12 United States Patent

Bastawala et al.

US011055289B2

(10) Patent No.: US 11,055,289 B2
45) Date of Patent: Jul. 6, 2021

(54) FRAMEWORK TO TRANSFER ROWS IN
STORAGE FORMAT, STANDARD FORMAT,
OR COMBINATION THEREOFK

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(60)

(1)

(52)

(58)

Applicant: ORACLE INTERNATIONAL

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

CORPORATION, Redwood Shores,
CA (US)

Mehul D. Bastawala, Sunnyvale, CA
(US); Ajit Mylavarapu, Mountain
View, CA (US)

Oracle International Corporation,
Redwood Shores, CA (US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 62 days.
16/040,551

Jul. 20, 2018

Prior Publication Data

US 2019/0026339 Al Jan. 24, 2019

Related U.S. Application Data

Provisional application No. 62/535,872, filed on Jul.

22, 2017.

Int. CI.

GoOol 7/00 (2006.01)

GOol 1672455 (2019.01)

GOl 16/22 (2019.01)

U.S. CL

CPC ... GO6I" 1624553 (2019.01); GO6F 16/221
(2019.01)

Field of Classification Search

CPC i, GO6F 16/24553; GO6F 16/221

S PO e 707/600-899

See application file for complete search history.

1

(56) References Cited
U.S. PATENT DOCUMENTS

7,188,102 Bl 3/2007 Gollapudi
2005/0144176 Al 6/2005 Lei et al.
2018/0218030 Al* 8/2018 Wong GO6F 16/2425

OTHER PUBLICATIONS

Fuyuncat, Oracle Row Shipping, downloaded from http://www.

hellodba.com/reader.php?ID=25, Dec. 25, 2009, pp. 6.

Timothy Hopkins, Virtual Columns and Row Shipping, downloaded
from http://www.timothyhopkins.net/2009/10/virtual-columns-and-
row-shipping/, Oct. 5, 2009, pp. 4.

(Continued)

Primary Examiner — Isaac M Woo

(74) Attorney, Agent, or Firm — Omkar K. Suryadevara;
Silicon Valley Patent Group LLP

(57) ABSTRACT

A server receives a query and checks how columns in rows
responsive to the query are to be sent to a client. Based on
one result of checking, the server prepares and transmits a
redacted version of one or more rows or portions thereof.
The redacted version may be prepared by discarding from
the retrieved rows or portions thereof, any columns that are
to not be sent, by applying a specific redaction technique,
while maintaining columns that are to be sent in a database
storage format in which the retrieved rows are stored. Based
on another result of checking, the server prepares and
transmits a raw version of the retrieved rows or portions
thereol, 1n the database storage format. Based on yet another
result of checking, the server extracts columns selected by
the query to memory and sends processed versions of the
rows or portions thereof.

22 Claims, 32 Drawing Sheets

190
|

¥

yreceive a query from a client esmputer f---------n-mnn--

Server (one or

more compuiers)

Check ane or more compile-time canditions, to -
determing how to send rows responsive t query

12

|3 an

i 30 33p—

3] Query Execution
(with run-time

comile-fide
condition satsfied (indicating
rows should not be processed
into standard
formagy?

Retrieve one or more rows
i Server's sh::rage format

Check one or more run-time conditions to detetrine how ta send one
no Or more (ows responsive to query, inchuding {a} first run-time
%D conditiuns to decide if the ane or more rows should be processed into

condition checking)

3z

Que | standard farmat, and (b} second run-time conditions to decide if one
Y or mare columns in the one or more rows should not be sent to client
Execution
(without run-
time candition 33
checking) & 21 Extract into 34
Retrieve one MEmay, F o
07 MOTR TS columns Omit from ar modify in the
™1 i servar's selacted by ane Of More rows in tha v r....35
storage format the query, storage format, each
from the column determined to be Retajn all columns
Y 22 ohé O more not acpessible by the one in the one or more
Extract into T rows, and 0 More second conditions, rows in the
memory propare to obtain redacted versions storage format
colurmis processed of the one or more rows as retrieved
salected by versions of in the storage format (when the one o
the query the o or e apply a selected more first
framt the one MOrE rws redaction Eehnique at conditions are not
or more in standard a selected granularity safisfied and the
rows. and farmat (when (when the pne or mars DG O More
preﬁare at |east pnea first run-time canditions second conditions
processed of the ane or are hat satistied and at are not satisfied)
yersions of mare first least one of one or more
the one or run-fime second run-time conditions
MOre WS in conditions is satisfied)
rma * /35
* P 73 Transmit 1o client computet, one or more responses that includs
Transmit to client, processed versions of one or more rows in the standard format or
2 nrocessed varsion redacted versions of the ong or more fows in the storage format, or the
e:?ch refriaved row 0ne Gr mare riws in the stura[?e format as retrieved, depending on which
o standard format first run-time condition{s) ane second run-time conditionds) are satisfied
37 38
Boneye 24 L 0
rows? .
YES5 Transmit to client 2 message 4]
indicating an end of result set

US 11,055,289 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Timothy Hopkins, Attachment (to Virtual Columns and Row Ship-
ping), downloaded from http://timothyhopkins.net/wp-content/
uploads/2009/10/rowship.txt, believed to be published on or before

Oct. 5, 2009, pp. 4.

Miladin Modrakovic, Wide Table Select (Row Shipping), down-
loaded from https://oraclue. wordpress.com/2009/07/13/wide-table-
select-row-shipping/, Jul. 13, 2009, pp. 7.

* cited by examiner

U.S. Patent

Jul. 6, 2021 Sheet 1 of 32 US 11,055,289 B2

FIG. TA) P

receive a query from a client computer f-=-=-mae=emmemceme- SErver (one or
more computers)

Mol e ol bt i

IS any
compile-time
condition satisfied (indicating

rows should not be processed
into standard

(with run-time
condition checking)

— — ~38A

Check one or more compile-time conditions, to A
determine how to send rows responsive o query |+ g TR b
; 30 388
‘:‘ 31 Query Execution

yes Retrieve one or more rows
In server’s storage format

32

format)?
13 Check one or more run-time conditions to determine how to send one
NG 20 or more rows responsive to query, including (a) first run-time
conditions to decide If the one or more rows should he processed into
Quer standard format, and (b) second run-time conditions to decide if one
EXECU’[Iyon or more columns in the one or more rows should not be sent to client

(without run-
fime condition

checking) 91

Fxtract into '

33

34

Retrieve one memory,
OF MOre rows columns Omit from or modify in the
N Server’s selected by one or more rows in the
storage format the query, storage formaf, each
from the column determined to be Retain all columns
one or more not accessibie by the one in the one or more
Extract into rows, and or more second conditions, rows in the
memory prepare to obtain redacted versions storage format
columns processed of the one or more rows as retrieved
selected by versions of in the storage format (when the one or
the query, the one or e.g. apply a selected more first
from the one more rows redaction technique at conditions are not
or more in standard a selected granularnity satistied and the
rows, and format (when (when the one or more one or more
orepare at least one first run-time conditions second conditions
orocessed of the one or are not satisfied and at are not satisfied)
versions of more first least one of one or more
the one or run-fime second run-time conditions
More rows in conditions 1S Satisfied)
standard 1S satisfied)

format

Transmit o client,
a processed version
each retrieved row,
in standard format

Transmit to client computer, one or more responses that include
processed versions of one or more rows in the standard format or

redacted versions of the one or more rows in the storage format, or the
one or more rows in the storage format as retrieved, depending on which
first run-time condition(s) and second run-time condition(s) are satistied

3/ 38
83 Done e
yith all rows?
Transmit to client a message 41
indicating an end of result set

36

U.S. Patent Jul. 6, 2021 Sheet 2 of 32 US 11,055,289 B2

F1G. 1B 30
Retrieve one or more rows _L o QU%{%’h ES(S%FLAEIOI’I
in server’s storage format condition checking) "

Check run-time conditions

Check first run-time conditions

(to decide if rows should be
processed into standard format)

Check second run-time conditions
(to decide if any column(s) are not
to be sent {o client computer)

IS
at least one of one
or more first run-time conditions
satisfied? (e.g. IS a gata type
conversion required In
SErver)

s 6/
at least one of

one or more second run-time
conditions satistied? (e.g. access
controi prevents sending any
columns, or unselected
column(s)
too large?)

least one of one or more
additional first run-time condifions
satistied? (e.g. does modification of not-
0-be-sent columns require more powe
than column extraction
& processing)

Omit from or modify in
Extract info memory, the one or more rows in
columns selected by the storage format, each
the query, from the column determined to he

Retain all columns
in the one or more

one Or more rows, not accessible by the one OWs in the 35
processed versions to obtain redacted versions (as retrieved)
of the one or more of the one or more rows |
rows in standard in the storage format 34
format (e.g. apply a selected
redaction fechnigue
at a selected granularity)
36

Transmit to client computer, one or more responses that include processed versions of one or more rows in the
standard format or redacted versions of the one or more rows in the storage format, or the one or more rows in the
storage format (as retrieved), depending on whether the first condition(s) and the second conditions are satisfied or not

U.S. Patent Jul. 6, 2021

Sheet 3 of 32 US 11,055,289 B2

FIG. 1C 10
} Server (one or

more computers)
Check one or more compile-time conditions to 19
determine how to send rows responsive o query

ompile-time condition
satisfied (indicating rows
should be processed
Into standard
format)?

o0

51 Query Execution
(run-time condition checking

N0 Retrieve one or more rows on portions of rows)
in server’s storage format £

Check one or more run-time conditions to determine how t0 send one or more

13 20) rows ofr portions thereof, including one or more first conditions indicating if the
yes one or more rows or portions thereof should be processed into standard
Q format and one or more second conditions indicating if any column of the one
Exegﬁ’ayon or more rows or partions thereof should not be sent to client for any reason

(without run-
fime condition
checking)

Retrieve one
Or MOre rows
N SErver's
storage format

Extract into
memory,
columns

selected by

the query,
from the one
Or more
rows, and
prepare
nrocessed
versions of
the one or
more rows n
standard
format

1t

with all
data?

Transmit to client
a processed version
gach retrieved row,
standard format

Extract into
memory,
columns

selected hy the
query, from the

one or more
FOWS or portions
thereof and
prepare
nrocessed
versions of the
one or more
rows or portions
thereof
In standard
format (when
one or more
first condaitions
are satisfied)

03 o4

Omit from or modify in the
One Or more rows or
portions thereof in the
storage format, each
cotumn determined to he
not accessible hy the one
or more second conditions,
to obtain redacted versions
of the one or more rows or
portions thereof in the
storage format e.g. apply a
selected redaction
technique at a selected
granularity (when one or
more first conditions are
not satisfied and one or
more second conditions
are satisfied)

Transmit to client computer, one or more responses that include processed
versions of one or more rows or portions thereof in the standard format

Retain all columns
in the one or more
rows or portions
thereof in the
storage format
as retrieved (when
one or more first
conditions are not
satisfied and
one or more
second conditions
are not satistied)

ith all portions
of retrieved

rOwWs?
yes 20

(followed by an additional row header, when row pieces are being sent
thereafter) or redacted versions of the one or more rows or portions thereof in

the storage format, or the one or more rows or portions thereof in the storage
format (as retrieved), depending on which run-time condition(s) are satisfied

of 2=

es Done ale
ith all data?
Transmit to client amssae 4]
indicating end of result set

U.S. Patent Sheet 4 of 32

Jul. 6, 2021 US 11,055,289 B2

F1G. 1D Y

Server (one or more computers) 0

Fvaluate conditions
related to Query

_ does each
object referenced in query have any
olumn which is not selecteg?

yes

EXECUTE QUERY
FOR ROW SHIPPING

‘Prepare for transmission
in server’s storage format

EXECUTE QUERY TO
GENERATE REDACTED ROWS

Prepare for transmission, redacted

versions of rows responsive
to query, e.g. use hind values
to identity data to be retrieved,
repeatedly fetch a row, and edit

each row responsive to query,
use bind values to identify
data to be retrieved,
repeatedly fetch a row from

each row to exclude columns not
to be sent, by applying a redaction
technigue without extracting query-

database and store in
network buffer without
extracting any columns, and
without changing the format
of each row (retain server’s
storage format)

selected columns, and without
changing the format of each row

(retain server’s storage format)

transmit to client, redacted rows In
server’s storage format, which
contain only query-selected columns
(do not contain original values of
columns not selected in guery)

~ transmit to client,
original rows in server’s storage

format with all columns included
(including any columns not

selected In query)

U.S. Patent Jul. 6, 2021 Sheet 5 of 32 US 11,055,289 B2

™~J

+

3

an
O

=N E=3 E=3 E=1 E=3 F=3 E=1 §= —
S|IS|S —
Ao Bl Rl R=1 =N BE= E= k=1 Rk= M THE | FI22IEEITI22|ILI

B
0000
000
0
0
0
00
0
0
B
3946
87
EC)
Bl
B
5
EE)
53

Al
0

Al

I T I I E1
i i N N) I I I 1
B N 2251 I I I 11
B] I I 2
M- | | [| [(]

I I 2 I I
2 I

FIG. 1E 4
AL
_
-
_
-
_
_
-
FIG. 1F 4

- =
Y Y~ o .

0000
0000
0000
0000
0000
0000
0000
0000
RI—FAL | (AL [ers3fAstf [ALT|6552 |+

U.S. Patent Jul. 6, 2021 Sheet 6 of 32 US 11,055,289 B2

M‘
o0

4+
-
o0
=1) =1 g s LD =1 '
—_ OO OO0 OO OO0 OO 5.0 OO [
an oD OO0 OO0 OD oD oD OO0 oD
T r--J
" EE‘.
(A
=1
O
—
an D":n
— [OO OO0 CO o0 O [T _.‘
m
—
+
o0
Z‘
<
1 Z‘
e
LN 83
R O ()]) ()]) () ()] () N
":E — — — — — — L — m
T —
| -
< <
-
<
—_ —
<[o
— —
== (8288 |8 | +
| p— - 'l—
| ——

- o o — o~

US 11,055,289 B2

Sheet 7 of 32

Jul. 6, 2021

U.S. Patent

dobl V|

78| [rre|ocofrre] [rejooo]Ti) [W[[F[Tre] [FATW) | T

[] [rewelte] [w[w] [Ffw] [ewlem] [w-
I e) O I O) I e B el I
20 I i Y I Y O e T G B

61 1A Y 8l v o [DI

461

L quef |] [) f fes] | | foo]
| et |) [) f fus] | | foo]
1 et |] [] f fee] |] fooo]
et |) [) f fam] |] fowo]
1 et |] [] [feess| | | foo]
L et |] [) f fes] | | fooo]
L et |] [) f fus]]] fooo]
'a| (et |TE| [TE W [[ess|TTV] [T oooo [TV

I \ v || @_n_

U.S. Patent Jul. 6, 2021 Sheet 8 of 32 US 11,055,289 B2

FIG. TK g

SEIVEr (one or more computers) 102

110~ Evaluate conditions related to query

130
EXECUTE QUERY TO GENERATE REDACTED ROW(S)

132

Evaluate additional conditions and automatically select, from
--------------- among multiple levels of granularity, a current level of
granularity at which one or more rows are to he redacted

Computation Load

Client’s Privilege
Client’s Latency

190

Automatically determine from among multiple
redaction techniques, one or more redaction current aranularitv = row-level

151 techiniques to be used at current granularity

53
IS

current granularity
column-level?

s
current
granularity
able-level?

select a redaction technique
to be applied individually to a
specific column not selected
In query, in a specific row
responsive to the query, and
this step is repeated, for each
not selected column in each
row responsive o query

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

nprepare & compare &
estimates of # of s
instructions of each

No No

5 yes

select a redaction technique to
he applied o a specific column not
selected in query (and select another
redaction technique, If another
column is not selected in query) in
row(s) responsive to query

select a redaction
technique to be applied
commonly to columns not
selected in query (e.g. to

| |be commonly applied to alt

redaction technigue

not selected cotumns) in
row(s) responsive to query

+ prepare & compare
310 estimates of # of

instructions of each
redaction technigue

prepare & compare
estimates of # of
instructions of each

redaction technigque

L3 B X X R _E N N N

a2 4. .

