12 United States Patent
Kohler

US011061777B2

US 11,061,777 B2
Jul. 13, 2021

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND PRODUCT FOR
IMPLEMENTING APPLICATION
CONSISTENT SNAPSHOTS OF A SHARDED
RELATIONAL DATABASE ACROSS TWO OR
MORE STORAGE CLUSTERS

(71) Applicant: Nutanix, Inc., San Jose, CA (US)

(72) Inventor: Jonathan Michael Kohler, Essex, V1

(US)
(73) Assignee: Nutanix, Inc., San Jose, CA (US)
(*) Notice:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 305 days.

(21) Appl. No.: 16/049,360

(22) Filed: Jul. 30, 2018

(65) Prior Publication Data
US 2020/0034245 Al Jan. 30, 2020

(51) Int. CL
GOGF 16/23
GOGF 11/14
GO6F 9/455

(52) U.S. CL
CPC ... GOGF 11/1458 (2013.01); GO6F 9/45558
(2013.01); GOG6F 16/2365 (2019.01); GO6F
2009/4557 (2013.01); GO6F 2009/45583
(2013.01); GO6F 2009/45591 (2013.01); GOG6F
2201/84 (2013.01)

(2019.01)
(2006.01)
(2018.01)

(58) Field of Classification Search
CPC .. GO6F 12/0808; GO6F 15/173; GO6F 15/177;
GO6F 9/5055; GO6F 9/5083; GO6F

100

e

Cluster 1095,
| VM
; 11Ga
VM
| 110b
~ / Controlier VM
195 120a -
e
Shard
Y Master
"-.\“__4__,,
135 2 I ' e e ST e]
: 4 -
| Shard Shard
f//’i 1404 140b
Ll I e
1 4
120 Shard 2 . Shard 2
w / 150
130a 130b

Control

Traffic 18

______ _— ke]

16/2365; GO6F 11/1458; GO6F 9/455358;
GO6F 2009/4557, GO6F 2009/45583;
GO6F 2009/45391; GO6F 2201/84
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,549,518 B1 10/2013 Aron et al.
8,601,473 Bl 12/2013 Aron et al.
8,850,130 Bl 9/2014 Aron et al.
9,772,866 Bl 9/2017 Aron et al.

10,528,262 B1* 1/2020 Shmuylovich GO6F 3/0604
2013/0124475 Al* 5/2013 Hildenbrand GOO6F 16/2315
707/636

OTHER PUBLICATTIONS

Poitras, Steven. “The Nutamix Bible” (Oct. 15, 2013), from http://

stevenpoltras.com/the-nutanix-bible/ (Publication date based on indi-

cated capture date by Archive.org; first publication date unknown).

Poitras, Steven. ““The Nutanix Bible” (Jan. 11, 2014), from http://
stevenpoltras.com/the-nutanix-bible/ (Publication date based on indi-
cated capture date by Archive.org; first publication date unknown).
Poitras, Steven. “The Nutanix Bible” (Jun. 20, 2014), from http://
stevenpoitras.com/the-nutanix-bible/ (Publication date based on indi-
cated capture date by Archive.org; first publication date unknown).

(Continued)

Primary Lxaminer — lruong V Vo

(74) Attorney, Agent, or Firm — Vista IP Law Group,
LLP

(57) ABSTRACT

A method and product for implementing application consis-
tent snapshots of a sharded relational database across mul-
tiple storage arrays using a distributed and federated pro-
tection domains model across two or more storage clusters.

20 Claims, 10 Drawing Sheets

Cluster 105

VM
110c¢

Controlier VM
120b

E
E
E
E
E
E
E
E
i
E
|
i
E
|
|
E
;
E
|
E
E
;
!
ek

l“##“”

4 -
Shard 2 Shard 2

\ 150c¢ 150d
=

130¢C 130d

US 11,061,777 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Poitras, Steven. “The Nutanix Bible” (Jan. 7, 2015), from http://
stevenpoltras.com/the-nutanix-bible/ (Publication date based on indi-

cated capture date by Archive.org; first publication date unknown).
Poitras, Steven. “The Nutanix Bible” (Jun. 9, 2015), from http://
stevenpoltras.com/the-nutanix-bible/ (Publication date based on indi-
cated capture date by Archive.org; first publication date unknown).
Poitras, Steven. “The Nutanix Bible” (Sep. 4, 2015), from https://
nutanixbible.com/.

Poitras, Steven. “The Nutanix Bible” (Jan. 12, 2016), from https://
nutanixbible.com/.

Poitras, Steven. “The Nutanix Bible” (Jun. 9, 2016), from https://
nutanixbible.com/.

Poitras, Steven. ““The Nutanix Bible” (Jan. 3, 2017), from https://
nutanixbible.com/.

Poitras, Steven. “The Nutanix Bible” (Jun. 8, 2017), from https://
nutanixbible.com/.

Poitras, Steven. ““The Nutanix Bible” (Jan. 3, 2018), from https://
nutanixbible.com/.

Poitras, Steven. “The Nutanix Bible” (Jun. 25, 2018), from https://
nutanixbible.com/.

Poitras, Steven. “The Nutanix Bible” (Jan. 8, 2019), from https://
nutanixbible.com/.

Cano, I. et al., “Curator: Self-Managing Storage for Enterprise
Clusters”, 14th USENIX Symposium on Networked Systems Design
and Implementation, NSDI *17, (Mar. 27, 2017).

* cited by examiner

US 11,061,777 B2

Sheet 1 of 10

Jul. 13, 2021

U.S. Patent

=1

I Ol
POE | 20¢ 1 qos | 20E |
POSG | 006G | BQS|
¢ pleys ¢ pieys ¢ PIEYS 061

Aozl
NIA J8]j05u0D

INA J8||03U0) 201

oLl

Q011
ATA

NGo| Jeisn|) "GO Jaysn|)

001

US 11,061,777 B2

Sheet 2 of 10

Jul. 13, 2021

U.S. Patent

¢ Ol

Orc

10D 4 8Y) UIyum sia)sn|o abelols Jusiaylp au)
SS0Joe ueds Jey] spJeys ay] Ul palols elep painguisip
ay] Jo sjoysdeus Juajsisuod uoneolidde aynoex3

0€C

(10004 “b8) ulewop
U0I1108)04d UonBUIPJO0D ADUS]ISISUOD palkiaps) B Wio

SJBISN[O 8JoW JO OM) 8U) SSoJoe psuueds spieys
9JOW JO 0M] 8U} Ul SINA Jo dnoub ay) wouy elep 81018

OLcC

o2Jnjoajiyole
uolezijenuiA B Ul SJ8)}snjo aloW JO OM] UO spleys aJowl
JO OM] PUB JB)SeW pieUusS B ‘SINA 1O Alljleln|d e AJliuap|

00C

US 11,061,777 B2

Sheet 3 of 10

Jul. 13, 2021

U.S. Patent

N iiiii!l‘.!!III!!II_!I‘I’I’iiii;i___ "
i!i-‘l- ll-.iiii
iEE L T T
g R s TS IV ettt s,
skl - e LS
ap—— Wiy

L T
LT
-"iif

e

Y inkipinlgirly iy
e T

PZ¢ obelols DOYIOMISN
207

iEEiiiiii!i
skl . TP
b

iiltl.lt_.ll-l._

gZe obelols

T4 | zze sva | |sze ass ||
sbeiois profd | | l—Jb—m—"d

Se—— R

09¢ 100d abelols

400¢

| S[0]33
NA J8joJjuo)

PCOC 2¢0t
NN JoS() AIA 19ST)

Ore HOMISN

ARRALRS ARALALAE AMMALALE AMGALLL ELALLLAF SLALALLE

e0LE
AIA J8jjoljuo)

4coe ecoc
NN 198 INA 19ST) |

¢ 9iInbi4

e00¢

/

ummmm_———"nm“mmm“-m

¥ Old
0L

SJOJeUIpJooD dnMoed pJeys aAE|S [|E 0} pUBWWOD MEU) B 8)NJaX]

09v

SJO)JeulpJood dnyoeq pJeus ||e woJj) joysdeus
JUS)SISU0? uoleodljdde jo uone|dwo? |N}JSSa2oNns JO UOIIBWIIIUOD SAIS09Y

US 11,061,777 B2

01917

—
m SJOJeUIPJ00d dnyoeq pJeys ||B ssoJoe joysdeus Juslsisuod uoneslidde ajeniu
-
5 OvP
=
z SJ01euIpJo0o)

dnyoeq pJeys aAB|s 8y} 10 ||B WOJ} ©Z88J) [NISS8INS JO UOHEWIIIUOD SAIS08Y
y—
=
S 0EY
e SJO1BUIPJ00D dnyoeq pJeyS oAB[S [[B O} [[BD [0J1uod dnyoed e aleniyl
=
-

047

SJa||0Jiu0o abel0]s 8J0W JO U0 8] SS0Jor Joysdeus Jus)SISUoD
uoneoldde auj BuneuIpIooD J0} JOJeUIpJood dnNYorg pJeys Je)Sew . 109|]

OlLv

sJalsn|o abelols alow Jo suo $S0Jok buluueds Joysdeus JUsISISUOD
uoleoljdde sy} ‘Joysdeus jualsisuod uoljeoljdde ue Joj 1senbal e aAI808 Y

U.S. Patent

US 11,061,777 B2

Sheet 5 of 10

Jul. 13, 2021

U.S. Patent

g Old

099

Puisseooid |ewIOU BWNSal 0} L.0DD 4 8y} Ul
SalI)JUa J0) SWa)SAS |BO0| 8U) U0 SPJeUS au] OJul PUBWIWOD MEY] B 8JNJ8X3]

059

sjoysdeus dnyoeqg 3o0] Aj|NjSS800Ns SI0)euUIpJo0d dnyoed aAB|S
JaUylo ||e 1ey} JoJeuIplood dnyorg Jalsew ay) Wol) UOHEWIIJUOD SAIS08Y

0]4°

sdnyoeq Joysdeus uona|dwod snjels puas pue 0D ay)
Ul Salljua ay) Jo} Swa)sAs |BO0| 8y} Uo spJeys au) Jo sjoysdeus dnyoeq axel

0€G
JO]BeUIpJ00D dnXoeq Ja)Sew 0] SNIBIS 8z88l) [NJSS829NS JO UOIBWIIIUOD PUSS

0CG
L0 4 Y} Ul S8IJ1IUS JO) SWS)SAS [BO0| UO SpJeUS OJul S||BD 8z98J) anss|

OLG
Jo]euIpJo0o dnyoeq Jalsew B Wolj [|BD 8Z8al} B 8AI808Y

US 11,061,777 B2

081 olyed] |
|IOJJUOD) |
= dozo as/l eG/ | 20Z9
S PO dnyoed 0S-004 9S-004 PO dnyjoeg
< _
E
e
P, - - T T T T T T T T T T T T T T T — 1T
|
R q019 2019
~ | (e007-aQ) senu3 (18007-QJ) sennul
S “
« | F N .
_ 091
= 100D
NGoL J1e18n|D GO J8IsN|D
0/}
JN-DD4

