinity. In this
specific example, rectifying the 1mages can generate new
values for the eflective focal length of the 1image acquisition
system and the effective distance between the centers of
projection. However, rectifying the images can be per-
formed in any suitable manner.

Determining a correspondence map between images S200
functions to 1dentity matching features within the images of
an 1mage set (e.g., 1mage pair, odometry set), where the
match 1s indicated by a correspondence vector associated
with each feature. The matched features can depict the same
points 1n the scene, or represent any other suitable physical
teature. The correspondence vectors for features of an 1mage
cooperatively form a correspondence map. The correspon-
dence map m can be a disparity map (e.g., be determined
between concurrent 1mages, idicative of binocular paral-
lax), an optic tlow map (e.g., be determined between con-
secutive images acquired by a common camera, indicative of
motion parallax), and/or include any suitable correspon-
dence map. The correspondence map 1s preferably dense or
semi-dense (e.g., includes valid correspondence vectors for
more than a threshold proportion of pixels, such as >10%,
>25%, >50%, >75%, >90%, and/or ranges therebetween),
but can be sparse and/or have any suitable density. The
features can include: pixels, superpixels, blocks of pixels,
pixel sets, structures (e.g., edges, corners, objects, etc.),
and/or any information within the images. The features can
be nondistinctive or distinctive. Correspondence map deter-
mination can be facilitated via feature tracking, using pre-
viously determined correspondence maps, and/or otherwise
be facilitated.

Correspondence maps are preferably determined for each
odometry set, but can alternatively be determined for a
subset thereol. Correspondence maps are preferably deter-
mined between each concurrent image pair and each con-
secutive 1mage pair within an odometry set (e.g., wherein
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S200 1s performed at least four times), but can additionally
or alternatively be determined between all images 110
within an odometry set. However, the correspondence maps
can be determined for any other suitable set of images 110.

5200 1s preferably iteratively performed at every timestep
(e.g., each time a new concurrent 1image set 1s sampled or
received), but can be performed at a predetermined Ire-
quency, 1n response to a trigger (e.g., receipt for egomotion
determination from the external system), and/or at any other
suitable time.

In a first variant, determining the correspondence map
S200 can include: determining pixel representations for
pixels 1n each 1mage of an analysis set, determining a set of
correspondence vectors, determining a cost associated with
cach correspondence vector (based on the pixel representa-
tions of the pixels identified by the correspondence vector),
and updating the correspondence map based on the cost.
Determining the correspondence map can be iterative (e.g.,
until a condition 1s met such as a predetermined number of
iterations, a predetermined correspondence map quality,
etc.) or single-shot. Determining the correspondence map
can optionally include removing errant pixels (e.g., outliers,
vectors that are inconsistent with the auxiliary data, etc.).

In an example of the first variant, determining the corre-
spondence map S200 can include acquiring two i1mages.
Each pixel from each image can be converted to a bit string.
The bit string (e.g., pixel hash) for an analysis pixel can be
determined by comparing the intensity of the analysis pixel
to each of a set of bit string pixels, wherein the bit string
pixels are determined according to a low discrepancy
sequence and collectively span a pixel block associated with
(e.g., adjacent) the analysis pixel. The correspondence map
for the first image can be mitialized, for example by gen-
erating a correspondence vector for each pixel or using a
correspondence map from a prior timestep. The correspon-
dence vector for each pixel can be generated, for example,
using a Halton sequence, and can be assigned to each pixel
along a correspondence vector assignment path. The pixels
from the first image can then be compared to pixels from the
second 1mage (e.g., by determining a Hamming distance
between the bit string associated with each pixel), wherein
the pixel in the second 1mage 1s specified by the correspon-
dence vector. The cost for each of the correspondence
vectors can be stored. The correspondence map can be
updated by generating new correspondence vector estimates
(e.g., candidate correspondence vectors) for each of the
pixels from the 1image based on the correspondence vectors
for adjacent pixels neighboring the respective pixel. The
pixel comparison and correspondence map updating can be
iteratively performed until a stop condition 1s met (e.g.,
average or highest cost falls below a threshold, predeter-
mined number of 1iterations, etc.). A second correspondence
map can optionally be determined for pixels of the second
image (e.g., compared to the pixels of the first image) 1n a
similar manner to first correspondence map determination.
The second correspondence map can be determined concur-
rently, serially, or 1n any other suitable order relative to
determination of the first correspondence map. If the second
correspondence map matches the first correspondence map
(e.g., based on a validation criterion), then the matching
correspondence map (or portions thereol) can be stored,
and/or used to determine one or more outputs. Determining
the correspondence map can optionally include refining the
correspondence map to generate a sub-pixel accurate corre-
spondence map (e.g., using a neural network, secondary
pixel representation, etc.).
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In a second variant, determining the correspondence
map(s) can be performed according to the method or steps
thereol as disclosed 1 U.S. application Ser. No. 16/936,269
filed 22 Jul. 2020 entitled “PASSIVE STEREO DEPTH
SENSING” and/or U.S. application Ser. No. 17/104,898
filed 25 Nov. 2020 entitled “SYSTEM AND METHOD FOR
CORRESPONDENCE MAP DETERMINATION” each of
which 1s incorporated 1n 1ts entirety by this reference.