Prepare and store in memory, in a storage format used in one or more storage devices {in which one or
more objects identified in the query are stored), redacted versions of all rows (e.¢. in a block) retrieved in
response to the query (or fetch), by discarding any column’s value not selected in query (by using metadata
to identify not-selected columns and applying redaction techniques thereto, without extracting other columns)

: Store in memory, statistics related to current level of granularity and currently selected
----------- redaction technique(s) for future use in automatic selection of granutarity level and automatic

determination of one or more redaction techniques (to be applied at the granularity tevel) ~~134

Retrieve from memory and transmit to client, redacted rows in server’s storage format containing
only query-selected columns (resulting from discarding unselected columns’ values from each row)

131

U.S. Patent Jul. 6, 2021 Sheet 9 of 32 US 11,055,289 B2

FIG. TL 160 FIG. 1M 170

Client (one or more computers) Client (one or more computers)

. — . Establish database session
Fstablish database session 161 ISh database Session p—1/1

indicate ability to extract columns in server’s

Indicate no ability to extract columns in storage format (in response to server’s request)
server’s storage format or return error

(in response to server’s request)

Issue a command to create

i a Table {e.g. including
« metadata identifying column

Issue a command fo create
a Tahle (e.g. including

E names and datatypes of values
+ metadata identifying column
L

to be stored in the columns)

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ 1"--'-'---'------

names and datatypes of values
{o be stored in the columns)

Insert into Table, a row
of values in each column

/3 177[

174

ssue Query (e.g. including one or more

preoshes
O Y

Insert into Table, a row
of values in each column

.
’
'
.
2
)
'
’
'
’
)
.
3
’
’
"
'
’
’
:
:
'
1
l
)
2

column values to be used to identify rows
responsive to query and columns to he

returned in the query-responsive rows) or

issue a fetch request for an issued query

174A

Issue Query (e.g. including one or more
column values to be used fo identify rows
responsive to query and columns to he
returned in the query-responsive rows) or
issue a fefch request for an issued query

Receive metfadata needed to extract
columns (e.g. syntax of rows, column

names, datatypes of column values)

7179
— — Receive and store in memory,
Receive and store in memory, rows in server’s storage format
rows in a normal format 165 — —
(or client-specified format)
—e] /9A

PERFORM PER
166 COLUMN PROCESSING:

process and store rows in a normal
format (e.q. repeatedly fetch a row from
query results, collate multiple pieces, re-

order columns if needed, re-format
values of columns if specified in query)

Prepare and display a screen including
one or more columns’ values in rows
received in response fo Query

Prepare and display a screen including one or

more columns’ values in rows received in
response to Query

U.S. Patent Jul. 6, 2021 Sheet 10 of 32 US 11,055,289 B2

F1G. TN "

Server (one or more computers) 107

Fvaluate conditions
related to Query 111

___________ no Jan client parse ~
erver’s storage format?

yes

does any
object referenced in query have any
olumn which 1S not selected?

_Yes

0

EXECUTE Q
NORMAL

Prepare for
transmission,
processed versions
of rows responsive
to query, e.g. use bind
values to identify data
{o be retrieved,
repeatedly fetch a
row, extract query-
selected columns,
re-order columns
relative {o one another
as per query, and
express columns in a
format known 1o be
parseable by client

EXECUTE QUERY

EXECUTE QUERY TO FOR ROW SHIPPING

GENERATE REDACTED ROWS Prepare for transmission
Prepare for transmission, redacted In server’s storage format
versions of rows responsive each row responsive to query,
to query, .g. use bind values use bind values to identify
to identify data to be retrieved, data to be retrieved,
repeatedly fetch a row, and edit repeatedly fetch a row from
each row to exclude columns not database and store in
to be sent, by applying a redaction network buffer without
technique without extracting query- extracting any columns, and

selected columns, and without without changing the format
changing the format of each row of each row (retain server’s
(retain server’s storage format) storage format)

transmit to client,
processed rows
which contain
only query-selected
columns, in client-
paresable format

fransmit to client, redacted rows in | |
server’s storage format, which transmit o client,
contain only query-selected columns original rows in server’s
(do not contain original values of storage format with all

columns not selected in query) columns included (including
columns not selected in guery)

U.S. Patent Jul. 6, 2021 Sheet 11 of 32 US 11,055,289 B2

FIG. 10 i

SErver (one or more computers) 100

Evaluate conditions
related to Query 111

No an client parse
erver’s storage format?

yes

does any

ohject referenced in query have any
olumn which is not selected?

Nno

€35

EXECUTE Q
NORMALLY

Prepare for
transmission,
processed versions
of rows responsive
to query, e.g. use bind
values fo identify data
to be retfrieved,
repeatedly fetch a
row, extract query-
selected columns,
re-order columns
relative to one another
as per query, anc
express columns in a
format known fo be
parseable by client

EXECUTE QUERY
EXECUTE QUERY TO FOR ROW SHIPPING
GENERATE REDACTED ROWS Prepare for fransmission

Prepare for transmission, redacted in_server’s storage format
versions of rows responsive each row responsive to query,
to query, €.g. use bind values use bind values to identify
to identify data to be retrieved, data to be retrieved,
repeatedly fetch a row, and edit repeatedly fetch a row from
each row to exclude columns not dlatabase and store in
to be sent, by applying a redaction network buffer without
technique without extracting query- extracting any columns, and
selected columns, and without without changing the format
changing the format of each row of each row (retain server’s
(retain server’s storage format) storage format)

121

transmit to client

transmit to client redacted rows in

processed rows ‘ . .
server’s storage format, which transmit to client,

which contain
only query-selected

contain only query-selected columns original rows In server’s
(do not contain original values of storage format with all

columns not selected in query) columns included (including
__ _ columns not selected in query}

columns, in client-
paresable format

U.S. Patent Jul. 6, 2021 Sheet 12 of 32 US 11,055,289 B2

FIG. 1P v

SErver (one or more computers)

Evaluate conditions
related to Query

does any

object referenced in query have any
olumn which 1s not selecteg?

nNo

EXECUTE QUERY
NORMALLY

Prepare for
transmission,
processed versions
of rows responsive
to query, e.g. use bind
values to identify data
{o be retrieved,
repeatedly fetch a
row, extract query-
selected columns,
re-order columns
relafive to one another
as per query, and
express columns in 2

format known fo be
parseable by client

115

are other

IS an additional
conditions met?

condition met?

140

EXECUTE QUERY
FOR ROW SHIPPING

Prepare for transmission
I server’s storage format
each row responsive to query,
use hind values to identify
dafa to be retrieved,
repeatedly fetch a row from

EXECUTE QUERY TO
GENERATE REDACTED ROWS

Prepare for transmission, redacted
Versions of rows responsive
to query, e.g. use hind values
to identify data to he refrieved,
repeatedly fetch a row, and edit
each row to exclude columns nof
to be sent, by applying a redaction
technique without extracting query-
selected columns, and without
changing the format of each row
(retain server’s storage format)

tlatabase and store in
network buffer without
extracting any columns, and
without changing the format
of each row (retain server’s
storage format)

fransmit to client
processed rows
which contain

transmit to client, redacted rows in | |
server’s storage format which transmit to client,

contain only query-selected columns original rows in server’s
(do not contain original values of storage format with all

only query-selected

columns, in client- . - : ,
’ columns not selected in query) columns included (including
paresable format _ columns not selected in query)

US 11,055,289 B2

Sheet 13 of 32

Jul. 6, 2021

U.S. Patent

¢l
(g 1+rgL-rg 141G 119 7 19 NY (1RO}

| - 001 ALY LY T LAY LAY LY Jeulog asuodsal TS W) | asuodsal
-.--I- A1BNE) 0} SAISUOASSS SMOJ JO UOISIBA Passad0id uwnjoo-1ad | Asenb TOS
m Ul SMO

.I.-In S dojqel v 9|qel) Aenp @,,_wco%@_

6L¢ -AJanhb
Q047 JELLLIO) BbRI0)S aseqelep S JaAtag buisied Jo s|qedesu) puisssooid
L1¢ 01 10 8jgedes)
8 rd INAITO

m e _ (S
R : £ S | VA, o
_mcmm____o d | 60¢ (6 V
NY LY :Jewuo) abeiois aseqeiep u
I N N N N N M d 3108 L UT SMo] FEUIBI0 Jo UOISIaN pa1BDal
NN y)
N [V ajqe 1) Aian) 0
v Q07 1elllo]
| oawe [[Swe | ar obeo]s
Il!.l" = (zg1+rgLrg " 1+1g ‘119 7 LG 'NY aseqelep
- ;7| — +PY LY LY (LY LY Jeulio) ebelo)s aseqelep ul) | s aneg u
— I A _—ttvorz | A\ q ‘v SO|ge | Ul SMO. [eulbLO JO UOISIBA Pajoepay P9SSaIdXD
N [TY] | Z— q M o
I I 3 8 L Y algeL) oo ansuodsal
Y @|de L S 07 90¢ -K1anb
buissasold
(eseqeIep JO $300]q Ul PJO)S SE ‘SUWIN|0D Ul ejep J0 Jeuuol) |0 sjgeden)
aseqeleq |euone|oy Jew.o} abelo}s aseqelep S Janlag Jo uoniuys(INITD
Jew.o) abeIo)s aseqelep s Janidg asled 0} Alijigede)
0L
S0 507

V¢ Il

U.S. Patent Sheet 14 of 32

Jul. 6, 2021

F1G. 28

Server (one or more computers)

receive capability of client to parse Server’s storage format
(e.g. to collate row and/or column pieces, re-order, and re-format
column values), when setting up session between client and server

221

227

to each client identified as capable
'mtu:m of Server S storage format

22;

| receive a query (e.g. including a select clause)
identifying data stored in storage device(s)

224

retrieve from storage device(s), original row(s)
responsive to received query (1.e. retrieved rows)

./_

120

yes can client parse

Server’s storage format?

[0

130

orepare a redacted version
of each retrieved row by
redacting columns not to be
sent (e.g. by applying a
specific redaction technique)
while maintaining in storage
format, columns to be sent

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

 Select a granularity level s
¢ and select and apply a ;

prepare
a processed
version of
each retrieved
row (by

any
columns not o
be sent?

performing
per-column
processing),
to Include

a

columns
selected
n query

prepare for
transmission, an
unredacted version

§

of each original row
in storage device(s),

e.g. by including all
oiums o atab\e

131
transmit redacted versions of rows IO

391N
transmit original rows (unredacteq)
return to step 225 Update statistics ~ }emmemmann- AL
391R

US 11,055,289 B2

220

o .
ﬂ'-'
_#

q..

L]

*t 2
. @#
b 1 4

* .
- -

¢ result Gf --234
Echec3 %]Iﬂ:

B e

"-'_-"-_-ﬂ-ﬂ_-‘-‘-‘
L

Additional Statisti
0. times of Nuiling

No. of times of Excising
No of times of Masking
No of times of
Randomizing

-
“‘n #""-
- -
pad _J Y L A

LR L L L L K B N N ﬁ-hﬂ‘-ﬂ-
LA K X N N N K KX 3§ N ¥ ¥ » § N R _E _E_R_RE

L L L Bt il N AN AN . . ﬂ‘ﬂ

r
"~
¢
|
.
¢
‘
.
.
'
‘
.
’
‘
¢
.
§
$
|
.
’
¢

A

U.S. Patent Jul. 6, 2021 Sheet 15 of 32

F1G. JA

Server (one or more computers

Yes branch of
act 112 (FIG. 2B)

prepare a redacted version of each retrieved row
by applying a specific redaction technique __..-=-

Use stafistics to select a level of granuiarity
from among a plurality of levels of granularity
including (a) minimal level granularity at
which a redaction technigue is to be applied
identically to all columns in all rows, (b)
intermediate level of granuiarity at which a

redaction technique is to be applied to at
least one not-to-be-sent column in all rows

(with or without another technique selected
for redacting another not-to-he-sent column),
and (¢) maximal level of granularty at which
a redaction technigue is individually selected
and is o be applied in each row to each not-
to-be-sent column (i.e. {o each not-to-be-sent

value at a row-column intersection)

select a specific redaction technique
from among mulfiple redaction techniques

prepare estimate of number of [T T =emeeaadlll L
instructions required to perform nullingge= 311

- prepare estimate of number of 312
instructions required fo perform masking jpe======="
313
"""'-------1
' prepare estimate of number of rep=f=====sc===ee===

] instructions required to excise E
31&\ “"“""""';i, """"""
' prepare estimate of number of ¢

s instructions required to randomize :
................ [omemmmeanned

dentify redaction technique from among multiple
edaction techniques (e.g. select a technigue with
owest estimate of number of instructions and/or
select a most-frequently used technigue)

Apply at selected granularity level, a selected
redaction technique (e.g. technique 342)

13

Act 131 (FIG. 2B

220

_.4statistics on tables

additional statistics =351

l
L

{ 953 JOrevious granularity level

354 fJedaction technique(s) used,
at a previous granuiarity level

ount of executions of query
at previous level of granularity

Query Execution Count’s limit

as a function of computation load

Fstimate of number
of instructions
] 1o perferm nulling

| Multiple Estimates

Estimate of number
of instructions
to perform excising

33

v Estimate of number 8
of instructions

to perform
randomizing

Multiple &+ Excising Technique

Redaction *
Techniques

3444=Randomizing Technigue
347 Masking Technique

341=— Nulling Technique

US 11,055,289 B2

U.S. Patent Jul. 6, 2021 Sheet 16 of 32 US 11,055,289 B2

prepare a redacted version of each retrieved row

21 by applying a specific redaction technique

select a specific redaction technigue
from among multiple redaction techniques

() prepare estimate of number of server 311C
, instructions to perform nulling,
o’ less savings from load on client

33
Multiple Estimates

Estimate of server | 4«°
instruchions o nuil

331C—=+ plus client load

prepare estimate of number of server 3120
o Instructions to perform masking,

. less savings from load on client

313C

¢ prepare estimate of number of server

. .-+ Instructions to perform excising,
- : l

- "

: §

Fstimate of server
mnstructions to mask
nlus client foad

S] e

less savings from load on client

Estimate of server

¥ . »"

' Instructions to excise ¢
333C—=plus client load boeee

Identify redaction technique with lowest estimate
(e.g. one of mulliple redaction technigues 340)

U.S. Patent Jul. 6, 2021

Original Row In Datahase Storage Format (in
row format of database block) in Table A

Header
411

Length of AT
Value of Al
Length of AZ

Value of A2

Data
117

247

Row-piece

410 Length of Al

Value of Al

Length of AJ
Value of AJ

Length of AN

Value of AN

Sheet 17 of 32

229A

240A

Storage Device

F1G. 4A

1110

207A

US 11,055,289 B2

Redacted Row In Database Storage Format
(with columns Al and AJ excised)

Length of AT

Yalue of Al

Length of AZ
Value of AZ

' Length of AI-1

Value of Al-T

Header
} i

Header
471

Row
-plece
420

Data
477

Rovggpoiece Length of Al+1
~ Value of Al+1

Length of AJ-
Yalue of AJ-1

Data
432

Header
441

Row-piece} | Length of AJ+1

)
Length of AN
Data
442
Value of AN

U.S. Patent Jul. 6, 2021

Original Row In Database Storage Format (in
row format of database block) in Tahle B

Header

Flags 151

Length of B
Value of B

Length of BZ
Value of BZ

Data
Row-piece 15 2238

150 Length of Bl

Value of Bl

Length of BJ
Value of BJ

Length of BZ

- 240B
Value of B/

20/B

Storage Device
1110

FIG. 4B

Sheet 18 of 32

US 11,055,289 B2

Redacted Row In Database Storage Format
(with columns Bl and BJ excised)

Flaas Header
i

 Length of BT

Value of Bl
470

Row-piece
Length of BZ

Data

Value of B? 472

Length of BI-1

Value of BI-1

Row-piece
480

T 182

- Length of BJ-T | BJ-1
Value of BJ-1

Header

i

Row-piece

Length of BJ+1
W [T o BT

~ Lengtn of BZ Nata

Value of B/

U.S. Patent Jul. 6, 2021 Sheet 19 of 32 US 11,055,289 B2

Cength of A
Value of A

Length of AZ
Value of A2

Value of Al-T

ags

Length of Al+]
430 Value of Al+1

Lengh of AJ-T
20/ Value of AJ-1

ags
- Length of AJ+1

FIG. AC 440

Value of AN

ags

%uegy-regponssive Row Length of BT
e VeleofBT
Cormat Value of B

470
Value of BZ

420

Length of BI-1
Value of Bl-1

Length of Bi+1
Value of Bl+1

Length of BJ-1
Yalue of BJ-1

490 Value of BJ+]

Value of B/

U.S. Patent Jul. 6, 2021

Original Row In Database Storage Format (in
row format of database block) in Table A

Storage
Device

Header
411

Flags

11

Length of Al

Value of Al

Length of A?