009

U.S. Patent

V. Old

DOG FTgsliasy RISy BALIEA BEA T

US 11,061,777 B2

I3 B s s 8 A A 05

b & e N i e g e

Y SET WA0E SS8NGYy abRIGys BB 180T m
= m
ﬂ iy iy R BB R N A T B B 0 0 O P AP PP L o TR NP o TP P R TP TR TSP LR PR W LA RN TP PR m

¥

L
k)

]

m
"i._
&
b
‘r
-
ik
'i..-ur
‘I.T'
2
k2
53
=2
gk
At
.
e

. . T,
ol] # 3
€= ¥ = x = x] 4 v “-l- h ¥
‘ AR g
S - J - - A H ‘“ 1 s “1 A
. = m “ = -y LY. T : l-l-.__-l.l-l-l-lul-l-lq l-l-lrl_-.ﬂllu ._-lil.l-l-l-lu

¥
— %
1 11 m “.,M.u
P> n@ﬂm ARl WA e K [y m %
& . Wnets A ..:ﬁw - w\, et ﬂ.“ m._ : _ c \m %
= o — _ b { p ﬁz& *
= GLe m_.uﬁ@ (s ok g pﬁq_.w& @ &mﬁ J 2L m BRIZERE] 1 e ' 4
2 m FULIIT Y
: . y v

ZLG APINE S FEDRURR SUNET ISRDD

LH | A%

TRC sy Sanrahlien

lll

3 5y 4782 _..“_mmmﬁ@uL

llllllllllllllllllllllll

Jul. 13, 2021

GG B
AFHRIEH LD

T T I T e b e A — P e I

W~ 05 SI5EN5E NG . 207 5 sa0ka Fod $E T W T0% SIEENESY S

LT3 LIS BTN TR e %,
DS

U.S. Patent

d. Old

ll

LT VA VB HAGHK R
CLER PIOE D01 IGHIah;

.....

E

P

{

US 11,061,777 B2

%‘h

b5 T VI RO ARG ey

o
it
Al
v
3N
s
Ep
AP
Ay

& o oa

| NN W - 2ri0 | 1nda b

.....................

GBS L
HALER L0
HYBI N

Sheet 8 of 10

Sl RRANE 4 WTEUEYE BULETY BRI

mﬁ .a@w.._m_m L AL €

Jul. 13, 2021

;
§
:
£
*
g
§
1
|
EE @Q%E Ao Y9 BTA, L
j
£
W.n..
___mn.._wn
:
}

m TGOS WL

m £ALE] 4

1 RSB Jf SERD LI LEL TR A

]
OET soraes\s Ao BRIy SR

SEEL ﬁéﬁgmm A W 2010 SA59NDas Coikd

6 B $EIT SUOBETIHUARLIT s ﬁ,,_. o
(LY

U.S. Patent

9L Ol4

8O s en HemAg Bungisdes

US 11,061,777 B2

PERICIELIRIN 4 R ENBIOTT SRS

—

o

Cop

=

N

~

W

L

m\nu SLOINY DRFURIBEISO™ IS
A

=\ § LIRS DRI BT SRS
e

e}

A _

e GG WIAMEYRY BRI

— 2 T o EE—
-

THATE SR,
FEAIMER T

YeE SRUBISH ERIeIUG D HOEINDaRT] HS

-~ bOE FIANEE BIS W 205 SEANDEN 1E0T) . 20 SLRETHR E=

U.S. Patent

lllllll

TERg e HIBLP AR oo bl Y

...tm.‘ P e BEAALCA A HARRE R, e

by 25 1ORRE 0D TR

beoe 1804 SRR HIGKER

..1.......__._..__1.__1.1L-...p-.Lw.__1.__1..1.1...1\h\\\\\\;ﬂ\ﬁhﬁi&;ﬁh\h\\.ﬁ\

.\.;\.L....\...\.L\.L..u\..hﬂt..\u\u.ﬂ.\u\. ol AN A IF, .._._..L.__..\...\.L.__...ﬁﬂ,

MR | | 20D bkl 2

o %&5 TNty
ey § { ?M, %mm |
Eﬂmﬁu% 7 :

) ﬂh ol o o ot g g
A i

1

O o A ol R LA s A o o Tl A Ao Al i ol A o A A A o ol A A AL XA AT

s __ ,_ E‘HMLNE.%WE _ conppes

il o U BGOSR TR

3 iy oy |

e

US 11,061,777 B2

8 Ol

L0Vl

(S)Jossao0.d

cerl
dd

eerl

0B a)u|
ele(d

0vl

sng

AUIT
SUOIE2IUNWWOY
Glil
—
Yo
Sol
° 14474
—
— 0B LBU|
@ sSUonE2IuUNWWOo)
7
Yo—
-
—
&
uct
—_ OLvrl
= 90IAS(]

abelo]g

U.S. Patent

oc0rl
NOH

Levl

clyl

a2IAa(]
1nduj

LIyl
Aeldsiq

00,4

US 11,061,777 B2

1

METHOD AND PRODUCT FOR
IMPLEMENTING APPLICATION
CONSISTENT SNAPSHOTS OF A SHARDED

RELATIONAL DATABASE ACROSS TWO OR
MORE STORAGE CLUSTERS 5

FIELD

This disclosure relates to the field of implementing appli-
cation consistent snapshots of a sharded relational database 10
across multiple storage arrays, using a distributed and fed-
erated protection domains model across two or more storage
clusters.

BACKGROUND 15

Distributed databases may leverage an architecture in
which relational table spaces are spread across multiple
databases heremafter referred to as “data shards™. Access to
these data shards 1s controlled by a shard master. The shard 20
master 1s the entry point to the sharded namespace that stores
table definitions, code, and data for non-sharded tables. Any
number of shard servers provide scalable storage and data
caching for sharded tables, where sharded tables are parti-
tioned across shard servers. Access to the shard servers are 25
transparent to the user, making it appear to the user that they
have traditional relational database (DB) access to one
massive dataset.

(iven the scale out nature of a data sharding mechanism,

a relational dataset could be spread across two shards, and 30
be tens of gigabytes (GBs), to hundreds of GBs, and further
to dozens of terabytes (1Bs). This relational dataset could
scale to dozens or even hundreds of shards, where each
shard may scale from tens of GBs to dozens of TBs 1n size.
For example, some databases can scale up to 255 shard 35
members. Assuming an average size of 10 TB per shard,
wherein 255 shard members at an average 10 TB makes a
potential dataset to have a size of ~2.5 petabytes (PBs). An
increase 1n either server-side table space or an increase 1n
shard members within a single shard master namespace 40
would drive the overall relational space to single digit PBs
or even double digit PBs. For example, in a world of
internet-oi-things (TOT) data streaming (and other ever-
increasing data needs) this prolific growth 1n data storage 1s
not out of the question. 45

(iven these numbers of single digit PBs to multi digit PBs
scale across a single shard master, data requirements either
in space or 10 performance may out scale either the capa-
bilities of one single cluster or need to otherwise be parti-
tioned into multiple clusters, to service the entire require- 50
ment.

The challenge here becomes backing up this massive
dataset with application consistency. Relational databases
typically have database level backup utilities. However,
these utilities, both 1n sharded relational databases or 1n 55
NoSQL type of databases, may not have the ability to
perform “shard master” level application consistency snap-
shots, where particular shards under the management of a
shard master must be backed up 1n an application consistent
snapshot. To make matters even worse, 1n some cases, a 60
single shard may span one or more clusters wherein each
cluster may have a diflerent namespace and different cluster
management components. Even with clock synchronization,

a miscoordination of a nanosecond could miss critical trans-
actions. Given that some of the systems support mission 65
critical, life critical, or financial critical applications, losing
transactions 1s not an option.

2

Furthermore, certain applications may bypass the shard
master completely and communicate directly with some of

the shards. In a backup and recovery situation, it 1s not
always practical or possible for the shard master to ensure
consistency, especially if the shard master 1s not on the same
cluster. Database vendors have explicitly acknowledged the
limitation of backing up application consistent snapshots for
sharded databases that span clusters as a problem. Database
vendors oflering sharding mechanisms have made the
requirement for use of sharding only when the database
sharding technology 1s used on one array (e.g., within a
single cluster), and not across multiple arrays (e.g., multiple
clusters).

Legacy systems have the ability to take application con-
sistent snapshots of datasets when the dataset 1s stored on a
single storage system (e.g., a single cluster). Other legacy
systems can maintain consistency across storage systems
(e.g., clusters) through mechanisms such as synchronized
replication and such. However, no solutions currently exist
that has the capacity to coordinate a storage-side snapshot
across disparate clusters such that one storage level appli-
cation snapshot of the entire dataset may be taken, especially
when the data 1s distributed across shards that may span
across disparate clusters.

Therefore, there 1s a need for an approach to solve the
alorementioned problems.

SUMMARY

Embodiments of the present invention provide a system,
products and methods for implementing application consis-
tent snapshots of a sharded relational database distributed
across multiple storage arrays using a distributed and fed-
erated protection domains model distributed across two or
more storage clusters.

Snapshot coordination may be performed by an elected
master backup coordinator such as a federated consistency
coordination master coordinator (FCC-MC). The FCC-MC
directs multiple storage systems to perform at least storage
array side snapshots in a simultaneous and coordinated
fashion with respect to other storage arrays within the
federation. “storage systems” and “storage arrays’ may
hereinafter be referred to as “clusters.” Conceptually similar
to a master process within a single array, the FCC-MC has
the additional responsibility of coordinating across multiple
arrays (e.g., multiple clusters).

In one embodiment, a computer-implemented method for
generating application consistent snapshots of data shards
distributed across a plurality of storage clusters includes
identifying a plurality of virtual machines, a shard master,
and two or more data shards distributed on a plurality of
storage clusters 1n a virtualization environment. The method
also includes forming a federated consistency coordination
protection domain (FCC-PD), the FCC-PD comprising: a
group of virtual machines chosen from the plurality of
virtual machines identified, and a group of data shards
associated to the group of virtual machines chosen, the
FCC-PD distributed across the plurality of storage clusters.
Additionally, the method includes generating an application
consistent snapshot of the FCC-PD.

In one or more embodiments, the FCC-PD 1s a defined
group ol virtual machines that are backed up together, the
group ol virtual machines executing across the plurality of
storage clusters.

In one or more embodiments, generating the application
consistent snapshots of the FCC-PD includes electing a
master backup coordinator that coordinates the application

US 11,061,777 B2

3

consistent snapshot; 1ssuing, by the master backup coordi-
nator, a backup control call to slave backup coordinators in

the FCC-PD); receiving a confirmation of successtul freeze
ol data shards associated to the group of virtual machines
from the slave backup coordinators; 1ssuing, by the master
backup coordinator, a control call to perform a storage
cluster level snapshot of respective objects for entities with
a local domain of the slave backup coordinators; and 1ssuing,
by the master backup coordinator, a thaw control call to the
slave backup coordinators to unireeze the data shards after
the master backup coordinator receives confirmation of
successiul completion of the application consistent snapshot
from the slave backup coordinators within the FCC-PD.

In one or more embodiments, the master backup coordi-
nator 1s executed by a controller virtual machine. The master
backup coordinator i1s executed as a light weight process.
The master backup coordinator 1s a slave backup coordinator
for its corresponding cluster. As soon as a single shard
within the local domain of the slave backup coordinator 1s
frozen, the slave backup coordinator begins processing a
snapshot of the shard that 1s frozen.

