12 United States Patent

Gupta et al.

US011062232B2

US 11,062,232 B2
*Jul. 13, 2021

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)
(22)

(65)

(51)

(52)

(58)

DETERMINING SECTORS OF A TRACK TO
STAGE INTO CACHE USING A MACHINE
LEARNING MODULE

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventors: Lokesh M. Gupta, Tucson, AZ (US);
Kyler A. Anderson, Sahuarita, AZ
(US); Matthew G. Borlick, Tucson, AZ
(US); Kevin J. Ash, Tucson, AZ (US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 378 days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 16/052,049

Filed: Aug. 1, 2018

Prior Publication Data

US 2020/0042906 Al Feb. 6, 2020

Int. CI.

GO6N 20/00 (2019.01)

GO6F 12/0802 (2016.01)

U.S. CL

CPC GO6N 20/00 (2019.01); GO6I 12/0802

(2013.01)

Field of Classification Search
CPC GO6N 20/00; GO6N 5/003; GO6N 5/025;
GO6N 20/10; GO6N 7/005; GO6N 3/084;
GO6F 12/0802; GO6F 11/3447; GO6F
2201/81; GO6F 11/3409; GO6F 11/3037;
GO6F 3/0656; GO6F 3/0689; GO6F 3/061;

! Host |" 108

~ 100
[-m Storage Controlier
1121~ 1125~ Storage System 1124 12,
<SR- <
Storage | | Storage { § Storage { | Storage
Device i { Device { | Device | | Device
. _ — ———— . a2t
\ 104, 1?44 /
/0 Bay /0 Bay
1044
| "
1045 . .
— 135
106
First Processing Node [Second Processing Nods

GO6F 2212/1021; GO6F 2212/286; GO6F

2212/225; GO6F 2212/284; GO6F

12/0862; GO6F 12/123; GO6F 2212/6024;

GO6F 2212/312; GO6F 2212/462; GO6F

2212/262; GO6F 2212/502; GO6F 12/0868

USPC e 706/12
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

11/2006 Milillo et al.
7/2013 Panabaker et al.

(Continued)

7,139,874 Bl
8,489,810 B2

OTHER PUBLICATTONS

Liu et al.; “Optimizing ETL by a Two-Level Data Staging Method”,
International Journal of Data Warehousing and Mining, vol. 12,

Issue No. 3 (2016) pp. 17.
(Continued)

Primary Examiner — Fernando Hidalgo

(74) Attorney, Agent, or Firm — Konrad Raynes Davda &
Victor LLP; David W. Victor

(57) ABSTRACT

Provided are a computer program product, system, and
method for determining sectors of a track to stage 1nto cache
using a machine learning module. Performance attributes of
system components aflected by staging tracks from the
storage to the cache are provided to a machine learning
module. An output 1s received, from the machine learming
module having processed the provided performance attri-
butes, indicating a staging strategy indicating sectors of a
track to stage into the cache comprising one of a plurality of
staging strategies. Sectors of an accessed track that 1s not 1n
the cache are staged into the cache according to the staging
strategy 1ndicated in the output.

21 Claims, 8 Drawing Sheets

- 700

Recerve request 1o access a track that s notin the cache that specilies 2 Tirst
sactor of the track to access comprising any of the sectors in the frack.

~ 102

Provide the machine lsaraing module the performance information (e.g.,
cache misses, cache hits, front accesses, siorage spead, response ima,
current adaptor handwidth, optimum adaptor bandwidih, edc.).

704

h, 4

Receive output fram the maching learning module indicating a staging
strategy {e.g., partiai track staging, full track staging, sector staging.

106

Set the staging strategy for the staging unit to which the access
request is directed to the output staging strategy from the machine
lzarning moduie.

708
Use the culput staging strategy {o siage
sectors for the track into the cache.

US 11,062,232 B2
Page 2

(56)

9,069,678
9,251,215
9,609,050
9,619,748
10,248,337
10,599,429
10,783,089
10,817,217
2015/0339783
2016/0358068
2016/0379115
2018/0060665
2018/0060719
2018/0060731
2019/0163664
2019/0340152
2020/0311604
2020/0311616

B2
B2
B2
Bl
B2 *
B2 *
B2 *
B2

* % ¥ %

AN A A A A s

Ol

11/201
10/2020
10/2020

6/201
2/201
3/201
4/201
4/201
3/202
9/202

3/201
3/201
3/201
5/201

~] -1 O LA

9
0
0

10/2020
11/201
12/201
12/201

5

OO0 OO0 OO0 O O

9

References Cited

U.S. PATENT DOCUMENTS

Benhase et al.

Chen et al.

Rash et al.

Commons et al.

Frankcccooovveni. GO6F 3/0608
Andersoooevinnnn. GO6F 9/3016
Chhabra GO6F 13/28
Williams GO6F 3/0659

Mohanty et al.
Brothers et al.
Burger et al.

Song et al.

Kisilev et al.

Kadav et al.

Karani GO6F 16/24578
Master GO6F 9/30181
Gebre ...l GO6N 3/063
Rajkumar B25J9/163

AER PUBLICATIONS

Aksoy et al.; “Data Staging for On-Demand Broadcast”, Proceed-
ings of the 27th VLDB Conference, Roma, Italy, 2001 pp. 10.

Isaila et al.; “Design and Evaluation of Multiple Level Data Staging
for Blue Gene Systems™, IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 22, Issue 6, (Jun. 2011) pp. 13.

Abbasi et al.; “DataStager: Scalable Data Staging Services for
Petascale Applications”, ACM 2009, pp. 10.

U.S. Appl. No. 16/051,984, filed Aug. 1, 2018.

List of IBM Patents or Patent Applications Treated as Related, filed
Aug. 1, 2018, Total 2 pp.

Office Actionl dated Dec. 14, 2020, pp. 19, for U.S. Appl. No.
16/051,984.

Response to Oflice Actionl, dated Mar. 10, 2021, pp. 11, for U.S.
Appl. No. 16/051,984.

Notice of Allowance, dated Mar. 26, 2021, pp. 43, for U.S. Appl.
No. 16/051,984,.

U.S. Appl. No. 17/228,696, filed Apr. 12, 2021.

Preliminary Amendment dated Apr. 12, 2021, pp, 10 for U.S. Appl.
No. 17/228,696, filed Apr. 12, 2021.

List of IBM Patents or Patent Applications Treated as Related, Apr.
15, 2021, Total 2 pp.

Filed Aug. 01, 2018, U.S. Appl. No. 16/052,049, now U.S. Pat. No.
2020/0042906.

Filed May 13, 2021, U.S. Appl. No. 17/32,0218.

List of IBM Patents or Patent Applications Treated as Related, May
14, 2021, Total 2 pp.

U.S. Patent Application, dated May 13, 2021, for U.S. Appl. No.
17/320,218 filed May 13, 2021, Total 43 pgs.

Preliminary Amendment, dated May 13, 2021, for U.S. Appl. No.
17/320,218 filed May 13, 2021, Total 8 pgs.

* cited by examiner

U.S. Patent Jul. 13, 2021 Sheet 1 of 8 US 11,062,232 B2

- 100

... 110 ~ Storage Controller
1124 1122 1124 112,
C— TS
Storage Storage
Device Device
102a 1041 04, 102
—)
/0 Bay - ' /0 Bay
1045 —
III o HHII
104,
200, m _ i ",
First Processing Node - Second Processing Node

FIG. 1

U.S. Patent Jul. 13, 2021 Sheet 2 of 8 US 11,062,232 B2

200;
Processing Node 207
iy Processor |
Memory

' ' ' LRU
/0 Manager 206 Cache Manager |— 208 212
Staging Strategy 400
Performance Information 500

ache Control Bloc
Directory 300

Staging

_ Strategy
210 NVS 214 Adjustment a
Rules

216 20
Machine -
- Staging
Learning
Module Strategy
FIG. 2
s 300;

(0 306

302 304 308 310 312
Cache |RU
Cache : Cache Sector
Control Block | Track ID . List - |
D (Index) . LRU List Entry Timestamp Bitmap

Cache Control Block FIG 3

U.S. Patent Jul. 13, 2021 Sheet 3 of 8 US 11,062,232 B2

/400

402 404

Staging -
Staging Strategy

Staging Strategy

FIG. 4

b d

502 504 50 08 510 512 h14
Staging | Cache | Cache Front Back Storage | Response
Unit Misses | Hits | Accesses | Accesses | Speed Time
516 518 522 _ 524

520

Historical Front | Historical Alternate

End Access Ratio | Record Access Ratio
(HFEAR) (HARAR)

Maximum Current

Acceptable p Adaptor
Response Time | Bandwidth | Bandwidth

Performance Information

FIG. 5

s 600;

602 604 606

Response Time Adaptor Bandwidth |
Margin Error Margin of Error Staging Strategy
Value(s) Value(s)

Staging Strategy Adjustment Rule

FIG. 6

U.S. Patent Jul. 13, 2021 Sheet 4 of 8 US 11,062,232 B2

100

Receive request to access a track that is not in the cache that specifies a first
sector of the track to access comprising any of the sectors in the track.

