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SYNCHRONIZED ACCESS TO DATA IN
SHARED MEMORY BY PROTECTING THE
LOAD TARGET ADDRESS OF A
LOAD-RESERVE INSTRUCTION

BACKGROUND OF THE INVENTION

The present invention relates 1n general to data processing,
system and, in particular, to managing accesses to data 1n
shared memory of a data processing system. Still more
particularly, the present invention relates to a processor, data
processing system and method for synchronizing accesses to
data 1n a shared memory.

In shared memory multiprocessor (MP) data processing
systems, each of the multiple processors 1n the system may
access and modily data stored in the shared memory. In
order to synchronize access to a particular granule (e.g.,
cache line) of memory between multiple processing units
and threads of execution, load-reserve and store-conditional
istruction pairs are often employed. For example, load-
reserve and store-conditional instructions have been 1mple-
mented in the POWER® instruction set architecture with
request codes (opcodes) associated with various mnemonics,

referred to herein generally as LARX and STCX. The goal

of load-reserve and store-conditional instruction pairs 1s to
load and modify data and then to commit the modified data
to coherent memory only if no other thread of execution has
modified the data in the interval between the load-reserve
and store-conditional instructions. Thus, a read-modify-
write operation targeting shared memory can be emulated
without the use of an atomic update primitive that strictly
enforces atomicity.

BRIEF SUMMARY

According to at least one embodiment, a data processing
system includes multiple processing units all having access
to a shared memory. A processing unit includes a processor
core that executes memory access instructions mcluding a
load-type mstruction. Execution of the load-type instruction
generates a corresponding request that specifies a target
address. The processing unit further includes a read-claim
state machine that, responsive to receipt of the request,
protects the load target address against access by any con-
flicting memory access request during a protection interval
tollowing servicing of the request.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 1s a high level block diagram of an 1llustrative data
processing system in accordance with one embodiment;

FIG. 2A depicts a first exemplary instruction sequence
that employs load-reserve and store-conditional instructions
to synchronize access to shared memory;

FIG. 2B illustrates a second exemplary instruction
sequence that employs load-reserve and store-conditional
instructions to coordinate execution of a critical section of a
multithreaded program;

FIG. 2C depicts explicit load_L and L_release mstruc-
tions that can be utilized to 1initiate and terminate protection,
respectively, for a target address of a load-reserve instruction
in accordance with one embodiment;

FIG. 3A 15 a high level logical flowchart of an exemplary
method of processing a load or load-reserve instruction in a
processor core 1n accordance with one embodiment;
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2

FIG. 3B 1s a high level logical flowchart of an exemplary
method of processing a load_L or L_release mstruction in a

processor core 1n accordance with one embodiment;

FIG. 4A 1s a high level logical flowchart of an exemplary
method of processing a load or load-reserve request in a
lower level cache 1n accordance with one embodiment;

FIG. 4B 1s a high level logical flowchart of an exemplary
method of processing a load_L or load_L hit request 1n a
lower level cache 1n accordance with one embodiment;

FIG. 4C 1s a high level logical flowchart of an exemplary
method of processing a L_release request 1n a lower level
cache 1n accordance with one embodiment;

FIG. 5 1s a high level logical flowchart of an exemplary
method of processing a store or store-conditional 1nstruction
in a processor core in accordance with one embodiment;

FIG. 6A 1s a high level logical flowchart of an exemplary
method of processing a store-conditional request 1 lower
level cache 1n accordance with one embodiment:

FIG. 6B 1s a high level logical tlowchart of an exemplary
method of processing a store request 1n lower level cache in
accordance with one embodiment;

FIG. 7 1s a high level logical flowchart of an exemplary
method of processing a snooped request 1n accordance with
one embodiment; and

FIG. 8 1s a block diagram of an exemplary design flow.

DETAILED DESCRIPTION

With reference now to the figures and 1n particular with
reference to FIG. 1, there 1s illustrated a high level block
diagram of a data processing system 100 1n accordance with
one embodiment. As shown, data processing system 100
includes multiple processing units 102 (including at least
processing units 102aq-1025) for processing data and nstruc-
tions. Processing units 102 are coupled for commumnication
to a system interconnect 104 for conveying address, data and
control 1nformation between attached devices. In the
depicted embodiment, these attached devices include not
only processing units 102, but also a memory controller 106
providing an interface to a shared system memory 108 and
one or more host bridges 110, each providing an interface to
a respective mezzanine bus 112. Mezzanine bus 112 1n turn
provides slots for the attachment of additional unillustrated
devices, which may include network interface cards, 1/0
adapters, non-volatile memory, non-volatile storage device
adapters, additional bus bridges, efc.

As further 1llustrated i FIG. 1, each processing unit 102,
which may be realized as a single integrated circuit, includes
one or more processor cores 120 (of which only one 1is
explicitly shown) for processing instructions and data. Each
processor core 120 1ncludes an 1nstruction sequencing unit
(ISU) 122 for fetching and ordering instructions for execu-
tion, one or more execution units 124 for executing nstruc-
tions dispatched from ISU 122, and a set of registers 123 for
temporarily builering data and control information. The
instructions executed by execution umts 124 include load-
reserve and store-conditional instructions, which are utilized
to synchronize access to shared memory between a particu-
lar thread of execution and other concurrent threads of
execution, whether executing in the same processor core
120, a different processor core 120 1n the same processing
unmit 102, or 1n a different processing unit 102. In a preferred
embodiment, execution units 124 execute at least load-
reserve and store-conditional instructions in-order (other
instructions may or may not be executed out-of-order).

Each processor core 120 further includes an L1 store
queue (STQ) 127 and a load unit 128 for managing the
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completion of store and load requests, respectively, corre-
sponding to executed store and load instructions (including
load-reserve and store-conditional instructions). In a pre-
ferred embodiment, L1 STQ 127 1s implemented as a
First-In, First-Out (FIFO) queue containing a plurality of
queue entries. Store requests are accordingly loaded 1n the
“top” entry of L1 STQ 127 at execution of the corresponding
store 1nstruction to determine the target address, and are
initiated when the store request reaches the “bottom” or
“commit” entry of L1 STQ 127.

It 1s important to note that the present application makes
a distinction between “instructions”, such as load-reserve
and store-conditional 1nstructions, and “requests.” Load and
store “instructions” (including load-reserve and store-con-
ditional instructions) are defined herein as inputs to an
execution unit that include an request code (opcode) 1den-
tifying the type of mstruction and one or more operands
specilying data to be accessed and/or its address. Load and
store “requests,” including load-reserve and store-condi-
tional requests, are defined herein as data and/or signals
generated following instruction execution that specity at
least the target address of data to be accessed. Thus, load-
reserve and store-conditional requests may be transmitted
from a processor core 120 to the shared memory system to
initiate data accesses, while load-reserve and store-condi-
tional instructions are not.

The operation of processor core 120 1s supported by a
multi-level volatile memory hierarchy having, at its lowest
level, shared system memory 108, and at its upper levels two
or more levels of cache memory, which 1n the illustrative
embodiment include a L1 cache 126 and a L2 cache 130. As
in other shared memory multiprocessor data processing
systems, the contents of the memory hierarchy may gener-
ally be accessed and modified by threads of execution
executing 1n any processor core 120 1n any processing unit
102 of data processing system 100.

In accordance with one embodiment, [.1 cache 126, which
may include bifurcated L1 data and instruction caches, 1s
implemented as a store-through cache, meaning that the
point of cache coherency with respect to other processor
cores 120 1s located below LL1 cache 126 and, in the depicted
embodiment, 1s located at store-in .2 cache 130. Accord-
ingly, as described above, L1 cache 126 does not maintain
true cache coherency states (e.g., Modified, Exclusive,
Shared, Invalid) for its cache lines, but only maintains
valid/invalid bits. Because L1 cache 126 1s implemented as
a store-through cache, store requests first complete relative
to the associated processor core 120 1n L1 cache 126 and
then complete relative to other processing units 102 at a
point of system-wide coherency, which 1n the depicted
embodiment 1s L2 cache 130.

As further 1llustrated in FIG. 1, L2 cache 130 contains a
storage array and directory 140 that store cache lines of
istructions and data 1n association with their respective
memory addresses and coherence states. L2 cache 130 also
includes a number of read-claim state machines (RC
machines) 142a-142» for independently and concurrently
servicing memory access requests received from the asso-
ciated processor cores 120. RC machines 142 receive core
load requests from LD umt 128 1n processor core 120 via
load bus 160, an mn-order L2 load queue (LDQ) 161, and
command bus 162. Similarly, RC machines 142 receive core
store requests from L1 STQ 127 1n processor core 120 via
store bus 164, an mn-order L2 store queue (STQ) 166, and
command bus 162.