In one or more embodiments, a virtual machine corre-
sponding to the single shard 1s not thawed once the snapshot
ol the single shard 1s completed. Generating the application
consistent snapshot of the FCC-PD 1s for a multi-array crash
consistency. The application consistent snapshot 1s applica-
tion consistent at a namespace level.

Further details of aspects, objects, and advantages of the
invention are described below in the detailed description,
drawings, and claims. Both the foregoing general descrip-
tion and the following detailed description are exemplary
and explanatory, and are not intended to be limiting as to the
scope of the mvention.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings 1llustrate the design and utility of various
embodiments of the present disclosure. It should be noted
that the figures are not drawn to scale and that elements of
similar structures or functions are represented by like ref-
erence numerals throughout the figures. In order to better
appreciate how to obtain the above-recited and other advan-
tages and objects of various embodiments of the disclosure,
a more detailed description of the present disclosure brietly
described above will be rendered by reference to specific
embodiments thereof, which are 1llustrated in the accompa-
nying drawings. Understanding that these drawings depict
only typical embodiments of the disclosure and are not
therefore to be considered limiting of its scope, the disclo-
sure will be described and explained with additional speci-
ficity and detail through the use of the accompanying
drawings in which:

FIG. 1 1llustrates an example architecture in which some
embodiments of the disclosure are implemented;

FIG. 2 illustrates a high-level flowchart for implementing,
some embodiments of the present disclosure;

FIG. 3 illustrates an example architecture in which some
embodiments of the disclosure are implemented;

FIG. 4 1llustrates a flowchart for coordinating an appli-
cation consistent snapshot of sharded relational database
across multiple storage systems, according to some embodi-
ments ol the present disclosure;

FIG. 5 illustrates a flowchart for implementing an appli-
cation consistent snapshot by a slave backup coordinator,
according to some embodiments of the present disclosure;

FIG. 6 1llustrates an example architecture in which some
embodiments of the disclosure are implemented;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 7A-7C depict virtualized controller architectures
comprising collections of iterconnected components suit-

able for implementing embodiments of the present disclo-
sure and/or for use 1n the herein-described environments;
and

FIG. 8 1s a block diagram of a computing system suitable
for implementing an embodiment of the present invention.

DETAILED DESCRIPTION OF THE
EMBODIMENTS OF THE INVENTION

Various embodiments will now be described 1n detail with
reference to the drawings, which are provided as illustrative
examples of the disclosure so as to enable those skilled 1n the
art to practice the disclosure. Notably, the figures and the
examples below are not meant to limit the scope of the
present disclosure. Where certain elements of the present
disclosure may be partially or fully implemented using
known components (or methods or processes), only those
portions of such known components (or methods or pro-
cesses) that are necessary for an understanding of the present
disclosure will be described, and the detailed descriptions of
other portions of such known components (or methods or
processes) will be omitted so as not to obscure the disclo-
sure. Further, various embodiments encompass present and
future known equivalents to the components referred to
herein by way of illustration.

Embodiments of the present disclosure provide an
approach to implement application consistent snapshots of a
sharded relational database distributed across multiple stor-
age systems, hereinaiter may be referred to as “clusters.”
The application consistent snapshot of the sharded relational
database that spans across multiple clusters may be orga-
nized 1 a federated consistency coordination protection
domain. A protection domain 1s a defined group of virtual
machines to be backed up locally on a cluster.

A Tederated consistency coordination protection domain
(FCC-PD) 15 a “spanned” protection domain where a master
backup coordinator coordinates snapshots with, as an
example, database online backup calls across multiple dis-
parate clusters to guarantee an application consistent snap-
shot across the disparate clusters of datasets corresponding
to the defined group of virtual machines to be backed up
together, wherein the term “federated” means to form or be
formed 1nto a single centralized unit. Therefore, a federated
consistency coordination protection domain 1s a plurality of
virtual machines with corresponding shards distributed
across one or more storage clusters that are grouped together
into a single umt such that the single unit may be backed up
via an application consistent snapshot.

A storage cluster 1s a group of storage servers that act like
a single storage system that enables high availability and, 1n
some cases, load balancing and parallel processing. In many
embodiments, a storage cluster may include a plurality of
processing nodes and storage devices working as a single
storage system 1n a virtualization environment. In many
embodiments, the virtualization environment may include a
plurality of storage clusters spanned across geographical
locations. In some embodiments, each storage cluster may
include 1ts own respective namespace such that different
storage clusters may each include different namespaces. In
some embodiments, data shards may be distributed amongst
a plurality of servers within a particular cluster. In some
embodiments, the data shards may be distributed amongst a
plurality of clusters as well.

The present disclosure provides a coordination mecha-
nism that includes the master backup coordinator to coor-

US 11,061,777 B2

S

dinate the application consistent snapshots of the sharded
relational database within the FCC-PD that spans across
multiple clusters. The master backup coordinator commu-
nicates with slave backup coordinator(s) at each of the
clusters to coordinate the application consistent snapshots
across the FCC-PD.

Upon receiving a request to take an application consistent
snapshot of a dataset stored 1n one or more shards within an
FCC-PD that spans across multiple clusters of a storage
architecture, a master backup coordinator may be elected to
coordinate the implementation of the snapshots. The master
backup coordinator may initiate a freeze call to all slave
backup coordinators to freeze and seize all write operations
into their respective local shards within the FCC-PD. Once
the master backup coordinator receives acknowledgement
from each of the slave backup coordinators of the successiul
freezing of their respective shards, the master backup coor-
dinator instructs each of the slave backup coordinators to
take the snapshot of the respective shards within 1ts respec-
tive cluster. Once the master backup coordinator receives
successiul acknowledgements from all slave backup coor-
dinators that all snapshots are successtully completed, the
master backup coordinator 1ssues a thaw command to
resume normal operations on all of the previously frozen
shards across the FCC-PD.

It 1s the coordination between the master backup coordi-
nator and the slave coordinators within the FCC-PD that
guarantees the snapshots created by each of the backup slave
coordinators, collectively, are an application consistent
snapshot of the sharded relational database that spans across
multiple storage clusters of the FCC-PD.

For example, assuming an FCC-PD includes a dataset that
1s stored on shards that span across 10 clusters. During an
application consistent backup, for some reason, only 9 out of
10 clusters 1n the federated consistency group successiully
froze 1/0 operation within their respective shards, and the
107 cluster failed to do so after a configurable timeout
period expires. The master backup coordinator would not
1ssue 1nstructions for the backup slave coordinators to take
their relative snapshots. Instead, the master backup coordi-
nator would 1ssue a “thaw” instruction to have the 9 other
clusters resume normal operations such that, the application
consistent snapshot 1s canceled so that it may be performed
at a later period of time. Perhaps after the 1ssues that plagued
the 10” cluster from successfully freezing its local shards
within the timeout period.

However, assuming all 10 clusters within the federated
consistency group successiully acknowledged the comple-
tion of the freezing of the shards, then the master backup
coordinator would 1nstruct the slave backup coordinators to
take the snapshots of the shards within 1ts coordination
domain local (CD-local).

In some embodiments, optimization features may be
included 1n the process to further improve the efliciencies of
the coordinated application consistent snapshot. For
example, one optimization feature may include the slave
backup coordinator taking snapshots of the shards within its
CD-local as soon as the slave backup coordinator success-
tully completes 1ts freeze operations. This way, as soon as
the master backup coordinator initiates the instructions for
all slave backup coordinators to take the snapshot (thereby
implicitly acknowledging that all slave backup coordinators
have successtully completed the freeze operations), the
slave backup coordinator would simply mark the taken
snapshots as a “good” snapshot and send confirmation to the
master backup coordinator of the completion of the snap-
shot.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 1 shows an example architecture in which some
embodiments of the disclosure are implemented. System
100 1s a virtualization environment that comprises at least
two clusters—<cluster 105, and cluster 1035,,, where N can be
any number 2 or greater corresponding to a number of
clusters 1 system 100.

Cluster 105, may include node(s) 105, one or more

databases 1304 and 1305, shard master 135, data shard 140a,
data shard 14054, data shard 150q, data shard 15054, and a
tederated consistency coordination master backup coordi-
nator (FCC-MC) 170.

In this particular example, cluster 105, 1s depicted as
having only one node 105 for simplicity of explanation.
Cluster 105,, during normal operation, may have one or
more node(s) 105. Node 105 may include one or more user
virtual machines (VMs) 110, and a controller virtual
machine (CVM) 120a. VM 110a may have an application
App 1 (not shown) executing on VM 110a. VM 1105 may
have another application App 2 (not shown) executing on
VM 11056. App 1 may access 1ts dataset from data shard 140aq
stored 1n database 130a. App 2 may access 1ts respective
dataset from a diflerent data shard 1506 stored 1n database
1306. Both VM 110a and VM 11056 access their respective
datasets via controller VM (CVM) 120a. CVM 120 1s
disclosed 1n more details below.

Sharding 1s a type of database partitioning that separates
very large databases the into smaller, faster, more easily
managed parts called data shards. The word shard means a
small part of a whole. In the simplest sense, sharding a
database involves breaking up a big database into many,
much smaller databases that share nothing and can be spread
across multiple servers. Technically, sharding 1s synony-
mous with horizontal partitioning. Sharding 1s often used to
refer to any database partitioning that 1s meant to make a
very large database more manageable. The governing con-
cept behind sharding 1s based on the 1dea that as the size of
a database and the number of transactions per unit of time
made on the database increase linearly, the response time for
querying the database increases exponentially.

Additionally, the costs of creating and maintaining a very
large database 1n one place can increase exponentially
because the database will require high-end computers. In
contrast, data shards can be distributed across a number of
much less expensive commodity servers. Data shards gen-
crally have comparatively little restriction as far as hardware
and software requirements are concerned. In some cases,
database sharding can be done fairly simply. One common
example 1s splitting a customer database geographically.
Customers located on the East Coast can be placed on one
server, while customers on the West Coast can be placed on
a second server. Assuming there are no customers with
multiple locations, the split 1s easy to maintain and build

rules around.
Cluster 105,; includes a node (not shown), VM 110c, a

CVM 1205, one or more storage devices 130¢c and 1304,
data shard 140¢, data shard 140d, data shard 150¢, data shard
1504, and a federated consistency coordination slave backup
coordinator (FCC-SC) 175. VM 110c¢ may have an applica-
tion App 1 (not shown) executing on VM 110c. App 1 may
access 1ts dataset from data shard 140c¢ stored 1n database
130c. VM 110c¢ accesses 1ts datasets via controller VM
(CVM) 12056. CVM 120 1s disclosed 1n more details below.

System 100 also includes a federated consistency coor-
dination protection domain 01, hereinaiter referred to as
“FCC01 160”. FCCO01 160, in the present embodiment, 1s a
tederated consistency coordination protection domain that 1s

formed 1dentifying VM 110aq and VM 110c¢ as a group of

US 11,061,777 B2

7

VMs to be backed up locally within their respective clusters,
which includes snapshots of their associated data shards
140a and 140c¢, respectively. Other VMs, not depicted 1n

FIG. 1, may also include applications that access the shards
140 that are members of FCCO1.