In a third variant, the correspondence map and/or features
to be matched between the 1images can be determined using
Harris algorithm, using machine learning, features from
accelerated segment test (FAST), using oriented FAST and
rotated binary robust independent eclementary {features
(BRIEF) (ORB), speeded-up robust features (SURF), scale
invariant feature transtorm (SIFT), binary robust invariant
scalable keypoints (BRISK), and/or other feature detection
algorithms; and/or in any manner.

However, the correspondence maps can be determined 1n
any manner.

In an illustrative example (shown 1n FIG. 4), S200 prei-
erably includes determining a disparity map between images
no acquired by stereo cameras at the same time point and
determining optic flow maps between 1images acquired by
the same camera at different time points. A first disparity
map can be determined between the first image 110a and
second 1mage 1105 (e.g., correspondence vectors mapping,
features from the first image 10a to the second 1mage 1105,
correspondence vectors mapping features from the second
image 1106 to the first image 110a) and a second disparity
map can be determined between the third image 110¢ and
fourth image 1104 (e.g., correspondence vectors mapping
teatures from the third image 110c¢ to the fourth image 1104,
correspondence vectors mapping features from the fourth
image 1104 to the third image 110c¢). In a second illustrative
example, a first optic tlow map can be determined between
the first image 10a and third 1image 110c¢ (e.g., correspon-
dence vectors mapping features from the first image 10a to
the third 1mage 110c¢, correspondence vectors mapping fea-
tures from the third image 110c¢ to the first image 110a) and
a second optic flow map can be determined between the
second 1mage 1106 and fourth image 1104 (e.g., correspon-
dence vectors mapping features from the second image 1105
to the fourth image 1104, correspondence vectors mapping
features from the fourth image 1104 to the second image
110¢). However, correspondence maps can additionally or
alternatively be determined between the first and fourth
images, between the second and third images, and/or any
suitable set of 1images 110.

The correspondence maps can optionally be used to
determine depth maps, example shown i FIG. 11 (e.g.,
wherein the matched features can be used to calculate depth
based on the associated parallax and an essential matrix). In
variants, a depth map can be determined from the disparity
map (e.g., using an essential matrix relating the contempo-
raneous or concurrent 1mages), a depth map can be deter-
mined from the optic flow map (e.g., using an essential
matrix relating the sequential 1mages), and/or a depth map
can be otherwise determined.

However, the correspondence maps can be determined 1n
any manner.

Determining the odometry features S300 functions to
determine (e.g., select, identily, etc.) features to use to
determine the egomotion of the system. The odometry
features are preferably a subset of the features identified
(e.g., matched) by the correspondence maps (e.g., in S200),
but can be any suitable features. The odometry features 120
are preferably determined from 1images of the odometry set,
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but can be determined from all images and/or any subset
thereol. The odometry features 120 preferably represent
static objects (e.g., fixed, nonmobile, immobile, permanent,
etc.) 1n the environment that are depicted by the images
within the odometry set. The motion depth, and/or size (e.g.,
pictorial cues) of the static object relative to the image
sensor over time can be used to determine the system’s
motion relative to the environment. A static object (e.g.,
immobile object) can be a physical object that 1s fixed to the
scene and preferably does not change appearance or pose
over time, but can be otherwise defined. However, the
odometry features can represent temporary objects (e.g.,
transient over time), mobile objects (e.g., changing or able
to be changed relative to the environment such as a car or
digital billboard), stationary objects, fixed (e.g., mounted to
the environment) or unfixed (e.g., not fixedly mounted to the
environment) permanent objects, mtransient objects, and/or
objects that are otherwise characterized. Examples of
objects that the odometry features can be associated with
include: fixed or permanent signage (e.g., traflic signs, stop
signs, traflic signals, billboard frames, road letting, etc.),
fixed or permanent construction (e.g., buildings, roads,

sidewalks, etc.), and/or other objects. S300 1s preferably
performed after S200, but can be performed during and/or
betore S200.

Candidate features that are evaluated for inclusion in the
odometry feature set (e.g., odometry feature candidates) can
be: determined from the set of correspondence maps asso-
ciated with the odometry set; be determined from the
images; be the odometry features from a prior timestamp
(e.g., features appearing in the earlier images of the odom-
etry set; previously tracked features; etc.); or be any other
suitable feature. Candidate features can be determined (e.g.,
selected) from one or more 1mages: randomly, selected using
a low discrepancy sequence, be features associated with a
predetermined label (e.g., from the semantic segmentation),
be every feature within an 1mage, be selected based on one
or more correspondence maps (e.g., be features with corre-
spondences 1n a threshold number of other 1images), and/or
be otherwise determined.