[.2 cache 130 further includes a number of snoop state
machines (SN machine) 144a-144n for servicing memory
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4

access and other requests received from other processing
umts 102 via system interconnect 104 and snoop bus 170.
SN machines 144 and RC machines 142 are each connected
to a back-invalidation bus 172 by which any SN machine
144 or RC machine 142 can signal the invalidation of a
cache line to processor core 120.

It 1s important to note that 1n a preferred embodiment 1.2
cache 130 1s constructed such that at most a single one of RC
machines 142 and SN machines 144 can be active servicing
a request targeting a given target cache line address at any
one time. Consequently, if a second request 1s received while
a first request targeting the same cache line 1s already being
serviced by an active RC machine 142 or SN machine 144,
the later-in-time second request must be queued or rejected
until servicing of the first request 1s completed and the active
state machine returns to an 1dle state.

[.2 cache 130 finally includes reservation logic 146 for
recording reservations of the associated processor core 120.
Specifically, 1n the 1llustrated embodiment, reservation logic
146 includes, for each thread that may be concurrently
executed by the associated processor core 120, a respective
reservation register comprising a reservation address field
148 and a reservation flag 150. In the depicted example,
which assumes that processor core 120 can each execute two
concurrent hardware threads, reservation logic 146 includes
two reservation registers: reservation address field 148a and
reservation flag 150a for thread 0 and reservation address
ficld 1485b and reservation tlag 15056 for thread 1. When set
(e.g., to ‘1), a reservation flag 150 indicates that the
corresponding thread holds a reservation for the address
contained in the associated reservation address field 148 and
otherwise indicates no reservation is held. Reservation logic
146 supplies pass/fail indications indicating the success or
failure of store-conditional (STCX) requests to processor
cores 120 via pass/fail bus 174.

Those skilled in the art will additionally appreciate that
data processing system 100 of FIG. 1 can include many
additional non-1llustrated components, such as interconnect
bridges, non-volatile storage, ports for connection to net-
works or attached devices, etc. Because such additional
components are not necessary for an understanding of the
described embodiments, they are not illustrated 1n FIG. 1 or
discussed further herein. It should also be understood,
however, that the enhancements described herein are appli-
cable to cache coherent data processing systems of diverse
architectures and are in no way limited to the generalized
data processing system architecture illustrated in FIG. 1.

Multiprocessor data processing systems such as data
processing system 100 of FIG. 1 implement a memory
consistency model that specifies the legal possible execu-
tions of a given multiprocessor program with respect to
memory accesses (e.g., among other things, the values that
may be returned by load instructions, the order of writes to
memory, those instruction execution dependencies that
aflect the ordering of memory accesses, and the final values
for memory locations at the conclusion of a multiprocessor
program). A memory consistency model i1s specified by two
major characteristics: ordering of memory access requests

L=

and atomicity of store requests.
The ordering of memory requests specifies how memory
requests may, i at all, be re-ordered relative to the order of
their respective load and store mstructions in the individual
threads of execution in the multiprocessor program.
Memory consistency models must define ordering of
memory access requests 1 four general cases: (1) ordering
of the memory requests for a load instruction to a following

load 1nstruction, (2) ordering of the memory requests for a
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load 1nstruction to a following store instruction, (3) ordering
of the memory requests for a store instruction to a following
store instruction, and (4) ordering of the memory requests
for a store 1nstruction to a following load instruction. Strong
consistency memory models will, 1n general, preserve all or
at least most of these orderings. In particular, many strong
consistency memory models enforce the first three order-
ings, but do not enforce store-to-load ordering. Weak con-
sistency memory models will generally not enforce most or
all of these orderings.

Atomicity of store requests refers to whether or not a
given thread of execution can read the value of its own store
request before other threads, and furthermore, whether the
value written to the distributed shared memory system by
the store request becomes visible to other threads 1n a
logically instantaneous fashion or whether the value can
become visible to other threads at different points 1n time. A
memory consistency model 1s called “multi-copy atomic™ 1
the value written by a store request of one thread becomes
visible to all other threads in a logically instantaneous
fashion. In general, strong consistency memory models are
multi-copy atomic, and weak consistency memory models
do not enforce multi-copy atomicity.

In a given multiprocessor program, program semantics
often require that multi-copy atomicity and/or the various
orderings between memory access requests are respected.
Therefore, 1n an exemplary embodiment of data processing
system 100, in which the distributed shared memory system
implements a weak consistency memory model, so called
“barrier” (e.g., SYNC) instructions are typically provided to
allow the programmer to specily what memory access
request orderings and atomicity are to be applied during
execution of the multiprocessor program. In particular, a
barrier instruction causes the distributed shared memory
system to perform any memory accesses initiated by instruc-
tions preceding the barrier instruction prior to any memory
accesses 1nitiated by instructions following the barrier
istruction.

Referring now to FIG. 2A, there 1s depicted a first
exemplary instruction sequence 200 that employs load-
reserve and store-conditional instructions to synchronize
access to shared memory. In particular, instruction sequence
200 1s utilized to update the value of a variable in shared
memory.

Instruction sequence 200 begins with a LARX 1nstruction
202 that loads the value of the variable (1.¢., var) from shared
memory ito a private register rl 1n the processor core
executing the instruction and establishes a reservation for
the target address of the variable for the executing hardware
thread. The value of the variable 1s then updated locally in
register rl, i this case, by an ADD instruction 204 incre-
menting the value of the variable by 1. The new value of the
variable 1s then conditionally stored back into shared
memory by STCX struction 206, based on whether or not
the executing hardware thread still holds a reservation for
the target address of the variable. The success or failure of
STCX 1nstruction 206 1n updatmg the value of the variable
in shared memory 1s reflected 1n a condition code register
(e.g., one of registers 123) in the processor core. Conditional
branch 1nstruction 208 then tests the condition code found in
the condition code register and conditionally redirects
execution based on the success or failure of STCX 1nstruc-
tion 206. I1 the relevant bit(s) of the condition code register
1s/are equal to zero, indicating that the conditional update to
the vaniable indicated by STCX 1nstruction 206 failed (e.g.,
due to an intervening storage-modifying access to the vari-
able by another thread between execution of LARX 1nstruc-
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tion 202 and STCX instruction 208), mstruction sequence
200 will be repeated, and execution branches from condi-
tional branch instruction 208 back to LARX istruction 202.
If, however, the conditional update indicated by STCX
instruction 206 succeeds, the condition code will be non-
zero, and processing will continue with the next sequential
instruction following instruction sequence 200.

With reference now to FIG. 2B, there 1s illustrated a
second exemplary instruction sequence 210 that employs
load-reserve and store-conditional instructions to coordinate
execution of a critical section of a multithreaded program.
As indicated, instruction sequence 210 includes, 1n program
order, a polling instruction sequence 212, lock acquisition
sequence 214, critical section 216, and lock release sequence
218.

As 1s known 1n the art, critical section 216 1s, by defini-
tion, a portion of a program that includes accesses to a
shared resource (€.g., a shared in-memory data set) that must
not be concurrently accessed by more than one thread of the
multiprocessor program. In order to keep the various hard-
ware threads from making concurrent accesses to the shared
resource, the multithreaded program bounds critical section
216 with barrier instructions 240, 244 that order execution
ol 1nstructions within critical section 216 with respect to
both instructions in the same hardware thread that are
outside critical section 216. In addition, the multiprocessor
program ensures that not more than one hardware thread at
a time enters 1nto a critical section by implementing a lock
to which access 1s synchronized by load-reserve and store-
conditional 1nstructions. In particular, a thread attempts to
acquire the lock needed to enter critical section 216 through
execution of lock acquisition sequence 214. Lock acquisi-
tion sequence 214 includes a LARX instruction 230 that
loads the value of the lock vanable (i.e., lock) from shared
memory into a private register rl (e.g., one of registers 123)
in the executing processor core and establishes a reservation
for the target address of the lock variable. Lock acquisition
sequence 214 additionally includes a subsequent STCX
instruction 238 that conditionally updates the lock variable
from an unlocked state to a locked state 1f LARX instruction
230 loaded the lock variable 1n an unlocked state and the
executing hardware thread still holds a reservation for the
target address of the lock variable. Once the lock 1s obtained
by the hardware thread and critical section 216 completes,
the hardware thread will release the lock by updating the
lock variable in shared memory through execution of a lock
release sequence 218. In this example, lock release sequence
218 mcludes a LOAD immediate mstruction 250 that loads
register r2 with a value of “0” representing an unlocked state
of the lock variable and a STORE instruction 252 that
updates the lock variable 1n shared memory with this value.
Thereatter, execution of the thread proceeds to subsequent
instructions, 1f any.