102

Provide the machine learning module the performance information (e.g.,
cache misses, cache hits, front accesses, storage speed, response time,
current adaptor bandwidth, optimum adaptor bandwidth, etc.).

104

Receive output from the machine learning module indicating a staging
strategy (e.g., partial track staging, full track staging sector staging).

/06

Set the staging strategy for the staging unit to which the access
request Is directed to the output staging strategy from the machine
learning module.

/08

Use the output staging strategy to stage

sectors for the track into the cache.

FIG. 7

U.S. Patent Jul. 13, 2021 Sheet 5 of 8 US 11,062,232 B2

800

Initiate retraining operation, such as in response
to staging sectors of a track into cache.

802

Determine at least one margin of error based on a current value of a
performance attribute and a threshold of the performance attribute.

804

Determine an adjusted staging strategy of the plurality of
staging strategies based on the at least one margin of error.

806

Retrain the machine learning module with
current performance attributes to output the
adjusted staging strategy.

FIG. 8

U.S. Patent Jul. 13, 2021 Sheet 6 of 8 US 11,062,232 B2

300

Determine the adjusted staging strategy when the margin of error
comprises a threshold of a performance attribute minus a current
value of the performance attribute.

- 902

Set the adjusted staging strategy to the full track staging in
response to the margin of error exceeding an upper value.

304

Set the adjusted staging strategy to the sector staging in
response to the margin of error less than a lower value.

906

Set the adjusted staging strategy to the partial track
staging in response to the margin of error being
between the lower value and the upper value.

FIG. 9

1000

Determine the adjusted staging strategy according to rules, using a

first margin of error comprising a threshold of the first performance attribute minus
a current value for the first performance attribute and a second margin of error
comprising a threshold of the second performance attribute minus a current
value for the second performance attribute.

1002 1004

Yes Set the adjusted staging strategy
to full track staging according to

Are the first and
second margins of
error > 07

a first rule.

No

i - 1008

Set the adjusted staging strategy
to sector track staging according
to a second rule.

Are the first and
second margins of
error < (7

FIG. 10 No 1010

Set the adjusted staging strategy to partial track staging according to a third rule.

Yes

U.S. Patent Jul. 13, 2021 Sheet 7 of 8 US 11,062,232 B2

FIG. 11 1100
Recelve a request to access at least one requested sector of a track.

1102 1104

N IncLemer_lt the
cache misses.
1106

any sectors of the
track in the cache?

~ . 1108
Yes 1110 -
I , o Gont]%ﬂ]%e7lgrr#i?léhe Go to FIG.'Sto retrgin
Increment the cache his. cache its. module to determine the mac“‘gel learning
staging strategy touse. | | .

11127

a first of the
requested sector(s)

Yes 1114 1116

in the cache’ Return the Are any
requested of the requested ~_No F
» 1118 sector(s) from sectors not in the nd.
the cache. cache?
Determine a margin of error
(threshold of performance | Yes
attribute minus current value 1122
of performance attribute). Increment the back accesses.
Noes 1120 1124
h the firsg of No margliiltgfeerror
the requested sectors _ -
0t in the cache follow the > ¢ grea%ﬁ;etshhagl da?flrst
sectors of the track ' "
in the cache? Vor
1176
e 1132 End. Set the adjusted stage strategy
Increment the front accesses. to partial track staging
AN 113 _ 1128
_ margi; ofeerror No Retrain the machine learning module with
oreater than a second A current performance attributes to output the
threshold? adjusted stain strategy.
Yes 1136 1130

Set the adjusted stage _ _ Stage the requested sectors into the cache
strategy to full track staging. not in the cache to return to the access request.

(S)321A3(]

ARRIE [eUI3]X3
81¢1

US 11,062,232 B2

19)depy YIoM]aN () moow___s:_

S 744

3 (6C1
91¢1 2171 80¢1

= vl ”

& | ©°Ydej Juf

] 8UISS820.

=

S— N o

clel fiowa|y 0121

9071 WA)SAS JaIndiuon

U.S. Patent

¢0¢l

Aejdsi(

0¢C1

US 11,062,232 B2

1

DETERMINING SECTORS OF A TRACK TO
STAGE INTO CACHE USING A MACHINE
LEARNING MODULE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present mvention relates to a computer program
product, system, and method for determining sectors of a
track to stage ito cache using a machine learning module.

2. Description of the Related Art

A storage controller may utilize an adaptive caching
control block (ACCB) algorithm to manage the staging of
sectors of a track into cache when staging the track into
cache. An ACCB algorithm uses diflerent staging strategies,
such as a sector strategy to only stage the requested sectors
when staging a track into cache, a partial track staging to
only stage from a first accessed sector to an end sector 1n the
track, and full track staging to stage all the sectors in the
track. To determine which staging strategy to use to stage a
track into cache, the ACCB algorithm maintains information
on cache misses indicating a number of requests to access a
track that 1s not in the cache, cache hits indicating a number
of requests to access a track that 1s in the cache, front
accesses indicating a number ol requests where the {first
requested sector of a track precedes the sectors for the track
in the cache, and back accesses indicating a number of
requests where the first requested sector of the track follows
the sectors for the track in the cache.

Based on this performance information, the ACCB algo-
rithm calculates a historical front end access ratio (HFEAR)
comprising a ratio of front access misses, 1.€., requests to
sectors of a track that precede the sectors in the cache 210
for the cache, and may be calculated as ((front accesses
divided by (cache hits plus cache misses) plus a previously
calculated historical front end access ratio) divided by two.
The ACCB algorithm further calculates a historical alternate
record access ratio (HARAR) indicating how much front
accesses and back accesses are a total percentage of total
accesses, and may be calculated as (({ront accesses plus back
accesses) divided by (cache hits plus cache misses) plus a
previously calculated historical alternate record access ratio)
divided by two. If the HFEAR 1is high, then the ACCB
algorithm will use a full track staging to stage all sectors of
the track ito cache to avoid front accesses because most
sector misses are to sectors preceding sectors of the track 1n
the cache. If both the HARAR 1s high and the HFEAR 1s
low, then most misses are back accesses, 1.e., where the first
requested sector follows the sectors of the track. In such
case, the ACCB algorithm will use a partial track staging of
sectors from a first requested sector to the end of the track
to reduce cache misses.

There 1s a need in the art for improved techniques to
determine a staging strategy to use to determine which
sectors to stage when staging a track into the cache.

SUMMARY

Provided are a computer program product, system, and
method for determining sectors of a track to stage into cache
using a machine learming module. Performance attributes of
system components alflected by staging tracks from the
storage to the cache are provided to a machine learning
module. An output 1s received, from the machine learning

10

15

20

25

30

35

40

45

50

55

60

65

2

module having processed the provided performance attri-
butes, indicating a staging strategy indicating sectors of a
track to stage 1nto the cache comprising one of a plurality of
staging strategies. Sectors of an accessed track that 1s not 1n
the cache are staged into the cache according to the staging
strategy indicated in the output.

With the above embodiment, the machine learning mod-
ule 1s tramned to produce a staging strategy that optimizes
computer performance attributes. This allows for continual
and dynamic adjustment of the staging strategy as system
performance attributes and operational parameters change,
such as response time, adaptor bandwidth, storage speed,
ctc. In this way, the staging strategy the machine learning
module 1s tramned to produce for different performance
attributes 1s continually adjusted to optimize performance
attributes such as cache hits, adaptor bandwidth, response
time, etc.

In a further embodiment, the plurality of staging strategies
include at least a plurality of a partial track staging to stage
all sectors from a requested sector of a track, a sector staging
to stage only the requested sectors of the track, and a full
track staging to stage all sectors of the track.