A candidate feature 1s preferably included as an odometry
feature when the candidate feature satisfies an odometry
criteria. However, a candidate feature can be considered an
odometry feature based on feature tracking (e.g., tracking a
candidate feature or a prior odometry feature across a
sequence of 1images), feature matching between consecutive
images such as stereo 1mages, identifying unique scene
features 1n the scene (e.g., using an auxiliary sensing system)
and determining the features within each 1image correspond-
ing to the unique scene features, and/or otherwise be
included as an odometry feature.

The odometry criteria can include a cyclic mapping (e.g.,
a cyclic correspondence criterion), diagonal matching, cal-
culated correspondence vectors matching a previously deter-
mined correspondence vector, agreement between multiple
correspondence vectors (e.g., between different i1mage
pairs), feature tracking, and/or any suitable criteria. The
odometry criteria can be satisfied when a candidate feature
(e.g., a candidate feature from an 1mage) 1s within a prede-
termined distance (e.g., pixel distance, metric distance,
scene distance, etc.) of a target feature (e.g., target feature 1n
a diflerent 1image), a candidate feature 1s 1n exactly the same
position as a target feature, a correspondence vector 1s
within a predetermined distance of a target correspondence
vector, a correspondence vector (e.g., correspondence vector
along a first path) 1s exactly the same as a target correspon-
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dence vector (e.g., correspondence vector along a second
path), and/or otherwise be characterized.

In a first embodiment of S300 (as shown for example 1n
FIG. 3A), an odometry criterion can include a cyclic con-
sistency criterion between images, where a feature from one
image of the odometry set maps to the same feature (e.g.,
same position, within a threshold distance, etc.) 1n another
image of the odometry set along different mapping path-
ways. The features can be traced across time, across 1images,
across space, using correspondence maps, and/or 1n any
manner.

In an 1illustrative example of the first embodiment, a
feature can be traced from the first image 110a to the fourth
image 1104 along two paths. For instance, the first path can
trace the feature from the first image 110q to the third image
110¢ (e.g., using a correspondence vector 111a from a first
optic flow map) and then trace the feature from the third
image 110c to the fourth image 1104 (e.g., using a corre-
spondence vector 111¢ from a second disparity map). The
second path can trace the feature from the first image 110aq
to the second mmage 1105 (e.g., using a correspondence
vector 1116 from the first disparity map) and from the
second 1mage 11056 to the fourth image 1104 (e.g., using a
correspondence vector 1114 from the second optic tlow
map). However, the feature can be traced between any pair
of 1mages (e.g., between the first and third image, the first
and second 1mage, the second and third 1mage, the second
and fourth image) following any paths (e.g., any combina-
tion of the first and second disparity map, the first and
second optic flow, and/or a correspondence map between the
first and fourth or second and third images that connects the
pair of 1mages). In a second example, features whose
correspondence vectors are consistent across the correspon-
dence maps 1n are selected as odometry features.

In a second embodiment (example shown in FIG. 3B), an
odometry criterion can include a cyclic mapping between
images of the odometry set, where the distance between a set
of points should remain invariant or less than a predeter-
mined distance after a full cycle formed by tracing the
correspondence vectors for the features through the 1mages
with an odometry set.

In a first illustrative example of the second embodiment,
a feature can be traced from first to the third image (e.g.,
using a correspondence vector 111a from the first 1image’s
optic flow map), from the third to fourth image (e.g., using
a correspondence vector 111¢ from the third image’s dis-
parity map), from the fourth image to the second 1image (e.g.,
using a correspondence vector 111e from the fourth image’s
backward optic flow map), and from the second 1image back
to the first 1mage (e.g., using a correspondence vector 111/
from the second 1mage’s disparity map); and determining 1f
the resultant feature position 1n the first 1mage 1s within a
predetermined distance of the starting feature.

In a second 1illustrative example of the second embodi-
ment, a feature can be traced from first to the second 1mage
(e.g., using first image’s disparity map), from the second to
fourth 1image (e.g., using second 1mage’s optic flow map),
from the fourth 1mage to the third image (e.g., using fourth
image’s disparity map), and from the third image back to the
first 1image (e.g., using the third 1image’s backwards optic
flow map); and determining if the resultant feature position
in the first 1image 1s within a predetermined distance of the
starting feature.

In a third embodiment, an odometry criterion can include
calculating a feature position 1mn a diagonal image of the
odometry set (e.g., a different time stamp and different
image sensor) using two sets of correspondence maps (e.g.,
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the first optic flow and the second disparity map, the first
disparity map and the second optic tlow, etc.) and determin-
ing whether the calculated feature positions match.