Although a multiprocessor program could be i1mple-
mented with only lock acquisition sequence 214, critical
section 216, and lock release sequence 218 (i1.e., omitting
polling instruction sequence 212), 1n practice such a multi-
processor program would not efliciently utilize the resources
ol a processing unit, such as a processing unit 102 in FIG.
1. In particular, LARX instruction 230, which 1s utilized to
load the lock value and set the reservation for the lock
address upon which the execution of STCX 1nstruction 238
depends, 1s generally a resource-intensive nstruction. Irre-
spective of the chosen implementation of the cache hierar-
chy, a LARX instruction requires communication with the
coherence point of the cache hierarchy, and in 1implementa-
tions 1n which that the coherence point 1s not in the L1 cache,
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this communication results in the LARX 1instruction being
more resource-intensive than a corresponding LOAD
instruction. For example, in the current embodiment, regard-
less of whether the target address of LARX instruction 230
hits or misses 1n .1 cache 126, execution of LARX 1nstruc-
tion 230 requires allocation of an entry i L2 LDQ 161,
dispatch of an RC machine 142 1n L2 cache 130, and update
of reservation logic 146 1n L2 cache 130. Consequently, 1t 1s
desirable that LARX instruction 230, when executed, suc-
ceed 1n loading the lock 1 an unlocked state (and thus
ideally only have to be executed a single time).

To 1increase the probability that LARX 1nstruction 230
will succeed 1n loading the lock 1n an unlocked state, lock
acquisition sequence 214 1s preferably preceded by a polling
instruction sequence 212. Polling instruction sequence 212,
which 1s constructed very similarly to the beginning of lock
acquisition sequence 214, includes a polling load_L 1nstruc-
tion 220 (rather than a LARX 1nstruction) that loads the lock
value from shared memory. In addition, load_L 1nstruction
220 causes the coherence point of the cache hierarchy
associated with the executing processor core 120 to extend
a protection window in which the coherence point protects
the lock against conflicting accesses by other threads. Con-
sequently, if the lock 1s 1n an unlocked state when read by
load_L instruction 220, the lock will remain 1n the unlocked
state until read by LARX 1nstruction 230. An exemplary
embodiment of Load [. instruction 220 1s described in
further detail below with reference to FIG. 2C. Load L
instruction 220 1s followed by a compare instruction 222 that
compares the lock value obtained by load_L mstruction 220
to a value of “1” (indicating a locked state). If the lock 1s
read by load_L instruction 220 1n the locked state, as
indicated by compare mstruction 222 returning an “equal”
condition code, an L. _release instruction 227 1s executed to
explicitly end the protection window initiated by load_L
instruction 220, and branch instruction 229 returns execu-
tion back to load L instruction 220 until the lock 1s read in
the unlocked state. If, however, the lock 1s read by load_L
instruction 220 1n the unlocked state, as indicated by com-
pare instruction 222 returning a “not equal” condition code,
conditional branch instruction 224 causes execution to pro-
ceed directly to lock acquisition sequence 214.

Referring again to lock acquisition sequence 214, LARX
instruction 230 loads the value of the lock from shared
memory 1nto register rl. Compare instruction 232 then
compares the value of the lock vaniable to a value of “1” to
determine whether or not the lock 1s currently in a locked
state (1.¢., the lock 1s held by another hardware thread). If the
lock 1s read by LARX 1nstruction 230 in the locked state, as
indicated by compare mstruction 232 returning an “equal”
condition code, conditional branch instruction 234 {falls
through, and an L_release instruction 235 1s executed to
explicitly end the protection window for the lock variable
initiated by load_L instruction 220. An unconditional branch
instruction 236 then returns execution back to load L
instruction 220 until the lock 1s read 1n the unlocked state.
If, however, the lock 1s read by LARX instruction 230 1n the
unlocked state, as indicated by compare instruction 232
returning an “not equal” condition code, conditional branch
instruction 234 causes execution to proceed to LOAD imme-
diate 1nstruction 237, which places a value of “1” represent-
ing a locked state into a register r2. A STCX struction 238
then conditionally updates the lock wvariable in shared
memory to the locked state, thus securing the lock for the
executing thread. As belfore, the success or failure of the
STCX 1nstruction in updating the value of the lock variable
in shared memory 1s retlected 1n a condition code register 1n
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the processor core. Conditional branch 1nstruction 239 tests
the condition code found in the condition code register and
conditionally redirects execution based on the success or
failure of STCX 1nstruction 238. I the relevant bit(s) of the
condition code register 1s/are equal to zero, indicating that
the conditional update to the lock vanable indicated by
STCX mstruction 238 failed (e.g., due to an intervening
storage-modifying access to the lock vanable by another
thread between execution of LARX instruction 230 and
STCX 1nstruction 238), mnstruction sequence 210 will be
repeated from the beginning of 1nstruction polling sequence
212. If, however, the conditional update to the lock variable
indicated by STCX 1nstruction 238 succeeds, the condition
code will be non-zero, and processing will proceed sequen-
tially to critical section 216, which 1s described above.

In accordance with at least some embodiments, the prob-
ability that STCX 1nstruction 238 will succeed can also be
increased by extending the protection window associated
with the preceding LARX struction 230. As discussed
above, this can be accomplished by extending the protection
window for a limited duration during which the coherence
point of the cache hierarchy associated with the executing
processor core protects the memory location containing the
lock against conflicting accesses by other threads. Conse-
quently, 1f the lock 1s 1 an unlocked state when read by
LARX 1nstruction 230, the lock has a higher probability of
remaining 1n the unlocked stated until updated to the locked
state by STCX 1nstruction 238.

Retferring now to FIG. 2C, there are exemplary load_L
and [, release instructions that can be utilized to 1nitiate and
terminate protection, respectively, for a target address of a
load-reserve instruction in accordance with one embodi-
ment. In this example, load_L nstruction 260, which can be
utilized to implement load_L instruction 220 of FIG. 2B,
includes an opcode field 262 that identifies the 1nstruction as
a load_L instruction, a register field 264 that identifies a
target register 123 into which a value from shared memory
1s to be loaded, and an address field 266 that specifies (e.g.,
via 1dentification of one or more source registers) an eflec-
tive or virtual address from which the value 1s to be loaded.
The address specified by address field 266 1s also the address
tor which the coherence point of the cache hierarchy of the
executing processor core 1s to establish a limited-duration
protection window. As described further below, the coher-
ence point of the cache hierarchy maintains this protection
window until the protection window times out, 1s ended by
an L_release instruction 270, or 1s ended by another event.

L._release mstruction 270, which can be utilized to imple-
ment [, release instructions 227 and 234 of FIG. 2B,
includes an opcode field 272 that identifies the instruction as
a L. release instruction. In addition, [ release 1nstruction
270 includes an address field 266 that specifies (e.g., via
identification of one or more source registers) an eflective or
virtual address for which a protection window 1s to be ended.
Further details about the execution of load [ and L. release
instructions are provided below with reference to FIG. 3B.

With reference now to FIG. 3A, there 1s depicted a high
level logical flowchart of an exemplary method by which a
processor core 120 of data processing system 100 processes
a LOAD or LARX instruction in accordance with one
embodiment. As shown, the process begins at block 300 and
therealter proceeds to block 302, which 1llustrates execution
units 124 recerving a LOAD or LARX 1nstruction from ISU
122 and then executing the instruction to calculate the load
target address. In a preferred embodiment, execution units
124 execute LARX 1nstructions within a hardware thread
in-order and without pipelining, meaning that the data
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words(s) requested by a LARX instruction must be loaded to
one or more registers 123 in processor core 120 before the
next LARX or STCX instruction begins execution. These
restrictions simplily the management of reservations by
reservation logic 146 in L.2 cache 130.