L

Length of Al
Value of Al

Length of AJ
Yalue of Al

Data
417

247

Row-piece

410

Length of AN

Value of AN 240A

20/M

F1G. 4D

Sheet 20 of 32

Redacted Row In Database Storage Format
(with columns Al and AJ masked)

Header
0
Length of Al
Value of Al
—engt '
Value of AZ Partially
. -masked
Row-piece Data
413 412M
2420
Length of A
243N

Length of AN

Value of AN

US 11,055,289 B2

U.S. Patent Jul. 6, 2021 Sheet 21 of 32 US 11,055,289 B2

Original Row In Database Storage Format (in Redacted Row In Database Storage Format
row format of datapase block) in Table A (with columns Al and AJ nulled)
Header olorage Header
r | o i

Length of Al Length of Al

Value of Al Value of Al

Length of AZ Length of AZ
Yalue of AZ Yalue of AZ Partially

eaw nulled
Row-piece Data Row-piece Data
410 Length of Al 412 229N 113 419N
Value of Al 282 242N
Length of A
Value of A 203 243N
Length of AN Length of AN

240A
Value of AN Value of AN
207N ,

FIG. 4E

U.S. Patent Jul. 6, 2021 Sheet 22 of 32 US 11,055,289 B2

Original Row In Database Storage Format (in Redacted Row In Database Storage Format
row format of database block) in Table A (with columns Al and AJ randomized)

Header | otorage Header
-~ 411 Device 4717
" RN m A RN
Length of A Length of Al
Value of Al Value of Al
Length of AZ Length of AZ
Value of AZ Value of AZ Partially
St 2%0R wria)nﬁie“n
Row-piece ROW-piece _ ala
410 Length of Al 412 413- Length of A 412R
Value of Al AL 21R
Length of Al Length of Al |
Value of A 243 243R
Length of AN Length of AN

240A
Value of AN Value of AN
, 7R e

FIG. 4F

U.S. Patent Jul. 6, 2021

Original Row In Database Storage Fo

rmat

(with column Cl in multiple row pieces)

H

Length of C1

Value of C1
Length of CZ

210 Value of C2

Length of st
part of Cl

Value of 1st
nart of Cl

.- Header

Length of “.
part of C

020

Value of “J’th
part of Cl

el Header

eater

012

Y

o

Length of “N”th
nart of Cl

Yalue of “N”th
part of Cl

230 Length of CJ

“Tongih o7

Length of CK

Value of CK

Length of CZ

Value of C/

Sheet 23 of 32 US 11,055,289 B2

Redacted Row In Database Storage Format
(with column Cl excised)

Header
541

Length of C1

2400 040 Value of C1 "

Length of C2
Value of C2

Header
}551

Ve T

Value of CJ

020 Length of CK 552
229C Value of CK .

Length of CZ
Value of C/

F1G. oA

Storage
Device

U.S. Patent Jul. 6, 2021 Sheet 24 of 32 US 11,055,289 B2

F1G. oB

Original Row In Database Storage Format
(with column Cl in multiple row pieces)

Header
Flags 511

Length of C 02
Value of C1

Length of C2 2400
d10 Value of C2 12

L ength of 1st
part of Cl

Value of 1st
part of Cl = o13A

. Header
Flags } h
Length of “J’th
nart of Cl 2
520

922

Yalue of “J"th
nart of Cl £93)

alnlle Header
T |

Length of “Nth
part of CI

Value of “N"th

part of Cl

233N

030 Length of CJ 232
Value of CJ

Length of CK
Value of CK

Length of C/Z
Value of C/

Redacted Row In Database Storage Format
(with column Cl masked)

Header

511

Length of C1

Value of C1
Length of CZ

260 Value of C2 512M

Length of 1st part
of Cl

Masked Value of 513M
1st part of Cl ’

Length of “
nart of C

Header
51

7 YAl

Masked Value
of “J”th part
of Cl

023V

il Header
o

Length of “N”th
vart of Cl

Masked Value
of “N”th part

= s
Velve T

Value of CJ

Length of CK

Value of CK

Length of C/

Value of C/

U.S. Patent

Original
(with co

F1G. 9C

Jul. 6, 2021

umn C4 in multiple row p

Flags

Length of C1
Value of C1
Length of C2

Value of C?

Length of 1st
part of (4

Value of st
part of C4

Length of “J7th
nart of C4

Value of “J’th
part of C4

010

020

row In Database Storage Format

Sheet 25 of 32

eces)

Header
511

03

240C

517 000

Header

521

229k

5/0

022

. Header
}—531

Length of “N”th
part of C4

Value of “N”th
part of C4

Length of CJ

030

Length of CK
Value of CK

Length of CZ
Value of CZ

590
037

US 11,055,289 B2

Redacted Row In Database Storage Format
(with column CJ excised)

| Header
511
Length of C1
alt

Value of C1
Length of C2

Value of C2 .

Length of 1st part
of C4

Value of 1st part
of C4

” _ m. Header
o]
Length of “J)’th
part of C4

N7

Value of “J7th
part
of C4

il Header
}—531

Length of “N”th
nart of C4
Value of “N’th
part
of C4
Length of CJ=0
Length of CK

535

Value of CK

Length of C/
Value of C/

U.S. Patent

F1G. oD

Jul. 6, 2021

Original Row In Database Storage Format

(with column Cl in multiple pieces)

Header
Flags 511

Length of C
Value of C1
Length of C2

)10 Value of C2
_ength of Tst
part of C
Value of 1st
part of Cl = 513A

012

Header
he

520 59

Value of “J’th
part of Cl

23]

Header
T |

part of Cl

Value of “N"th

part of Cl

233N

Vel o0

330 3932

Yalue of CJ

Length of CK

Value of CK

Length of C7
Value of CZ

Sheet 26 of 32

US 11,055,289 B2

Redacted Row In Database Storage Format
(with column Cl excised in multiple pieces)

_ Header
511

997

Length of C1

Value of (1

240C “Length of C2°

Value of CZ

L ength of 1st part
of Cl =1

Value of 1st part |
of CI =0

229F

Length of “J”th
nart of Cl =1

Value of “Jth
nart of Cl =0

of

el leader

53
Length of “N”t he]
part of Cl =1 '

582

Value of “N”th
nart of Cl =0

Vel o0

% 032k

Value of CJ

Length of CK

Value of CK

Length of C/

 Length of CZ_

U.S. Patent Jul. 6, 2021

Original Row In Database Ste(age Format
(with column Cl in multiple pieces)

i

Length of Ct -
Value of C 280
Length of C2

010 Value of 2 | $—512

Length of st

nart of Cl
Value of 1st
part of C\
i Header
F\ags __ 1

Length of “.
part of C

020

Value of “J”th
part of Cl

‘. Header

531

Length of “N”th
part of Cl

Value of “N”th
part of Cl

530 Lenath of CJ 232
Value of CJ

Length of CK Storage

Value of CK Device
1110

Length of CZ
Yalue of C/Z

Sheet 27 of 32

US 11,055,289 B2

Redacted Row In Database Storage
Format (with column Cl combined
Into one excised plece)

Header
m}s%

gth of C

.

. Length of CZ SA9E
Value of C2

Length of Cl =0 J— 094

Header

Length of CJ
Value of CJ

o3 Tenath of CK_ | +-552
Value of CK

Length of C/Z
Value of CZ

F1G. Ok

U.S. Patent Jul. 6, 2021 Sheet 28 of 32 US 11,055,289 B2

F1G. 6A 0

220 Server (one or more computers)

Relational Database
011 Management System
Nnao

S
computation load > L1

(e.g. > 60%)

yes

s
computation load > L2

(e.g. > 40%})

A

Select Intermediate Granularity
(In all rows, apply one or more redaction

technigues selected for respective one
or more not-to-be-sent columns)

5’93 ' 018A 515A Select Maximum

****** Q? *::T;\gggeraw”siggttao“} [0, executior\él of query %?;Ll};ag‘y
'qlfery?' pe;-fe“me? selelgfeizlgggggtion

. yes tgohn_ique to
6158 phhetiy

310A

Select yes

regaction
technique

at a single
row-column
Intersection)

table (with column to be
redacted) satisfy a test on changes
e.g. based on an indicator of
alteration)?

Select Minimum no
Granularity

(apply a common

616

redgaction technique, 2 thre]sshold T
‘o entire result set, yes (e.g. 50%) exceeded by
.€. in all rows apply num%er of times a specific

It identically to all

not-to-be-sent redaction technique was

used (relative
to total)?

columns)

no
3108

| redaction

.Jesponsive 10" = tachnique

.guery?,.~”

yes

Xit

U.S. Patent Jul. 6, 2021 Sheet 29 of 32 US 11,055,289 B2

FIG. 6B 101

220) SEIVEr (one or more computers)

Relational Database
o Management System

IS
yes computation load > L1 i
e.g. > 60% '/ 010
b1Z
s
A computation load > L2
e.g. > 40%

61

does client have
high privilege”

627

does
client have high
orivilege?

1O

yes | Select Intermediate Granularity
(in all rows, apply one or more
redaction techniques selected for

respective one or more notf-to-be- 6513
sent columns)
YeS X, — B1]A Select Maximum
',:'E)ong:: Granularity
1 no__.“with all data ™., o M executions (apply an

... Jesponsive 1o .- of query performed? individually
..query?,. selected redaction

ves technigue to

an individual not-
to-be-sent cell,

3 10A 6198 at a single
Select Does .rowﬂ-ooluimn
redeagt?on yes table (with column intersection)

to be redacted)
satisfy a test on
changes?

technique

Select Minimum
Granularity
(apply a common

redaction technique,

~to entire result set,

.e. in all rows apply it

identically to all not-
fo-be-sent columns)

Nno

S
athreshold T
(e. .50%? exceeded b
number of times a speciiic
redaction technique was
used (relative
to total)?

Select
redaction
technique

yes

with all data
responsive fo

query”?

no

U.S. Patent Jul. 6, 2021 Sheet 30 of 32 US 11,055,289 B2

FIG. 6C 1

220 SErver (one or more computers)

Relational Database
Management System

ol
S
e computation load > L1 no
e.g. > 60%
612
Ves s
computation load > |2 G
e.g. > 40%
631 -

does client have eS

high latency”?

637 10 614
no ~V does
client have high Select Intermediate Granularity
latency? (in all rows, apply one or more

redaction techniques selected for
respective one or more not-to-be-
sent columns)

.~ Done |
~"with all data no M executions Se‘(je%?;rlw\{ljla;(rlitn;um
- respcsns%e to of query performed? (apply an
qu‘ery yEs individually
_ selected redaction
310A Does 6198 technique to

an indivigual not-

Select

) able (with column
redaction yes to be(redacted) to-be-sent cell,
technique satisfy a test on at a single
changes” row-column
Select Minimum _l—g17 S intersection)

Granularity
(apply a common
redaction technigue,
to entire result set,

athreshold T

.. In all rows a p\y it
oty g jpcasty
0-be-sent columns})

redaction technique was

used (re\atlve
to total)?

Select

with all data redaction
responsive {0 technique

query”?

N0

U.S. Patent Jul. 6, 2021 Sheet 31 of 32 US 11,055,289 B2

1105 SERVER 100

| JL_PROCESSR Y] COMPUTER
— 202

Address

1220
RDBEMS Co.on | [
one or

L) ata biOCK mOI:Ehard

(at address)

Network Interface Module — 1110 |
_ — o

Resources 1130

MEMORY

1109

Communications Switch |

117

Processor

o

Rows (In server's

Query

storage format)

format)

Que
Rows (in standara

Network interface Module

FProcessed Rows

MEMORY

1105 1105
{ PROCESSOR
= gy

CLIENT CLIENT

T R e N =S S

U.S. Patent Jul. 6, 2021 Sheet 32 of 32 US 11,055,289 B2

STORAGE DEVICE SERVER
(relational database,
- cursers, temporary data,
redacted rows
1 ROM to be fransmitted ... MAIN MEMORY
1104 1110 1107

Input Device 1302 . -
BUS

Cursor

Control

1109 Screen
(video monitor)
Network [nterface Module
105 1117

1124

| PROCESSOR

__________ |

LOCAL

: INTERNET
NETWORK
160, 170 1126 M
1122

FIG. /C i CLIENT —1
E (rows received E
; STORAGE DEVICE from server) '
E 1114 E
: 104 1102 110 7
¢ | Input Device , 5
: BUS 5
: Cursor _ o
E ontrol 1100 N E
E (video monitor) E
E TG Network Interface Module E
: 05 1117 '

1124

INTERNET LOCAL
<p NETWORK
1126 1179

US 11,055,289 B2

1

FRAMEWORK TO TRANSKFER ROWS IN
STORAGE FORMAT, STANDARD FORMAI,
OR COMBINATION THEREOF

CROSS-REFERENCE TO PROVISIONAL
APPLICATION

This patent application claims priority under 35 USC §
119 from U.S. Provisional Application 62/5335,872 filed on
Jul. 22, 2017, by Mehul Dilip Bastawala and Ajit Myla-
varapu, originally entitled “Improving Transfer of Data in
Storage Format In Response To A Query” and 1dentified 1n
a Provisional Filing Receipt of Jul. 31, 2017 by the title
“Transfer of Data in Storage Format In Response To A
Query”, which 1s hereby incorporated by reference herein 1in
its entirety.

BACKGROUND

In a prior art relational database management system
(RDBMS), to reduce workload 1n a database server, certain
work performed in the server was moveable to a client.
Specifically, queries which referenced a single table had all
columns of data streamed to the client (1n a process called
“row shipping”), 1n the same format 1n which the rows were
stored on disk (also called *“disk row format” or “database
storage format”), when certain thresholds were met, e.g., X
% of the total number of columns 1n a table were requested
by the query or X % of the total amount of data in a table
row were requested by the query. In addition, the server
informed the client of a definition of the database storage
format, which was then used by the client to extract the data
of each column and process the data to obtain columns
selected by the query. Because extraction and processing of
data to obtain columns selected by the query was moved
from the server to the client, a significant decrease was
achieved 1n the number of instructions executed on the
server, to respond to such queries.