In a fourth embodiment, an odometry criterion can
include calculating a correspondence vector associated with
a feature of a feature for a given image based on the
correspondence vectors for the feature in the other images
and determiming whether the calculated correspondence
vector matches the correspondence vector of the given
image. For example, a calculated correspondence vector can
be generated by adding the correspondence vector for a
teature along the first optic tlow, the second disparity map,
and the second optic flow (e.g., backwards second optic
flow) and can be compared to the correspondence vector for
the feature from the first disparity vector.

In a fifth embodiment, two or more of the first through
fourth embodiments can be used, for example to provide
redundancy to the odometry feature selection.

However, the odometry features can be otherwise
selected.

Sparsiiying the odometry features S400 (sometimes
referred to as prefiltering or sieving the odometry features)
functions to generate a sparse set of features. The sparsified
teatures are preferably odometry features (e.g., determined
in S300), but can be features determined 1n generating the
correspondence map (e.g., features from S200), and/or
include any suitable features.

S400 1s preferably performed after S300, but can be
performed at the same time as (e.g., apply sparsification
rules or processes to the images of the odometry set so that
a smaller proportion of the images can be searched for
teatures) and/or before S300. S400 can be performed when
more than a threshold number of odometry features are
identified 1n S300; always be performed; performed when a
computing metric (e.g., runtime, % CPU, CPU time, amount
of memory, etc.) for egomotion calculation exceeds a pre-
determined threshold; and/or at any other suitable time.

The sparsified features are preferably determined (e.g.,
selected, 1dentified, etc.) based on one or more sparsification
criteria, but can be otherwise determined. The features
satisiying the sparsification criteria can be excluded from the
sparsified feature set, included within the sparsified feature
set, and/or otherwise managed based on the sparsification
criteria satisfaction. The sparsification criterion can include:
an object class (e.g., wherein features associated with pre-
determined object classes are included or excluded from the
sparsified feature set), feature motion, holonomic or non-
holonomic constraints, consistency checks, outlier rejection
(e.g., using RANSAC), and/or any suitable criterion. One or
more sparsification criterion can be used. Multiple sparsifi-
cation methods can be applied senally, 1n parallel, and/or 1n
any order.

In a first vanant, sparsifying the features can include
determining object classes (e.g., labels) for each feature
(e.g., each feature of the odometry feature set) and removing
or including features associated with a predetermined set of
object classes. Object classes can include: a characteristic
(c.g., mobile, such as capable of moving, probability of
moving greater than or equal to a threshold probability of
moving, etc.; nonmobile such as incapable of moving,
probability of moving less than or equal to a threshold
probability of moving, etc.; transient; intransient; stationary;
nonstationary, etc.), object type (e.g., vehicles, pedestrians,
amimals, road, windmills, billboards, plants, signs, buildings,
manmade objects, etc.; wherein each object type can be
associated with a predetermined set of characteristics), and/
or other classes. Examples of objects that would be classified
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as mobile, even though they can be stationary depending on
the time and situation, can include: vehicles, windmills,
billboards, plants, signs, and/or any suitable objects that can
change appearance and/or pose with more than a predeter-
mined frequency.

In a first 1llustrative example of the first variant, an object
class or label can be determined for image segments, where
cach feature can inherit the label or class of the image
segment that the feature 1s part of. In a second 1llustrative
example of the first variant, an object class or label can be
determined for each feature (e.g., pixel). Pixels or features
that are 1n transient or mobile segments can be excluded
from the sparsified feature set. Pixels or features that are 1n
permanent or immobile segments can be included in the
sparsified feature set.

In a second illustrative example of the first variant, at least
one of the first, second, third, or fourth images (from an
odometry set) can be segmented into transitory (e.g., tran-
sient) segments and permanent segments, features associ-
ated with transitory segments can be excluded from the
odometry features, and/or features associated with perma-
nent segments can be included in the odometry features.

Object classes or labels are preferably determined using
semantic segmentation, but can additionally or alternatively
be determined using instance-based segmentation or be
otherwise determined. For example, an object class can be
determined using a neural network (e.g., a convolutional
neural network, a deep neural network, etc.) trained to label
image segments based on: at least one 1image of the odom-
etry set, optionally the images disparity map optic flow map,
and/or depth map determined therefrom, auxiliary sensor
data (e.g., IMU data), and/or other mnputs. The neural
network can output semantic labels for each 1mage segment
(e.g., each feature, each contiguous set of features, each
pixel, each blob, each super pixel, etc.), and can optionally
output a denser depth map. The neural network can be
trained using a 3D representation of a scene (e.g., a preren-
dered or generated 3D representation, a model of the scene,
a previously acquired 3D representation, etc.), using a
training dataset, using manually entered data, using pictorial
cues, using parallax cues, and/or using any suitable training
dataset.