Following execution of the LOAD or LARX 1nstruction,
an indication of the instruction type and the load target
address are received from execution units 124 by LD unit
128. As 1illustrated at block 304, it the indication of the
instruction type indicates the instruction executed at block
302 was not a LARX 1nstruction, LD unit 128 performs the
processing illustrated at block 320 and following blocks,
which are described below. If, however, the instruction
executed at block 302 was a LARX instruction, LD unit 128
performs the processing depicted at block 306 and following
blocks.

At block 306, LD unit 128 determines whether or not the
load target address of the LARX instruction resides i L1
cache 126. If so, LD unit 128 invalidates the cache line
contaiming the load target address i L1 cache 126 (block
308). Those skilled 1n the art should appreciate that the
invalidation of the cache line containing the load target
address 1n L1 cache 126 1s a simplitying design choice and
that in other embodiments the cache line containing the load
target address need not be invalidated i L1 cache 126.
Following block 308 or in response to determining that the
load target address of the LARX instruction missed in L1
cache 126, LD umt 128 1ssues a LARX request to L2 cache
130 via load bus 160 (block 310). The LARX request
includes, for example, an 1indication of the request type, the

load target address, and an 1dentifier of the 1ssuing thread.
After buflering the LARX request in L2 LDQ 161, L.2 cache
130 dlspatches the LARX request to an RC machme 142 for
servicing, as described further below with reference to FIG.
4A.

Next, at block 312, LD unit 128 awaits return of the
requested cache line identified by the load target address
from L2 cache 130. In response to receipt of the requested
cache line, LD umt 128 transfers the data word(s) associated
with the load target address 1nto a core register 123, but does
not cache the requested cache line 1n L1 cache 126 (block
314). It should be appreciated that 1n alternative embodi-
ments that do not invalidate the requested cache line at block
308, the requested cache line can instead be cached in L1
cache 126 to permit subsequent loads (1including subsequent
load-reserve requests), to hit in L1 cache 126. Following
block 314, the process of FIG. 3A terminates at block 316.

Referring now to block 320, 1n response to LD unit 128
determining that the request 1s not a LARX request, but is
instead a LOAD request, LD unit 128 also determines
whether or not the load target address hits 1n L1 cache 126.
If so, LD unit 128 simply places a copy of the requested data
word(s) 1n the appropriate core register 123 (block 322). If,
however, the load target address misses 1n L1 cache 126, LD
unit 128 1ssues a LOAD request to the associated L2 cache
130 via load bus 160 (block 324). The LOAD request may
include, for example, an indication of the request type, the

load target address, and an 1dentifier of the 1ssuing thread.
After buflering the LOAD request in L2 LD(Q 161, L.2 cache

130 dlspatches the LOAD request to an RC machme 142 for
servicing, as described further below with reference to FIG.

4A.

Next, at block 326, LD unit 128 waits until the requested
cache line containing the load target address 1s returned by
[.2 cache 130. In response to receipt of the requested cache
line, LD unit 128 transiers the data word(s) associated with
the load target address into a core register 123 and allocates
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the requested cache line in L1 cache 126 (block 328).
Following block 322 or block 328, the process of FIG. 3A
terminates at block 316.

With reference now to FIG. 3B, there 1s a high level
logical flowchart of an exemplary method by which a
processor core 120 of data processing system 100 processes
a load [ or L. release instruction in accordance with one
embodiment. The process begins at block 330 and then
proceeds to block 332, which illustrates execution units 124
receiving a load_L or L_release instruction from ISU 122
and then executing the instruction to calculate the target
address. As 1illustrated at block 334, it the instruction
executed at block 332 was a load_L. instruction, LD unit 128
performs the processing depicted at block 336 and following
blocks. If, however, the instruction executed at block 332
was a L_release instruction, L1 STQ 127 performs the
processing 1llustrated at block 350 and following blocks.

At block 336, LD unit 128 determines whether or not the
load target address of the load_L instruction resides in L1
cache 126. If so, LD unit 128 1ssues a load_L hit request to
[.2 cache 130 via load bus 160 (block 338). The load_L hait
request 1ncludes, for example, an indication of the request
type, the target load address, an indication that the target
load address hit 1n .1 cache 126, and an identifier of the

issuing thread. Thereafter, the process passes through page
connector A to blocks 322 and 316 of FIG. 3A, which have
been described. If, however, the load target address of the
load_L. instruction missed in L1 cache 126, LD unit 128
issues a load_L request to L2 cache 130 via load bus 160
(block 340). The load_L request can include, for example, an
indication of the request type, the target load address, and an
identifier of the issuing thread. The process then passes
through page connector B to block 326 and following blocks
of FIG. 3A, which have been described.

At block 350, L1 STQ 127 1ssues an L_release request to
.2 STQ 166 of L2 cache 130 via store bus 164. The
L._release request includes, for example, an indication of the
request type, the target address, and an identifier of the
issuing thread. At block 352, .1 STQ 127 then awaits receipt
from L2 cache 130 of an acknowledgement (ACK) of the
[._release request, as discussed below with reference to
block 478 of FIG. 4C. Thereatter, the process passes through
page connector C and ends at block 316 of FIG. 3A.

Referring now to FIG. 4A, there 1s depicted a high level
logical flowchart of an exemplary method by which an L2
cache 130 of data processing system 100 processes a LOAD
or LARX request in accordance with one embodiment. The
process begins at block 400 and then proceeds to block 402,
which depicts L2 cache 126 dispatching an RC machine 142
to service a next LOAD or LARX request of the associated
processor core 120 that 1s enqueued i L2 LDQ 161. Next,
at block 404, the dispatched RC machine 142 determines
whether or not the request 1s a LARX request or a LOAD
request. If the request 1s a LOAD request, the process passes
to block 430 and following blocks, which are described
below. If, however, RC machine 142 determines at block
404 that the request 1s a LARX request, the process proceeds
to block 406.

As 1llustrated at block 406, RC machine 142 establishes
a reservation for the load target address of the LARX request
in .2 cache 130 in the reservation register of the appropriate
thread by placing the load target address 1n the appropnate
reservation address field 148 and setting the associated
reservation flag 150. At block 410, RC machine 142 addi-
tionally determines whether or not the load target address of
the LARX request hit in L2 storage array and directory 140.
It so, the process passes directly to block 414. If not, RC
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machine 142 1ssues one or more requests on system inter-
connect 104 1n order to obtain a copy of the requested cache
line from another cache hierarchy or system memory 108
(block 412). Following block 412, the process proceeds to
block 414, which depicts RC machine 142 returning the
requested cache line to the associated processor core 120.

As will be appreciated by those skilled 1n the art, the RC
machine 142 dispatched at block 402 begins protecting the

target address of the LOAD or LARX request from con-

tflicting access by other hardware threads upon allocation, for
example, by forcing other hardware threads to reissue their
requests, 1f any, to access the target address. Conventionally,
this protection ends when the requested memory access 1s
complete (e.g., after the requested data i1s returned to the
processor core at block 414 and all associated processing 1s
finished). However, 1mn a preferred embodiment, the RC
machine 142 servicing the LARX request extends this

protection window for a limited time 1n order to increase the
probability that the hardware thread that 1ssued the LARX

request will be able to successiully execute a subsequent
STCX to the same target address. Accordingly, at block 416,
RC machine 142 starts a window extension timer that
defines a maximum duration for which RC machine 142 will
extend its protection window for the target address of the
LARX request (block 416). The process then enters a
monitoring loop including blocks 418-424 1n which the RC
machine 142 monitors for an event that will end 1ts protec-
tion window extension.

In particular, at block 418, RC machine 142 determines
whether or not L2 STQ 166 has received a STCX request
from the same hardware thread that issued the LARX
request 1t 1s processing. If so, an RC machine 142 1s
allocated to service the STCX request (which may be the
same RC machine 142 allocated at block 402 to service the
LARX request), and the RC machine 142 servicing the
LARX request ends its extension of the protection of the
target address of the LARX request (block 426). Thereafter,
the process passes through page connector D to block 604
and following blocks of FIG. 6 A, which 1s described below.
If a negative determination 1s made at block 418, the RC
machine 142 additionally determines at block 420 whether
an L_release request to the same target address has been
issued from L2 LDQ 161 at block 474 of FIG. 4C, the
window extension timer has expired (block 422), or a
LARX, load_L, or load_L hit request by the same hardware
thread as 1ssued the LARX request has been dispatched from
L2 LDQ 161 (block 424). If none of these conditions 1s
detected, the process returns to block 418, which has been
described. If, however, any of the conditions depicted at
block 420-424 1s detected, RC machine 142 ends 1ts pro-
tection of the target address of the LARX request (block
425), the process of FIG. 4A terminates at block 436. In this
manner, .2 cache 130 extends protection of a target address
of a LARX request for a limited duration to increase the
probability that a corresponding STCX request will com-
plete successiully.