For details on transfer of data 1in database storage format
from a server to a client, see U.S. Pat. No. 7,188,102 by
Sreenivas Gollapudi et al, enftitled “Method and Apparatus
For Efhicient Transmission of Result Set Data” that 1is
incorporated by reference herein 1n 1ts entirety.

SUMMARY

In several embodiments, a server (which may be 1imple-
mented by one or more computers 1n a cloud, depending on
the embodiment) includes logic that implements a frame-
work to respond to a query on one or more tables 1n a
database, which 1s received from a client, by transferring to
the client, data 1n the form of rows 1n a storage format (also
called raw rows), or rows 1n a standard format (also called
server processed rows) or rows 1n any combination of these
two formats. In such embodiments, rows 1n any of these
formats are transferred by the server to the client, after
excluding from these rows, original values of any column
identified as sensitive, e.g. by a database administrator
(DBA).

In some embodiments, the framework’s logic 1s used by
the server, to decide which of one or more three operations
1s to be performed, on query-responsive rows ol original
values (or raw rows), which are retrieved from one or more
storage devices or a remote location: (a) a first operation to
process one or more raw rows (or portions thereof) mto a
standard format, resulting in server-processed rows (or
server-processed values of one or more columns), or (b) a

5

10

15

20

25

30

35

40

45

50

55

60

65

2

second operation to exclude original values of any column
which 1s i1dentified as sensitive from the raw rows, while
retaining original values of other columns 1n the raw rows in
the storage format, resulting in redacted versions of raw
rows (or redacted versions of one or more row pieces), or (C)
a third operation to retain unprocessed by the server, the raw

rows (or one or more pieces of the raw rows), as retrieved
from the database.

In the second operation to generate redacted versions of
raw rows, the server omits from or modifies in the one or
more raw rows (expressed in the server’s database storage
format), any columns not to be sent to the client (for any
reason), to obtain and transmit to the client, redacted ver-
sions of the one or more rows. In the third operation, the
server transmits to the client, original rows in the server’s
database storage format (also called “raw rows”), without
discarding any value 1n any column of any row, regardless
of which columns are selected or not selected in the query.

In certain embodiments, values of any columns that are
not selected in the query and are not i1dentified as sensitive,
may be either (a) transmitted to the client or (b) excluded
from transmission. In an illustrative example, rows 1n a
database contain 100 columns, among which 10 columns are
not selected in the query and among these 10 columns, 5
columns are i1dentified 1n the database as sensitive. In this
example, the framework additionally enables the server to
decide (e.g. based on current server load), to perform the
second operation described above either by excluding values
of the 10 columns that are not selected (also called “first
option”) or alternatively by excluding only values of the 5
columns 1denftified as sensitive (also called *“second
option”’), while values of all other columns 1n either of these
two options are retained 1n storage format (as raw values),
for transmission to the client. Such an exclusion of values
may be performed 1n the server by, for example, invoking a
modification function, such as masking function or a ran-
domizing function (similar to invoking a function to convert
data types), or a nulling function or alternatively by invoking
an excision function to excise (or cut out) one or more
sensitive columns’ values from a row, and any one of these
functions may be determined by the framework depending
on different factors, e.g. processing power to perform each
function.

In some embodiments, original values of one or more
specific columns 1n one or more raw rows are processed 1n
the server 1n the first operation (e.g. to convert from one data
type, such as a number, to another data type, such as a string
of characters), and values of one or more other columns
within each raw row are retained in storage format, while
excluding 11 necessary, values of any column identified as
sensitive 1n the second operation.

In certain embodiments, the server may be configured to
do server processing only on columns that need conversion
for client compatibility such as data type conversions. The
server may choose to send columns not selected including
the sensitive columns 1n raw format. This may be deter-
mined by the server evaluating certain conditions such as
indications that the client and network are secure.

Such embodiments of the server may be configured to
include an indication to the client that the one or more
specific columns (which were processed 1n the first opera-
tion) are 1n the standard format, and/or that the one or more
other columns (which were retained unprocessed) are in the
storage format, e.g. as one or more flags in each row and row
pieces transmitted. In one embodiment, istead of transmit-
ting the tlags within each row, the flags may be transmitted

US 11,055,289 B2

3

once for any number of rows transmitted 1n a query-
responsive set, e.g. 1 response to a fetch request.

In many embodiments, a server receives from a client
computer, a query that references one or more objects (such
as tables) stored 1n a database on one or more storage
devices (such as hard disks). Then, a framework in the server
evaluates one or more conditions to decide how to return
rows responsive to the query and based thereon the server
executes the query by performing one or more of multiple
operations. In such embodiments, one or more conditions
(e.g. based on the query’s SQL statement) may be checked
in the framework at compile time, called “compile-time
conditions”™, to see i the row can be transmitted 1n storage
format by performing the second operation or third opera-
tion (e.g. SQL statement requires a complex join of more
than two tables). If these compile-time conditions are not
satisiied, a first operation 1s performed by retrieving one or
more rows responsive to the query, extracting into memory
one or more selected columns from the one or more rows,
processing the columns 1n a normal manner into a standard
format (e.g. a comma separated values), and transmitting
processed versions of rows (also called “server processed
rows”) to the client computer. Depending on the embodi-
ment, the first operation (to prepare server processed rows)
may be performed repeatedly (in response to, e.g. a fetch
request from the client computer), until all rows responsive
to the query are sent to the client computer (also called
simply “client”). In some embodiments, all compile-time
conditions may need to be satisfied for storage format
transmission by use of second or third operations. In other
embodiments, one or more compile time conditions may
need to be satisfied for storage format transmission by use of
second or third operations.

After compile-time conditions have been checked (e.g.
based on SQL) 1n the framework, and when compile-time
conditions are satisfied, the server retrieves from the data-
base one or more rows responsive to the query and uses the
framework to check one or more run-time conditions after
retrieval of the one or more rows. The run-time conditions
checked 1n the framework include one or more first run-time
conditions used by the server to decide 1f the one or more
rows should be processed into the standard format (de-
scribed above), to obtain server processed rows. The run-
time conditions additionally include one or more second
run-time conditions 1n the framework which are used by the
server to decide if any column in the one or more rows
should not be sent to the client, for any reason.

When any of the first run-time conditions 1s satisfied (e.g.
if SQL statement of the query 1s complex), the server
performs the above-described first operation to generate
server-processed rows, and when any rows responsive to the
query remain to be sent, repeats at least retrieving of
query-responsive rows and checking of first run-time con-
ditions (as described above). When the {irst run-time con-
ditions are not satisfied (e.g. 1if SQL statement of the query
1s simple), mnstead of performing the first operation to
generate server-processed rows, the server may perform a
second operation to generate redacted versions of raw rows
when at least one second run-time condition 1s satisiied (e.g.
i any column 1s sensitive). Alternatively, when the first
run-time conditions are not satisfied (e.g. 1 SQL statement
of the query 1s simple) and when the second run-time
conditions are also not satisfied (e.g. 11 no column 1s sensi-
tive), the server may perform a third operation to send raw
rows to the client.

In response to server’s performance of the second opera-
tion or third operation, a client which receives rows 1n the

10

15

20

25

30

35

40

45

50

55

60

65

4

server’s database storage format performs one or more steps
of processing each column (e.g. extracting, re-ordering and
re-formatting) normally performed by the server, to obtain a
processed version of each row. In contrast, in the above-
described first operation, the server prepares and transmits
rows 1n which all columns’ values have been processed in
the normal manner, as processed versions of rows. A client
that receives the processed versions of rows does not need
to perform the just-described steps of processing each col-
umn, as these steps have been already performed by the
Server.

Use of the first operation allows a server to maintain
backward compatibility with clients that are unable to parse
the server’s database storage format, while use of the second
or third operation by the server has several other advantages
as follows. One advantage of the second and third operations
1s that processing of rows 1n the server’s database storage
format by the client reduces computation in the server,
which in turn enables query processing in the server to be
completed faster, relative to use of the first operation. In one
example, transmission ol rows in the server’s database
storage format reduces processing in the server, because the
server does not have to re-order data 1n rows responsive to
the query, even 11 the query specifies a first order (also called
“query-specified order”) which 1s different from a second
order 1n which the data 1s stored in query-referenced objects
(c.g. tables) 1n the database (also called “‘storage order™).
Moreover, transmission of redacted versions of rows in the
server’s database storage format (or raw rows) allows the
server 1o not re-format any column’s values 1n responding to
the query, even when a client’s specified format (also called
“client-requested format™”) 1s different from a format in
which these values are stored by the server in its database.
Another advantage of the second operation 1s that redaction
of rows (which 1s a form of editing) within the server, while
the rows are still in the server’s database storage format,
eliminates transfer to the client, of values that are discarded
by redaction, which improves network bandwidth, and
which additionally improves security when the redacted
values are too sensitive to transier over the network.

In some embodiments, the run-time conditions which are
evaluated by a server as described above include a specific
run-time condition which checks if a client computer that
sent the query has an ability to parse the server’s database
storage format 1n which rows are stored in the database. At
least partially 1n response to finding that this specific run-
time condition 1s true, the server executes the second and/or
third operation described above, to transmit rows responsive
to the query 1n the server’s database storage format. But if
the client 1s found unable to parse the server’s database
storage format, the server executes the first operation
described above, to prepare and transmit server processed
versions of rows responsive to the query. The preparation
and transmission ol server processed versions ol rows may
also be performed even when the client 1s able to parse the
server’s database storage format, based on a result of the
server’s evaluation of one or more additional first run-time
conditions. The additional first run-time conditions may
check, e.g. whether a percentage of columns selected 1n the
query relative to all columns 1n objects referenced by the
query 1s below a predetermined minimum (e.g. 10%). When
additional first run-time conditions are satisfied, the server
prepares and transmits processed versions of one or more
rows 1n standard format, as described above.

Checking of compile-time conditions and run-time con-
ditions as described above enables a server to flexibly
perform load balancing, by determining when to use 1ts own

US 11,055,289 B2

S

processing power (e.g. to process columns 1itself) and when
to use the client computer’s processing power (e.g. by
sending unprocessed rows 1n the server’s database storage
format (also called raw rows) to the client). Transier of
processing load from a server to a client (e.g. by sending one
or more raw rows 1n the storage format) enables the server
to perform other tasks, which improves internal functioming,
of the server, by enabling the server to use the processing
power spared by the processing load transfer to perform
other tasks (which may otherwise be delayed).

The above-described second operation, to redact rows by
omitting or modilying one or more values of columns not
selected 1n a query, can be performed by a server using a
redaction technique at different levels of granularity. Spe-
cifically, a redaction technique (such as excising, masking,
randomizing or nulling), can be used by a server to redact all
unselected columns 1n all rows, when applied at table level
granularity. Alternatively, multiple redaction techniques can
be used by a server, to redact respective multiple unselected
columns 1n all rows, which constitutes column level granu-
larity. Yet another alternative is to apply a different redaction
technique at each intersection of an unselected column with
a row, which constitutes row level granularity.

Use of row level granularity enables a server to identity,
based on statistics, which of multiple redaction techniques
places the least computational load on the server, but usage
of row level granularity 1s normally more computation
intensive than column level granularity, which in turn can be
more computation intensive than table level granularity.
Hence, 1n some embodiments, the server evaluates addi-
tional conditions (which are different from the above-de-
scribed compile-time and run-time conditions), and based
thereon, automatically selects, from among multiple levels
of granularity (such as table level, column level and row
level), a current level of granularity at which a redaction
technique 1s applied to discard from rows, values of columns
not selected 1n the query. The current level of granularity
may be selected based on, for example, additional conditions
that test computation load in the server, privilege of the
client, and latency in the client.

At a current level of granularity, the server determines one
or more redaction techniques (such as nulling, excising,
masking and randomizing) to be used, for example based at
least partially on corresponding estimates ol number of
istructions required to be executed in applying respective
redaction techniques. Depending on the embodiment, the
server may determine the one or more redaction techmques
additionally based on an estimate of reduction 1n processing
load at a client that sent the query, due to not extracting from
rows 1n the server’s storage format one or more columns not
selected 1n the query. Furthermore, 1n some embodiments,
the one or more redaction techniques to be used may be
determined by a server based on statistics related to a
number of times 1n previous executions of the query, each
redaction technique was found to be least computationally
intensive and used to discard a value of a column. Then, the
server applies the determined redaction techniques, at the
current granularnity level, to prepare redacted versions of
rows, by discarding any value of any column not selected in
the query. The current level of granularity may be changed
at any stage of query execution, such as between executions
ol a query with diflerent bind values or during execution of
a query with the same bind values 1f the database returns
multiple blocks of rows by changing the current level of
granularity between blocks, followed by determination of
one or more redaction techniques as needed.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

As noted above, one of the first operation, or the second
operation or the third operation may be performed on a
single row 1 many embodiments. However, i other
embodiments, one or more of the first, second and third
operations may be performed on one or more portions of a
single row. In certain embodiments, the first operation may
be performed on one portion of a specific row, and the
second and/or third operation may be performed on one or
more other portions of the specific row, followed by trans-
mission of the specific row as a combination that 1s
expressed partly in the standard format (prepared by the first
operation) and partly 1n the storage format (prepared by the
second and/or third operation).

It 1s to be understood that several other aspects of the
described embodiments will become readily apparent to
those skilled in the art from the description herein, wherein
it 1s shown and described various aspects by way of 1llus-
tration. The drawings and detailed description below are to
be regarded as illustrative 1n nature and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates, 1n a high-level flow chart, a method of

performed by server 100 to prepare and transmit to a client,
a result set of rows responsive to a query in 1illustrative
embodiments of the mmvention.

FIG. 1B 1illustrates 1n an intermediate-level flow chart,
steps 61-63 used to implement act 32 of FIG. 1A 1n some
embodiments.

FIG. 1C 1illustrates, in a high-level flow chart, another
method performed by server 100 of several embodiments, to
prepare and transmit to a client, one or more rows responsive
to a query, as a combination expressed partly 1 a standard
format and partly 1n a storage format.

FIG. 1D illustrates, 1n a high-level flow chart, a method of
performed by server 100, with one or more steps and/or acts
and/or operations similar or 1identical to FIG. 1A, to analyze
information related to a query 1n operation 110 and based
thereon execute the query to prepare a result set responsive
to the query, by performing one of alternative operations 130
and 140, in illustrative embodiments of the invention.

FI1G. 1E-1H illustrate, redacted rows R1, R2 .. . RI . ..
RM, prepared by server 100 on performance of operation
130 of FIG. 1D, by application of the respective redaction
techniques of nulling, masking, randomizing and excising,
at minimal (e.g. table level) granularity, in some embodi-
ments.

FI1G. 11 1llustrates, redacted rows R1, R2 .. . RI . . . RM,
prepared by server 100 on performance of operation 130 of
FIG. 1A, by application of the redaction techniques of
nulling, masking, randomizing, and excising at intermediate
(e.g. column level) granularity, 1n some embodiments.

FI1G. 1] illustrates, redacted rows R1, R2 .. . RI ... RM,
prepared by server 100 on performance of operation 130 of
FIG. 1A, by application of redaction technmiques of nulling,
masking, randomizing and excising, at maximum (e.g. row
level) granularity, 1n some embodiments.