In a specific example, an 1mage (e.g., RGB, grayscale)
and 1ts associated correspondence map can be provided to
the neural network, wherein the neural network can output
a semantic segmentation (e.g., pixel-aligned with the corre-
spondence map) and can optionally output a denser corre-
spondence map. In a second specific example, a depth map
can be determined based on the correspondence map (from
the first specific example) and provided to the neural net-
work with the corresponding image, wherein the neural
network can output a semantic segmentation of the image
and optionally output a denser depth map.

In a second variant of S400, as shown for example 1n FIG.
8, sparsitying the odometry features can include excluding
features with inconsistent feature motion (e.g., between
frames) and/or including features with consistent feature
motion 1n the set of sparsified features. The constraints are
preferably applied based on the auxihiary data (e.g., IMU
data), but can be otherwise determined. For instance, S400
can include 1dentitying odometry features that are consistent
with the inertial measurements (e.g., have motion, deter-
mined from the optic tlow vector, that 1s consistent with the
inertial measurements), identifying odometry features that
are consistent with feature positions estimated based on
inertial measurements, and/or are otherwise consistent with
the inertial data. The consistent feature motion is preferably
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detected between successive 1mages sampled by the same
image sensor (e.g., the first and third image, the second and
fourth 1mage), but can be detected between 1mages sampled
with different image sensors. The 1nertial data that 1s used 1s
preferably associated with the image sensor that sampled the
image (e.g., a sensor integrated with the image sensor), but
can additionally or alternatively be associated with the
external system, a diflerent image sensor, and/or any suitable
SEeNnsor.

In an illustrative example of the second variant, sparsi-
tying the odometry features can include predicting a feature
location (e.g., from the first image to the third 1image, from
the second 1mage to the fourth 1mage) based on the 1nertial
data (e.g. sampled by an IMU sensor associated with the
camera that captured the 1mages, sampled by an IMU sensor
of the external system, an average IMU dataset, etc.),
comparing the predicted feature location to the feature
location determined by the correspondence map between the
images (e.g., a vector of the first optic flow map, a vector of
the second optic tlow map, etc.), and when a difference
between the predicted feature location and the optic flow
vector exceeds a threshold, excluding the feature from the
set of sparsified features (or including the feature in the
sparsified feature set when the distance 1s below a thresh-
old). In a second 1illustrative example, consistent feature
motion can include excluding features that have an optic
flow or disparity vector that exceeds a threshold difference
from an average or expected optic tlow or disparity vector.

In a third variant, sparsifying the odometry features can
include applying non-holonomic constraints to the odometry
teatures. Odometry features that do not move in a manner
consistent (and/or 1n a manner that exceeds a threshold
difference from the non-holonomic constraints) with the
non-holonomic constraints (e.g., as determined from an
optic tlow associated with the image) can be excluded from
the sparsified features. Odometry features that move 1n a
manner consistent with (e.g., optic flow vector within a
threshold difference from that expected for a non-holonomic
constraint) the non-holonomic constraints can be included 1n
the sparsified feature set. The non-holonomic constraints can
depend on the object classification (e.g., from the first
variant above), the 1mage acquisition system, the external
system, the application, and/or any suitable information. For
example, a terrestrial vehicle generally cannot move purely
laterally. The constraints can be automatically determined
(e.g., based on historic motion), learned, manually deter-
mined, predetermined, and/or otherwise be determined. In
an 1illustrative example, features with optic flow vectors
corresponding to lateral system movement can be excluded
from the sparsified feature set when the system 1s mounted
to a terrestrial vehicle.

In a fourth variant, sparsitying the odometry features can
include selecting features that have appeared 1n a threshold
number of timesteps, which can function to remove noise
and/or decorrelate biases. For example, as shown in FIG. 7,
a feature can be included 1n the sparsified feature set when
the feature (e.g., candidate {feature, odometry {feature)
appears 1n two or more odometry sets, collectively spanning
two or more timesteps. The odometry sets are preferably
consecutive, but can be nonconsecutive (e.g., within a
predetermined number of timesteps, such as 2). Features can
be included or excluded from the sparsified feature set as
they enter or exit the field-of-view of the images.

However, the odometry features can be sparsified using a
combination of one or more of the above, or otherwise
determined.
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Determining the system egomotion S500 functions to
determine the egomotion of the image acquisition system,
external system, sensor, and/or any suitable component
relative to the environment. S500 can additionally or alter-
natively determined a system pose (e.g., relative to the
scene, environment, starting position, etc.), and/or otherwise
function. The system egomotion can be determined directly
(e.g., from optic flow maps), indirectly (e.g., by determining
the 1mage acquisition system pose at time steps and com-
bining the poses to determine the external system egomo-
tion), and/or otherwise be determined. S500 1s preferably
performed after S400, but can be performed at the same time
as and/or before S400 (e.g., the egomotion can be used to
refine the sparsified feature set). SS00 can be performed 1n
response to receipt of a request from the external system for
cgomotion determination, automatically, periodically, 1n
response to 1mage acquisition, and/or at any other suitable
time.