Referring now to block 430, 1f the request that the RC
machine 142 1s dispatched to service 1s a LOAD request
rather than a LARX request, RC machine 142 determines at
block 430 whether the load target address of the LOAD
request hits 1n L2 storage array and directory 140. If so, the
process passes directly to block 434. If not, RC machine 142
1ssues a request on system interconnect 104 1n order to
obtain a copy of the requested cache line from another cache
hierarchy or system memory 108 (block 432). Following
block 432, the process proceeds to block 434, which depicts
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RC machine 142 returning the requested cache line to the
associated processor core 120. Therealter, the process of
FIG. 4A ends at block 436.

With reference now to FIG. 4B, there 1s depicted a high
level logical tlowchart of an exemplary method by which an
[.2 cache 130 of data processing system 100 processes a
load_L or load_L hit request 1n accordance with one embodi-
ment. The process begins at block 440 and then proceeds to
block 442, which depicts L2 cache 126 dispatching an RC
machine 142 to service a next load_L or load_L hit request
of the associated processor core 120 that 1s enqueued 1n L2
LDQ 161. Next, at block 444, the dispatched RC machine
142 determines whether or not the request 1s a load_L
request. If the request 1s a load_L hit request rather than a
load_L request, the requested data has already been supplied
by the L1 cache 126, and the process i1s accordingly per-
mitted to pass directly to block 452 and following blocks,
which are described below. If, however, RC machine 142
determines at block 444 that the request 1s a load_L request
(meaming that the request missed i L1 cache 126), the
process proceeds to block 446.

As 1llustrated at block 446, RC machine 142 determines
whether or not the load target address of the load_L request
hit 1n L2 storage array and directory 140. If so, the process
passes directly to block 450. If not, RC machine 142 issues
one or more requests on system interconnect 104 in order to
obtain a copy of the requested cache line from another cache
hierarchy or system memory 108 (block 448). Following
block 448, the process proceeds to block 450, which depicts
RC machine 142 returning the requested cache line to the
associated processor core 120.

As noted above, the RC machine 142 dispatched at block
442 begins protecting the target address of the load L or
load_L hit request from contlicting access by other hardware
threads upon allocation, for example, by forcing other
hardware threads to reissue their requests, 1f any, to access
the target address. Again, this protection conventionally
ends when the requested memory access 1s complete. How-
ever, in a preferred embodiment, the RC machine 142
servicing the load_L or load_L hit request extends this
protection window for a limited time 1n order to increase the
probability that the hardware thread that 1ssued the load_L
request will be able to successtully execute a subsequent
LARX to the same target address. Accordingly, at block 452,
RC machine 142 starts a window extension timer that
defines a maximum duration for which RC machine 142 will
extend its protection window for the target address of the
load_L or load_L hit request. The process then enters a
monitoring loop including blocks 454-460 in which the RC
machine 142 monitors for an event that will end its protec-
tion window extension.

Referring first to block 454, RC machine 142 determines
whether or not L2 LDQ 161 has dispatched a LARX request
from the same hardware thread that i1ssued the load [ or
load_L hit request 1t 1s processing. If so, an RC machine 142
1s allocated to service the LARX request (which may be the
same RC machine 142 allocated at block 442 to service the
load_L or load_L hit request), and the RC machine 142
servicing the LARX request ends 1ts extension of the pro-
tection of the target address of the LARX request (block
462). Thereaiter, the process passes through page connector
E to block 406 and following blocks of FIG. 4 A, which have
been described. If a negative determination 1s made at block
454, the RC machine 142 additionally determines whether
an L_release request to the same target address has been
issued from L2 LDQ 161 at block 474 of FIG. 4C (block

456), the window extension timer has expired (block 458),
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or a STCX, load_L, or load_L hit request by the same
hardware thread as i1ssued the load_L or load_L hit request
has attempted to dispatch from L2 LDQ 161 (block 460). IT
none ol these conditions 1s detected, the process returns to
block 454, which has been described. If, however, any of the
conditions depicted at block 456-460 1s detected, RC
machine 142 ends its protection of the target address of the
LARX request (block 465), the process of FIG. 4B termi-
nates at block 466. In this manner, 1.2 cache 130 extends
protection of a target address of a load_L or load_L hat
request for a limited duration to increase the probability that
a corresponding LARX request will complete successtully.

Referring now to FIG. 4C, there 1s depicted a high level
logical tflowchart of an exemplary method of processing a
[._release request 1n a lower level cache 1n accordance with
one embodiment. The 1llustrated process begins at block 470
and then proceeds to block 472, which 1llustrates the process
iterating until an L_release request 1s received 1n the bottom
entry of L2 STQ 166. In response to an L_release request
reaching the bottom entry of L2 STQ 166, L2 STQ 166
issues the L_release request to the local RC machines 142.
In response to receipt of the L_release request, the RC
machines 142 process the L_release request, as depicted at
block 476. In response, any RC machine 142 providing a
protection window for the target address of the L_release
request ends its protection window, as discussed above with
reference to block 420 of FIG. 4A and block 456 of FIG. 4B.
After the L_release request 1s processed by the RC machines
142, .2 STQ 166 sends an acknowledgement (ACK) to L1
STQ 127 to confirm termination of the protection window,
as discussed above with reference to block 352 of FIG. 3B
(block 478). In addition, L.2 STQ 166 removes the L_release
request Irom L2 STQ 166. Thereatter, the process returns to
block 472, which has been described.

With reference now to FIG. 5, there 1s illustrated a high
level logical flowchart of an exemplary method of process-
ing a STORE or STCX 1nstruction 1n a processor core 1n
accordance with one embodiment. As depicted, the process
begins at block 500 and thereafter proceeds to block 502,
which 1llustrates execution units 124 receiving a STORE or
STCX mstruction from ISU 122 and then executing the
instruction to calculate the store target address. As with the
LARX execution described above, execution units 124 also
preferably execute STCX structions appearing in the same
hardware thread in-order and without pipelining with respect
to both LARX and STCX 1nstructions.

Upon execution of the STORE or STCX instruction,
execution units 124 place a corresponding request including
an 1dentifier of the request type, the store target address
calculated by execution of the 1nstruction, a thread 1dentifier,
and store data within L1 STQ 127. In one preferred embodi-
ment, L1 STQ 127 1s implemented as a shared FIFO queue
that buflers and orders store requests of all threads executing,
within processor unit 102. When a request corresponding to
the executed STORE or STCX 1nstruction reaches the bot-
tom or commit entry of L1 STQ 127, L1 STQ 127 deter-
mines at block 504 whether or not the request 1s a STCX
request. I so, the process passes to block 512 and following
blocks, which are described below. If, however, the request
1s not a STCX request, but 1s instead a STORE request, the
process of FIG. 5 proceeds from block 504 to block 506.

At block 506, L1 STQ 127 additionally determines 11 the
store target address of the STORE request hits 1n L1 cache
126. If so, L1 STQ 127 updates the target cache line held 1n
L1 cache 126 with the store data (block 508). Following
block 508 or in response to the store target address missing,
in L1 cache 126 at block 506, L1 STQ 127 removes the
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STORE request from L1 STQ 127 and issues the STORE
request to L2 STQ 166 of L2 cache 130 via store bus 164
(block 510). Following block 510, the process of FIG. 5 ends
at block 530.

Referring now to block 512,11 L1 STQ 127 determines at
block 504 that the request 1s a STCX request, L1 STQ 127
additionally determines if the store target address of the
STCX request hits in L1 cache 126. If so, L1 STQ 127
invalidates the target cache line held 1n L1 cache 126 (block
514). Following block 514 or in response to the store target
address missing in L1 cache 126 at block 512, L1 STQ 127
1ssues the STCX request to L2 STQ 166 of L2 cache 130 via
store bus 164 (block 516). L1 STQ 127 then awaits return
via pass/fail bus 174 of a pass/fail indication for the STCX
request indicating whether or not the STCX request suc-
ceeded 1n updating 1.2 cache 130 (block 518). In response to
receipt of the pass/faill indication via pass/faill bus 174,
processor core 120 provides the pass/faill indication to
execution units 124 (e.g., to indicate whether the path of
execution should change) and, as shown at blocks 520-524,
updates a condition code register 123 to indicate whether the
STCX request passed or failed. Thereafter, the STCX
request 1s deallocated from L1 STQ 127, and the process of
FIG. § terminates at block 530.