With the above embodiment, the staging strategy con-
cerns how many sectors of a track to stage into cache when
brining a track into cache to provide a suflicient number to
anticipate future access and avoid over per-staging sectors
not needed that would unnecessarily consume network
bandwidth.

In a further embodiment, the performance attributes pro-
vided to the machine learning module comprise a plurality
of: cache misses indicating a number of requests to access a
track that 1s not in the cache; cache hits indicating a number
of requests to access a track that 1s 1n the cache; front
accesses 1ncremented in response to a request to a track
indicated as in the cache and the request having a first
requested sector of at least one sector requested that pre-
cedes a first staged sector of the track; back accesses
incremented 1n response to a request to a track indicated as
in the cache and the request having a first requested sector
ol at least one sector requested that follows a last staged
sector of the track; speed of the storage including a specified
speed of at least one storage device in which the storage 1s
implemented, a response time to respond to requests for
sectors; a current adaptor bandwidth through which data 1s
transierred between the cache and the storage; and optimum
adaptor bandwidth indicating for transierring data between
the cache and the storage.

With the above embodiment, performance attributes that
have the greatest impact on an appropriate caching strategy
are used by the machine learning module to determine the
optimal staging strategy. For instance, performance attri-
butes such as a high number of cache misses, front accesses,
and back accesses, higher speed of storage, faster response
time, higher difference of optimal adaptor bandwidth and
current adaptor bandwidth indicate that a staging strategy
staging 1n a greater number of tracks should be considered.
On the other hand, performance attributes such as a lower
number of cache misses, front accesses, and back accesses,
slower speed of storage, slower response time, small differ-
ence ol optimal adaptor bandwidth and current adaptor
bandwidth indicate that a staging strategy staging in a fewer
number of tracks should be considered.

In a further embodiment, the performance attributes fur-
ther include: historical front end access ratio comprising
((front accesses divided by (cache hits plus cache misses)
plus a previously calculated historical front end access ratio)
divided by two; and historical alternate record access ratio

US 11,062,232 B2

3

comprising ((front accesses plus back accesses) divided by
(cache hits plus cache misses) plus a previously calculated

historical alternate record access ratio) divided by two.

The above embodiment provides the machine learming
module performance attributes having significant impact on
a sector staging strategy, where 1f the historical front end
access ratio (HFEAR) 1s high and the historical alternate
record access ratio (HARAR) 1s low, then most misses are
back accesses, 1.¢., where the first requested sector follows
the sectors of the track in the caches, which indicates that
partial track staging of sectors from a first requested sector
to the end of the track may reduce cache misses.

In a further embodiment, the storage comprises a Redun-
dant Array of Independent Disk (RAID) rank of a plurality

of RAID ranks. Each of the RAID ranks 1s comprised of

storage devices, wherein the speed of the storage and the
response time are provided for one RAID rank of the RAID

ranks, and wherein a staging strategy 1s provided for each of
the RAID ranks.

In a further embodiment, a request to access a requested
track 1s received and a determination 1s made as to whether
the requested track 1s 1n the cache. The performance attri-
butes are provided to the machine learning module in
response to determining the track 1s not in the cache,
wherein the output staging strategy from the machine learn-
ing module 1s used to determine at least one sector to stage
into the track that 1s not 1n the cache.

With the above embodiment, the machine learning mod-
ule 1s used to select an optimal staging strategy to use when
the track 1s not 1n the cache, which indicates that current
caching and staging strategies are deficient as a result of the
requested track not being in the cache.

In a further embodiment, the performance attributes
include cache misses indicating a number of requests to
access a track that i1s not in the cache, cache hits indicating
a number of requests to access a track that 1s 1n the cache,
front accesses incremented 1n response to a request to a track
indicated as 1n the cache and the request having a first
requested sector of at least one sector requested that pre-
cedes a first staged sector of the track, and back accesses
incremented 1n response to a request to a track indicated as
in the cache and the request having a first requested sector
of at least one sector requested that follows a last staged
sector of the track. The cache hits are incremented in
response to determining that the requested track 1s 1n the
cache and the cache misses are incremented 1n response to
determining that the requested track 1s not 1n the cache. A
determination 1s made as to whether a first of requested
sectors 1n the requested track are 1n the cache 1n response to
determining that the requested track 1s 1n the cache. The back
accesses are incremented 1n response to determining that the
first of the requested sectors follow sectors of the track 1n the
cache. The front accesses are incremented in response to
determining that the first of the requested sectors precedes
sectors of the track 1n the cache.

With the above embodiment, the performance attributes
are updated 1n real time based on results for track and sector
accesses 1n the cache to provide immediate information to
the machine learning module to use to determine the optimal
staging strategy.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an embodiment of a computing envi-

ronment.
FIG. 2 1illustrates an embodiment of a processing node.
FIG. 3 i1llustrates an embodiment of a cache control block

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 illustrates an embodiment of a staging strategy.
FIG. 5 illustrates an embodiment of performance infor-

mation.

FIG. 6 illustrates an embodiment of a staging strategy
adjustment rule.

FIG. 7 1illustrates an embodiment of operations to use a
machine learning module to determine a staging strategy.

FIG. 8 illustrates an embodiment of operations to retrain
the machine learning module.

FIGS. 9 and 10 illustrate embodiments of operations to
determine an adjusted staging strategy to use to retrain the
machine learning module.

FIG. 11 1illustrates an embodiment of operations to pro-
cess a request to access at least one sector 1n a track.

FIG. 12 illustrates a computing environment in which the
components of FIG. 1 may be implemented.

DETAILED DESCRIPTION

An adaptive caching algorithm, such as an ACCB, can
improve the cache hit ratio for sectors for a track in the cache
by implementing a staging strategy, such as partial track or
tull track staging, to stage more sectors into cache. However,
current adaptive prestaging algorithms do not take into
account system performance parameters and the effect of
increasing the amount of sectors staged ito cache on
performance. For instance, 1f resources are over utilized,
such as the adaptor bandwidth, and the response time 1s
slow, then increasing the number of sectors staged may
further increase the burden on system resources to transfer
sectors from storage to the cache through a device adaptor.
Further, for higher bandwidth storage devices, bandwidth
may be more scarce than drive operations.

Described embodiments provide improvements to the
computer technology for determiming a staging strategy to
stage sectors of a track into the cache by providing perfor-
mance attributes of system components aflected by staging
tracks from the storage to the cache to a machine learning
module. The machine learning module processes the pro-
vided performance attributes and outputs a staging strategy
indicating sectors of a track to stage into the cache com-
prising one of a plurality of staging strategies used to
determine the sectors of a track to stage into cache when
staging the track into the cache. The machine learning
module 1s trained to produce a staging strategy that opti-
mizes computer performance attributes such as adaptor
bandwidth, cache hits, cache misses, front accesses, back
accesses, and response time. The machine learning module
trained for such optimization may then be used to determine
the optimal staging strategy based on current performance
attributes. This allows for continual and dynamic adjustment
of the staging strategy as system performance attributes and
operational parameters change, such as response time, adap-
tor bandwidth, storage speed, etc. In this way, the staging
strategy the machine learning module 1s trained to produce
for different performance attributes 1s continually adjusted to
optimize performance attributes such as cache hits, adaptor
bandwidth, response time, efc.

FIG. 1 illustrates an embodiment of a storage controller
100 including a plurality of independent processing nodes
200,, 200,, such as a central electronics complex (CEC),
that each connect to Input/Output (I/O) bays 102a, 1025
having device adaptors (DA) 104,, 104, 104,, 104, also
referred to as storage adaptors, and host adaptors (HA)
therein, over a bus terface 105, such as a Peripheral
Component Interconnect Express (PCle) bus. The process-
ing nodes 200,, 200, may also communicate with each other

US 11,062,232 B2

S

directly over a link 106, such as a PCle bus. Host systems,
such as host 108, may connect to the storage controller 100
through a host adaptor (HA) in the I/O bays 102a, 1025.

A storage system 110 includes a plurality of storage
devices 112, . 112_, 1mn which tracks, logical volumes,
ranks of logical contiguous storage spaces, and storage
arrays, such as Redundant Arrays of Independent Disks
(RAID), may be configured. Each processing node 200,
200, may be assigned one of the device adaptors in each of
the I/O bays 102qa, 1025 that connect to the storage array 110
to provide access to data configured in the storage devices
112. Each processing node 200,, 200, has a default configu-
ration to communicate with a device adaptor (DA) 104,
104, 104, 104, 1n one of the I/O bays 102a, 1025, where
the default configuration will assign the different processing
nodes 200,, 200, to device adaptors 1n the I/O bays 102a,
1025.