The egomotion 1s preferably determined using a solver,
but can be otherwise determined. The solver can be a visual
odometry solver, a visual-inertial odometry solver, and/or
any suitable solver. Examples of solvers include: Kalman
filter, particle filters, unscented Kalman filters, extended
Kalman filters, nonlinear filters, bundle adjustment, volu-
metric flow-based neural networks, end to end solvers,
solvers from feature-based VO approaches, solvers from
appearance-based VO approaches, solvers from filtering-
based VIO approaches, solvers from optimization-based
VIO approaches, solvers from hybridized approaches (e.g.,
smoothing-based approaches, etc.), and/or any suitable
solver.

Inputs to the solver can include: sparsified features 140,
odometry features, a subset of the features (e.g., randomly
selected, features selected using a deterministic method,
teatures selected by a low discrepancy sequence, etc.), the
disparity map (e.g., between the first and second 1mage,
between the third and fourth image), the optic flow map
(e.g., between the first and third image, between the second
and fourth 1mage), the depth map (e.g., determined from a
disparity map, determined from an optic flow map, depth
from monocular views, depth from stereoimages, etc.),
sensor data (e.g., mertial measurements, denoised 1nertial
measurements, etc.), a prior system state, a feature track
(e.g., associated with an odometry feature, associated with a
sparsified feature 140, associated with a feature, etc.), one or
more 1images from the odometry set, system kinematics (e.g.,
linear or radial velocity, acceleration, jerk, or jounce; yaw,
roll, pitch, etc.), system component kinematics, and/or any
suitable mputs. The mputs can be weighted or unweighted.
For example, mertial measurements can be weighted based
on a denoised relationship (as determined above). In another
example, as shown in FI1G. 9, a system yaw and roll can be
determined based on accelerometer measurements (e.g.,
using an extrinsic calibration including a separation and/or
orientation between two or more accelerometers, which can
be determined from the respective cameras’ extrinsic cali-
bration); a system yaw, roll, and/or pitch can be determined
based on gyroscope measurements; and a system linear
acceleration can be determined from accelerometer mea-
surements. Outputs from the solver can include: the egomo-
tion of the system and/or a subset thereot (e.g., of the image
acquisition system, of the external system, of a sensor, efc.),
a system or system subset pose, a system or system subset
velocity (e.g., instantaneous velocity, average velocity, etc.),
a system or system subset heading, an error in the egomo-
tion, an error in the pose, covariances, and/or any suitable
information.
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S300 can optionally include selecting solutions from the
solver that are consistent with one or more motion constraint
of the external system. For instance, inputs to and/or outputs
from the solver can be subject to non-holonomic constraints
that function to limit possible solutions generated by the
solver. An example of a non-holonomic constraint i1s that
most terrestrial vehicles are unable to travel 1n a direction
perpendicular to a wheel alignment (at least during normal
system operating conditions). However, any suitable con-
straints can be applied.

In a specific example, the 1nertial measurements, (sparsi-
fied) odometry features’ optic tlow vectors (e.g., from t-1 to
t), (sparsified) odometry features’ depth (e.g., at time t), and
the prior egomotion or system state (e.g., from t-1) can be
provided to a Kalman filter, which determines the updated
system state.

S300 can optionally include determining egomotion of
the external system, which functions to determine a location
or position of the external system. The location and/or
position can be absolute (e.g., GPS coordinates, absolute
distance traveled, etc.) or relative (e.g., relative to a refer-
ence location, relative to a starting location, relative to an
ending location, relative to the image acquisition system,
relative to a sensor, etc.) Determining egomotion of the
external system 1s particularly, but not exclusively, benefi-
cial when the egomotion for the image acquisition system or
the sensor and/or the pose of the external system, image
acquisition system, and/or sensor 1s determined by the
solver. Determining the egomotion of the external system
can include transforming the solver output to an external
system egomotion based on a relationship between the
image acquisition system and/or the sensor to the external
system, but can be otherwise determined. The relationship 1s
preferably represented by a transformation matrix describ-
ing the 1mage acquisition system and/or sensor mounting
pose relative to the external system (e.g., relative to a
reference of external system such as center of mass, center
of motion, extreme location, etc. of the external system;
converting the motion from the image acquisition system
frame to the external system frame), but can be any suitable
information.

External system operation instructions can optionally be
determined and/or executed based on the determined exter-
nal system egomotion (e.g., by the system, by the external
system, by a control system, etc.). Examples of external
system operation nstructions include changing an external
system direction, adjusting an external system heading,
adjusting an external system speed, changing a vehicle lane,
and/or any suitable operation 1nstructions.