Referring now to FIG. 6A, there 1s depicted a high level
logical flowchart of an exemplary method of processing a
STCX request 1n a lower level cache 1n accordance with one
embodiment. As described above, STCX requests are
received by L2 cache 130 within L2 ST(Q 166 via store bus
164. In some embodiments, .2 STQ 166 may be imple-
mented, like L1 STQ 127, as a FIFO queue. In such
embodiments, the process begins at block 600 1n response to
receipt of a STCX request 1n the bottom entry of L2 STQ
166. The STCX request at the bottom entry of L2 STQ 166
will then be selected for dispatch to an 1dle RC machine 142
for processing, as shown at block 602.

In response to receipt of a STCX request for servicing, the
dispatched RC machine 342 transitions to a busy state and
checks to see 1f the issuing hardware thread has a valid
reservation for the store target address by determining
whether the thread’s RSV tlag 150 1s set and the associated
RSV register 148 specifies a reservation address matching
the store target address (block 604). If not, RC machine 342
resets the RSV flag 150 of the 1ssuing thread (block 606) and
returns a fail indication to the processor core 120 wvia
pass/Tail bus 174 to report that the STCX request made no
update to L2 cache 130 (block 608). Thereafter, the RC
machine 142 allocated to service the STCX request returns
to the 1dle state, and the process of FIG. 6 ends at block 630.

Returning to block 604, 1n response to RC machine 142
determining that the issuing hardware thread has a valid
reservation for the store target address of the STCX request,
RC machine 142 determines whether or not the store target
address of the STCX request hits 1n L2 storage array and
directory 140 1n a “writeable” coherence state that confers
authority on L2 cache 130 to modity the target cache line
(block 610). If so, the STCX will succeed 1n the conditional
update of shared memory, and the process passes to block
620, which 1s described below. If not, RC machine 142
obtains authority to modily the target cache line and, 1f
necessary, a copy of the target cache line from another cache
hierarchy or memory controller 106 by issuing one or more
requests on system interconnect 104 (block 612). At block
614, the RC machine 142 again checks whether or not the
issuing hardware thread has a valid reservation for the store
target address of the STCX request, as the reservation may
have been reset due to an intervening store access of another
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hardware thread while a copy of the target cache line in a
writeable coherence state was being obtain at block 612. In
response to a determination that the reservation 1s still set,
the process passes to block 620, which 1s described below.
However, 1n response to a determination at block 614 that
the reservation 1s not still set (e.g., has been reset by the
access of another hardware thread), RC machine 142 returns
a fail indication to processor core 120 via pass/fail bus 174
to report that the STCX request failed to update L2 cache
130 (block 616). The process thereafter ends at block 630.

Block 620 1llustrates RC machine 142 updating the target
cache line 1 L2 storage array and directory 140 with the
store data of the STCX request. RC machine 142 addition-
ally returns a pass indication to processor core 120 wvia

pass/fail bus 174 to report successiul update of the L2 cache
130 (block 622). RC machine 142 also resets the 1ssuing

hardware thread’s RSV flag 150 (block 624), as well as the
RSV flag 150 of any other thread specilying a matching
store target address 1n 1ts associated RSV address register
148 (block 626). It should be noted that in this exemplary
embodiment a STCX request only cancels the reservations
of other threads at block 626 after 1t 1s verified that the STCX
1s going to succeed in 1ts conditional update of shared
memory. Thereafter, RC machine 142 returns to the idle
state, and the process of FIG. 6A ends at block 630.

With reference now to FIG. 6B, there 1s depicted a high
level logical flowchart of an exemplary method of process-
ing a STORE request 1n a lower level cache in accordance

with one embodiment. The process of FIG. 6B begins at
block 650 as a STORE request 1s received by L2 cache 130

within L2 STQ 166. The STORE request 1s thereafter
selected for dispatch to an 1dle RC machine 142 for pro-
cessing, as shown at block 652.

In response to receipt of a STCX request for servicing, the
dispatched RC machine 142 transitions to the busy state and
resets the RSV flag 150 of any thread other than the
initiating hardware thread that specifies a matching store
target address 1n its associated RSV address register 148
(block 656). RC machine 142 additionally determines
whether or not the store target address of the STORE request
hits 1n L2 storage array and directory 140 in a writeable
coherence state that confers authority on L2 cache 130 to
modily the target cache line (block 660). If so, the process
passes to block 664, which 1s described below. I not, RC
machine 142 obtains authority to modily the target cache
line and, 1f necessary, a copy of the target cache line from
another cache hierarchy or memory controller 106 by issu-
ing one or more requests on system 1nterconnect 104 (block
662). At block 664, RC machine 142 updates the target
cache line 1 L2 storage array and directory 140 with the
store data of the STORE request. Thereafter, RC machine
142 returns to the 1dle state, and the process of FIG. 6B ends
at block 670.

With reference now to FIG. 7, there 1s illustrated a high
level logical flowchart of an exemplary method by which the
[.2 cache 130 of a processing unit 102 services a request
snooped from a system interconnect 1n accordance with one
embodiment. Those skilled 1n the art will appreciated that
multiple instances of this process can be active 1n a given L2
cache 230 concurrently. As depicted, the process begins at
block 700 and thereafter proceeds to block 702, which
illustrates an L.2 cache 130 snooping a request (e.g., 1ssued
by anther processing unit 102) on system interconnect 104
via snoop bus 170. Following block 702, the process of FIG.
7 bifurcates into two concurrent parallel subprocesses—a
reservation update subprocess depicted at blocks 704-708 in
which the aflect, 1f any, of the snooped request on pending,
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reservations tracked in the L2 cache 130 1s managed, and a
request servicing subprocess at blocks 710-718 in which the
snooped request 1s serviced by the snooping 1.2 cache 130,
if necessary. Following completion of both subprocesses, the
two subprocesses merge at join pomnt 719, and process of
FIG. 7 ends at block 720.

Referring first to the reservation update subprocess, the
snooping .2 cache 130 determines at block 704 whether or
not the snooped request 1s a store-type request that modifies
or requests authority to modily shared memory. I not, no
update to any local reservation is required, and the reserva-
tion update subprocess proceeds to jomn pomnt 719. If,
however, the snooped request 1s a store-type request that
indicates the intention to modily a target cache line, L2
cache 130 resets the RSV flag 150 associated with any of 1ts
RSV address registers 148 that stores the address of the
target cache line (blocks 706-708). Following either block
706 or block 708, the reservation update subprocess pro-
ceeds to join point 719.

Referring now to the request servicing subprocess, 1.2
cache 130 determines at block 710 whether or not servicing
the snooped request requires allocation of a SN machine
144. If not, no SN machine 144 1s dispatched to service the
snooped request. The L2 cache 130 will nevertheless pro-
vide the appropriate coherence response, 1f any (block 711).
The request servicing subprocess then proceeds to join point
719. If, however, 1.2 cache 130 determines at block 710 that
a SN machine 144 1s required to service the snooped request,
[.2 cache 130 further determines at block 712 whether or not
a SN machine 144 can presently be dispatched. In order to
dispatch a SN machine 144, a SN machine 144 must be
available (i.e., 1n the idle state) and no RC machine 146 or
SN machine 144 can be busy servicing a request having a
target cache line address matching that specified by the
snooped request (among other dispatch constraints). Thus,
for example, an RC machine 146 allocated to service a
LOAD, LARX, load_L, or load_L hit request (as discussed
above with reference to FIGS. 4A-4B) will prevent the
dispatch of a local SN machine 144 to service a snooped
request specilying a conflicting (1.e., matching) target cache
line address.