In the embodiment of FIG. 1, two redundant processing
nodes 200,, 200, and two 1/O bays 102a, 1025 are shown.
In further embodiments, there may be more than the number
of shown redundant elements 200,, 200,, 102a, 1025, to
provide additional redundancy. Alternatively, there may be
only one processing node in the system.

The storage controller 100 may comprise a storage sys-
tem, such as the International Business Machines Corpora-
tion (IBM®) DS8000® and DS8880 storage systems, or
storage controllers and storage systems from other vendors.
(IBM and DS8000 are trademarks of International Business
Machines Corporation throughout the world).

The storage devices 112, .. . 112 1n the storage system
110 may comprise dif erent typos or classes of storage
devices, such as magnetic hard disk drives, magnetic tape
storage, solid state storage device (SSD) comprised of solid
state electronics, EEPROM (FElectrically Erasable Program-
mable Read-Only Memory), tlash memory, flash disk, Ran-
dom Access Memory (RAM) drive, storage-class memory
(SCM), etc., Phase Change Memory (PCM), resistive ran-
dom access memory (RRAM), spin transfer torque memory
(STM-RAM), conductive bridging RAM (CBRAM), mag-
netic hard disk drive, optical disk, tape, etc. Storage arrays

may further be configured ranks in the storage devices
112, ...112 . such as Just a Bunch of Disks (JBOD), Direct

Access Storage Device (DASD), Redundant Array of Inde-
pendent Disks (RAID) array, virtualization device, etc. Fur-
ther, the storage devices 112, . . . 112 1in the storage 110
may comprise heterogeneous storago dewcos from diflerent
vendors and diflerent types of storage devices, such as a first
type of storage devices, e.g., hard disk drives, that have a
slower data transfer rate than a second type of storage
devices, e.g., SSDs.

FIG. 2 illustrates an embodiment of a processing node
200, such as one of the processing nodes 200,, 200,,
including a processor 202, such as one or more processor
devices, and a memory 204 having program code executed
by the processor 202. The memory 204 includes an I/O
manager 206 and cache manager 208. The I/O manager 206
manages access requests from internal processes in the
computing system 100 and/or from hosts 108 for tracks 1n
the storage 110. The cache manager 208 maintains modified
tracks 1in a cache 210. A track may comprise any unit of data
configured 1n the storage 110, such as a track, Logical Block
Address (LBA), etc., which 1s part of a larger grouping of
tracks, such as a volume, logical device, etc. Each process-
ing node 200,, 200, may be assigned groups of the storage
arrays configured in the storage devices 112, . . . 112 .

The cache manager 208 maintains a cache control block

directory 300 and a Least Recently Used (LRU) list 212 for

10

15

20

25

30

35

40

45

50

55

60

65

6

tracks 1n the cache 210. The control block directory 300
includes the cache control blocks, where there 1s one cache
control block for each track in the cache 210 providing
metadata on the track in the cache 210. Upon determining
that the LRU list 212 1s full or has reached a threshold level,
the cache LRU list 212 1s used to determine tracks to evict
from the cache 210. When a track 1s modified in the cache
210 1n node 200, a copy of the modified track may be copied
to a non-vola‘[lle storage device (“NVS”) 214 in the other
node 200, to maintain a backup copy ot the track on another
node for redundanoy

The memory 204 includes a staging strategy 400 indicat-
ing sectors of a track to stage into the cache when staging a
track 1nto the cache 210 1n response to a request to access a
track not 1n the cache. The staging strategies 400 may
include a partial track staging to stage all sectors from a
requested sector of the track to the end sector of the track,
sector staging to stage only the requested sectors of the
track, and a full track staging to stage all sectors of the track.
Other staging strategies indicating different subsets of the
sectors of a track to stage may also be indicated. The
memory 204 further includes performance mformation 500
having various performance attributes related to perfor-
mance of components aflected by staging tracks from the
storage 110 into the cache 210, such as the device adaptors
104, through which data 1s transferred from the storage 110
to the cache 210. The memory 204 turther includes staging
strategy adjustment rules 600 used to determine how to
adjust the staging strategy 400 being used based on perfor-
mance attributes 500.

In embodiments where the host 108 operating system
comprises 7 Systems Operating System (Z/0OS®), or other
similar operating system, an I/O request may define the stage
group ol tracks subject to operations, such as sequential
access operations, by providing a locate record domain that
specifies the subset of tracks subject to the I/O operations,
and the trigger track would be the track at the track number
in the locate record domain matching the trigger track
number.

The memory 204 includes a machine learning module 216
that receives as mput 218 performance information 300 and
computes a staging strategy 220 indicating a number of
sectors to stage into cache 210 in response to an access
request to a sector of a track not currently 1n the cache 210,
1.€., a track for which there 1s no cache control block 300, 1n
the cache control block directory 300. The machine learming
module 216 implements a machine learning techmque such
as decision tree learning, association rule learning, artificial
neural network, inductive programming logic, support vec-
tor machines, Bayesian models, etc. The cache manager 208
uses the outputted staging strategy 220 to determine a
number of sectors of a track to stage into cache 210 when
staging the track into the cache 210. The arrows shown from
the input 218 to the machine learning module 216 and to the
output 220 1llustrate a flow of data to and from the machine
learning module 216 and not actual structures in the memory
204.

In one embodiment, the machine learning module 216
may comprise artificial neural network programs. Fach
neural network may be trained using backward propagation
to adjust weights and biases at nodes 1n a hidden layer to
produce the computed trigger track and prestage amount.
The machine learning module 216 1s trained to produce a
staging strategy 220 to optimize and balance performance
goals, such as minimize cache misses, mimmize front
accesses and back accesses, and optimize performance attri-
butes such as response time and adaptor bandwidth 1n the

US 11,062,232 B2

7

device adaptors 104,, 104,, 104,, 104, transferring data
between the cache 210 and the storage 110. In backward
propagation used to train a neural network machine learming,
module, margin of errors are determined based on opera-
tional parameters, based on a value of a performance attri-
bute, such as a response time and adaptor bandwidth, and a
threshold of the performance attribute, such as a maximum
acceptable response time and optimum adaptor bandwidth,
and biases at nodes 1n the hidden layer are adjusted accord-
ingly to decrease the margins of error 1n these measured
storage parameters. Backward propagation may comprise an
algorithm for supervised learning of artificial neural net-
works using gradient descent. Given an artificial neural
network and an error function, the method may calculate the
gradient of the error function with respect to the neural
network’s weights and biases.

Although FIG. 2 shows one machine learning module
216, there may be separate machine learning module 216 for
cach RAID rank, or other storage umnit, configured in the
storage 110 or one machine learning module for all the
ranks, or one or more storage units configured 1n the storage
110.

The I/O manager 206, cache manager 208, and machine
learning module 216 are shown 1n FIG. 2 as program code
loaded into the memory 204 and executed by the processor
202. Alternatively, some or all of the functions may be
implemented 1n hardware devices in the processing nodes
200,, 200,, such as 1n Application Specific Integrated Cir-
cuits (ASICs) or executed by separate dedicated processors.

The memory 204 and cache 210 may comprise one or
more memory devices, such as a Dynamic Random Access
Memory (DRAM), a phase change memory (PCM), Mag-
netoresistive random-access memory (MRAM), Spin Trans-
ter Torque (STT)-MRAM, SRAM storage devices, DRAM,
a ferroelectric random-access memory (FeTRAM), nanow-
ire-based non-volatile memory, and a Non-Volatile Direct
In-Line Memory Modules (DIMMs) with byte-addressable
write-in-place memory, etc. The non-volatile storage

(“NVS”) 214 may comprise a non-volatile storage, such as
NAND storage, e.g., flash memory, Solid State Drive (SSD)

storage, non-volatile RAM, etc. Other non-volatile devices
may be used for the non-volatile storage 214, such as a
battery backed-up DIMM. The NVS 214 may be located in
a separate physical memory or storage device than other
parts of the memory 204, such as the cache 210.