S300 can optionally include determining an egomotion of
one or more objects represented in the images of the
odometry sets. The egomotion of the object(s) can be
determined by the solver, be determined based on the optic
flow maps, be determined based on the depth maps, be
determined based on the disparity maps, and/or otherwise be
determined. In an example, egomotion of objects (e.g.,
objects associated with a transient object class) can be
determined by combining (e.g., adding, subtracting, trans-
forming, etc.) the egomotion of the system with an egomo-
tion of the object as determined from the optic flow vectors
associated with the object and the depth map associated with
the object at different time points. However, the egomotion
ol objects 1n the scene can be otherwise determined.

In some examples, the method can be performed sequen-
tially, for example by receirving a fifth and sixth image,
where 1n subsequent 1terations, the third and fourth 1mages
are treated as the first and second 1mages while the fifth and
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sixth 1mages are treated as the third and fourth images
(example shown 1 FIG. 12). Additionally or alternatively,
the method can be performed in parallel for example by
receiving a complete set of 1mages associated with a trip or
motion of the image acquisition system (or sensor or exter-
nal system) and determining the egomotion for the entire trip
in parallel (e.g., determine the egomotion from each quad of
images as described above and/or 1n any manner at the same
time). However, the method can be performed 1n any man-
ner.

In a specific example, as shown i FIGS. 4, 5 and 6, a
method for determining egomotion of a system can include
receiving (e.g., acquiring) an odometry image set (e.g.,
timeseries of stereo 1mages). Disparity maps (and/or depth
maps) can be determined for each stereo 1mage pair. Optical
flow maps can be determined between consecutive 1images
sampled by the same image sensor. A set of odometry
features can be selected based on the disparity maps and/or
optic tlow. For example, the odometry features can be
determined based on a cyclic consistency criterion. The set
of odometry features can optionally be sparsified by: clas-
sitying the features (e.g., into permanent and transient
classes) and excluding the features with a predetermined
class; comparing the motion of the features (e.g., across
frames) with the motion of the 1mage acquisition system
and/or external system (e.g., detected using sensors); by
applying one or more motion constraints to the features;
based on feature tracking; and/or sparsified 1n any manner.
The features can be nondistinctive or distinctive. The motion
(and/or depth) of each odometry feature can optionally be
tracked across the time series (e.g., using the optic tlow).
The odometry features, the corresponding disparity vectors
(and/or depths), the corresponding optic flow vectors, 1ner-
tial data (e.g., from the cameras’ sensors), the prior system
state, and/or any suitable data can be used to determine the
cgomotion of the system. For example, the system egomo-
tion can be determined using a visual-inertial odometry
solver. However, the egomotion of the image acquisition
system and/or external system can be determined in any
suitable manner.

The methods of the preferred embodiment and variations
thereof can be embodied and/or implemented at least 1n part
as a machine configured to receive a computer-readable
medium storing computer-readable instructions. The com-
puter-readable medium can be stored on any suitable com-
puter-readable media such as RAMs, ROMs, flash memory,
EEPROMSs, optical devices (CD or DVD), hard drives,
floppy drives, or any suitable device. The computer-execut-
able component 1s preferably a general or application spe-
cific processor, but any suitable dedicated hardware or
hardware/firmware combination device can alternatively or
additionally execute the instructions.

Embodiments of the system and/or method can include
every combination and permutation of the various system
components and the various method processes, wherein one
or more instances of the method and/or processes described
herein can be performed asynchronously (e.g., sequentially),
concurrently (e.g., 1n parallel), or 1n any other suitable order
by and/or using one or more instances of the systems,
elements, and/or entities described herein.

As a person skilled 1in the art will recognize from the
previous detailed description and from the figures and
claims, modifications and changes can be made to the
preferred embodiments of the mvention without departing
from the scope of this mvention defined 1n the following
claims.
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We claim:

1. A method for determining egomotion of a system
comprising a {irst camera and a second camera, the method
comprising:

determining a first dense disparity map that matches

features between a first and second 1mage, wherein the
first and second 1mages were acquired at a {irst time by
the first and second camera, respectively;
determining a second dense disparity map that matches
features between a third and fourth 1image, wherein the
third and fourth 1mages were acquired at a second time
by the first and second camera, respectively;

determining a first optic flow map that matches features
between the first and third image;
determining a second optic flow map that matches fea-
tures between the second and fourth image;

identifying odometry features shared between the first,
second, third, and fourth image based on the first and
second dense disparity map and the first and second
optic flow map; and

determining the egomotion of the system based on the

odometry features.

2. The method of claim 1, wherein the odometry features
are 1dentified using a cyclic consistency criterion comprising
matching a candidate feature from the first image to a feature
in the fourth image along each of a first and second path
determined from the first and second dense disparity maps
and the first and second optic tlow maps.

3. The method of claim 2, wherein the first path comprises
a first optic tlow vector from the first optic flow map and a
first disparity vector from the second disparity map; wherein
the second path comprises a second disparity vector from the
first disparity map and a second optic flow vector from the
second optic flow map; and wherein the first and second
optic tlow vectors and the first and second disparity vectors
are associated with the candidate feature.