In response to a determination at block 712 that a SN
machine 144 cannot presently be dispatched to service the
snooped request, L2 cache 130 provides a Retry coherence
response on system interconnect 104 to indicate its present
iability to service the snooped request (block 714). (In
response to this Retry coherence response, the source of the
snooped request may later represent the request on system
interconnect 104.) Following block 714, the request servic-
ing subprocess proceeds to join point 719. If, however, L2
cache 130 determines at block 712 that a SN machine 144
can presently be dispatched to service the snooped request,
[.2 cache 130 dispatches an 1dle SN machine 144 to service
the snooped request (block 716). The dispatched snoop
machine 144 transitions from the 1dle state to the busy state
and then performs at block 718 whatever additional pro-
cessing 1s required to service the snooped request (e.g.,
updating .2 storage array and directory 140 and/or L1 cache
126, sourcing a copy of the target cache line, providing
protocol-dependent coherence responses, etc.). Following
completion of 1ts processing at block 718, the SN machine
144 dispatched to service the snooped request transitions
from the busy state to the 1dle state, and the request servicing
subprocess proceeds to join point 719.

With reference now to FIG. 8, there 1s 1llustrated a block
diagram of an exemplary design flow 800 used for example,
in semiconductor IC logic design, simulation, test, layout,
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and manufacture. Design tlow 800 includes processes,
machines and/or mechanisms for processing design struc-
tures or devices to generate logically or otherwise function-
ally equivalent representations of the design structures and/
or devices described above and shown herein. The design
structures processed and/or generated by design tflow 800
may be encoded on machine-readable transmission or stor-
age media to mclude data and/or instructions that when
executed or otherwise processed on a data processing system
generate a logically, structurally, mechanically, or otherwise
functionally equivalent representation of hardware compo-
nents, circuits, devices, or systems. Machines include, but
are not limited to, any machine used 1n an IC design process,
such as designing, manufacturing, or simulating a circuit,
component, device, or system. For example, machines may
include: lithography machines, machines and/or equipment
for generating masks (e.g. e-beam writers), computers or
equipment for simulating design structures, any apparatus
used 1n the manufacturing or test process, or any machines
for programming functionally equivalent representations of
the design structures into any medium (e.g. a machine for
programming a programmable gate array).

Design tlow 800 may vary depending on the type of
representation being designed. For example, a design flow
800 for building an application specific IC (ASIC) may
differ from a design flow 800 for designing a standard
component or from a design flow 800 for instantiating the
design nto a programmable array, for example a program-
mable gate array (PGA) or a field programmable gate array
(FPGA) oflered by Altera® Inc. or Xilinx® Inc.

FIG. 8 illustrates multiple such design structures includ-
ing an iput design structure 1020 that i1s preferably pro-
cessed by a design process 810. Design structure 820 may be
a logical simulation design structure generated and pro-
cessed by design process 810 to produce a logically equiva-
lent functional representation of a hardware device. Design
structure 820 may also or alternatively comprise data and/or
program 1nstructions that when processed by design process
810, generate a functional representation of the physical
structure of a hardware device. Whether representing func-
tional and/or structural design features, design structure 820
may be generated using electronic computer-aided design
(ECAD) such as implemented by a core developer/designer.
When encoded on a machine-readable data transmission,
gate array, or storage medium, design structure 820 may be
accessed and processed by one or more hardware and/or
software modules within design process 810 to simulate or
otherwise functionally represent an electronic component,
circuit, electronic or logic module, apparatus, device, or
system such as those shown herein. As such, design structure
820 may comprise files or other data structures including
human and/or machine-readable source code, compiled
structures, and computer-executable code structures that
when processed by a design or simulation data processing,
system, functionally simulate or otherwise represent circuits
or other levels of hardware logic design. Such data structures
may 1nclude hardware-description language (HDL) design
entities or other data structures contforming to and/or com-
patible with lower-level HDL design languages such as
Verilog and VHDL, and/or higher level design languages
such as C or C++.

Design process 810 preferably employs and incorporates
hardware and/or software modules for synthesizing, trans-
lating, or otherwise processing a design/simulation func-
tional equivalent of the components, circuits, devices, or
logic structures shown herein to generate a netlist 880 which
may contain design structures such as design structure 820.
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Netlist 880 may comprise, for example, compiled or other-
wise processed data structures representing a list of wires,
discrete components, logic gates, control circuits, 1/O
devices, models, etc. that describes the connections to other
clements and circuits 1n an integrated circuit design. Netlist
880 may be synthesized using an iterative process in which
netlist 880 1s resynthesized one or more times depending on
design specifications and parameters for the device. As with
other design structure types described herein, netlist 880
may be recorded on a machine-readable storage medium or
programmed 1nto a programmable gate array. The medium
may be a non-volatile storage medium such as a magnetic or
optical disk drive, a programmable gate array, a compact
flash, or other flash memory. Additionally, or 1n the alter-
native, the medium may be a system or cache memory, or
bufler space.

Design process 810 may include hardware and software
modules for processing a variety of mput data structure
types including netlist 880. Such data structure types may
reside, for example, within library elements 830 and include
a set of commonly used elements, circuits, and devices,
including models, layouts, and symbolic representations, for
a given manufacturing technology (e.g., different technology
nodes, 32 nm, 45 nm, 80 nm, etc.). The data structure types
may further include design specifications 840, characteriza-
tion data 830, verification data 860, design rules 890, and
test data files 885 which may include put test patterns,
output test results, and other testing information. Design
process 810 may further include, for example, standard
mechanical design processes such as stress analysis, thermal
analysis, mechanical event simulation, process simulation
for operations such as casting, molding, and die press
forming, etc. One of ordinary skill 1in the art of mechanical
design can appreciate the extent of possible mechanical
design tools and applications used in design process 810
without deviating from the scope and spirit of the invention.
Design process 810 may also include modules for perform-
ing standard circuit design processes such as timing analy-
s1s, verification, design rule checking, place and route opera-
tions, etc.

Design process 810 employs and incorporates logic and
physical design tools such as HDL compilers and simulation
model build tools to process design structure 820 together
with some or all of the depicted supporting data structures
along with any additional mechanical design or data (if
applicable), to generate a second design structure 890.
Design structure 890 resides on a storage medium or pro-
grammable gate array 1n a data format used for the exchange
of data of mechanical devices and structures (e.g., informa-
tion stored 1n a IGES, DXF, Parasolid X'T, JT, DRG, or any
other suitable format for storing or rendering such mechani-
cal design structures). Similar to design structure 820,
design structure 890 preferably comprises one or more files,
data structures, or other computer-encoded data or instruc-
tions that reside on transmission or data storage media and
that when processed by an ECAD system generate a logi-
cally or otherwise functionally equivalent form of one or
more of the embodiments of the invention shown herein. In
one embodiment, design structure 890 may comprise a
compiled, executable HDL simulation model that function-
ally simulates the devices shown herein.

Design structure 890 may also employ a data format used
for the exchange of layout data of integrated circuits and/or
symbolic data format (e.g., information stored 1n a GDSII
(GDS2), GL1, OASIS, map files, or any other suitable
format for storing such design data structures). Design
structure 890 may comprise nformation such as, for
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example, symbolic data, map files, test data files, design
content files, manufacturing data, layout parameters, wires,
levels of metal, vias, shapes, data for routing through the
manufacturing line, and any other data required by a manu-
tacturer or other designer/developer to produce a device or
structure as described above and shown herein. Design
structure 890 may then proceed to a stage 8935 where, for
example, design structure 890: proceeds to tape-out, is
released to manufacturing, 1s released to a mask house, 1s
sent to another design house, 1s sent back to the customer,
etc.

As has been described, 1n at least one embodiment, a data
processing system 1ncludes multiple processing umits all
having access to a shared memory. A processing unit
includes a processor core that executes memory access
instructions including a load-type mstruction. Execution of
the load-type 1nstruction generates a corresponding request
that specifies a target address. The processing unit further
includes a read-claim state machine that, responsive to
receipt of the request, protects the load target address against
access by any conilicting memory access request during a
protection interval following servicing of the request.

While various embodiments have been particularly shown
and described, 1t will be understood by those skilled 1n the
art that various changes in form and detail may be made
therein without departing from the spirit and scope of the
appended claims and these alternate implementations all fall
within the scope of the appended claims.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
tfunctions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality mvolved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks i1n the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

Although a particular embodiment of a memory hierarchy
has been described 1n which L1 and L2 caches are incor-
porated within a processing unit, those skilled 1n the art waill
appreciate that a greater or lesser number of levels of cache
hierarchy may be employed. Further, these levels of cache
hierarchy may include 1n-line or lookaside caches and may
include one or more levels of ofi-chip cache. Further, the
level of cache hierarchy at which coherency 1s determined
may differ from that discussed with reference to the
described embodiments.