FI1G. 3 illustrates an embodiment of a cache control block
300, for one of the tracks 1n the cache 210, including, but not
limited to, a cache control block identifier 302, such as an
index value of the cache control block 300 ; a track 1D 304
of the track in the storage 110 having sectors staged into the
cache 210; the cache LRU list 306 in which the cache
control block 300, 1s indicated; an LRU list entry 308 at
which the track 1s indicated; a cache timestamp 310 indi-
cating a time the track was added to the cache 210 and
indicated on the LRU list 306; and a sector bitmap 312
indicating sectors of the track 304 that are 1n the cache 210.

FIG. 4 illustrates an embodiment of a staging strategy
instance 400, that provides for a staging unit 402 a staging
strategy 404 to use to stage sectors of a track 1nto cache 210,
such as full track staging, partial track staging, and sector
staging. A staging unit 402 may comprise a storage unit or
division to which the staging strategy 404 applies, such as a
RAID rank or a cylinder band in storage architectures where
the storage 110 1s addressed as bands of cylinders, where
cach cylinder in a cylinder band has a plurality of tracks, and

10

15

20

25

30

35

40

45

50

55

60

65

8

where each track has a plurality of sectors. Thus, different
staging units may have diflerent staging strategies 404—

produced by the machine learning module 216.

FIG. 5 illustrates an embodiment of performance infor-
mation 1stance 300, for a staging unit, such as RANK, band
of cylinders, etc., and includes the staging unit identifier (ID)
502; a number of cache misses 504 indicating a number of
requests to access a track in the staging unit 502 that 1s not
in the cache 210; cache hits 506 indicating a number of
requests to access a track in the staging umit 502 that 1s 1n the
cache 210; front accesses 508 incremented 1n response to a
request to a track indicated as in the cache 210 when the
request 1s to a first requested sector that precedes a first
sector of the track i1n the cache 210; back accesses 510
incremented 1n response to a request to a track indicated as
in the cache 210 when the request 1s to a first requested
sector that follows a last sector of the track in the cache 210:
a storage speed 512 of the storage device 112, 1n which the
staging unit 502 1s implemented; a response time 314 to
respond to requests for sectors in the staging unit 502; a
maximum acceptable response time 516 comprising a
threshold acceptable response time for accessing sectors of
a track; an optimum adaptor bandwidth 518 for transferring
data between the cache 210 and the storage 110 through the
device adaptor 104, used for the staging unit 402; and a
current adaptor bandwidth 520 for a device adaptor 104,
through which data 1s transterred between the cache 210 and
the storage 110.

The performance mformation 500, may also include cal-
culated values such as a historical front end access ratio

(HFEAR) 522 and a hi

historical alternate record access ratio

(HARAR) 524. The HFEAR 522 may comprise a ratio of

front access misses, 1.€., requests to sectors of a track that
precede the sectors in the cache 210 for the track, and may
be calculated as ((Ifront accesses divided by (cache hits plus
cache misses) plus a previously calculated historical front
end access ratio) divided by two. The HARAR 524 indicates
how much front accesses and back accesses are a total
percentage of total accesses, and may be calculated as ((Iront
accesses plus back accesses) divided by (cache hits plus
cache misses) plus a previously calculated historical alter-

nate record access ratio) divided by two. If the HARAR 524
1s high and the HFEAR 522 is low, then most misses are
back accesses, 1.e., where the first requested sector follows
the sectors of the track in the cache 210, which indicates that
partial track staging of sectors from a first requested sector
to the end of the track may reduce cache misses.

FIG. 6 1llustrates an embodiment of a staging strategy
adjustment rule instance 600, indicating an adjustment to the
staging strategy based on certain performance attribute
margin of errors. A staging strategy adjustment rule 600,
may specily one or more performance margin of errors, such
as a response time margin of error 602 and an adaptor
bandwidth margin of error 604, and a staging strategy 606 to
use for the specified margin of errors 602, 604. For instance,
the response time margin of error 602 may comprise a
(maximum acceptable response time 516 minus a current
response time 514) divided by the maximum acceptable
response time 516. The adaptor bandwidth margin of error
604 may comprise an (optimum adaptor bandwidth 518
minus a current adaptor bandwidth 520) divided by the
optimum adaptor bandwidth 518. In further embodiments,
other performance attribute margins of error may be used,
such as calculated by a (threshold for a performance attri-
bute minus a current value for the performance attribute)
divided by the threshold.

FIG. 7 1llustrates an embodiment of operations performed
by the cache manager 208 to process a request to a track that
1s not 1n the cache 210 that specifies a first sector of the track

US 11,062,232 B2

9

to access that may comprise any sector or range of sectors
in the track. The operations of FIG. 7 may also be performed
alter a predetermined number of track accesses to adjust the
staging strategy after a number of cache misses 5304. Upon
receiving (at block 700) the request to the track not 1n the
cache 210, the cache manager 208 provides (at block 702)
the machine learning module 216 as input 218 performance
information 300 (e.g., 504-524). In response to the mput
218, the cache manager 208 receives (at block 704) from the
machine learning module 216 output comprising a new
staging strategy 220 (e.g., partial track staging, full track
staging, sector staging). The staging strategy 404 for the
staging unit 402 1n staging strategy 400, 1s updated with the
output staging strategy 220 from the machine learning
module 216. This new staging strategy 404 may then be used
to stage sectors when staging the track in the staging unit
402 1nto the cache 210.

With the embodiment of FIG. 7, the staging strategy 220
1s continually updated when staging a track into cache 210
to determine an optimized staging strategy based on current
performance attributes to 1mprove computer operations,
such as improve adaptor bandwidth, response time, etc. This
allows continual modification of the staging strategy to
optimize computer performance.

FIG. 8 illustrates an embodiment of operations performed
by the cache manager 208 and/or machine learning module
216 to retrain the machine learning module 216 to improve
how 1t calculates the staging strategy 220 to optimize
computer performance when staging tracks into the cache
210. The operations of FIG. 8 may be performed after
completing the staging of sectors of a track into the cache
210. Upon mitiating (at block 800) a retraining of the
machine learning module 216, the machine learning module
216 (and/or cache manager 208) determines (at block 802)
at least one margin of error based on a current value of a
performance attribute, e.g., response time 514, adaptor
bandwidth 520, and a threshold of a performance attribute,
¢.g., maximum acceptable response time 516, and optimum
adaptor bandwidth 518. An adjusted staging strategy 1is
determined (at block 804) based on the at least one margin
of error, such as by using the staging strategy adjusting rules
600, that provide diflerent staging strategies 606 for different
values of the considered at least one margin of error, e.g.,
602 and 604. The machine learning module 1s retrained (at
block 806) with the current performance attributes 500 to
output the adjusted staging strategy.

With the embodiment of FIG. 8, the machine learning
module 216 1s retrained to produce an adjusted staging
strategy that 1s adjusted to optimize performance based on
the extent of one or more performance margins of error. For
instance, 1 the margins of error are low, indicating that the
performance attribute, such as response time 314 adaptor
bandwidth 520, 1s not exceeding predetermined performance
thresholds 516 and 518, then the staging strategy can be
adjusted to stage 1n more sectors to reduce the likelihood of
cache misses without negatively impacting performance
because the performance margins of error are low. However,
i the performance margins of error are high, indicating that
the performance attributes are exceeding thresholds indicat-
ing system components are being over utilized and experi-
encing latency, then a staging strategy that stages fewer
sectors may be more optimal to reduce staging burdens on
the system resources, such as adaptor bandwidth and storage
device bandwidth. In this way, the machine learning module
216 1s retrained to select a staging strategy to balance the
goal of reducing front access 308 and back access 310 sector
misses by increasing the number of sectors staged into cache

10

15

20

25

30

35

40

45

50

55

60

65

10

210 with the track and also avoid over utilization of system
resources that can increase latency and further reduce sys-
tem performance.