FIG. 1K 1illustrates, in a high-level flow chart, in the
method performed by server 100 of FIG. 1D, operation 130
to prepare redacted versions of rows by discarding one or
more column’s values without extracting values of other
columns, followed by transmission of the redacted versions
in the server’s database storage format to a client that sent
the query, 1n certain embodiments of the invention.

FIGS. 1L and 1M 1illustrate, 1n two embodiments that are
alternative to one another, methods performed by clients 160

US 11,055,289 B2

7

and 170, 1n response to receipt of rows prepared by server
100°s performance of the method of FIG. 1D, 1n 1llustrative
embodiments.

FIG. 1IN 1illustrates, in a high-level flow chart, an alter-
native method performed by server 100 (similar to the
method of FIG. 1D), including act 111 and operation 120.

FIG. 10 illustrates, in high-level flow chart, another
alternative method performed by server 100 (similar to the
method of FIG. 1N), including act 113.

FIG. 1P 1llustrates, in high-level tlow chart, yet another
alternative method performed by server 100 (similar to the
method of FIG. 10), including act 116.

FIG. 2A 1llustrates, 1n a high-level data-tlow diagram.,
queries and responses between clients 170, 160 and RDBMS
server 100 that 1s coupled to relational database 202, in some
illustrative embodiments.

FIG. 2B 1illustrates, 1n a high-level flow-chart, acts 221-
233 that are performed by a method 220 implemented 1n
server 100 1illustrated 1n FIG. 2A

FIG. 3A 1illustrates, 1n an intermediate-level flow chart,
steps 311-3135 of an embodiment of operation 130 (FIG. 1D)
including acts 132 and 310 illustrated 1in FIG. 1K.

FIG. 3B illustrates, in a flow chart similar to FIG. 3A,
steps 311C-313C of another embodiment of act 310,
wherein each of steps 313A-313C adds to an estimate of
server 1nstructions to perform a redaction technique, an
estimate of savings from load on the client.

FIGS. 4A and 4B 1llustrate, in high-level block diagrams,
fields 1n headers and data in row pieces 410 and 4350 that
respectively constitute original rows 240A and 240B in
storage 1n respective tables A and B of FIG. 2A, and multiple
row pieces of corresponding redacted rows 207A and 2078
obtained by application of an excising redaction techmque,
to exclude columns Al and Al of the original row 240A and
columns BI and BJ of the original row 240B.

FIG. 4C illustrates, in a high-level block diagram, a
redacted version of row 207 1n server’s database storage
format 1n a result set to be transmitted from server 100 to

client 170 (1n response to query 206 on tables A and B shown
in FIG. 2A).

FIGS. 4D, 4E and 4F illustrate, in respective high-level
block diagrams, application of three redaction techniques
that modily data (instead of excising), namely a masking
redaction technique, a nulling redaction technique, and a
randomization redaction technique, to original row 240A in
storage 1n table A of FIG. 2A, to obtain corresponding
redacted rows 207M, 207N and 207R.

FIG. 5A 1llustrates original row 240C 1n storage (in table
A of FIG. 2A) 1n three row pieces 510, 520 and 530, being
redacted by application of an excising redaction technique,
to excise column CI, thereby to obtain redacted row 501 split
into row pieces 340 and 3550.

FIG. 5B 1llustrates original row 240C 1n storage (in table
A of FIG. 2A) m three row pieces 510, 520 and 530, being
redacted by application of a masking redaction technique, to
mask column CI, thereby to obtain redacted row 502 split
into row pieces 510, 520 and 530.

FIG. 5C illustrates original row 240C 1n storage (in table
A of FIG. 2A) 1n three row pieces 510, 520 and 530, being
redacted by application ol a combination redaction tech-
nique to column CJ 1 data 532 1n row piece 530, by
modilying a portion of the data (namely, length of column
CJ) and excising another portion of the data (namely, value
of column CJ), thereby to obtain data 335 1n row piece 590
in redacted row 503.

FI1G. 5D 1llustrates original row 240C 1n storage similar to
FIG. SA redacted by application of an excising redaction

10

15

20

25

30

35

40

45

50

55

60

65

8

technique 1n an alternative embodiment, to excise column CI
from each piece, while retaining the number of row pieces

unchanged.

FIG. SE illustrates original row 240C 1n storage similar to
FIG. SA redacted by application of an excising redaction
technique 1n another alternative embodiment, to excise col-
umn CI 1n one excised piece that combines multiple pieces
in which column CI 1s present originally.

FIG. 6 A 1llustrates, 1n a high-level flow-chart, a procedure
610 executed by server 100 1n performing method 220 to
select a granulanty level (as per act 132 in FIG. 1K), at
which to apply (1n act 133 of FIG. 1K) a specific redaction
technique selected by acts 152, 154 or 155 1n FIG. 1K) that
are implemented as described 1n reference to act 310 of FIG.
3A.

FIGS. 6B and 6C illustrate, in flow charts similar to FIG.
6A, other embodiments of procedure 610 to select granu-
larity levels depending on privilege or latency of a client.

FIGS. 7TA-7C illustrates, in block diagrams, hardware
portions of server 100 and clients 160, 170 that may be
configured to perform one or more acts illustrated in FIGS.
1A-1D, 1K, 2B, 3A, 3B, 6A, 6B and 6C 1n some embodi-

ments.

DETAILED DESCRIPTION

The current inventors realize that transmission to a client
computer, of rows retrieved from a database in response to
a query, 1n a server’s database storage format has drawbacks,
including, for example, a sending of all columns 1n a row to
the client computer, including columns not selected in the
query and/or columns not accessible to the client, which
raises a concern about a breach 1n security, due to transmis-
s1on of not selected columns and/or not accessible columns.
Specifically, when all columns of a row are sent to a client
computer, the client computer may receive columns of data
that include, e.g., social security number, bank balance
and/or mother’s maiden name, although this data (also
called “values™) 1s not selected 1n the query, and/or not
visible to the client (e.g. due to access control), which poses
a security 1ssue. Also, when all columns of a row are sent,
there 1s un-necessary utilization of network bandwidth by
sending of one or more columns that a client computer may
have not selected and that need to be discarded by the client
computer after receipt. If there are few columns that need
server processing, the sending of all columns 1n storage
format need not be disabled. Hence, the current inventors
believe there 1s a need for improvement 1n transfer of data
in a server’s database storage format, by redacting columns
not selected 1 a query, as described below, which has
several benefits such as (a) better security, (b) more query
responses can be sent in storage format (c) reduces un-
necessary utilization ol network bandwidth and d) less
server CPU utilization. For example, 11 a query on a table
with 100 columns does not select column 100, as 1t a
sensitive column, with the remaining columns being
selected, and it the result-set has 10,000 rows, then server
100 (described below) may avoid the need to extract each of
the (100*10,000)=1,000,000 column values into a bufler and
send these bullers on the network to client computer.
Instead, all row pieces of the rows may be sent by server 100
as-1s (in database storage format) on the network, saving a
lot of server CPU processing power. In this example, row
pieces that contain column 100 may be redacted 1f necessary.
A client computer that recerves such row pieces uses its CPU
processing power, to extract columns from the row pieces 1t
receives from server 100 (described below).

US 11,055,289 B2

9

In several embodiments, a database management system
(DBMS) may include one or more computers (hereinafter
“server’”) 100 that store data 1n a database 202 (FIG. 7A), on
one or more storage devices 1110 (FIG. 7B). Server 100 may
be programmed by software 1n memory 1107 (FIG. 7B), to
perform a method of the type illustrated in FIGS. 1A-1C
described below. Storage devices 1110 (FIG. 7B) may
include one or more hard disks or other such non-volatile
memory. In such embodiments, 1 act 11, server 100 (FIG.
1A) receives a query (such as a SQL expression) from a
client computer (such as one of computers 160, 170 shown
in FIG. 7B) that reference one or more objects stored in
database 202. Thereafter, server 100 compiles and executes
the received query.

During query compilation, server 100 parses the query
and generates an execution plan (not shown). The execution
plan may include one or more operators, used by server 100
to execute the query. At the time of query compilation, and
prior to execution of the query, i act 12 (FIG. 1A), server
100 checks one or more conditions (called “compile-time
conditions™), to determine how to send back to the client
computer (also called simply “client”), one or more rows
retriecved from database 202 as being responsive to the
query. More specifically, the compile-time conditions are
used by server 100 to determine whether columns of each
row should be extracted into memory 1110 and expressed in
a standard format, such as a list of values of the columns
separated from one another by commas.

In some embodiments, compile-time conditions are based
on one or more attributes that do not change during query
execution, such as attributes of the query and/or attributes of
the client. A query’s attributes which may be checked by a
compile-time condition 1 act 12 (FIG. 1A), include, for
example, whether the query requires a complex join, as
indicated by a join operator on 3 or more tables. Another
compile-time condition may check 1f the query’s select
clause requires functions to be evaluated on two or more
columns.

A compile-time condition may include threshold T on
number of columns that need server processing. For
example 11 a SQL query on table T with 10 columns 1is
“select coll, col2, . .., col7+5, col8, col9, coll0 from T,
only one column col7 need server processing. This compile-
time condition makes an assessment 1f first operation 1s less
expensive on server compared to the second or third opera-
tion. If T 1s 20%, the above query responses can be trans-
mitted using second operation. If T=3%, then above query
responses exceed the threshold and they would be transmut-
ted using {irst operation.

Other query attributes that may be checked by a compile-
time condition 1n act 12 are: whether too few columns (e.g.
as determined by comparison to a limit thereon) are selected
in the query and/or whether a percentage of columns
selected relative to total number of columns 1n tables (or
other such objects) referenced 1n the query 1s too low (e.g.
as determined by comparison to another limit thereon). An
attribute of the client which may be checked by a run-time
condition 1n act 32 1s whether or not the client has an ability
to parse a database storage format 1n which server 100 stores
data 1n database 202. In some embodiments, such a database
storage format may be proprietary to a vendor of database
soltware that implements a DBMS, such as Oracle 11gR2
available from Oracle Corporation of Redwood Shores,
Calif. Specific details of the database storage format used by
server 100 to store data 1in database 202 are not a critical
aspect of the mvention, and these details are different 1n
different embodiments. The attributes used 1n compile-time

10

15

20

25

30

35

40

45

50

55

60

65

10

conditions which are checked by server 100 1n act 13 (as
noted above) do not change during query execution (de-
scribed below).

When any compile-time condition 1s found to be not
satisfied (e.g. 1n act 13), a database admimstrator (DBA)
may configure server 100 to execute the query 1n stage 20
(FIG. 1A), which disables row format processing for this
query, as described below for stage 30. Specifically, in stage
20, server 100 retrieves from database 202, a set of one or
more rows responsive to the query, e.g. by using bind values
to 1dentify the rows to be retrieved. In some embodiments,
the set of one or more rows retrieved 1n act 21 (also called
“retrieved set”), may be a subset of an entire result set of
query-responsive rows, and the number of rows in the
retrieved set may be determined, e.g. by a fetch request from
the client. On completion of act 21, the retrieved set of one
or more rows exist 1 the database storage format (which 1s
used by server 100 to store data 1n database 202, as noted
above). Thereafter, 1n operation 22, server 100 extracts into
memory, from the retrieved set of one or more rows 1n the
database storage format, one or more columns selected in the
query and prepares processed versions of the one or more
rows 1n the standard format (such as comma separated
values). Next, i act 23, server 100 transmits to the client
computer, these processed versions of the one or more rows.
In some embodiments of act 23, server 100 may optionally
notity the client computer that the rows being transmitted
are 1n the standard format (e.g. when the client has func-
tionality to process rows 1n both the database storage format
and also 1n the standard format, but the notification may be
omitted when the client can receive rows only in the
standard format). In act 24, 1t all rows responsive to the
query have not been retrieved and sent, server 100 returns to
act 21 (described above), via branch 25. In executing branch
25, server 100 may optionally wait for a fetch request (in
embodiments that support fetch requests), from the client
from which the query was recerved in act 11. In act 24, 1f
server 100 finds that all rows responsive to the query have
been transmitted, stage 20 ends, and 1n some embodiments
server 100 may perform an act 41 to transmit to the client
computer a message 1ndicating an end of the result set (of
rows responsive to the query).

(Query execution 1n stage 20 (as described 1n the preceding,
paragraph above) 1s performed without checking additional
conditions (called “run-time conditions™). The run-time con-
ditions are checked by server 100 in a different query
execution stage 30 (described below), when compile-time
conditions are found to be satisfied. Specifically, 1n stage 30,
server 100 checks a number of run-time conditions (see act
32 in FIG. 1A), to determine how to send to the client, a
retrieved set of one or more rows responsive to the query
(which, as noted above, may be a subset of the entire result
set with the number of rows therein being specified 1n, e.g.
a fetch request from the client). Hence, the checking of
run-time conditions 1n act 32 (FIG. 1A) may be performed
repeatedly 1n stage 30, to determine how to send to the
client, multiple retrieved sets of one or more rows respon-
sive to the query. In one embodiment, run-time conditions
may be evaluated on every fetch request. In another embodi-
ment, run-time conditions may be evaluated on the initial
fetch or after a certain time duration or after certain number
of client fetch requests.

In some embodiments, the run-time conditions checked in
act 32 (FIG. 1A) may be of multiple types, such as (a) first
run-time conditions used by server 100 to decide 11 one or
more rows in the database storage format 1n the retrieved set
should be processed into the standard format, and (b) second

US 11,055,289 B2

11

run-time conditions used by server 100 to decide if any
column 1n the one or more rows 1n the retrieved set should
not be sent to the client, for any reason. An example of a first
run-time condition used 1n act 32 checks whether a fetch
request from a client identifies a data type of a specific
column to be returned (e.g. the data type LOB) as being
different from the data type of the specific column as stored
in the database (e.g. the data type varchar), and whether
conversion between these two data types uses an operator
supported 1n server 100 (e.g. to convert varchar to LOB) and
this same operator 1s not available 1 the client (as deter-
mined based on the to-be-returned data type being explicitly
identified in the fetch request). As discussed below, when a
first run-time condition 1s met, server 100 performs opera-
tion 33 (FIG. 1A), because the client does not have the
functionality needed, to prepare processed rows in the
standard format, based on one or more rows 1in the retrieved
set 1n the database storage format. Operation 33 may be
performed 1n a manner similar or identical to operation 22
(described above).

An example of a second run-time condition used 1n act 32
(FIG. 1A) checks whether column level security, or a virtual
private database (VPD) policy associated with any column,
or any other such access control policy (e.g. specified 1n an
ACL), prevents access of a column by the client that 1ssued
the query. Another example of a second run-time condition
used 1n act 32 checks whether a ratio of a size (1n bytes) of
columns not selected 1n the query relative to the total size of
all columns exceeds a limit thereon, e.g. greater than or
equal to 20%. As discussed below, when at least one of these
second run-time conditions 1s met, the one or more rows
should not be transmitted to the client, and hence server 100
does not perform operation 35 (described below), and
instead performs one of operations 33 or 34 (also described
below). The size of columns can be calculated during
runtime, based on rows 1n a retrieved set (or alternatively as
per table definition, 11 size 1s used in a compile-time con-
dition).

Another example of a first run-time condition used 1n act
32 checks whether not sending a column 1n one or more
rows 1n the retrieved set 1in the database storage format (by
performing operation 34) requires more processing power
(c.g. based on an estimate of the number of instructions)
relative to extracting and processing the columns (by per-
forming operation 33). In some embodiments, the just-
described first run-time condition may be checked after the
above-described second run-time condition i act 32 as
illustrated by steps 61, 62 and 63 1n FIG. 1B (described
below), although 1n performing act 32 (FIG. 1A), server 100
may combine checking of such run-time conditions 1n any
sequence relative to one another, 1n any logical combination
of ANDs and ORs.