FCC-MC 170 1s a master backup coordinator that coor-
dinates storage array side snapshots in a simultaneous fash-
ion across multiple clusters while maintaining the business
logic state of the operation. Conceptually similar to a master
process within a single array with the exception that the
master backup coordinator has the responsibility of coordi-
nating with multiple arrays (e.g., multiple clusters). The
FCC-MC 170 1s depicted as executing within the controller
VM 120aq. In other embodiments, the FCC-MC 170 may

execute as a separate third-party service such as, for

example, a light weight process, instead of operating within
the CVM 120. The FCC-MC 170 1s elected at the start of the

backup process. For example, during a backup operation, an
FCC-MC 170 1s elected from the multiple clusters to coor-
dinate the coordinated backup operation across the federated
consistency coordination protection domain. In the present
embodiment, the elected FCC-MC 170 1s executing within
the CVM 120q on cluster 1 to coordinate the application
consistency snapshot across FCC01 160. The election of the
FCC-MC 170 may be based on server utilization rates,
available server resources such as CPU, memory, etc, or
proximity to the entity requesting the coordinated backup/
snapshot of the FCCO01.

FCC-MC 170 communicates with FCC-SC(s) 175 from
other clusters within the FCC01 160 to coordinate the
backups/snapshots. FCC-MC 170 may communicate with
respective FCC-SC(s) 175 via a software layer that allows
user VM(s) 110 to communicate with controller VM(s) 120
and allows the controller VM(s) 120 to communicate with
other controller VM(s) 120 within 1n the entire virtualization
environment via control traflic 180. The software layer is
installed on all shard systems to provide communication
within the local cluster and external clusters for control
traflic.

Shard group 180 includes shards 140 because shards 140
are shards associated with respective VMs defined within
the FCCO01 to be included in the application consistent
snapshots. When an application consistent snapshot 1s taken
for VMs of FCCO01 160, the coordinated application consis-
tent snapshot will be of shard group 180, which comprises
shards 140 associated to VMs 110aq and 110c.

FI1G. 2 1llustrates a high-level flowchart for implementing
some embodiments of the present disclosure. Method 200 1s
a computer-implemented method for generating application
consistent snapshots of data shards distributed across a
plurality of storage clusters. At 210, a plurality of virtual
machines (VMs), a shard master, and two or more data
shards distributed on a plurality of storage clusters i a
virtualization architecture are identified. A portion of the
plurality of VMs may operate 1n a first cluster while another
portion of the plurality of VMs may operate 1n a different
cluster 1n the virtualization environment. The VMs may
access data shards that may be distributed across their
respective cluster and/or distributed across other clusters in
the virtualization environment. The shard master is the entry
point to the sharded namespace, and stores table definitions,
code, and data for non-sharded tables, as discussed above.
The two or more data shards may correspond to data shards
distributed and partitioned across servers within a cluster
and/or distributed across other clusters. In some embodi-
ments, the plurality of storage clusters comprises disparate

10

15

20

25

30

35

40

45

50

55

60

65

8

storage clusters. Yet even in some other embodiments,
storage systems within a single cluster may include disparate
databases.

At 220, datasets associated to the plurality of VMs are
stored and accessed 1n the two or more data shards that are
distributed and/or partitioned across the two or more clus-
ters. The datasets corresponding to transactional data and/or
metadata associated with normal operations of applications
running on the plurality of VMs 1dentified. Similar to data
being stored mto distributed database tables within a cluster,
the datasets associated to the plurality of VMs are stored in
the two or more data shards that may be distributed within
a storage cluster and/or distributed across the plurality of
storage clusters in the virtualization environment. In some
embodiments, the data shards may be stored on disparate
storage systems.

At 230, a federated consistency coordination protection
domain (e.g., FCC01) 1s formed. The FCC01 comprises a
group of VMs chosen from the plurality of VMs identified,
and at least a group of data shards storing data associated to
the group of VMs chosen. A first portion of the VMs from
the group ol VMs chosen to be included in FCCO01 may
operate 1n a first cluster while a second portion of the group
of VMs chosen may operate 1n a second cluster. Similarly,
a first portion of the data shards from the group of data
shards may operate 1n a first cluster for handling I/0 requests
for the first portion of VMs. A second portion of the data
shards from the group of data shards may operate 1n a second
cluster for handling I/O requests for the second portion of
VMs. In some embodiments, the entire group of VMs
chosen and the entire group of data shards associated to the
entire group ol VMs chosen may all operate within a single
cluster. In other embodiments, the entire group of VMs
chosen may be associated with a group of data shards
distributed across a plurality of storage clusters.

At 240, application consistent snapshots of the datasets
stored on the two or more data shards within the FCCO01 are
executed. Execution of the application consistent snapshots
require a coordinated eflort to guarantee an application
consistent snapshot of one or more datasets 1n the FCCO01 1s
generated, especially with the FCCO01 comprising data
shards that are distributed and/or partitioned across a one or
more clusters. More details of how the application consistent
snapshot 1s guaranteed 1s discussed below 1n FIGS. 4 and 5.

FIG. 3 illustrates an example architecture in which some
embodiments of the disclosure are implemented. The archi-
tecture of FIG. 3 can be implemented for a distributed
platform that contains multiple nodes/servers 300a and 30056
that manages multiple-tiers of storage. The nodes 300q and
3005 may be within the same block, or on different blocks
in a clustered environment of multiple blocks. The multiple
tiers of storage include storage that 1s accessible through a
network 340, such as cloud storage 326 or networked
storage 328 (e.g., a SAN or “storage area network™). In
addition, the present embodiment also permits local storage
322/324 that 1s within or directly attached to the server
and/or appliance to be managed as part of the storage pool
360. As noted above, examples of such storage include any
combination of SSDs 325 and/or HDDs 327. These collected
storage devices, both local and networked, form a storage
pool 360.

Virtual disks (or “vDisks™) can be structured from the
storage devices 1n the storage pool 360, as described in more
detail below. As used herein, the term vDisk refers to the
storage abstraction that 1s exposed by a Controller VM to be
used by a user VM. In some embodiments, the vDisk 1s
exposed via 1SCSI (“internet small computer system inter-

US 11,061,777 B2

9

tace”) or NFS (*network file system”) and 1s mounted as a
virtual disk on the user VM. Each server 300a or 3005 runs
virtualization soitware, such as VMware ESX(1), Microsoit
Hyper-V, or RedHat KVM. The wvirtualization software
includes a hypervisor 330/332 to manage the interactions

between the underlying hardware and the one or more user
VMs 302a, 3025, 302¢, and 302d that run client software.

Controller VM 310a/3105 (also referred to herein as
“service VMs”) are used to manage storage and I/O activi-
ties. This 1s the distributed “Storage Controller” in the
currently described architecture. Multiple such storage con-
trollers coordinate within a cluster to form a single-system.
The Controller VMs 3104/31056 are not formed as part of
specific implementations of hypervisors 330/332. Instead,
the Controller VMSs run as virtual machines above hypervi-
sors 330/332 on the various nodes/servers 302a and 3025,
and work together to form a distributed system 310 that
manages all the storage resources, including the locally
attached storage 322/324, the networked storage 328, and
the cloud storage 326. Since the Controller VMs run above
the hypervisors 330/332, this means that the current
approach can be used and implemented within any virtual
machine architecture, since the Controller VMs of embodi-
ments of the mvention can be used in conjunction with any
hypervisor from any virtualization vendor.

Each Controller VM 310a-b exports one or more block
devices or NFES server targets that appear as disks to the
client VMs 302a-d. These disks are virtual, since they are
implemented by the software running inside the Controller
VMs 310a-b6. Thus, to the user VMs 302a-d, the Controller
VMs 310aq-b appear to be exporting a clustered storage
appliance that contains some disks. All user data (including
the operating system) in the client VMs 302a-d resides on
these virtual disks.

Significant performance advantages can be gained by
allowing the virtualization system to access and utilize local
(e.g., server-internal) storage 322 as disclosed herein. This 1s
because 1/O performance i1s typically much faster when
performing access to local storage 322 as compared to
performing access to networked storage 328 across a net-
work 340. This faster performance for locally attached
storage 322 can be increased even further by using certain
types of optimized local storage devices, such as SSDs 325.
Once the virtualization system 1s capable of managing and
accessing locally attached storage, as 1s the case with the
present embodiment, various optimizations can then be
implemented to improve system performance even further.
For example, the data to be stored in the various storage
devices can be analyzed and categorized to determine which
specific device should optimally be used to store the items
of data. Data that needs to be accessed much faster or more
frequently can be 1dentified for storage in the locally
attached storage 322. On the other hand, data that does not
require fast access or which 1s accessed infrequently can be
stored 1n the networked storage devices 328 or in cloud
storage 326. In addition, the performance of the local storage
can be further improved by changing the mix of SSDs and
HDDs within the local storage, e.g., by increasing or
decreasing the proportion of SSDs to HDDs 1n the local
storage.

The present architecture solves storage challenges for
virtual machines providing a general-purpose scale-out
compute and storage inirastructure that eliminates the need
for network storage. In part, this 1s due to the distributed
nature of the storage controller infrastructure that utilizes
controller VMs to act as a virtual controller for SOCS. Since
all the Controller VMs 1n the cluster communicate with each

10

15

20

25

30

35

40

45

50

55

60

65

10

other to form a single distributed system, this eliminates the
limitations and performance bottlenecks associated with
traditional SAN solutions that typically have only 1, 2, 4 or
8 controllers. Therefore, n-node clusters will essentially
have n controllers, providing a solution that will easily scale
to very large data volumes.

In addition, the solution will very eflectively support
virtualization and hypervisor functions, within a single
virtualization appliance (block) that can be extensively

combined with other blocks to support large scale virtual-
1zation needs. Since the architecture 1s VM-aware, 1t over-
comes limitations of traditional solutions that were opti-
mized to work only with physical servers. For example, the
present approach overcomes limitations associated with the

traditional unit of management for storage pertaining to
L.UNSs, where 1f a LUN 1s shared by many VMs, 1t becomes
more diflicult to perform storage operations such as backup,
recovery, and snapshots on a per-VM basis. It 1s also diflicult
to 1dentily performance bottlenecks 1n a heavily-shared
environment due to the chasm between computing and
storage tiers. The current architecture overcomes these limi-
tations since the storage units (vdisks) are managed across
an entire virtual storage space.

Moreover, the present approach can eflectively take
advantage of enterprise-grade solid-state drives (SSDs).
Traditional storage systems were designed for spinning
media and 1t 1s therefore diflicult for these traditional sys-
tems to leverage SSDs efliciently due to the entirely different
access patterns that SSDs provide. While hard disks have to
deal with the rotation and seek latencies, SSDs do not have
such mechanical limitations. This difference between the
two media requires the software to be optimized differently
for performance. One cannot simply take solftware written
for hard disk-based systems and hope to use it efliciently on
solid-state drives. The present architecture can use any type
of storage media, including SSDs, and can use SSDs to store
a variety of frequently-accessed data, from VM metadata to
primary data storage, both 1n a distributed cache for high-
performance and 1n persistent storage for quick retrieval.

In some embodiment, to maximize the performance ben-
efits of using SSDs, the present architecture reserves SSDs
for I/O-1ntensive functions and includes space-saving tech-
niques that allow large amounts of logical data to be stored
in a small physical space. In addition, the present approach
can be used to migrate “cold” or infrequently-used data to
hard disk drives automatically, allowing administrators to
bypass SSDs for low-priority VMs.