FIG. 9 1llustrates an embodiment of operations performed
by the cache manager 208 and/or machine learning module
216 to adjust the staging strategy used to retrain the machine
learning module 216 based on current performance margins
of error. Upon mitiating (at block 900) an operation to
determine an adjusted staging strategy when the margin of
error comprises a threshold of a performance attribute minus
a current value of the performance attribute, the machine
learning module 216 sets (at block 902) the adjusted staging
strategy to the full track staging 1f the margin of error, such
as a response time margin of error and/or adaptor bandwidth
margin of error, exceeds an upper value, which means
performance 1s at a suiliciently low enough level, 1.e.,
components are underutilized, so that all the sectors can be
staged 1nto the cache 210. The cache manager 208 sets (at
block 904) the adjusted staging strategy to the sector staging,
only requested sectors, if the margin of error 1s less than a
lower value, which means performance 1s at a sufliciently
high level, 1.e., components are over utilized, so that only the
minimum number of sectors are staged into the cache 210,
to minimize further burdens on system resources. The cache
manager 208 sets (at block 906) the adjusted staging strategy
to the partial staging 1f the margin of error 1s between the
lower and upper values, which means performance 1s mod-
erate, so that an intermediate number of sectors are staged
into the cache, partial track staging, so that a number of
sectors are staged into the cache 210 to provided increased
staging but not to the highest level so as to burden system
components and performance.

FIG. 10 1llustrates an alternative embodiment of opera-
tions performed by the cache manager 208 and/or machine
learning module 216 to adjust the staging strategy used to
retrain the machine learning module 216 based on current
performance margins of error staging strategy adjustment
rules 600. Upon imtiating (at block 1000) an operation to
determine an adjusted staging strategy, such as at block 804
in FIG. 8, the machine learning module 216 determines (at
block 1002) whether both performance margins, e.g.,
response time and device adaptor bandwidth, are greater
than zero or some other predetermined value, indicating low
utilization of resources. If so, then the adjusted staging
strategy 404 1s set (at block 1004) to full track staging
according to a first rule 400, . If (at block 1006) both margins
are less than zero or a predetermined value, indicating high
resource utilization, then the adjusted staging strategy 1s set
(at block 1008) to sector track staging according to a second
rule 400,. Otherwise, if ({from the no branch of block 1006)
only one of the first and second margins are less than zero
(or the predetermined value) and another higher one margin
1s not greater than zero (or the predetermined value), then
the adjusted staging strategy 1s set (at block 1010) to partial
track staging according to a third rule 400;,.

FIGS. 9 and 10 provide different embodiments for deter-
mining the adjusted staging strategy based on performance
attribute margins of error that indicate whether performance
1s low or high and system resource utilization 1s high or low,
respectively, to stage 1n a greater amount of sectors depend-
ing on resource uftilization to optimize staging strategy
across different current performance attributes and provide
an optimal adjusted staging strategy to use to retrain the
machine learning module 216.

FIG. 11 illustrates an embodiment of operations per-
formed by the cache manager 208 to process an access
request to a sector 1 a track, utilizing the operations of

US 11,062,232 B2

11

FIGS. 7-10. Upon receiving (at block 1100) a request to
access at least one sector of a track, if (at block 1102) there
are no sectors of the track 1n the cache 210, which may be
determined 11 there 1s no cache control block 300, for the
track 1n the cache control block directory 300, then the cache
misses 504 are incremented (at block 1104) and the machine
learning module 216 1s invoked (at block 1106) to perform
the operations of FIG. 7 to determine the staging strategy to
use. After staging sectors of the track into the cache 210,
control proceeds (at block 1108) to FIG. 8 to retrain the
machine learning module 216 based on current performance
margins ol error.

If (at block 1102) there are sectors for the requested track
in the cache 210, then the cache hits 506 are incremented (at
block 1110). IT (at block 1112) a first of the requested one or
more sectors 1s 1n the cache 210, then the cache manager 208
returns (at block 1114) the requested sectors. If (at block
1116) some but not all of the requested sectors are in the
cache 210 or if (at block 1112) the first requested sector 1s
not 1n the cache 210, then the cache manager 208 and/or the
machine learning module 216 determines (at block 1118) a
margin of error ((threshold of performance attribute minus
current value of performance attribute) divided by the
threshold), such as a response time margin of error and/or
adaptor bandwidth margin of error. If (at block 1116) all of
the requested sectors are 1n the cache 210, then control ends.
If (at block 1120) the first of the requested sectors not in the
cache 210 follows the sectors of the track in the cache 210,
1.e., a back access miss, then the back accesses 510 are
incremented (at block 1122). It (at block 1124) the margin of
error 1s greater than a first threshold, 1.e., system resources
are not over utilized, then the adjusted staging strategy 1s set
(at block 1126) to partial track staging and the machine
learning module 216 1s retraimned (at block 1128) with the
current performance attributes 500 to output the adjusted
staging strategy as 1n FIG. 8. The requested sectors from the
first requested sector not 1n the cache to the end sector of the
track are then staged (at block 1130) into the cache 210 from
the storage 110 to return to the access request.

If (at block 1120) the first of the requested sectors not in
the cache 210 precedes the sectors 1n the cache, then the
front accesses 508 are incremented (at block 1132). If (at
block 1134) the margin of error 1s greater than a second
threshold, which may be higher than the first threshold, thus
requiring less system utilization than at block 1124, then the
adjusted staging strategy 1s set (at block 1136) to full track
staging, which requires greater use of system resources than
partial track staging. Control then proceeds to block 1128 to
retrain the machine learning module for tull track staging. It
(at block 1124 or 1134) the margin of error 1s not greater than
cither of the thresholds, indicating that system utilization 1s
too high to allow for staging of more tracks, which requires
greater use of system resources, then control ends without
retraining the machine learning module 216 to stage 1n more
tracks given the current performance information 500 that
resulted 1n the situation of additional sectors not being
staged.

With the embodiment of FIG. 11, the machine learning
module 216 1s used to select an optimal staging strategy to
use when the track 1s not in the cache to determine sectors
to stage when bringing the track into the cache 210. Bringing,
a track into cache 210 that currently 1s not 1n the cache 210
would further create a cache control block 300, for the added
track. If some of the requested sectors are not 1n the cache
210, then a determination 1s made whether a performance
margin of error satisfies a condition, which indicates system
resource utilization and whether there are suflicient system

10

15

20

25

30

35

40

45

50

55

60

65

12

resources available to incur additional processing and band-
width burdens 1n staging a greater number of sectors mto the
cache 210. For instance, 1f a current response time or adaptor
bandwidth exceeds thresholds, then the system resources,
such as device adaptors and storage devices, may currently
be operating at too high of a transier rate and 1t would not
be optimal to stage more sectors and further burden system
resource utilization. However, i1 system utilization 1s low, as
indicated by performance attributes such as response time
and adaptor bandwidth, then more sectors may be staged 1n
to reduce the number of sector (front and back access)
misses and optimize sector hits. In this way, the retraining of
the machine learning module 216 1s optimized by retraining
based on the current system operational conditions to ensure
that increasing the number of sectors staged does not further
degrade system performance.

The described embodiments provide a dynamic technique
for determining the staging strategy to use to determine a
number of sectors to stage mto cache 210 when adding a
cache to track and a dynamic technique to determine when
to retrain a machine learning module used to calculate the
staging strategy and sectors to stage that optimizes on one or
more storage performance parameters.

In the described embodiment, varniables 1, j, m, n, etc.,
when used with different elements may denote a same or
different instance of that element.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present 1nvention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device

US 11,062,232 B2

13

receives computer readable program instructions from the
network and forwards the computer readable program
istructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
istructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written 1n any combination
of one or more programming languages, including an object
ortented programming language such as Java, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program 1nstructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present mvention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,

create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified 1 the tlowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the istructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tlow-
chart and/or block diagram block or blocks.

10

15

20

25

30

35

40

45

50

55

60

65

14

The flowchart and block diagrams 1n the Figures illustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable 1nstructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted 1n the block may occur out of the order noted
in the figures. For example, two blocks shown 1n succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks i1n the block dia-
grams and/or flowchart 1llustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The computational components of FIGS. 1 and 2, includ-
ing the storage controller 100, host 108, and processing
nodes 200,, 200,, 200, may be implemented 1n one or more
computer systems, such as the computer system 1202 shown
in FIG. 12. Computer system/server 1202 may be described
in the general context of computer system executable
instructions, such as program modules, being executed by a
computer system. Generally, program modules may include
routines, programs, objects, components, logic, data struc-
tures, and so on that perform particular tasks or implement
particular abstract data types. Computer system/server 1202
may be practiced in distributed cloud computing environ-
ments where tasks are performed by remote processing
devices that are linked through a communications network.
In a distributed cloud computing environment, program
modules may be located in both local and remote computer
system storage media mcluding memory storage devices.