Depending on the embodiment, the run-time conditions
checked 1n act 32 may use any parameter available 1n server
100 which vanes during query execution, e.g. based on a
tetch request and/or based on size of a column 1n a row 1n
one or more rows 1n a retrieved set. Moreover, one or more
run-time conditions may be checked in act 32 based on
statistics of the one or more rows 1n a retrieved set 1n a
current 1teration (as per branch 38 described below, for a
current fetch request), or alternatively based on one or more
previously retrieved set(s) of the same query for a previ-
ously-received fetch request. An example of the parameter
could be the granularity level used for modification or
redaction of the previous batch of rows or previous execu-
tion of that SQL statement. Another example of the param-
eter 1s minimum ratio used in threshold comparison, of total

10

15

20

25

30

35

40

45

50

55

60

65

12

size of columns not selected vs total size of columns, for
server to send rows 1n storage format.

During query execution in stage 30, a retrieved set of one
or more rows may be obtained by server 100 performing an
act 31 belore or after checking of run-time conditions 1n act
32. Act 31 may use bind values to identily the rows to be
retrieved (as noted above 1n reference to act 21). Also as
noted above, on retrieval from database 202 1n act 31, the
one or more rows 1n the retrieved set exist in the database
storage format. Although act 31 1s shown before act 32 1n
FIG. 1A, 1n alternative embodiments these two acts may be
performed in the opposite sequence 1n stage 30. Specifically,
act 32 may be performed before act 31 in certain embodi-
ments wherein act 32 1s designed to not use any information
from a set of rows retrieved 1n a current iteration (e.g. by
performing act 32 on a set of rows retrieved 1n a previous
iteration, and/or based on information received in a fetch
request from the client).

In some embodiments, 1n query execution stage 30,
depending on the results of checking run-time conditions 1n
act 32, server 100 performs one of operations 33, 34 or 35
(FIG. 1A). Specifically, when one or more {irst run-time
conditions are satisfied, server 100 performs operation 33 (in
a manner similar or identical to operation 22 described
above), by extracting into memory 1107 (FIG. 7B) one or
more columns selected 1n the query, from the one or more
rows retrieved 1n act 31 (described above) which exist in the
database storage format, and server 100 prepares processed
versions of these one or more rows in the standard format.
When the one or more first run-time conditions are not
satisfied, server 100 performs either (a) operation 34 (de-
scribed next) when at least one of the second run-time
conditions 1s satisfied, or (b) operation 35 (described below)
when the second-runtime conditions are not satisfied.

In operation 34 (FIG. 1A), server 100 omits from or
modifies 1n, the one or more rows of the retrieved set 1n the
database storage format, each column that 1s determined by
the second run-time conditions, as not to be sent to the client
for any reason. The omitting or the modilying may be
performed by server 100 1n some embodiments, by applying
a redaction technique at a granularity level. The granularity
level may be selected from among multiple levels of granu-
larity, based on results of evaluation of one or more addi-
tional conditions, e.g. as described below 1n reference to
FIGS. 6 A-6C. The redaction technique may be selected from
among multiple redaction techniques, for use at the current
level of granularity, as described below 1n reference to FIGS.
3A and 3B.

In operation 35, server 100 retains unchanged, the one or
more rows ol the retrieved set, 1n the database storage format
(also called “‘storage format™”). On completion of any of
operations 33, 34 or 35, server 100 transmaits to the client
computer (see act 36 in FIG. 1A), one or more responses to
the query based on these operations. Specifically, the one or
more responses which are transmitted 1n act 36 may include
(a) processed versions of one or more rows or in the standard
format as generated by operation 33, when the one or more
first run-time conditions are satisfied, or (b) redacted ver-
sions of the one or more rows 1n the storage format as
generated by operation 34, when the one or more first
run-time conditions are not satisfied and the one or more
second run-time conditions are satisfied, or (¢) the one or
more rows 1n the storage format as retained unchanged by
operation 335, when the one or more first run-time conditions
are not satisfied and the one or more second run-time
conditions are not satisfied. In some embodiments, 1n act 36,
server 100 may notily the client computer, about the format

US 11,055,289 B2

13

in which the rows are being sent (e.g. as standard format or
storage format or any combination thereot).

On completion of act 36, server 100 performs an act 37
similar or 1dentical to act 24 described above, specifically by
checking whether all rows responsive to the query have been
transmitted to the client computer. In act 37 1t all rows
responsive to the query have not been retrieved and sent,
server 100 returns via branch 38 to act 31 (described above).
As noted above, 1 executing branch 38, server 100 may
optionally wait for a fetch request. In act 37, 11 server 100
finds that all rows responsive to the query have been
transmitted, stage 30 ends and 1n some embodiments server
100 may perform an act 41 (described above).

Flexibility of server 100 in sending different sets of rows
in different formats 1n response to a query 1s illustrated by an
example as follows. In this example, a character column 1s
defined 1n database 202 to hold a maximum of 2,000 bytes
but the actual size of columns in various sets of rows 1s
initially found to be much smaller, e.g. 10, 20, or 50 bytes.
In this example, server 100 initially decides to send rows 1n
storage format after redaction (e.g. as per operation 34
described above), but after sending one or more sets of rows,
server 100 may find that a ratio of columns selected (based
on size 1n bytes) 1s less than 30% of entire row, 1n which case
server 100 switches to column level processing (e.g. as per
operation 33) for a next set of rows. This decision by server
100 may be reversed 1n this example, at a subsequent time
during execution of the same query, when server 100 finds
in act 32 that the actual size of columns to be sent exceeds
30% of row size, so that performing operation 34 to redact
unselected columns pays off (by reducing the processing
power otherwise needed 1n server 100, to perform column
processing in operation 33).

In some embodiments, server 100°s checking of access
control policies 1n act 32 (as a second run-time condition)
prevents unauthorized access of a column, when operation
33 or 34 1s performed (1nstead of operation 35 1n which rows
may be sent in the database storage format, including all
columns therein). In an illustrative example, a column 3 1n
table “A” 1s associated with an access control policy (such
as a VPD policy) which specifies that a client computer may
access this column only between 9 am and 5 pm. Accord-
ingly, between these times, server 100 may use operation 35
to transmit all columns of this table A, including column 3
to the client. After 5 pm, server 100 may use operation 34 to
redact column 3 (or alternatively, if column 3 1s not selected
in the query, server 100 may use operation 33 to send
query-selected columns and exclude column 3). In contrast,
if server 100 did not use operation 33 or 34 after 5 pm (1.e.
if server 100 continued to use operation 35 even after 5 pm),
then a client that does not implement access control may
improperly allow the user to access column 3 even after 5
pm, 1s a security risk. Hence, flexibility of server 100 to
select among operations 33, 34 or 35 improves security.

In certain alternative embodiments, instead of going from
act 11 to act 12 (FIG. 1A), server 100 may go from act 11
directly to query execution stage 30, and in particular to act
31 (or act 32) therein. In such alternative embodiments,
when the answer 1s no 1 act 37, server 100 may go via
branch 38B to act 12 to check compile-time conditions to
decide how to transmit to the client computer, one or more
additional rows. Thus, when the compile-time conditions are
satisiied, server 100 then goes via the yes branch of act 13
to stage 20. And 1n stage 20, server 100 then extracts into
memory 1107, one or more columns from the additional
rows, and prepares processed versions of the one or more
additional rows 1n standard format and transmits them to the

10

15

20

25

30

35

40

45

50

55

60

65

14

client computer as described above. In act 13 11 the answer
1s no, server 100 goes via the no branch to query execution
stage 30 (FIG. 1A), to transmit the additional rows to the
client computer. Although the additional rows described 1n
the current paragraph are responsive to the current query, in
other embodiments, the additional rows may be responsive
to an additional query which 1s received after the current
query.

In an 1llustrative embodiment, act 32 (see FIG. 1A) of
checking run-time conditions 1s implemented by checking
first run-time conditions in two steps 61 and 63, and between
these two steps checking second run-time conditions 1n step
62 (see FIG. 1B). In step 61, server 100 checks one or more
first run-time conditions, to determine 1f rows of a retrieved
set should be processed into the standard format. If the
answer 1s yes in step 61, server 100 goes to step 63
(described below). An example of a first run-time condition
checked 1 step 61 1s whether a data type conversion (as
described above) 1s required 1n server 100. If the answer 1n
step 61 1s no, server 100 performs step 62.

In step 62, server 100 checks one or more second run-time
conditions to determine 11 any columns in rows of a retrieved
set should not be sent to the client. In step 62, if the answer
1s no, server 100 goes to operation 35 (described above).
Examples of the second run-time conditions checked 1n step
62 are whether access control prevents sending of any
columns 1n the rows of a retrieved set, or whether any
unselected column 1s too large 1n size (as described above).
If the answer 1n step 62 1s ves, server 100 performs step 63.
In some embodiments, 1f a user that 1ssues a query has access
rights to a column, that column be sent 1n raw format, even
if not selected. In another embodiment, such column may be
redacted 1n operation 34 1n FIG. 1B.

The access control on certain columns in some databases
can be set on individual rows, the row level access control
1s implemented by branch 38 returning to act 31 in FIG. 1A.

In step 63, server 100 checks additional first run-time
conditions to determine 1f any rows of a retrieved set should
be processed mnto the standard format. In step 63, 1f the
answer 1s no, goes to operation 34 (described above). In step
63 1if the answer 1s yes, server 100 goes to operation 33
(described above). An example of an additional first run-
time condition checked 1n step 63 1s whether modification of
one or more not to be sent columns 1n rows of the retrieved
set 1 operation 34 requires more processing power (e.g.
based on an estimate of number of instructions) than extrac-
tion and processing ol columns in operation 33. In one
embodiment, the more processing power check 1n step 63
can translate to a threshold on the ratio of columns that need
server side processing to the total number of columns in the
one or more tables. In another embodiment, the more
processing power check in step 63 can translate to a thresh-
old on the ratio of columns that need server side processing
to the total number of columns selected 1n query.

Note that in an alternative embodiment, all first run-time
conditions are checked 1n a single step 61, and step 63 1s not
performed. In this alternative embodiment, when the answer
in step 62 1s yes, server 100 goes via branch 64 to operation
34.

In an 1illustrative example, a query requires no data type
conversion, and the answer 1n step 61 1s no, so server 100
goes to step 62. In step 62 server determines that the number
of columns selected 1s small (below a limit thereon, e.g. only
1 column may be selected out of 100 columns), and hence
the answer 1n step 62 1s yes (to avoid sending all 100
columns, which would otherwise be sent if operation 35
were to be performed). Then, server 100 goes to step 63, and

US 11,055,289 B2

15

finds by checking an additional first run-time condition, that
the current processing load 1s too high (e.g. above a limit
thereon, e.g. 60%). So 1 step 63, server 100 decides to take
the yes branch, and performs operation 33. By taking the ves
branch 1n step 63, server 100 avoids performing omission or
modification on too many unselected columns (which may
otherwise have been performed 1n operation 34, to prevent
sending of 99 unselected columns).

In some embodiments, there may not be a threshold on the
ratio of number of columns selected 1n query to total number
of columns 1n one more tables 1n either the compile-time
conditions or run-time conditions. This implies more queries
responses can be sent as raw rows 1n storage format.

The additional first run-time check performed 1n step 63
may be configured by a DBA specifving e.g. that 1f over 30%
of columns need to be omitted or modified, then the answer
in step 63 1s yes (and rows should be processed into the
standard format). Another first run-time check that may be
configured by a DBA may be, for example, 1f more than a
certain percentage of columns are associated with access
control policies, then the answer 1n step 61 1s yes (e.g. to
prevent excessive processing power usage in performing,
step 62). Therefore, server 100 may be designed and/or
configured to tlexibly decide, which of three operations 33,
34 or 35 1s performed, e.g. depending on its own current
processing load, thereby to improve operation (and respon-
siveness) of server 100.

Some embodiments of server 100 may be designed to
send rows partly 1n the standard format and partly in the
storage format, 1n a query execution stage 30 (FIG. 1C) that
1s similar or i1dentical to the above-described query execu-
tion stage 30 (FIG. 1A) except that stage 50 operates on
multiple portions of each row 1n a set of retrieved rows. The
reference numbers of items in FIG. 1C within stage 50 are
obtained by adding 20 to respective reference numbers of
corresponding items 1n FIG. 1A within stage 30. On comple-
tion of any of operations 53, 534 or 55, server 100 goes to an
act 60 1n FIG. 1C to check 1t all portions of all retrieved rows
are prepared for transmission and if not goes via branch 635
to act 52 to repeat the checking of run-time conditions on the
remaining portions. When the answer 1n act 60 1s yes, server
100 goes to act 56 in which each row’s portions are
transmitted to the client, wherein each portion may be i any
format. In an 1illustrative example, n a row with 100
columns, the last 50 columns are selected, whereas 1n the
first 50 columns only 5 columns are selected. Server 100
may decide to send the first part of the row (namely the first
50 columns) in the standard format (which implies sending
only the 5 selected columns 1n standard format), and send
the second part of the row (namely the last 50 columns) in
the storage format. The advantage 1s server does not have to
redact 50-5=45 columns 1n the first part of the row. In this
example, server 100 may add to the second part of the row,
a row header in the storage format.

In several embodiments, a server 100 (which may be
implemented by one or more computers 1n a cloud, depend-
ing on the embodiment) receives 1n act 101 (FIG. 1D), a
query that references one or more objects (such as tables
having rows and columns) stored by server 100 1n a database
on one or more storage devices (such as hard disks). Server
100 may be programmed, 1 some embodiments, with a
relational database management system (RDBMS) software,
to create and maintain a relational database 202 (FIG. 2A,
described below), in which the objects referenced 1n the
query are stored, 1n a normal manner. In response to receipt
of the query 1 act 102, server 100 performs an operation 110
to evaluate one or more conditions related to the query. In

10

15

20

25

30

35

40

45

50

55

60

65

16

one embodiment (also called “first embodiment™), operation
110 includes an act 112 (FIG. 1D) to check if each object
referenced 1n the query has any column which 1s not selected
in the query. In a second embodiment 1llustrated 1n FIG. 1N,
operation 110 includes an act 111 to evaluate an additional
condition, to check whether a client can parse the server’s
database storage format and act 112 1s performed when the
answer 1n act 111 1s yes. In the second embodiment, 11 the
answer 1n act 111 1s no, an operation 120 (described below)
1s performed. In a third embodiment illustrated 1n FIG. 10,
operation 110 1ncludes, after acts 111 and 112, another act
113 to evaluate vyet another additional condition. For
example, the additional condition i act 113 may check 1t a
number of query-selected columns relative to a total number
of columns 1n query-referenced tables are at least a mini-
mum percentage (e.g. at least 20%).

In embodiments of the type illustrated in FIGS. 1D and
1N, on completion of act 112 if the answer 1s yes operation
130 (described below) 1s performed as per branch 114, and
if the answer 1s no in act 112 operation 140 (described
below) 1s performed as per branch 115. In the third embodi-
ment 1llustrated in FIG. 10, mstead of going from act 112 to
operation 130 directly when the answer 1s yes, the above-
described act 113 1s performed after which operation 130 1s
performed when the answer in act 113 1s yes. In the third
embodiment, on completion of act 113 (FIG. 10) 1t the
answer 1s no, server 100 executes the query, by performing
operation 120. Specifically, in embodiments of the type
shown 1 FIG. 1D, there 1s no checking of whether a client
can parse the server’s storage format (by omission of act
111), because the server’s software and the client’s software
are released together, and by design the client software
contains functionality to parse the server’s storage format.
Unless described otherwise herein, the embodiments shown
in FIGS. IN,10 and 1P are similar or identical to the
embodiment shown 1 FIG. 1D.