Further, although aspects have been described with
respect to a computer system executing program code that
directs the functions of the present invention, 1t should be
understood that present invention may alternatively be
implemented as a program product including a computer-
readable storage device storing program code that can be
processed by a data processing system. The computer-
readable storage device can include volatile or non-volatile
memory, an optical or magnetic disk, or the like. However,
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as employed herein, a “storage device” 1s specifically
defined to include only statutory articles of manufacture and
to exclude signal media per se, transitory propagating sig-
nals per se, and energy per se.

The program product may include data and/or mstructions
that when executed or otherwise processed on a data pro-
cessing system generate a logically, structurally, or other-
wise lunctionally equivalent representation (including a
simulation model) of hardware components, circuits,
devices, or systems disclosed heremn. Such data and/or
instructions may 1include hardware-description language
(HDL) design entities or other data structures conforming to
and/or compatible with lower-level HDL design languages
such as Verilog and VHDL, and/or higher level design
languages such as C or C++. Furthermore, the data and/or
instructions may also employ a data format used for the
exchange of layout data of integrated circuits and/or sym-
bolic data format (e.g. information stored in a GDSII
(GDS2), GL1, OASIS, map files, or any other suitable
format for storing such design data structures).

What 1s claimed 1s:

1. A processing unit for a data processing system includ-
ing multiple processing units all having access to a shared
memory via a system interconnect, said processing unit
comprising;

a processor core that executes within a given hardware

thread memory access instructions including, 1in order,
a load-type mstruction and a load-reserve instruction,
wherein execution of the load-type instruction and
load-reserve 1nstruction generates corresponding core
load and load-reserve requests that both specily a same
target address, wherein the load-reserve request
requests a reservation for the target address and the core
load request does not request a reservation for the target
address:

a cache memory coupled to the processor core, wherein
the cache memory includes a directory and at least one
read-claim state machine, and wherein the cache
memory 1s configured to perform:
based on receipt of the core load request:

determining whether the target address specified by
the core load request hits in the directory;

based on determining the target address specified by
the core load request hits 1n the directory, refrain-
ing from 1ssuing on the system interconnect a
memory access request for data identified by the
target address;

allocating the at least one read-claim machine to
service the core load request and servicing the
core load request by the at least one read-claim
machine;

imitiating, by the at least one read-claim machine for
only the target address, a protection interval dur-
ing which the at least one read-claim machine
protects the target address against access by a
contlicting memory access request following ser-
vicing of the core load request;

thereatter receiving the load-reserve request, allocating

the at least one read-claim machine to service the

load-reserve request, and servicing the load-reserve

request by the at least one read-claim machine estab-

lishing a reservation for the target address specified

by the load-reserve request;

while the at least one read-claim machine 1s allocated

to service the load-reserve request, the at least one

read-claim machine continuing the protection inter-

val mitiated based on the core load request; and
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thereafter, ending the protection interval for the target
address specified by the load-reserve request prior to
receipt of a subsequent store-conditional request.

2. The processing unit of claim 1, and further comprising,
a timer that determines a maximum duration of the protec-
tion 1nterval following servicing of the load-reserve request.

3. The processing unit of claim 1, wheremn the cache
memory 1s configured to terminate the protection interval in
response to execution by the processor core of an 1nstruction
explicitly terminating the protection interval.

4. A data processing system, comprising:

the multiple processing units, including the processing

unit of claim 1;
the shared memory; and
the system interconnect communicatively coupling the

shared memory and the multiple processing units.
5. The processing unit of claim 1, wheremn the cache
memory 1s configured to perform:
extending the protection interval provided by the at least
one read-claim machine for at least a protection win-
dow following servicing of the load-reserve request.
6. The processing unmit of claim 1, wherein the at least one
read-claim machine includes a particular read-claim
machine allocated to both the load request and the load-
reserve request.
7. A method of data processing 1n a processing unit of a
data processing system including multiple processing units
all having access to a shared memory via a system inter-
connect, the processing unit including a processor core and
a cache memory including at least one read-claim machine,
said method comprising:
a processor core executing within a given hardware thread
memory access istructions mcluding, 1 order, a load-
type 1struction and a load-reserve instruction, wherein
execution of the load-type instruction and load-reserve
instruction generates corresponding core load and load-
reserve requests that both specily a same target address
while the at least one read-claim machine 1s allocated
to service the load-reserve request, the at least one
read-claim machine continuing the protection interval;
and
the cache memory, based on receipt of the core load
request:
determining whether the target address specified by the
load request hits in the directory;

based on determining the target address specified by the
core load request hits in the directory, refraining
from 1ssuing on the system interconnect a memory
access request for data identified by the target
address;

allocating the at least one read-claim machine to ser-
vice the core load request and servicing the core load
request by the at least one read-claim machine;

iitiating, by the at least one read-claim machine for
only the target address, a protection interval during
which the at least one read-claim machine protects
the target address against access by a conflicting
memory access request following servicing of the
core load request;

the cache memory thereafter receiving the load-reserve
request, allocating the at least one read-claim machine
to service the load-reserve request, and servicing the
load-reserve request by the at least one read-claim
machine establishing a reservation for the target
address specified by the load-reserve request;

while the at least one read-claim machine 1s allocated to
service the load-reserve request, the at least one read-
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claim machine continuing the protection interval 1niti-

ated based on the core load request; and

thereafter, ending the protection interval for the target

address specified by the load-reserve request prior to

receipt ol a subsequent store-conditional request.

8. The method of claim 7, and further comprising deter-
mining, by reference to a timer, a maximum duration of the
protection 1nterval following servicing of the load-reserve
request.

9. The method of claim 7, and further comprising the
cache memory terminating the protection interval 1n
response to execution by the processor core of an 1nstruction
explicitly terminating the protection interval.

10. The method of claim 7, further comprising;:

the cache memory extending the protection interval pro-

vided by the at least one read-claim machine for at least

a protection window following servicing of the load-

reserve request.

11. The method of claim 7, wherein the at least one
read-claim machine includes a particular read-claim
machine allocated to both the load request and the load-
reserve request.

12. A design structure tangibly embodied in a machine-
readable storage device for designing, manufacturing, or
testing an integrated circuit, the design structure comprising;:

a processing unit for a data processing system including

multiple processing units all having access to a shared

memory via a system interconnect, said processing unit
including;:

a processor core that executes within a given hardware
thread memory access instructions including, 1n
order, a load-type instruction and a load-reserve
instruction, wherein execution of the load-type
instruction and load-reserve instruction generates
corresponding core load and load-reserve requests
that both specily a same target address, wherein the
load-reserve request requests a reservation for the
target address and the core load request does not
request a reservation for the target address;

a cache memory coupled to the processor core, wherein
the cache memory includes a directory and at least
one read-claim state machine, and wherein the cache
memory 1s configured to perform:
based on receipt of the core load request:

determining whether the target address specified
by the core load request hits in the directory;

based on determining the target address specified
by the core load request hits in the directory,
refraining from 1ssuing on the system intercon-
nect a memory access request for data identified
by the target address;

allocating the at least one read-claim machine to
service the core load request and servicing the
core load request by the at least one read-claim
machine;

initiating, by the at least one read-claim machine
for only the target address, a protection interval
during which the at least one read-claim
machine protects the target address against
access by a conflicting memory access request
following servicing of the core load request;

thereafter receiving the load-reserve request, allocat-

ing the at least one read-claim machine to service

the load-reserve request, and servicing the load-

reserve request by the at least one read-claim

machine establishing a reservation for the target

address specified by the load-reserve request;




US 11,068,407 B2

23

while the at least one read-claim machine 1s allocated
to service the load-reserve request, the at least one
read-claim machine continuing the protection
interval initiated based on the core load request;
and

thereafter, ending the protection interval for the
target address specified by the load-reserve
request prior to receipt ol a subsequent store-
conditional request.

13. The design structure of claim 12, and further com-
prising a timer that determines a maximum duration of the
protection interval following servicing of the load-reserve
request.

14. The design structure of claim 12, wherein the cache
memory 1s configured to terminate the protection interval in
response to execution by the processor core of an instruction
explicitly terminating the protection interval.

15. The design structure of claim 12, wherein the cache
memory 1s configured to perform:

extending the protection interval provided by the at least

one read-claim machine for at least a protection win-
dow following servicing of the load-reserve request.

16. The design structure of claim 1, wherein the at least
one read-claim machine includes a particular read-claim
machine allocated to both the load request and the load-
reserve request.
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