As shown 1n FIG. 12, the computer system/server 1202 1s
shown 1n the form of a general-purpose computing device.
The components of computer system/server 1202 may
include, but are not limited to, one or more processors or
processing units 1204, a system memory 1206, and a bus
1208 that couples various system components including
system memory 1206 to processor 1204. Bus 1208 repre-
sents one or more of any of several types of bus structures,
including a memory bus or memory controller, a peripheral
bus, an accelerated graphics port, and a processor or local
bus using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include

Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (IMCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 1202 typically includes a variety
of computer system readable media. Such media may be any
available media that 1s accessible by computer system/server
1202, and 1t includes both volatile and non-volatile media,
removable and non-removable media.

System memory 1206 can include computer system read-
able media 1n the form of volatile memory, such as random
access memory (RAM) 1210 and/or cache memory 1212.
Computer system/server 1202 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 1213 can be provided for reading from and writing
to a non-removable, non-volatile magnetic media (not
shown and typically called a “hard drive”). Although not

US 11,062,232 B2

15

shown, a magnetic disk drive for reading from and writing
to a removable, non-volatile magnetic disk (e.g., a “tloppy
disk™), and an optical disk drive for reading from or writing

to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.

In such instances, each can be connected to bus 1208 by one
or more data media interfaces. As will be further depicted
and described below, memory 1206 may include at least one
program product having a set (e.g., at least one) of program

modules that are configured to carry out the functions of
embodiments of the invention.

Program/utility 1214, having a set (at least one) of pro-
gram modules 1216, may be stored in memory 1206 by way
of example, and not limitation, as well as an operating
system, one or more application programs, other program
modules, and program data. Each of the operating system,
one or more application programs, other program modules,
and program data or some combination thereof, may include
an implementation of a networking environment. The com-
ponents ol the computer 1202 may be implemented as
program modules 1216 which generally carry out the func-
tions and/or methodologies of embodiments of the invention
as described herein. The systems of FIG. 1 may be imple-
mented 1 one or more computer systems 1202, where 1t
they are implemented 1n multiple computer systems 1202,
then the computer systems may communicate over a net-
work.

Computer system/server 1202 may also communicate
with one or more external devices 1218 such as a keyboard,
a pointing device, a display 1220, etc.; one or more devices
that enable a user to interact with computer system/server
1202; and/or any devices (e.g., network card, modem, etc.)
that enable computer system/server 1202 to communicate
with one or more other computing devices. Such commu-
nication can occur via Input/Output (I/O) interfaces 1222.
Still yet, computer system/server 1202 can communicate
with one or more networks such as a local area network
(LAN), a general wide area network (WAN), and/or a public
network (e.g., the Internet) via network adapter 1224. As
depicted, network adapter 1224 communicates with the
other components of computer system/server 1202 via bus
1208. It should be understood that although not shown, other
hardware and/or software components could be used in
conjunction with computer system/server 1202. Examples,
include, but are not limited to: microcode, device drivers,
redundant processing units, external disk drive arrays, RAID

systems, tape drives, and data archival storage systems, efc.

The terms “an embodiment”, “embodiment”, “embodi-
ments”, “the embodiment”, “the embodiments”, “one or
more embodiments”, “some embodiments”, and ‘“one
embodiment” mean “one or more (but not all) embodiments
of the present mvention(s)” unless expressly specified oth-
Crwise.

The terms “including”, “comprising”, “having” and varia-
tions thereol mean “including but not limited to”, unless
expressly specified otherwise.

The enumerated listing of items does not imply that any
or all of the 1tems are mutually exclusive, unless expressly
specified otherwise.

The terms “a”, “an’ and “the” mean “one or more”, unless
expressly specified otherwise.

Devices that are in communication with each other need
not be 1n continuous communication with each other, unless
expressly specified otherwise. In addition, devices that are 1n
communication with each other may commumnicate directly

or indirectly through one or more intermediaries.

10

15

20

25

30

35

40

45

50

55

60

65

16

A description of an embodiment with several components
in communication with each other does not imply that all
such components are required. On the contrary a variety of
optional components are described to illustrate the wide
variety of possible embodiments of the present invention.

When a single device or article 1s described herein, 1t will
be readily apparent that more than one device/article
(whether or not they cooperate) may be used 1n place of a
single device/article. Similarly, where more than one device
or article 1s described herein (whether or not they cooperate),
it will be readily apparent that a single device/article may be
used 1n place of the more than one device or article or a
different number of devices/articles may be used 1nstead of
the shown number of devices or programs. The functionality
and/or the features of a device may be alternatively embod-
ied by one or more other devices which are not explicitly
described as having such functionality/features. Thus, other
embodiments of the present invention need not include the
device 1tself.

The foregoing description of various embodiments of the
invention has been presented for the purposes of illustration
and description. It 1s not intended to be exhaustive or to limait
the mvention to the precise form disclosed. Many modifi-
cations and variations are possible in light of the above
teaching. It 1s intended that the scope of the mvention be
limited not by this detailed description, but rather by the
claims appended hereto. The above specification, examples
and data provide a complete description of the manufacture
and use of the composition of the invention. Since many
embodiments of the invention can be made without depart-
ing from the spirit and scope of the invention, the mvention
resides 1n the claims herein after appended.

What 1s claimed 1s:

1. A computer program product for determining data to
stage into cache from a storage, wheremn the computer
program product comprises a computer readable storage
medium having computer readable program code embodied
therein that when executed performs operations, the opera-
tions comprising:

providing performance attributes of system components
aflected by staging tracks from the storage to the cache

to a machine learning module;

recerving, from the machine learning module having

processed the performance attributes, an output 1ndi-
cating a staging strategy indicating sectors of a track to
stage 1into the cache comprising one of a plurality of
staging strategies; and

staging sectors of an accessed track that 1s not in the cache

according to the staging strategy indicated 1n the out-
put.

2. The computer program product of claim 1, wherein the
plurality of staging strategies include at least a plurality of
a partial track staging to stage all sectors from a requested
sector of a track, a sector staging to stage only the requested
sectors of the track, and a full track staging to stage all
sectors of the track.

3. The computer program product of claim 2, wherein the
performance attributes provided to the machine learning
module comprise a plurality of:

cache misses mdicating a number of requests to access a

track that 1s not 1n the cache;

cache hits indicating a number of requests to access a

track that 1s in the cache:

front accesses mcremented 1n response to a request to a

track indicated as 1n the cache and the request having
a first requested sector of at least one sector requested
that precedes a first staged sector of the track;

US 11,062,232 B2

17

back accesses incremented 1n response to a request to a
track indicated as in the cache and the request having
a first requested sector of at least one sector requested
that follows a last staged sector of the track;

speed of the storage imncluding a specified speed of at least

one storage device in which the storage 1s imple-
mented;

a response time to respond to requests for sectors;

a current adaptor bandwidth through which data 1s trans-

terred between the cache and the storage; and
optimum adaptor bandwidth indicating for transierring
data between the cache and the storage.

4. The computer program product of claim 3, wherein the
performance attributes further include:

historical front end access ratio comprising ((iront

accesses divided by (cache hits plus cache misses)) plus
a previously calculated historical front end access ratio)
divided by two; and

historical alternate record access ratio comprising (({ront

accesses plus back accesses) divided by (cache hits plus
cache misses)) plus a previously calculated historical
alternate record access ratio) divided by two.

5. The computer program product of claim 3, wherein the
storage comprises a Redundant Array of Independent Disk
(RAID) rank of a plurality of RAID ranks, wherein each of
the RAID ranks 1s comprised of storage devices, wherein the
speed of the storage and the response time are provided for
one RAID rank of the RAID ranks, and wherein a staging
strategy 1s provided for each of the RAID ranks.

6. The computer program product of claim 1, wherein the
operations further comprise:

receiving a request to access a requested track; and

determining whether the requested track 1s in the cache,

wherein the providing the performance attributes to the
machine learning module i1s performed in response to
determining the requested track i1s not in the cache,
wherein the output staging strategy from the machine
learning module 1s used to determine at least one sector
to stage into the cache that 1s not in the cache.