On completion of act 112 (FIG. 1D), 11 the answer 1s no,
server 100 executes the query, by performing operation 140.
On completion of act 111, if the answer 1s no, server 100
executes the query, by performing operation 120 (FIG. 1D).
Hence, based on results of evaluation of multiple conditions
in operation 110, server 100 executes the query, by perform-
ing one of multiple operations which are alternatives to one
another, such as operations 130 and 140 (FIG. 1D). Use of
such conditions in different embodiments of operation 110 1s
described further in detail, below.

In operation 130 (FIG. 1D), which 1s an alternative to
operation 140, server 100 prepares, 1n the server’s database
storage format, rows from which original values of all
columns not selected 1n the query are discarded (also called
“redacted versions of rows” or simply “redacted rows”)
followed by act 131 in which these redacted rows are
transmitted while still in the server’s database storage for-
mat. Original values of unselected columns may be dis-
carded, for example, by excising a row to omit the original
values altogether, or by modifying the original values 1n a
row 1n any manner, €.g. by masking, randomizing or nulling
the oniginal values. In operation 130, server 100 does not
perform one or more of the steps normally performed to
process columns selected 1n the query (e.g. steps in opera-
tion 120, described below 1n reference to FIG. 10). In some
embodiments, 1n operation 130, server 100 does not extract,
and does not re-order, all the query-selected columns,
although one or more specific columns may be extracted as
described next.

Extracting a column includes retrieving an original row

from disk (e.g. see act 224 1n FIG. 2B), looking up the

US 11,055,289 B2

17

column’s value within a row piece of the original row by use
of metadata (e.g. lengths of preceding columns), to identily
a precise location of bytes of the column’s value 1n the
original row, and copying these bytes to memory (e.g. main
memory 1107 in FIG. 7B). In certain embodiments of
operation 130, 1n responding to a query that has a predicate,
such as an evaluation function on a specific column, server
100 may extract the specific column, and execute the evalu-
ation function using the specific column’s value (e.g. by
adding the number 35, 11 so specified 1n the evaluation
function). Then, server 100 may replace an original value of
the specific column 1n a row piece from which the original
value was extracted, with an evaluated value resulting from
the execution of the evaluation function, to obtain a new row
piece that contains the evaluated column(s), followed by
transmission to the client of the new row piece, which 1s still
in database storage format. The evaluation may increase or
decrease the size of the original column 1n the row. In some
embodiments, the row piece format may be row header
tollowed by length, value of individual columns. In this case
the length of that column 1s altered. In some embodiments,
this may alter size of the row piece in the row header.

In some embodiments, the length of a column may be
updated 1nside a row piece, which may be needed 1n addition
to (or in some cases 1nstead of) updating the column’s value.
The changing of one or more column lengths and/or column
values 1n one or more row pieces 1n a database storage
format, to obtain new row pieces with evaluated columns
still 1n the database storage format, 1s also referred to herein
as 1n-line row piece transformation. In-line row piece trans-
formation of one or more row pieces uses less processing
power 1n server 100, than extracting columns of a row, e.g.
during per column processing 1n operation 120. Server 100
can use the processing power saved 1n this manner (and/or
saved 1 any other manner described herein), to perform
other activities, such as DBA management activities, or
other actions specified by a database administrator, such as
identifying 1n a list, N most CPU intensive SQL queries.

A client 170 (FIGS. 1M, 2A) that receives redacted
versions of rows 1n the server’s database storage format,
performs one or more steps of processing each column (e.g.
extracting, re-ordering and re-formatting, described below
in reference to operation 120) normally performed by server
100, to obtain a processed version of each row, e€.g. as shown
by act 175A 1n FIG. 1M. In the redacted rows received by
client 170, columns not selected in the query have been
redacted by server 100, hence client 170 omits any modified
values which may (or may not) be present 1n the redacted
rows.

In operation 140 (FIG. 1D), which 1s an alternative to
operation 130 described above, server 100 prepares for
transmission to the client, original rows in the server’s
database storage format, without discarding any value 1n any
column of any row, regardless of which columns are selected
or not selected 1n the query (also called “original versions of
rows” or simply “original rows”), followed by act 141 in
which these original rows are transmitted 1n the server’s
database storage format (e.g. transmitted unchanged, when
there 1s no evaluation function 1n any predicate of the query).
A client 170 (FIGS. 1M, 2A) that receives original rows in
the server’s database storage format, performs one or more
steps of processing each column (e.g. extracting (by looking
up within a row piece, and copying to memory), re-ordering,
and re-formatting described below 1n reference to operation
120) normally performed by server 100, to obtain a pro-
cessed version of each row.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

As noted above, on completion of operation 130, server
100 performs an act 131 to transmit rows in server 100°s
database storage format. Depending on the amount of data,
an original row may be physically stored in multiple disk
blocks. This original row 1s retrieved from the one or more
objects by server 100 and i1s represented by multiple row
pieces (e.g. as described below 1n reference to FIGS. 4A-4F
and 5A-5C). Here each row piece 1s of a size sufliciently
small to fit within a single block of one or more storage
devices (such as hard disks) accessible to server 100 (also
called “disk block™ or “data block™). Specifically, 1n the
database storage format, each row includes one or more row
pieces which have a size (e.g. in bytes) small enough to fit
wholly within a fixed-size disk block which 1s used by a
database management system to store the database, on a
non-volatile storage device e.g. a hard disk. Each row piece
may include a header followed by data, wherein the data
may include for one or more columns, corresponding one or
more pairs of column length and column value, as 1llustrated
in FIGS. 4A-4F and 5A-5E (described below).

Depending on the amount of data in an original row, a
specific column may itself be split into multiple pieces (so
that each piece of the column has a size small enough to fit
within a disk block), in the server 100’°s database storage
format. In responding to a query as described above, mul-
tiple row pieces are transmitted in act 131, in the server
100°s database storage format, unless a specific column (or
a portion thereof) 1s not to be sent for any reason, 1n which
case the specific column 1s redacted from one or more row
pieces by discarding at least 1t’s original value which 1s thus
not sent (e.g. by excising the original value), or alternatively
the original value may be modified and sent as a modified
value (e.g. modified by nulling, randomizing, or masking or
a combination thereol) in one or more row pieces. In one
embodiment, a column may be split across multiple row
pieces 1n an original row as retrieved from database 202 (in
server storage), and 1n this situation each row piece con-
taining the column’s original value may be excised, while
retaining the number of row pieces unchanged (see FIG.
5D). In another embodiment, the multiple pieces of this
un-selected column can be combined into one excised
column piece 1n a redacted row piece (e.g. in FIG. SE see
length 594 of column CI set to 0 1n a single row piece 595
to replace column CI which was represented by three
column pieces 1n original row pieces 510, 520 and 530).

In some embodiments, the conditions which are evaluated
in operation 110 (FIG. 1H) by server 100 1include a condition
checked 1n act 111 as to whether a client that sent the query
has an ability to parse the server’s database storage format
in which rows are stored 1n the database. At least partially 1n
response to finding that this condition 1s true on completion
of act 111 (e.g. after performance of act 112 and optionally
act 113), server 100 executes operation 130 (FIG. 1H)
described above, to prepare redacted versions of rows
responsive to the query. But on completion of act 111 (FIG.
1H), when a client 1s found unable to parse the server’s
database storage format (e.g. when the query is received
from client 160 described below 1n reference to FIG. 1L),
server 100 executes the query by performing operation 120
(FIG. 1N), to prepare and transmit processed versions of
rows responsive to the query.

In operation 120 (FIG. 1N), server 100 prepares for
transmission, rows in which all columns’ values are pro-
cessed by server 100 in the normal manner (also called
“processed versions of rows” or simply “processed rows”).
Specifically, server 100 performs one or more steps of
processing each column, e.g. uses bind values to identify

US 11,055,289 B2

19

data to be retrieved from the one or more objects identified
in the query, repeatedly fetches a row responsive to the
query, extracts from the fetched row all columns selected 1n
the query (e.g. by parsing one or more pieces of the fetched
row to perform lookup and copying to memory), re-orders
the query-selected columns relative to one another (e.g. 1f
order of columns 1n the query 1s different from the columns’
order 1n storage), and expresses the query-selected columns
in a predetermined format known to be parse-able by the
client. The just-described predetermined format may be
either identified 1n a predetermined standard (such as comma
separated values), and/or agreed upon by the client and
server prior to the query, or specified 1n the query, depending
on the embodiment. Therealfter, these processed rows are
transmitted by server 100, 1n act 121, followed by returning
to act 102 (described above). A chient 160 (FIGS. 1L, 2A),
which receives these processed rows, does not need to
perform any steps to process each column in each row,
because such steps have been already performed in opera-
tion 120 by server 100, as described 1n this paragraph.

In some embodiments, on completion of act 111 (FIG.
1N), 11 server 100 determines that the client 1s able to parse
the server’s database storage format, server 100 may be
configured to evaluate another condition 1n act 112 (FIG.
1N), to check if each object referenced in the query has any
column which 1s not selected in the query. When the
condition checked in act 112 evaluates to false (because all
columns of all objects referenced in the query are selected 1n
the query), server 100 performs operation 140 to transmit to
the client, original rows in the server’s database storage
format. In operation 140, server 100 transmits rows in the
database storage format without discarding any value 1n any
column of any row, regardless of which columns are selected
or not selected in the query. When the condition checked 1n
act 112 (FIG. 1N) evaluates to true (because at least one
column 1n at least one object referenced 1n the query 1s not
selected 1n the query), server 100 may be configured to
perform operation 130 (as shown by branch 114 in FIG. 1N),
to prepare and transmit to the client, redacted versions of
rows 1n the server’s database storage format.

In certain embodiments, when the condition checked 1n
act 112 (FIG. 10) evaluates to true, server 100 may be
configured to check one more additional conditions in act
113 (FIG. 10). Specifically, act 113 (FIG. 10) checks
whether an additional condition 1s met e.g. by checking i1 a
percentage of columns selected in the query relative to all
columns 1n objects referenced by the query, exceeds a
predetermined minimum. When this additional condition 1s
satisiied, the result of act 113 1s yes, and server 100 prepares
and transmits redacted versions of one or more rows by
performing operation 130 as described above. In such
embodiments, when this additional condition 1s not satisfied,
the result of act 113 1s no, and server 100 1s configured to
perform operation 120, to prepare and transmit processed
versions of one or more rows as described above. For
example, 1f only 2 columns are selected 1n a query, from
among 100 columns stored 1n query-referenced tables, the
percentage of selected columns 1s 2% and when the prede-
termined mimimum 1s set at 10%, the additional condition in
act 113 1s not satisfied and so server 100 (FIG. 10) prepares
processed versions by performing operation 120 instead of
redacting 98 columns by performing operation 130.

In some embodiments, when the answer 1s no 1n act 112,
server 100 may check 1f one or more other conditions (which
are predetermined) are met, as illustrated by act 116 (FIG.
1P), and if the answer 1 act 116 i1s yes then server 100
performs operation 130, but 1f the answer 1in act 116 1s no

5

10

15

20

25

30

35

40

45

50

55

60

65

20

then server 100 performs operation 140. In one illustrative
embodiment act 116 checks 11 there 1s any column on which
special processing needs to be performed, e.g. based on
indication from a database administrator (DBA) stored 1n a
policy in the database 202 identifying any specific column as
being required to be redacted (such as based on a user’s
privilege). In one 1illustrative example, a database adminis-
trator sets a policy (e.g. as a column secunity feature)
speciiying that for a query by certain user (who may receive
a privilege granted by another user) or query via certain
views (on that table), even 1t all rows are selected by
accessing a certain view, redaction of specified columns 1s
required by the policy, and 1n this case the answer 1n act 116
1s yes, and server 100 goes to operation 130 to redact the
specified columns.

As noted above, server 100 may be configured 1n some
embodiments, to go from act 112 via yes branch 114 to
operation 130, in which case act 113 1s never performed (e.g.
as shown 1n FIG. 1D), and hence such embodiments have no
thresholding or other such additional conditions. Similarly,
other such embodiments may omit any of acts 111 and 112,
and may include other such acts that test other such addi-
tional conditions 1n act 113 (e.g. whether the query requires
a complex join processing of three or more tables). Further-
more, 1n some embodiments, configuration of server 100, to
perform (or not perform) an act to evaluate one or more such
conditions, may be based on flags in server 100, and such
flags may be set by user input, e.g. input from an adminis-
trator of database 202 (FIG. 2A, described below).

Operation 130 (FIGS. 1D, 1N, 10, 1P) described above,
to redact rows by discarding one or more values of columns
not selected 1n a query, can be performed by server 100 using
a redaction techmique at different levels of granularity.
Specifically, a redaction technique (such as excising, mask-
ing, randomizing or nulling), can be used by server 100 to
redact all unselected columns 1n all rows, when applied at
table level granularity (also called minimum granularity or
least granularity).

In a first example, server 100 uses nulling as the redaction
technique at table level granularity, and values of all unse-
lected columns (e.g. columns Al, AJ, Bl and BJ) 1n all rows
are modified to the value zero, as illustrated in FIG. 1E. In
this example, the rows 1n FIG. 1E are shown only with the
values of columns A1-BZ, although 1in some embodiments,
cach row additionally 1includes a length of each column that
1s located adjacent to the column’s value (e.g. length may
precede the column’s value, or length may follow the
column’s value, depending on the embodiment). Although
in the example 1llustrated 1n FIG. 1E, there 1s no change 1n
length of each column (e.g. 4 bytes) being redacted (e.g.
columns Al, Al, BI and Bl), other examples of using nulling
as the redaction technique may update each redacted col-
umn’s length (not shown in FIG. 1G) to the value 1 and
update the redacted column’s value to a single byte of value
ZEro.

In a second example, server 100 uses masking as the
redaction technique at table level granularity, and values of
all unselected columns (e.g. columns Al, AJ, Bl and BJ) 1n
all rows are modified to masked values, as 1llustrated 1n FIG.
1F. A masked value at a row column intersection, e.g. value
92177 at RI, Al in FIG. IF may be diflerent from a masked
value at another row column 1ntersection, e¢.g. value 1212 at
RI, Al i FIG. 1F, if each masked value 1s obtained by
applying a masking function to an original value at the
respective row column intersection.

In a third example, server 100 uses randomizing as the
redaction technique at table level granularity, and values of

US 11,055,289 B2

21

all unselected columns (e.g. columns Al, AJ, Bl and BJ) 1n
all rows are modified to values selected from random from
a range (e.g. 1970-1990) as illustrated in FIG. 1G. A random
value at a row column 1ntersection, e.g. value 1975 at RI, Al
in FIG. IF 1s independent of a random value at another row
column intersection, e.g. value 1986 at RJ, Al i FIG. 1G,
because each random value 1s obtained by applying a
randomizing function to pick a value in the range (e.g.
1970-1990) unrelated to the original value at the respective
row column intersection.

In a fourth example, server 100 uses excising as the
redaction technique at table level granularity, and values of
all unselected columns 1n all rows are omitted, as 1llustrated
in FIG. 1H by boundaries 191, 192, 193 and 194 which
denote omission of respective columns Al, AJl, BI and Bl.
More specifically, as shown by row R1 1n FIG. 1H, column
Al-1 and Al+1 are adjacent to one another with boundary
191 between them denoting omission of column Al. One
advantage of excising 1s that a snooper who captures rows
R1-RM shown in FIG. 1H would not know that columns Al,
Al, Bl and Bl even exist in database 202 (FIG. 2A).
However, excising may place more computation load on
server 100, relative to other redaction techniques, depending
on how many (or how few) columns need to be redacted, as
described more completely below. Moreover, although 1n
some embodiments of excising, a column’s value 1s omitted
from a row as shown in FIG. 1H, other embodiments of
excising may change a column’s length to 1 (regardless of
original length), and set the column’s value to 0. Still other
embodiments of excising may change a column’s length to
0, and omit the column’s value from the redacted row (see
FIG. 5C, described below).