4. The method of claim 1, further comprising sparsifying
the odometry features, wherein the egomotion 1s determined
using the sparsified odometry features.

5. The method of claim 4, wherein sparsifying the odom-
etry features comprises:

segmenting at least one of the first, second, third, or fourth

image into transitory segments and permanent seg-
ments; and

excluding features associated with transitory segments

from the odometry features.

6. The method of claim 3, further comprising estimating
an egomotion ol objects 1n the transitory segments based on
the egomotion of the system.

7. The method of claim 4, wherein sparsitying the odom-
etry features comprises:

receiving an IMU dataset; and

for each of the odometry features:

predicting a feature position in the third image based on
the corresponding feature position 1n the first image
and the IMU dataset;
comparing the predicted feature position to an actual
feature position determined based on an optic flow
vector associated with the feature; and
when the actual and predicted feature positions are
different, removing said odometry feature from the
odometry features.
8. The method of claim 1, turther comprising;:
determining system yaw and roll based on accelerometer
measurements:;
determining linear acceleration based on the accelerom-
eter measurements; and
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determiming the egomotion using a visual-inertial odom-
etry solver based on the system yaw, roll, and linear
acceleration.

9. The method of claim 8, wherein the system yaw and
roll are determined based on accelerometer measurements
using an extrinsic calibration of an accelerometer pose.

10. The method of claam 1, wherein the determined
cgomotion 1s consistent with a motion constraint of the
system.

11. The method of claim 1, further comprising determin-
ing a pixel hash for each pixel in the first and second 1mage;
wherein determining the first disparity map comprises itera-
tively:

determining a set of candidate correspondence vectors for

cach pixel 1n the first image based on correspondence
vectors ol neighboring pixels, wherein each correspon-
dence vector identifies a corresponding pixel 1n the
second 1mage that 1s paired with the respective pixel;
and

selecting a candidate correspondence vector from the set

as the correspondence vector of said each pixel based
on a cost value determined between the pixel hashes of
said each pixel and the corresponding pixels.
12. The method of claim 1, wherein each odometry
feature 1s a pixel.
13. A non-transitory computer-readable storage medium
storing 1nstructions that, when executed by a processor,
cause the processor to perform a method comprising;:
determining a first dense disparity map matching features
between a first and second 1mage, acquired at a first
time, by a first and second camera, respectively;

determining a second dense disparity map matching fea-
tures between a third and fourth 1mage, acquired at a
second time, by the first and second camera, respec-
tively;

determining a first optic flow map matching features

between the first and third 1mage;

determining a second optic flow map matching features

between the second and fourth 1mage;

identifying odometry features shared between the first,

second, third, and fourth 1image based on the first and
second dense disparity map and the first and second
optic tlow map; and

determining the egomotion of a system, comprising the

first and second cameras, based on the odometry fea-
tures.

14. The computer readable storage medium of claim 13,
wherein the odometry features are i1dentified using a cyclic
consistency criterion comprising matching a candidate fea-
ture from the first 1mage to a feature in the fourth image
along each of a first and second path.

15. The computer readable storage medium of claim 14,
wherein the first path comprises a first optic flow vector from
the first optic flow map and a first disparity vector from the
second disparity map; wherein the second path comprises a
second disparity vector from the first disparity map and a
second optic flow vector from the second optic flow map;
and wherein the first and second optic flow vectors and the
first and second disparity vectors are associated with the
candidate feature.

16. The computer readable storage medium of claim 13,
turther storing computer program instructions for sparsiiy-
ing the odometry features, wherein the egomotion 1s deter-
mined using the sparsified odometry features.

17. The computer readable storage medium of claim 16,
wherein sparsitying the odometry features comprises:
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segmenting at least one of the first, second, third, or fourth
image 1nto transitory segments and permanent seg-
ments; and
excluding features associated with transitory segments of
the segmented 1image from the odometry features. 5
18. The computer readable storage medium of claim 16,
wherein sparsiiying the odometry features comprises:
receiving an IMU dataset; and
for each of the odometry features:
predicting a feature position 1n the third image based on 10
the corresponding feature position 1n the first image
and the IMU dataset;
comparing the predicted feature position to an actual
feature position determined based on an optic flow
vector associated with the feature; and
when the actual and predicted feature positions are
different, removing said odometry feature from the
odometry features.

22

19. The computer readable storage medium of claim 13,
further storing computer program 1instructions for:
determining system yaw and roll based on accelerometer
measurements;
determiming system yaw, roll, and pitch based on gyro-
scope measurements;
determining linear acceleration based on the accelerom-
eter measurements; and
determining the egomotion using a visual-inertial odom-
etry measurements based on the system yaw and roll
from the accelerometer and gyroscope measurements,
the pitch, and the linear acceleration.
20. The computer readable storage medium of claim 19,
wherein the system yaw and roll are determined based on

accelerometer measurements using an extrinsic calibration
of an accelerometer pose.
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