7. The computer program product of claim 6, wherein the
performance attributes include cache misses indicating a
number of requests to access a track that 1s not 1n the cache,
cache hits indicating a number of requests to access a track
that 1s 1n the cache, front accesses incremented 1n response
to a request to a track indicated as in the cache and the
request having a first requested sector of at least one sector
requested that precedes a first staged sector of the track, and
back accesses incremented 1n response to a request to a track
indicated as in the cache and the request having a first
requested sector of at least one sector requested that follows
a last staged sector of the track, wherein the operations
turther comprise:

incrementing cache hits in response to determining that

the requested track 1s 1n the cache;

incrementing the cache misses 1n response to determining,

that the requested track 1s not in the cache;
determining whether a first of requested sectors in the
requested track are 1n the cache in response to deter-
mining that the requested track 1s 1n the cache;
incrementing the back accesses in response to determin-
ing that the first of the requested sectors follow sectors
of the track in the cache; and
incrementing the front accesses 1n response to determin-
ing that the first of the requested sectors precedes
sectors of the track in the cache.

8. A system for determining data to stage from a storage,
comprising;

10

15

20

25

30

35

40

45

50

55

60

65

18

a Processor;

a cache; and

a computer readable storage medium having computer

readable program code embodied therein that when

executed performs operations, the operations compris-

ng:

providing performance attributes of system compo-
nents aflected by staging tracks from the storage to
the cache to a machine learning module;

receiving, from the machine learning module having
processed the performance attributes, an output 1ndi-
cating a staging strategy indicating sectors of a track
to stage into the cache comprising one of a plurality
ol staging strategies; and

staging sectors of an accessed track that 1s not in the
cache according to the staging strategy indicated in
the output.

9. The system of claim 8, wherein the plurality of staging
strategies include at least a plurality of a partial track staging
to stage all sectors from a requested sector of a track, a sector
staging to stage only the requested sectors of the track, and
a full track staging to stage all sectors of the track.

10. The system of claim 9, wherein the performance
attributes provided to the machine learning module comprise
a plurality of:

cache misses indicating a number of requests to access a

track that 1s not in the cache;

cache hits indicating a number of requests to access a

track that 1s in the cache;

front accesses mcremented 1n response to a request to a

track indicated as 1n the cache and the request having
a first requested sector of at least one sector requested
that precedes a first staged sector of the track;

back accesses incremented in response to a request to a

track indicated as 1n the cache and the request having
a first requested sector of at least one sector requested
that follows a last staged sector of the track;

speed of the storage including a specified speed of at least

one storage device in which the storage 1s 1mple-
mented;

a response time to respond to requests for sectors;

a current adaptor bandwidth through which data 1s trans-

ferred between the cache and the storage; and
optimum adaptor bandwidth indicating for transierring
data between the cache and the storage.

11. The system of claim 10, wherein the performance
attributes further include:

historical front end access ratio comprising (({ront

accesses divided by (cache hits plus cache misses)) plus
a previously calculated historical front end access ratio)
divided by two; and

historical alternate record access ratio comprising ((front

accesses plus back accesses) divided by (cache hits plus
cache misses)) plus a previously calculated historical
alternate record access ratio) divided by two.

12. The system of claim 10, wherein the storage com-

prises a Redundant Array of Independent Disk (RAID) rank
of a plurality of RAID ranks, wherein each of the RAID
ranks 1s comprised of storage devices, wherein the speed of
the storage and the response time are provided for one RAID
rank of the RAID ranks, and wherein a staging strategy 1s
provided for each of the RAID ranks.

13. The system of claim 8, wherein the operations further
comprise:

recerving a request to access a requested track; and

determining whether the requested track 1s in the cache,

wherein the providing the performance attributes to the

US 11,062,232 B2

19

machine learning module 1s performed 1n response to
determining the requested track i1s not in the cache,
wherein the output staging strategy from the machine
learning module 1s used to determine at least one sector
to stage mto the cache that 1s not in the cache.

14. The system of claim 13, wherein the performance
attributes include cache misses ndicating a number of
requests to access a track that 1s not 1n the cache, cache hits
indicating a number of requests to access a track that 1s 1n the
cache, front accesses incremented 1n response to a request to
a track 1indicated as in the cache and the request having a first
requested sector of at least one sector requested that pre-
cedes a first staged sector of the track, and back accesses
incremented 1n response to a request to a track indicated as

in the cache and the request having a first requested sector

of at least one sector requested that follows a last staged

sector of the track, wherein the operations further comprise:

incrementing cache hits in response to determining that
the requested track 1s 1n the cache;

incrementing the cache misses 1n response to determining,

that the requested track 1s not in the cache;
determining whether a first of requested sectors in the
requested track are in the cache in response to deter-
mining that the requested track 1s 1n the cache;
incrementing the back accesses in response to determin-
ing that the first of the requested sectors follow sectors
of the track in the cache; and
incrementing the front accesses 1 response to determin-
ing that the first of the requested sectors precedes
sectors of the track i1n the cache.

15. A method for determining data to stage into cache
from a storage, comprising:

providing performance attributes of system components
allected by staging tracks from the storage to the cache

to a machine learning module;

receiving, from the machine learning module having

processed the performance attributes, an output indi-
cating a staging strategy indicating sectors of a track to
stage into the cache comprising one of a plurality of
staging strategies; and

staging sectors ol an accessed track that 1s not 1n the cache

according to the staging strategy indicated in the out-
put.

16. The method of claim 15, wherein the plurality of
staging strategies include at least a plurality of a partial track
staging to stage all sectors from a requested sector of a track,
a sector staging to stage only the requested sectors of the
track, and a full track staging to stage all sectors of the track.

17. The method of claim 16, wherein the performance
attributes provided to the machine learning module comprise
a plurality of:

cache misses indicating a number of requests to access a

track that 1s not in the cache;

cache hits indicating a number of requests to access a

track that 1s in the cache;

front accesses incremented in response to a request to a

track indicated as 1n the cache and the request having
a first requested sector of at least one sector requested
that precedes a first staged sector of the track;

back accesses incremented 1n response to a request to a

track indicated as 1n the cache and the request having

5

10

15

20

25

30

35

40

45

50

55

60

20

a first requested sector of at least one sector requested
that follows a last staged sector of the track;

speed of the storage including a specified speed of at least
one storage device i which the storage 1s 1mple-
mented;

a response time to respond to requests for sectors;

a current adaptor bandwidth through which data 1s trans-
ferred between the cache and the storage; and

optimum adaptor bandwidth indicating for transierring
data between the cache and the storage.

18. The method of claim 17, wherein the performance

attributes further include:

historical front end access ratio comprising ({front
accesses divided by (cache hits plus cache misses)) plus
a previously calculated historical front end access ratio)
divided by two; and

historical alternate record access ratio comprising ({(front

accesses plus back accesses) divided by (cache hits plus
cache misses)) plus a previously calculated historical
alternate record access ratio) divided by two.

19. The method of claim 17, wherein the storage com-
prises a Redundant Array of Independent Disk (RAID) rank
of a plurality of RAID ranks, wherein each of the RAID
ranks 1s comprised of storage devices, wherein the speed of
the storage and the response time are provided for one RAID
rank of the RAID ranks, and wherein a staging strategy 1s
provided for each of the RAID ranks.

20. The method of claim 15, further comprising:

receiving a request to access a requested track; and

determiming whether the requested track 1s 1n the cache,
wherein the providing the performance attributes to the
machine learning module 1s performed in response to
determining the requested track i1s not in the cache,
wherein the output staging strategy from the machine
learning module 1s used to determine at least one sector
to stage into the cache that 1s not 1n the cache.

21. The method of claim 20, wherein the performance
attributes include cache misses indicating a number of
requests to access a track that 1s not in the cache, cache hits
indicating a number of requests to access a track that is in the
cache, front accesses incremented 1n response to a request to
a track indicated as 1n the cache and the request having a first
requested sector of at least one sector requested that pre-
cedes a first staged sector of the track, and back accesses
incremented 1n response to a request to a track indicated as
in the cache and the request having a first requested sector
of at least one sector requested that follows a last staged
sector of the track, further comprising:

incrementing cache hits 1 response to determiming that

the requested track 1s in the cache;

incrementing the cache misses 1n response to determining,

that the requested track 1s not in the cache;
determining whether a first of requested sectors in the
requested track are in the cache in response to deter-
mining that the requested track i1s 1n the cache;
incrementing the back accesses in response to determin-
ing that the first of the requested sectors follow sectors
of the track in the cache; and
incrementing the front accesses 1n response to determin-
ing that the first of the requested sectors precedes
sectors of the track in the cache.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