The present architecture therefore provides a solution that
enables significant convergence of the storage components
of the system with the compute components, allowing VMs
and SOCS to co-exist within the same cluster (e.g., cluster
105,). From a hardware perspective, each block provides a
“building block™ to implement an expandable unit of virtu-
alization, which 1s both self-contained and expandable to
provide a solution for any sized requirements.

FIG. 4 illustrates a flowchart for coordinating an appli-
cation consistent snapshot of sharded relational database
across multiple clusters/storage systems, according to some
embodiments of the present disclosure. At 410, a request for
an application consistent snapshot for a federated consis-
tency coordination protection domain (e.g., FCC01 160) 1s
received. The application consistent snapshot comprises
snapshots of data shards distributed across one or more
clusters 1n a virtualization environment. The request may be
for a namespace level consistency, and/or a shard master
level application consistency (e.g., guaranteed PB level

US 11,061,777 B2

11

application consistency across all shards 1n the namespace).
In some embodiments, the request may be originated from
an application.

At 420, a master backup coordinator (FCC-MC) 1s elected
for coordinating the application consistent snapshot by coor-

dinating with one or more slave backup coordinators (e.g.,
FCC-SC 175). Each cluster has at least 1 slave backup

coordinator (FCC-SC) communicating with the FCC-MC
for handling the application consistent snapshot on 1ts
respective coordination domain local (CD-local). As dis-
cussed above, the FCC-MC may execute as a module within
a controller VM. In other embodiments, the FCC-MC may
be executed as a separate stand alone third-party module on,
for example, a light weight process that may be deployed on
any computing server that may be communicatively coupled
to the virtualization environment. In some embodiments, the
master backup coordinator may communicate with the shard
master to retrieve shard information corresponding to the
one or more shards that spans across the plurality of storage
clusters. The one or more shards being included within the
FCC-PD (e.g., FCCO01).

At 430, the FCC-MC 1ssues a backup control call to
FCC-SC(s) within the FCC-PD (e.g., FCC01 160). Since the
FCC-SC(s) are on each of their own respective cluster, the
FCC-MC may also function as the FCC-SC for its corre-
sponding cluster. For example, referring to FIG. 1, FCC-MC
170 may also perform the functions of an FCC-SC for
cluster 1 since cluster 1 was designated as the master for

handling the application consistent snapshot request. There-
tore, although FCC-MC 170 1s the master backup controller

tor FCC01 160, FCC-MC 170 may also function as a cluster
1’s FCC-SC 1 performing the actual backup operations. The
FCC-SC 175 may i1ssue an application call to freeze all
shards within 1ts coordination local domain (CD-local). In
some embodiments, no application calls will be made.
Instead, 10 would be paused on all entities in FCCO01, and a
snapshot will be taken once all entities have successiully
paused.

At 440, the FCC-MC receives confirmation from each of
the FCC-SCs of completion of freeze operations across all
entities of the FCC-PD within their CD-local, which 1s just
the local entities of, as an example, FCCO01 on their entire
cluster (could span many nodes). This 1s an important step
because 1n order to guarantee the application snapshot 1s
consistent across the plurality of clusters, all snapshot must
be taken at a point 1n time that 1s marked for the plurality of
clusters. This 1s because in disparate clusters where the
dataset 1s not replicated from one cluster to another, but
instead, the dataset 1s independently managed by each
cluster, it 1s nearly impossible to ensure all snapshots are
consistent per a particular time TO. Therefore, nstead of
relying on an exact time TO for taking snapshots of the many
shards that span across clusters, grouping all snapshots of
the many shards within a particular transaction/coordinated
snapshot guarantees that the application snapshot 1s consis-
tent. For example, 11 not all of the clusters report back to the
FCC-MC that they were successiul 1n the freeze, the FCC-
MC would 1ssue a “thaw” control call so that the other
FCC-SC may release their freeze on their shards and the
FCC-MC would have to coordinate another application
consistent snapshot at a later time when all FCC-SC can
report a successiul freeze.

Once the FCC-MC recerves successiul replies from all
FCC-SC(s), at 450, the FCC-MC 1ssues an additional control
request to the FCC-SC(s) to perform a storage array side
snapshot for all respective objects (e.g., oplog, egroups,
vdisks, etc.) that are normally included within a snapshot for

10

15

20

25

30

35

40

45

50

55

60

65

12

all entities within the CD-local, and then return status. As
discussed above, once all FCC-SC(s) report successiul
freeze, now 1t’s guaranteed that the snapshots taken by each
of the FCC-SC(s) are consistent with respect to the current
application consistent snapshot.

At 460, the FCC-MC receives confirmation of successtul

completion of application consistent snapshots from all
FCC-SC(s). This indicates that the application consistent
snapshot across the FCC-PD 1s successtul.

At 470, the FCC-MC 1ssues a control call to the FCC-
SC(s) to “thaw” their respective entities to resume normal
operations since the application consistent snapshot of the
FCC-PD 1s successtul. Alternatively, 11 the backup was not
successiul (e.g., not all freeze operations were successiul or
not all snapshot executions were successtul), the FCC-MC
would still 1ssue a “thaw” control call to all FCC-SC(s) to
release their freeze and return to normal operations to
minimize system downtime. Upon an unsuccessiul backup
attempt, 1n some embodiments, the FCC-MC may start the
process again by reissuing a “backup’ control call to start the
process again at a later time.

FIG. § 1llustrates a flowchart for implementing an appli-

cation consistent snapshot by a slave backup coordinator,

according to some embodiments of the present disclosure.
At 510, the FCC-SC receives a “backup” control call (e.g.,

from step 430 of FIG. 4) to start the backup process. At 520,
the FCC-SC(s) 1ssue a “freeze” call into the shards on their
local systems for all entities 1n their FCC-PD (e.g., FCCO01).
As each shard freezes, all caches are flushed to disk.

Additional shard activity may occur within the
namespace; however, a global snapshot of the namespace
will NOT occur until all shard members are frozen success-
tully within the namespace. Once the freeze completes, no
more writes are accepted per shard. At 530, a “successiul
freeze” call 1s returned via, as an example, the software layer
to the FCC-MC once all freeze for all entities within the
FCC-PD of the local cluster are completed.

At 340, from a distributed processing perspective,
complementary technology already available may be lever-
aged to take backup snapshots of the shards on the local
cluster for the entities 1n the FCC-PD before receiving the
control call from the FCC-MC to take the backup snapshots.
For example, as soon as a single shard 1s successiul frozen,
an oplog marker from NearSync 1s notated and begins
processing the snapshot for the shard. Unlike traditional
snapshot processing where the VM would be told to thaw
and continue processing as soon as the snapshot of 1ts
corresponding shard 1s completed, the shard would remain
in a frozen stage until a future step (e.g., until the FCC-MC
issues the “thaw” control call to the FCC-SC or a timeout
threshold has been exceeded which indicates a failed global
backup). Taking the marker and beginning processing allows
the cluster to distribute the work of generating the snapshot.
However, the snapshot would only have a status of “vali-
dated good” once global activities of all other FCC-SC(s)
are successiully completed. For failed global activities, the
“sem1 processed” snapshot would be marked dirty and
discarded by, as an example, a garbage collection process.

The FCC-SC(s) would report the competition of these
snapshot activities as they occur to the FCC-MC {for each
entity. As there could be many entities, 1t may take some
time to report all of the entities. The FCC-SC then reports
the completion of snapshots taken across ALL entities within
FCC within their coordination domain local (CD-local),
which 1s just the local entities of FCCO01 on their entire
cluster (could span many nodes).

US 11,061,777 B2

13

The FCC-SC would then enter a standby/waiting mode
(with some sort of timeout value set via, as an example, a
GFLAG) to wait for additional control trathc. While 1n
standby/waiting mode, all shards are frozen and therefore
not accepting any new writes and are application consistent
at both a shard level AND cluster level, but NOT a
namespace level. Once the FCC-MC recerves successiul
replies from all FCC-SC(s), the FCC-MC 1ssues an addi-
tional control request to perform a storage array side snap-
shot for all respective objects (e.g., oplog, egroups, vdisks,
ctc.) that are normally performed with a snapshot for all
entities within the CD-local with a request for a return status.

Once the FCC-MC recetrves success status from all FCC-
SC(s) for the storage array side snapshot for all respective
objects, at 350, the FCC-SC(s) receives confirmation from
the FCC-MC that all other FCC-SC(s) successiully took
backup snapshots, thus the resulting federated snapshot waill
be application consistent at a namespace level and will be
marked “good.”

The FCC-SC receives a “thaw”™ control call from the
FCC-MC. At 560, the FCC-SC executes a thaw command to
their CD-local. As each shard 1s thawed, data service for the
partitions on that shard will be restored within the
namespace. Eventually, all shards will be thawed, and full
namespace functionality i1s restored. The resulting “good”
snapshot could be used for restore operations, or as an
“object” to be backed up via a backup API (e.g. CVLI,
Comtrade, etc.). Embodiments of the present disclosure
would especially be useful for “non-production™ data demo-
tion use cases, where a user may need access to 1 PB of data
for upgrade testing, bug validation, or other functional use
cases where production data cannot be touched.

In another embodiment, where the request for an appli-
cation consistent snapshot i1s required for an approximate
coverage such as a multi-array crash consistency. This
embodiment 1s largely similar to the processing steps of
FIGS. 4 & 35 disclosed above, with the exception that no
application calls are made. Instead, 10 would be paused on
all entities 1n the FCCO01, and a snapshot will be taken once
all entities have successiully paused. This also means that
the distributed marker approach 1s invalid. Instead, 10
marking would only be able to occur once 10 has paused
everywhere, such that markers would all be taken from the
same “‘state” of the application. From a recovery perspec-
tive, application would be recovered using the traditional
“crash consistent” recovery methodology, which usually
involve replaying transactions and running database consis-
tency checks. This present embodiment offers additional
protection that the application would not have otherwise,
and 1n some situations be actually preferred (even 1n non-big
data situations). The preference could be valid for datasets
that do not have the ability to have application consistency
(e.g., no facility for application flushing) and just need crash
consistency BUT happen to live on multiple arrays.

This present embodiment could also play into a “floating,
pool” of resources approach where a VM 1s a part of a
self-service portal (SSP) tenant 1s provisioned across mul-
tiple PE’s from PC, and then the user requests consistency
across the two VMs which happen to not be local to each
other. For example, a business may be provisioning
resources 1nto a seli-service portal (SSP), where the business
may have zero knowledge of the underlying topology.
Behind the scenes, the storage resources may be set up on
multiple shards within their “environment,” which may or
may not be configured on a same cluster. Given that the
business might not know where their resources are provi-
sioned, the business have zero way of telling whether the

10

15

20

25

30

35

40

45

50

55

60

65

14

shards are on the same storage system (e.g., cluster) or not.
This 1s also common 1n the cloud computing world where,
for example, a user may be provisioning hardware and
soltware resources 1nto a region or availability zone, which
are “‘non-physical” constraints provided by the cloud pro-
vider. Within the non-physical constraints, there may be
multiple storage domains that the user would not be aware

of.

FIG. 6 illustrates an example architecture in which some
embodiments of the disclosure are implemented. In particu-
lar, system 600 illustrates an operational diagram of slave
backup coordinators communicating with a master backup
coordinator and backup module for implementing an appli-
cation consistent snapshot for entities within 1ts local cluster.
System 600 comprises slave clusters 105, and cluster 105,..
Each cluster has entities 610, backup modules 620, and slave
backup coordinators FCC-SC 175. FCC-MC 170 1s depicted
as a stand alone light weight process runming outside of
cluster 105, and cluster 105,. In an alternate embodiment,
FCC-MC 170, as discussed above, may execute outside of
the clusters as a stand alone light weight process to coordi-
nate the application consistent snapshot across the FCCO01
160. In the present embodiment, FCC-MC 170 1s executing
within a CVM on cluster 105, (not shown for simplicity of

explanation).

Entities 610 include nodes within the cluster, virtual
machines operating on the nodes, data shards associated to
the virtual machines, caches associated to the shards and the
virtual machines, non-sharded databases that are a member
of the FCCO01 160, etc. on respective local clusters. Entities
610 include objects that are of concern during (1) freezing
of the VMs, caches and shards, (2) backing up of the shards
via snapshots, and (3) thawing.

Backup modules 620 are the processing modules respon-

sible for executing the control calls from the slave backup
coordinators FCC-SC(s) 175. FCC-SC(s) 175 may instruct

the backup modules 620 to “freeze”, “create snapshot”,

and/or “thaw”, etc. The backup modules 620 execute the
control calls received from the FCC-SC(s) 175 to carry out
the backup operations.

Therefore, what has been described 1s an improved
method and product for generating application consistent
snapshots of data shards distributed across a plurality of
storage clusters. The aforementioned disclosure improves
the technological area of data backup and in particular,
application consistent snapshots of data shards using a
distributed and federated protection domain model across
two more storage clusters. The present disclosure solves the
technical problem of being able to provide an application
consistent snapshot of datasets stored on sharded databases
that span across multiple servers within a cluster and mul-
tiple servers that span across multiple storage clusters. The
present disclosure solves this technical problem by intro-
ducing a federated consistency coordination protection
domain that includes a master backup coordinator that
coordinates the freezing of all shards within the federated
consistency coordination protection domain via slave
backup coordinators to ensure all shards within the FCC-PD
are frozen before snapshots are taken of the shards within the
FCC-PD. Once all of the snapshots are successiully taken,
the FCC-MC 1ssues the thaw control call to resume opera-
tions of the VMs and data shards.

System Architecture

Additional System Architecture Examples

FIG. 7TA depicts a virtualized controller as implemented
by the shown virtual machine architecture 8 A00. The here-

US 11,061,777 B2

15

tofore-disclosed embodiments, including variations of any
virtualized controllers, can be implemented in distributed
systems where a plurality of networked-connected devices
communicate and coordinate actions using inter-component
messaging. Distributed systems are systems ol intercon-
nected components that are designed for, or dedicated to,
storage operations as well as being designed for, or dedi-
cated to, computing and/or networking operations. Intercon-
nected components 1 a distributed system can operate
cooperatively to achieve a particular objective, such as to
provide high performance computing, high performance
networking capabilities, and/or high performance storage
and/or high capacity storage capabilities. For example, a first
set of components of a distributed computing system can
coordinate to efliciently use a set of computational or
compute resources, while a second set of components of the
same distributed storage system can coordinate to efhiciently
use a set of data storage facilities.

A hyperconverged system coordinates the eflicient use of
compute and storage resources by and between the compo-
nents of the distributed system. Adding a hyperconverged
unit to a hyperconverged system expands the system in
multiple dimensions. As an example, adding a hypercon-
verged unit to a hyperconverged system can expand the
system 1n the dimension of storage capacity while concur-
rently expanding the system in the dimension of computing,
capacity and also in the dimension of networking band-
width. Components of any of the foregoing distributed
systems can comprise physically and/or logically distributed
autonomous entities.

Physical and/or logical collections of such autonomous
entities can sometimes be referred to as nodes. In some
hyperconverged systems, compute and storage resources can
be mntegrated into a unit of a node. Multiple nodes can be
interrelated into an array of nodes, which nodes can be
grouped into physical groupings (e.g., arrays) and/or into
logical groupings or topologies of nodes (e.g., spoke-and-
wheel topologies, rings, etc.). Some hyperconverged sys-
tems 1mplement certain aspects of virtualization. For
example, 1n a hypervisor-assisted virtualization environ-
ment, certain of the autonomous entities of a distributed
system can be implemented as virtual machines. As another
example, 1n some virtualization environments, autonomous
entities of a distributed system can be implemented as
executable containers. In some systems and/or environ-
ments, hypervisor-assisted virtualization techniques and
operating system virtualization techmques are combined.

As shown, the virtual machine architecture 8A00 com-
prises a collection of interconnected components suitable for
implementing embodiments of the present disclosure and/or
for use 1n the herein-described environments. Moreover, the
shown virtual machine architecture 8 A00 includes a virtual
machine instance 1n configuration 831 that i1s further
described as pertaining to controller virtual machine
instance 830. Configuration 851 supports virtual machine
instances that are deployed as user virtual machines, or
controller virtual machines or both. Such virtual machines
interface with a hypervisor (as shown). Some virtual
machines include processing of storage 1I/0 as recerved from
any or every source within the computing platform. An
example implementation of such a virtual machine that
processes storage 1/0 1s depicted as 830.

In this and other configurations, a controller virtual
machine instance receives block I/O (input/output or 10)
storage requests as network file system (NFS) requests 1n the
form of NFS requests 802, and/or internet small computer
storage iterface (1SCSI) block 10 requests in the form of

.

10

15

20

25

30

35

40

45

50

55

60

65

16

1SCSI requests 803, and/or Samba file system (SMB)
requests 1n the form of SMB requests 804. The controller
virtual machine (CVM) instance publishes and responds to
an internet protocol (IP) address (e.g., CVM IP address 810).
Various forms of iput and output (I/O or 10) can be handled
by one or more 10 control handler functions (e.g., IOCTL
handler functions 808) that interface to other functions such
as data IO manager functions 814 and/or metadata manager
functions 822. As shown, the data IO manager functions can
include communication with virtual disk configuration man-
ager 812 and/or can include direct or indirect communica-
tion with any of various block 10 functions (e.g., NFS 10,
1ISCSI 10, SMB 10, etc.).

In addition to block 10 functions, configuration 851

supports 10 of any form (e.g., block 10, streaming 1O,
packet-based 10, HT'TP trailic, etc.) through either or both of

a user imterface (UI) handler such as Ul 10 handler 840
and/or through any of a range of application programming
interfaces (APIs), possibly through the shown API 10 man-
ager 8453.

Communications link 815 can be configured to transmit
(e.g., send, receive, signal, etc.) any type ol communications
packets comprising any organization of data items. The data
items can comprise a payload data, a destination address
(e.g., a destination IP address) and a source address (e.g., a
source IP address), and can include various packet process-
ing techniques (e.g., tunneling), encodings (e.g., encryp-
tion), and/or formatting of bit fields into fixed-length blocks
or into variable length fields used to populate the payload. In
some cases, packet characteristics include a version i1denti-
fier, a packet or payload length, a traflic class, a flow label,
ctc. In some cases the payload comprises a data structure
that 1s encoded and/or formatted to {it into byte or word
boundaries of the packet.

In some embodiments, hard-wired circuitry may be used
in place of, or 1n combination with, soitware instructions to
implement aspects of the disclosure. Thus, embodiments of
the disclosure are not limited to any specific combination of
hardware circuitry and/or software. In embodiments, the
term “logic” shall mean any combination of software or
hardware that 1s used to implement all or part of the
disclosure.

The term “computer readable medium” or “computer
usable medium™ as used herein refers to any medium that
participates 1n providing mstructions to a data processor for
execution. Such a medium may take many forms including,
but not limited to, non-volatile media and volatile media.
Non-volatile media includes any non-volatile storage
medium, for example, solid state storage devices (SSDs) or
optical or magnetic disks such as disk drives or tape drives.
Volatile media includes dynamic memory such as random
access memory. As shown, controller virtual machine
instance 830 includes content cache manager facility 816
that accesses storage locations, possibly including local
dynamic random access memory (DRAM) (e.g., through the
local memory device access block 818) and/or possibly
including accesses to local solid state storage (e.g., through
local SSD device access block 820).

Common forms of computer readable media include any
non-transitory computer readable medium, for example,
floppy disk, tlexible disk, hard disk, magnetic tape, or any
other magnetic medium; CD-ROM or any other optical
medium; punch cards, paper tape, or any other physical
medium with patterns of holes; or any RAM, PROM,
EPROM, FLASH-EPROM, or any other memory chip or
cartridge. Any data can be stored, for example, 1n any form
of external data repository 831, which 1n turn can be

US 11,061,777 B2

17

formatted 1nto any one or more storage areas, and which can
comprise parameterized storage accessible by a key (e.g., a
filename, a table name, a block address, an oflset address,
etc.). External data repository 831 can store any forms of
data and may comprise a storage area dedicated to storage of
metadata pertaining to the stored forms of data. In some
cases, metadata can be divided into portions. Such portions
and/or cache copies can be stored 1n the external storage data
repository and/or 1n a local storage area (e.g., in local
DRAM areas and/or 1n local SSD areas). Such local storage
can be accessed using functions provided by local metadata
storage access block 824. External data repository 831 can
be configured using CVM virtual disk controller 826, which
can in turn manage any number or any configuration of
virtual disks.

Execution of the sequences of instructions to practice
certain embodiments of the disclosure are performed by one
or more 1nstances of a soltware 1nstruction processor, or a
processing element such as a data processor, or such as a
central processing unit (e.g., CPU1, CPU2, . . ., CPUN).
According to certain embodiments of the disclosure, two or
more instances ol configuration 851 can be coupled by
communications link 815 (e.g., backplane, LAN, PSTN,
wired or wireless network, etc.) and each instance may
perform respective portions of sequences of instructions as
may be required to practice embodiments of the disclosure.

The shown computing platform 806 1s mterconnected to
the Internet 848 through one or more network interface ports
(e.g., network mterface port 823, and network interface port
823,). Configuration 851 can be addressed through one or
more network interface ports using an IP address. Any
operational element within computing platform 806 can
perform sending and receiving operations using any ol a
range ol network protocols, possibly including network
protocols that send and receive packets (e.g., network pro-
tocol packet 821, and network protocol packet 821,).

Computing platform 806 may transmit and receive mes-
sages that can be composed of configuration data and/or any
other forms of data and/or 1nstructions organized into a data
structure (e.g., communications packets). In some cases, the
data structure includes program code instructions (e.g.,
application code) communicated through the Internet 848
and/or through any one or more instances of communica-
tions link 815. Received program code may be processed
and/or executed by a CPU as 1t 1s received and/or program
code may be stored 1n any volatile or non-volatile storage for
later execution. Program code can be transmitted via an
upload (e.g., an upload from an access device over the
Internet 848 to computing platform 806). Further, program
code and/or the results of executing program code can be
delivered to a particular user via a download (e.g., a down-
load from computing platform 806 over the Internet 848 to
an access device).

Configuration 851 1s merely one sample configuration.
Other configurations or partitions can include further data
processors, and/or multiple communications interfaces, and/
or multiple storage devices, etc. within a partition. For
example, a partition can bound a multi-core processor (e.g.,
possibly including embedded or collocated memory), or a
partition can bound a computing cluster having a plurality of
computing elements, any of which computing elements are
connected directly or indirectly to a commumnications link. A
first partition can be configured to communicate to a second
partition. A particular first partition and a particular second
partition can be congruent (e.g., in a processing element
array) or can be different (e.g., comprising disjoint sets of
components).

5

10

15

20

25

30

35

40

45

50

55

60

65

18

A cluster 1s often embodied as a collection of computing
nodes that can communicate between each other through a
local area network (e.g., LAN or virtual LAN (VLAN)) or
a backplane. Some clusters are characterized by assignment
of a particular set of the aforementioned computing nodes to
access a shared storage facility that i1s also configured to
communicate over the local area network or backplane. In
many cases, the physical bounds of a cluster are defined by
a mechanical structure such as a cabinet or such as a chassis
or rack that hosts a finite number of mounted-in computing
units. A computing umt 1n a rack can take on a role as a
server, or as a storage unit, or as a networking unit, or any
combination therefrom. In some cases, a unit in a rack 1s
dedicated to provisioning of power to other units. In some
cases, a unit 1n a rack 1s dedicated to environmental condi-
tioning functions such as filtering and movement of air
through the rack and/or temperature control for the rack.
Racks can be combined to form larger clusters. For example,
the LAN of a first rack having 32 computing nodes can be
interfaced with the LAN of a second rack having 16 nodes
to form a two-rack cluster of 48 nodes. The former two
LLANSs can be configured as subnets, or can be configured as
one VLAN. Multiple clusters can communicate between one
module to another over a WAN (e.g., when geographically
distal) or a LAN (e.g., when geographically proximal).

A module as used herein can be implemented using any
mix of any portions of memory and any extent of hard-wired
circuitry including hard-wired circuitry embodied as a data
processor. Some embodiments of a module include one or
more special-purpose hardware components (e.g., power
control, logic, sensors, transducers, etc.). A data processor
can be organized to execute a processing entity that is
configured to execute as a single process or configured to
execute using multiple concurrent processes to perform
work. A processing entity can be hardware-based (e.g.,
involving one or more cores) or software-based, and/or can
be formed using a combination of hardware and software
that implements logic, and/or can carry out computations
and/or processing steps using one or more processes and/or
one or more tasks and/or one or more threads or any
combination thereof.

Some embodiments of a module include instructions that
are stored 1n a memory for execution so as to implement
algorithms that facilitate operational and/or performance
characteristics pertaining to multi-tiered metadata mapping
in distributed computing environments. In some embodi-
ments, a module may include one or more state machines
and/or combinational logic used to implement or facilitate
the operational and/or performance characteristics pertain-
ing to multi-tiered metadata mapping 1n distributed comput-
Ing environments.

Various implementations of the data repository comprise
storage media organized to hold a series of records or files
such that individual records or files are accessed using a
name or key (e.g., a primary key or a combination of keys
and/or query clauses). Such files or records can be organized
into one or more data structures (e.g., data structures used to
implement or facilitate aspects of multi-tiered metadata
mapping in distributed computing environments). Such {files
or records can be brought into and/or stored in volatile or
non-volatile memory. More specifically, the occurrence and
organization of the foregoing files, records, and data struc-
tures improve the way that the computer stores and retrieves
data 1n memory, for example, to improve the way data 1s
accessed when the computer 1s performing operations per-
tamning to multi-tiered metadata mapping in distributed
computing environments, and/or for improving the way data

US 11,061,777 B2

19

1s manipulated when performing computerized operations
pertaining to implementing a multi-tiered metadata mapping
regime comprising a metadata virtual disk that refers to a
collocated data virtual disk.

Further details regarding general approaches to managing
data repositories are described in U.S. Pat. No. 8,601,473
titled “ARCHITECTURE FOR MANAGING /O AND
STORAGE FOR A VIRTUALIZATION ENVIRON-
MENT™, 1ssued on Dec. 3, 2013, which 1s hereby incorpo-
rated by reference 1n 1ts entirety.

Further details regarding general approaches to managing,
and maintaining data in data repositories are described 1n
U.S. Pat. No. 8,549,518 titled “METHOD AND SYSTEM
FOR IMPLEMENTING MAINTENANCE SERVICE FOR
MANAGING /O AND STORAGE FOR A VIRTUALIZA-
TION ENVIRONMENT”, 1ssued on Oct. 1, 2013, which 1s
hereby incorporated by reference 1n 1ts entirety.

FIG. 7B depicts a virtualized controller implemented by
containerized architecture 8B00. The contamerized archi-
tecture comprises a collection of interconnected components
suitable for implementing embodiments of the present dis-
closure and/or for use 1n the herein-described environments.
Moreover, the shown containerized architecture 8BO00
includes an executable container instance i configuration
852 that 1s further described as pertaining to the executable
container instance 850. Configuration 852 includes an oper-
ating system layer (as shown) that performs addressing
functions such as providing access to external requestors via
an IP address (e.g., “P.Q.R.S”, as shown). Providing access
to external requestors can include implementing all or
portions of a protocol specification (e.g., “http:”’) and pos-
sibly handling port-specific functions.

The operating system layer can perform port forwarding
to any executable container (e.g., executable container
instance 850). An executable container instance can be
executed by a processor. Runnable portions of an executable
container instance sometimes derive from an executable
container image, which in turn might include all, or portions
of any of, a Java archive repository (JAR) and/or its con-
tents, and/or a script or scripts and/or a directory of scripts,
and/or a virtual machine configuration, and may include any
dependencies therefrom. In some cases, a configuration
within an executable container might include an i1mage
comprising a mimmum set of runnable code. Contents of
larger libraries and/or code or data that would not be
accessed during runtime of the executable container instance
can be omitted from the larger library to form a smaller
library composed of only the code or data that would be
accessed during runtime of the executable container
instance. In some cases, start-up time for an executable
container instance can be much faster than start-up time for
a virtual machine instance, at least inasmuch as the execut-
able container 1mage might be much smaller than a respec-
tive virtual machine instance. Furthermore, start-up time for
an executable container instance can be much faster than
start-up time for a virtual machine instance, at least inas-
much as the executable container 1image might have many
tewer code and/or data 1nitialization steps to perform than a
respective virtual machine instance.

An executable container instance (e.g., a Docker con-
tainer 1nstance) can serve as an instance of an application
container. Any executable container ol any sort can be
rooted 1 a directory system and can be configured to be
accessed by file system commands (e.g., “Is” or “Is-a”, etc.).
The executable container might optionally include operating
system components 878, however such a separate set of
operating system components need not be provided. As an

10

15

20

25

30

35

40

45

50

55

60

65

20

alternative, an executable container can include runnable
instance 858, which 1s built (e.g., through compilation and
linking, or just-in-time compilation, etc.) to include all of the
library and OS-like functions needed for execution of the
runnable instance. In some cases, a runnable instance can be
bult with a virtual disk configuration manager, any of a
variety of data IO management functions, etc. In some cases,
a runnable instance includes code for, and access to, con-
tainer virtual disk controller 876. Such a container virtual
disk controller can perform any of the functions that the
alorementioned CVM virtual disk controller 826 can per-
form, yet such a container virtual disk controller does not
rely on a hypervisor or any particular operating system so as
to perform 1ts range of functions.

In some environments multiple executable containers can
be collocated and/or can share one or more contexts. For
example, multiple executable containers that share access to
a virtual disk can be assembled 1nto a pod (e.g., a Kubernetes
pod). Pods provide sharing mechanisms (e.g., when multiple
executable containers are amalgamated into the scope of a
pod) as well as 1solation mechanisms (e.g., such that the
namespace scope of one pod does not share the namespace
scope of another pod).

FIG. 7C depicts a virtualized controller implemented by
a daemon-assisted containerized architecture 8CO00. The
containerized architecture comprises a collection of inter-
connected components suitable for implementing embodi-
ments of the present disclosure and/or for use in the herein-
described environments. Moreover, the shown instance of
daemon-assisted containerized architecture includes a user
executable container instance in configuration 833 that i1s
further described as pertaining to user executable container
instance 880. Configuration 853 includes a daemon layer (as
shown) that performs certain functions of an operating
system.

User executable container instance 880 comprises any
number of user containerized functions (e.g., user contain-
erized functionl, user containerized function2, . . ., user
containerized functionN). Such user containerized functions
can execute autonomously or can be interfaced with or
wrapped 1n a runnable object to create a runnable instance
(e.g., runnable instance 858). In some cases, the shown
operating system components 878 comprise portions of an
operating system, which portions are interfaced with or
included 1n the runnable instance and/or any user contain-
erized functions. In this embodiment of a daemon-assisted
containerized architecture, the computing platform 806
might or might not host operating system components other
than operating system components 878. More specifically,
the shown daemon might or might not host operating system
components other than operating system components 878 of
user executable container istance 880.

The virtual machine architecture 8A00 of FIG. 7A and/or
the containerized architecture 8B00 of FIG. 7B and/or the
daemon-assisted containerized architecture 8C00 of FIG. 7C
can be used 1n any combination to implement a distributed
platform that contains multiple servers and/or nodes that
manage multiple tiers of storage, where the tiers of storage
might be formed using the shown data repository 831 and/or
any forms ol network accessible storage. As such, the
multiple tiers of storage may include storage that 1s acces-
sible over the communications link 815. Such network
accessible storage may include cloud storage or networked
storage (e.g., a SAN or “storage area network™). Unlike prior
approaches, the herein-discussed embodiments of a storage
pool iclude local storage that 1s within or directly attached
to the server or node to be managed as part of a storage pool.

US 11,061,777 B2

21

Such local storage can include any combinations of the
alorementioned SSDs and/or HDDs and/or RAPMs and/or
hybrid disk drives. In some cases, the local storage that 1s
within or directly attached to the server or node 1s directly
attached 1n that the node does not communicate over the
communications link 815 when accessing local storage. In
many cases, the local storage 1s local to the node because the
storage devices that comprise the local storage are on the
same motherboard that forms the node, or in the same
chassis as the node, or 1n the same rack as the node, or in the
same data center as the node. The node can still access
certain network-attached storage over the communications
link 815, which network-attached storage might be located
in a different geography or located on the far side of a public
switched network such as the Internet. The distributed
metadata store as discussed herein often shards a key-value
pair across many nodes organized into a ring. Each node
hosts a one or more of the shards (e.g., an assigned shard as
well as a shard from that node’s previous ring-wise neighbor
node and a shard from that node’s next ring-wise neighbor
node). Any of the nodes of the ring might be geographically
collocated, or might be geographically distant from another
node of the ring, or any combination of local neighbor nodes
and/or distal neighbor nodes.

The address spaces of a plurality of storage devices,
including both local storage (e.g., using at least one node-
internal, locally-attached storage device) and any forms of
network-accessible storage, are collected to form a storage
pool having a contiguous address space.

Significant performance advantages can be gained by
allowing the virtualization system to access and utilize local
(e.g., node-internal) storage. This 1s because I/O perfor-
mance 1s typically much faster when performing access to
local storage as compared to performing access to net-
worked storage or cloud storage. This faster performance for
locally attached storage can be increased even further by
using certain types of optimized local storage devices, such
as SSDs or RAPMSs, or hybrid HDDs or other types of
high-performance storage devices.

In example embodiments, each storage controller exports
one or more block devices or NFS or 1SCSI targets that
appear as disks to user virtual machines or user executable
containers. These disks are virtual, since they are imple-
mented by the software running inside the storage control-
lers. Thus, to the user virtual machines or user executable
containers, the storage controllers appear to be exporting a
clustered storage appliance that contains some disks. User
data (including operating system components) in the user
virtual machines resides on these virtual disks.

Any one or more of the atorementioned virtual disks (or
“vDisks™) can be structured from any one or more of the
storage devices 1n the storage pool. As used herein, the term
vDisk refers to a storage abstraction that 1s exposed by a
controller virtual machine or container to be used by another
virtual machine or container. In some embodiments, the
vDisk 1s exposed by operation of a storage protocol such as
1SCSI or NFS or SMB. In some embodiments a vDisk 1s
mountable. In some embodiments a vDisk 1s mounted as a
virtual storage device.

In example embodiments, some or all of the servers or
nodes run virtualization software. Such virtualization soft-
ware might include a hypervisor (e.g., as shown in configu-
ration 851 of FIG. 7A) to manage the interactions between
the underlying hardware and user virtual machines or con-
tainers that run client software.

Distinct from user virtual machines or user executable
containers, a special controller virtual machine (e.g., as

10

15

20

25

30

35

40

45

50

55

60

65

22

depicted by controller virtual machine 1nstance 830) or as a
special controller executable container 1s used to manage
certain storage and I/0 activities. Such a special controller
virtual machine 1s referred to as a “CVM?”, or as a controller
executable container, or as a service virtual machine
“SVM?”, or as a service executable container, or as a “storage
controller”. In some embodiments, multiple storage control-
lers are hosted by multiple nodes. Such storage controllers
coordinate within a computing system to form a computing
cluster. The storage controllers are not formed as part of
specific implementations of hypervisors. Instead, the storage
controllers run above hypervisors on the various nodes and
work together to form a distributed system that manages all
of the storage resources, including the locally attached
storage, the networked storage, and the cloud storage. In
example embodiments, the storage controllers run as special
virtual machines—above the hypervisors—thus, the
approach of using such special virtual machines can be used
and implemented within any virtual machine architecture.
Furthermore, the storage controllers can be used in conjunc-
tion with any hypervisor from any virtualization vendor
and/or implemented using any combinations or variations of
the aforementioned executable containers in conjunction
with any host operating system components.

FIG. 8 1s a block diagram of an illustrative computing
system 1400 suitable for implementing an embodiment of
the present invention. Computer system 1400 includes a bus
1406 or other communication mechamism for communicat-
ing information, which interconnects subsystems and
devices, such as processor 1407, system memory 1408 (e.g.,
RAM), static storage device 1409 (e.g., ROM), disk drive
1410 (e.g., magnetic or optical), communication interface
1414 (e.g., modem or Ethernet card), display 1411 (e.g.,
CRT or LCD), mput device 1412 (e.g., keyboard), and
cursor control.

According to one embodiment of the invention, computer
system 1400 performs specific operations by processor 1407
executing one or more sequences of one or more instructions
contained in system memory 1408. Such instructions may be
read nto system memory 1408 from another computer
readable/usable medium, such as static storage device 1409
or disk drive 1410. In alternative embodiments, hard-wired
circuitry may be used i place of or 1n combination with
software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific
combination of hardware circuitry and/or software. In one
embodiment, the term “logic” shall mean any combination
of software or hardware that 1s used to implement all or part
of the mvention.

The term “computer readable medium™ or “computer
usable medium” as used herein refers to any medium that
participates in providing instructions to processor 1407 for
execution. Such a medium may take many forms, mncluding
but not limited to, non-volatile media and volatile media.
Non-volatile media includes, for example, optical or mag-
netic disks, such as disk drive 1410. Volatile media includes
dynamic memory, such as system memory 1408.

Common forms of computer readable media includes, for
example, floppy disk, flexible disk, hard disk, magnetic tape,
any other magnetic medium, CD-ROM, any other optical
medium, punch cards, paper tape, any other physical
medium with patterns of holes, RAM, PROM, EPROM,
FLASH-EPROM, any other memory chip or cartridge, or
any other medium from which a computer can read.

In an embodiment of the invention, execution of the
sequences ol instructions to practice the mmvention 1s per-
formed by a single computer system 1400. According to

US 11,061,777 B2

23

other embodiments of the invention, two or more computer
systems 1400 coupled by communication link 1415 (e.g.,
LAN, PTSN, or wireless network) may perform the
sequence of 1structions required to practice the invention 1n
coordination with one another.

Computer system 1400 may transmit and receive mes-
sages, data, and instructions, including program, 1.e., appli-
cation code, through communication link 1415 and commu-
nication interface 1414. Receirved program code may be
executed by processor 1407 as 1t 1s recerved, and/or stored
in disk drive 1410, or other non-volatile storage for later
execution.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. For example, the
above-described process tlows are described with reference
to a particular ordering of process actions. However, the
ordering of many of the described process actions may be
changed without aflecting the scope or operation of the
invention. The specification and drawings are, accordingly,
to be regarded 1n an illustrative rather than restrictive sense.

What 1s claimed 1s:

1. A computer-implemented method for generating appli-
cation consistent snapshots of data shards distributed across
a plurality of storage clusters, the method comprising:

forming a protection domain across a plurality of storage

clusters, the protection domain defining at least a group

of virtual machines to be backed up together, forming

the protection domain comprising;

a spanned protection domain that spans a plurality of
storage clusters;

a plurality of virtual machines to be backed up together
within the spanned protection domain; and

a data shard associated with the plurality of wvirtual
machines, the data shard distributed across the plu-
rality of storage clusters; and

generating an application consistent snapshot where the

plurality of virtual machines and the data shard is

grouped and backed up together at least by:

freezing the data shard distributed across the plurality
ol storage clusters, and

initiating the generation of the application consistent
snapshot 1n response to confirmation that the data
shard distributed across the plurality of storage clus-
ters 1s frozen.

2. The method of claim 1, wherein the protection domain
1s a group of one or more virtual machines that are backed
up together, the group of one or more virtual machines
executing across the plurality of storage clusters.

3. The method of claim 1, wherein generating the appli-
cation consistent snapshot further comprises electing a mas-
ter backup coordinator that coordinates the application con-
sistent snapshot and 1ssuing, by the master backup
coordinator, a backup control call to slave backup coordi-
nators in the protection domain.

4. The method of claim 3, wherein the master backup
coordinator 1s part of a controller virtual machine.

5. The method of claim 3, wherein the master backup
coordinator 1s a slave backup coordinator for 1ts correspond-
ing cluster.

6. The method of claim 3, further comprising 1ssuing a
thaw control call to the slave backup coordinator to unireeze
a data shard after the master backup coordinator receives
confirmation of successtul completion of the application
consistent snapshot from the slave backup coordinator.

10

15

20

25

30

35

40

45

50

55

60

65

24

7. The method of claim 1, wherein generating the appli-
cation consistent snapshot of the protection domain 1s for
multi-array crash consistency.

8. The method of claim 1, wherein the application con-
sistent snapshot 1s application consistent at a namespace
level.

9. A system for generating application consistent snap-
shots of data shards distributed across a plurality of storage
clusters, the system comprising:

a memory having stored thereon a set of mstructions; and

a processor that executes the set of mstructions to cause

a set of acts comprising:

forming a protection domain across a plurality of
storage clusters, the protection domain defining at
least a group of virtual machines to be backed up
together, forming the protection domain comprising:

a spanned protection domain that spans a plurality of
storage clusters;

a plurality of virtual machines to be backed up
together within the spanned protection domain;
and

a data shard associated with the plurality of virtual
machines, the data shard distributed across the
plurality of storage clusters; and

generating an application consistent snapshot where the
plurality of virtual machines and the data shard 1s
grouped and backed up together at least by:
freezing the data shard distributed across the plural-
ity of storage clusters, and

imitiating the generation of the application consistent
snapshot 1n response to confirmation that the data
shard distributed across the plurality of storage
clusters 1s frozen.

10. The system of claim 9, wherein the protection domain
1s a group of one or more virtual machines that are backed
up together, the group of one or more virtual machines
executing across the plurality of storage clusters.

11. The system of claim 9, wherein generating the appli-
cation consistent snapshot further comprises:

clecting a master backup coordinator that coordinates the

application consistent snapshot and issuing, by the
master backup coordinator, a backup control call to
slave backup coordinators in the protection domain.

12. A non-transitory computer readable medium having
stored thereon a sequence of instructions which, when
executed by a processor causes a set of acts comprising:

forming a protection domain across a plurality of storage

clusters, the protection domain defining at least a group

of virtual machines to be backed up together, forming

the protection domain comprising:

a spanned protection domain that spans a plurality of
storage clusters;

a plurality of virtual machines to be backed up together
within the spanned protection domain; and

a data shard associated with the plurality of virtual
machines, the data shard distributed across the plu-
rality of storage clusters; and

generating an application consistent snapshot where the

plurality of virtual machines and the data shard 1s

grouped and backed up together at least by:

freezing the data shard distributed across the plurality
of storage clusters, and

initiating the generation of the application consistent
snapshot 1n response to confirmation that the data
shard distributed across the plurality of storage clus-
ters 1s frozen.

US 11,061,777 B2

25

13. The non-transitory computer readable medium of
claim 12, wherein the protection domain 1s a group of one
or more virtual machines that are backed up together, the
group ol one or more virtual machines executing across the
plurality of storage clusters.

14. The non-transitory computer readable medium of
claam 12, wherein generating the application consistent
snapshot further comprises electing a master backup coor-
dinator that coordinates the application consistent snapshot
and 1ssuing, by the master backup coordinator, a backup
control call to a slave backup coordinator in the protection
domain.

15. The non-transitory computer readable medium of
claim 14, wherein the process further comprises 1ssuing a
control call to perform a storage cluster level snapshot of a
respective object for an entity with a local domain of the
slave backup coordinator.

16. The non-transitory computer readable medium of
claim 14, wherein the process further comprises 1ssuing a
thaw control call to the slave backup coordinator to unireeze

10

15

26

a data shard after the master backup coordinator receives
confirmation of successiul completion of the application
consistent snapshot from the slave backup coordinator.

17. The non-transitory computer readable medium of
claim 14, wherein the master backup coordinator 1s a slave
backup coordinator for 1ts corresponding cluster.

18. The non-transitory computer readable medium of
claim 14, wherein when a shard within a local domain of the
slave backup coordinator 1s frozen, the slave backup coor-
dinator begins processing a snapshot of the shard that i1s
frozen.

19. The non-transitory computer readable medium of

claiam 12, wherein generating the application consistent
snapshot of the protection domain 1s for multi-array crash
consistency.

20. The non-transitory computer readable medium of
claam 12, wherein the application consistent snapshot is
application consistent at a namespace level.

x x * x x

	Front Page
	Drawings
	Specification
	Claims