Alternatively, 1n operation 130 described above (FIGS.
1D, 1N, 10), multiple redaction techniques can be used by
server 100 to redact respective multiple unselected columns
in all rows, which constitutes column level granularity (also
called intermediate granularity). In an example of column
level granularity illustrated in FIG. 11, server 100 uses
nulling as the redaction technique to discard values of
column Al 1n all rows. Moreover, serve 100 uses masking as
the redaction technique to discard values of column AlJ 1n all
rows and randomizing as the redaction technique to discard
values of column BI 1n all rows. Furthermore, server 100
excises column BJ, as shown by boundary 1935 between
columns BJ-1 and BJ+1 in FIG. 11.

Yet another alternative 1s for server 100 perform operation
130 by individually selecting and applying a redaction
technique at each intersection of each row with a column not
selected 1n the query, which constitutes use of row level
granularity (also called maximum granularity), as 1llustrated
in FIG. 1]. In an example of row level granularity 1llustrated
in FIG. 1], 1n the first row R1, server 100 uses masking to
discard the value of column Al, randomizing to discard the
value of column Al, nulling to discard the value of column
BI and excises column B, as illustrated by boundary 196.
Moreover, in the second row R2, server 100 uses masking to
discard the value of column Al nulling to discard the value
of column AlJ, excises column BI as illustrated by boundary
197 and nulls the value of column BJ. Furthermore in row
RI, server 100 uses nulling to discard the value of column
Al excises column Al as 1llustrated by boundary 198, nulls
the value of column BI, and randomaizes the value of column
Bl. Finally, in row RM, server 100 excises columns Al and
Al as illustrated by boundaries 199 A and 199B and nulls the
values of columns BI and Bl.

Use of row level granulanty as illustrated in FIG. 1]
enables server 100 to i1dentify, based on statistics, which of

10

15

20

25

30

35

40

45

50

55

60

65

22

the multiple redaction techniques places the least computa-
tional load on the server, but usage of row level granularity
1s normally more computation intensive than column level
granularity, which in turn can be more computation intensive
than table level granulanity. Hence, in some embodiments, at
the beginning of operation 130, server 100 performs an act

132 (FIG. 1K) to evaluate additional conditions and based
thereon, automatically selects, from among multiple levels
of granularity (such as table level, column level and row
level), a current level of granularity at which a redaction
technique 1s thereafter applied to discard from one or more

rows retrieved from database 202 (FIG. 2A), values of

columns not selected 1n the query (or columns not to be sent
for any reason). The current level of granularity may be
selected 1n act 132 (FIG. 1K), based on one or more
conditions for example, computation load in the server,
privilege of the client, and latency in the client, e.g. as
described below 1n reference to FIGS. 6A-6C. In certain
embodiments, when operation 130 1s {first performed, the
current level of granularity i1s initially set in act 132 by
default to maximum granularity, and server 100 collects
statistics, to be used to 1dentily a redaction techmque which
1s least computationally intensive 1n discarding a value, for
cach unselected column.

After selection of granularity level 1n act 132, server 100
performs an act 150 (FIG. 1K) to automatically determine
from among multiple redaction techniques (such as excising,
masking, randomizing and nulling), one or more redaction
techniques to be used at the current granularity level. Spe-
cifically, 1n act 150, server 100 performs an act 151 to check
if the current granularity level (also called *““current granu-
larity™) 1s table level, and 1f so performs act 152 to select a
redaction technique to be applied to all unselected columns,
In one or more rows responsive to the query. It the current
granularity level 1s not table level, 1n act 153, server 100
checks 1f the current level of granularity 1s column level, and
i so server 100 performs act 154 to select a redaction
technique to be applied to a specific unselected column 1n all
rows, and act 154 1s repeated for each unselected column (by
return from act 133, described below). In act 150, it the
current level of granularity 1s row level, server 100 performs
act 155 to select a redaction technique for use 1n a specific
row on a specific unselected column, and act 155 i1s repeated
for each additional unselected column 1n the specific row,

and also repeated for each additional row (on return from act
133, described below)

In each of these acts 152, 154 and 155, server 100
determines one or more redaction techniques (such as null-
ing, excising, masking and randomizing) to be used, for
example based at least partially on corresponding estimates
of number of instructions required to be executed in apply-
ing respective redaction techniques, e.g. as described below
in reference to act 310 mm FIG. 3A. Depending on the
embodiment, server 100 may determine the one or more
redaction techniques additionally based on an estimate of
reduction 1n processing load at a client that sent the query,
due to not extracting from rows in the server’s database
storage format one or more columns not selected in the
query, as described below 1n reference to act 310 1n FIG. 3B.
Furthermore, 1n some embodiments, the one or more redac-
tion techniques to be used may be determined by server 100
based on statistics related to a number of times 1n previous
executions of the query, each redaction technique was found
to be least computationally intensive and used to discard a
value of a column, e.g. as described below 1n reference to

step 315 1n FIG. 3A.

US 11,055,289 B2

23

After determination of one or more redaction techniques
in act 150 (FIG. 1K), server 100 pertorms act 133 1n which
the determined redaction techmiques are applied at the
current granularity level, to one or more rows retrieved from
database 202 (FIG. 2A) as being responsive to the query
(c.g. 1n response to a fetch request), to prepare redacted
versions of the one or more rows 1n the server’s database
storage format. In preparing the redacted version 1n act 133,
server 100 applies the one or more redaction techniques to
edit each row, to discard any value of any column not
selected 1n the query but without extracting values of one or
more columns selected in the query. Specifically, in some
embodiments, based on metadata, server 100 1dentifies posi-
tions of unselected columns within each row, and edits
in-situ, values of the unselected columns (by e.g. by modi-
fication or omission thereof on application of the one or
more redaction techniques), while other portions of each row
are retained 1n the server’s database storage format (e.g. any
row pieces and/or column pieces 1n these other portions are
not collated, to extract columns therefrom).

Then, server 100 checks if the current level of granularity
1s maximum (1.e. row level), and 11 so, whether all unselected
columns have been discarded by application of a redaction
technique and 11 so, whether all rows responsive to the query
(e.g. 1n a block) have been redacted, and 11 not returns to act
155 (described above). Server 100 also returns to act 155,
when all unselected columns 1 a row have not been
redacted. When the current level of granularity 1s minimum
(1.e. table level), server 100 repeatedly uses the redaction
technique selected 1n act 152, until all unselected columns in
all rows responsive to the query (e.g. 1 a block) have been
redacted. Moreover, when the current level of granularity 1s
intermediate (1.e. column level), server 100 repeatedly
applies the one or more redaction techniques selected 1n act
154 to all rows responsive to the query (e.g. in a block).

On completion of act 133, server 100 performs act 134 to
store 1n memory, statistics related to the current level of
granularity and the currently selected redaction techniques
which have been applied in act 133, for future use in
automatic selection of granularity level and/or determination
ol one or more redaction techniques (to be applied at that
granularity level), followed by returning to act 132 (de-
scribed above).

On return to act 132, a current level of granularity may be
changed by server 100, so a new level of granularity 1is
chosen on repetition of act 132. Hence, the granulanty level
1s changed when a query 1s executed 1n operation 130 with
different bind values. Moreover, even when the query is
executed with the same bind values, act 132 may be
repeated, for example 1f database 202 returns multiple
blocks of one or more rows, thereby to change the current
level of granularity between blocks. As noted above, act 132
1s followed by determination of one or more redaction
techniques as needed i act 150. When operation 130 1s
repeated (e.g. 1n 1terations for multiple blocks, or when the
same query 1s executed with different bind values), the
current level of granularity selected 1n act 132 may be based
on various factors, such as computation load 1n the server,
privilege of the client, and latency in the client.

In a first 1llustrative example, mitially, 1n response to
receipt of a query, if computation load 1n server 100 1s low
(e.g. below 40%), server 100 selects a current level of
granularity in act 132 (FIG. 1K) to be maximum (e.g. row
level). Thereafter, act 132 may be performed again, for
example after one block of rows (e.g. 5000 1n number), to
continue responding to this query by fetching a next block
of rows, or alternatively to respond to another receipt of this

10

15

20

25

30

35

40

45

50

55

60

65

24

same query, but with different bind values. During such a
repeated performance of act 132, server 100 may find (based
on statistics) that certain redaction techniques (e.g. nulling
and randomizing) are used a majority of times to redact
values 1n each unselected column (e.g. col. 7 and col. 10
respectively). If so, then 1n the next set of rows to be
redacted, server 100 changes the current level of granularity
to intermediate (e.g. column level), and then applies these
majority-used redaction techniques (e.g. nulling, randomiz-
ing) to redact rows at the intermediate level, which enables
server 100 to skip estimate preparation and comparison in
act 310, as described below 1n reference to FIG. 3A.

In a second illustrative example, 1n response to receipt of
a query, 1n act 132 (FIG. 1K), server 100 selects a current
level of granularity to be minimum (e.g. table level), e.g. due
to computation load 1n server 100 being high (e.g. above
60%). Thereatter, on the next performance of act 132 (FIG.
1K) for this query, if the computation load has reduced,
server 100 changes the current level of granularity to inter-
mediate (e.g. column level). After changing the current
granularity level to itermediate, server 100 repeats deter-
mination of one or more redaction techniques 1n act 150 (for
cach unselected column), followed by applying the redac-
tion techniques to rows responsive to the query 1in act 133 (as
described above).

In several embodiment, server 100 (FIG. 1D, 1IN, 10)
receives a query in act 102 from a client 160 or from a client
170 (FIGS. 1L, 1M, 2A) that are respectively unable to parse
or able to parse, the server’s database storage format. In
response to receipt of the query from client 160 (FIG. 1L),
server 100 transmits rows that are expressed i a format
known to be parse-able by client 160, such as comma
separated values, as per act 121 (FIGS. 1N, 10) described
above. In response to receipt of the query from client 170
(F1G. 1M), server 100 transmits rows that are expressed 1n
the server’s database storage format, as per act 131 or 141
(FIGS. 1D, 1N, 10) described above. Depending on the
embodiment, client 160 may be programmed to perform acts
161-167 of the type illustrated in FIG. 11 and described
below. Similarly, also depending on the embodiment, client

170 may be programmed to perform acts 171-177 of the type
illustrated 1n FIG. 1M and described below.

In act 161 (FIG. 1L), client 160 establishes a database
session with server 100, followed by act 162 1n which client
160 indicates its inability to extract columns from rows
expressed 1n the server’s database storage format, e.g. 1n
response to a request from server 100 to 1dentily its ability.
Depending on the embodiment, client 160 may return an
error 1 the server’s request 1s unrecognized, 1n which case
server 100 determines that client 160 1s unable to parse its
database storage format. Thereafter, as shown by branch
163, client 160 goes to act 164 and 1ssues a query which
includes one or more columns to be used by server 100 to
identily one or more rows responsive to the query and also
includes one or more columns to be returned by server 100
in the query responsive rows. Next, in act 165, client 160
receives and stores in its local memory, one or more rows
expressed 1n a normal format, e.g. values of columns that are
separated from one another by commas. Depending on the
embodiment, the one or more rows received 1n act 165 may
contain columns’ values expressed in a format specified by
client 160, e¢.g. 1n the query 1ssued in act 164, or notified to
server 100 1n another manner prior to act 164. The values of
columns 1n one or more rows stored in local memory by
client 160 are used 1n a normal manner, e.g. to prepare and
display 1n act 166, a screen based on these values, 1n one or
more rows received in response to the query i1ssued in act

US 11,055,289 B2

25

164. On completion of act 166, client 160 may return to act
164 and issue a fetch request, based on a query previously
1ssued (e.g. on mnitial performance of act 164). Depending on
the embodiment, client 160 may be additionally used prior
to 1ssuance of a query 1n act 164, to perform an act 167, e.g.
in response to user mput to create tables, which provides
metadata on columns, such as column names and data types
of values to be stored in the columns, and additional user
input to repeatedly insert rows into the created tables.

Similarly, client 170 performs acts 171-177 in FIG. 1M 1n
a manner similar or identical to acts 161-167 in FIG. 1L,
except for certain diflerences, as described below. In act 172,
client 170 expresses 1ts ability to extract columns in the
server’s database storage format. Moreover, after act 174,
client 170 receives table-specific metadata which 1s needed,
to extract columns from rows 1n the server’s database
storage format, such as syntax of the rows, names of
columns, and data types of values of columns. In act 175,
client 175 receives rows expressed 1n the server’s database
storage format and stores them 1n local memory.

Thereafter, in act 175A, client 170 prepares processed
versions of one or more rows, based on the one or more rows
in the server’s database storage format in local memory. For
example, 1 act 175A, client 170 repeatedly fetches a row
received from server 100 and performs thereon, one or more
of the following steps: (1) collates multiple row pieces to
form one or more columns in each row (and i1f necessary
forms a column 1tself, by collating column pieces thereot),
(2) re-orders columns relative to one another 1f necessary to
meet a query-specified order, and/or (3) re-formats any
column 11 necessary depending on any differences between
the server’s database storage format and a format specified
in the query as being required in response thereto (e.g. by
converting an integer mto a character string or vice versa).
In act 175A, when client 170 finds a row that contains one
or more unselected columns’ values, 1n preparing a pro-
cessed row, client 170 omits these values, which may (or
may not) have been modified by server 100, e.g. when the
row 1s edited by server 100’s application of a redaction
technique that modifies values of unselected columns, such
as nulling, masking or randomizing. When a row 1s edited by
server 100’s application of a redaction technique that excises
an unselected column’s value, the row received by client 170
in the server’s storage format does not have a value for the
unselected column, and hence skipped by client 170 in
preparation of a processed row 1n act 175A. On completion
of act 175A, which may be performed repeatedly for each
row recerved from server 100, client 170 performs act 176,
in a manner similar or identical to act 166 (described above).
Client 170’s performance of act 175A eliminates the need
tor server 100 to perform these same steps, which reduces
computation load 1n server 100 1n responding to a query
from client 170 (relative to responding to a similar query
from client 160).

Several described embodiments improve transier of infor-
mation between a server 100 and clients 170, 160 (see FIG.
2A), 1n response to queries therefrom, by bulk transfer of
data i1n server 100°s database storage format, with (or
without) certain columns that are to be (or not to be) sent.
Specifically, when one or more columns of data in database
tables are not needed (1n response to queries from clients
170, 160), the columns may be redacted (e.g. modified or
excised) from the data retrieved from the database tables and
then transmitted by server 100 to clients 170, 160 1n the
server’s database storage format, or alternatively when the
columns 1s/are needed the data 1s transmitted by server 100
to clients 170, 160 without redaction 1n the server’s database

10

15

20

25

30

35

40

45

50

55

60

65

26

storage format, as described below. As illustrated in FIG.
2 A, 1n many embodiments, before 1ssuing a query to retrieve
data from a relational database 202, a client 170 establishes
a session with a relational database management system
(RDBMS) server 100. Server 100 includes one or more

computers configured with solftware to implement method
220.

In establishing the session, server 100 receives (as per act
221 1n FIG. 2B) from client 170, certain information 204
indicating capabilities of client 170 (see FIG. 2A). For
example, 1n information 204, client 170 may inform server
100 of 1ts ability (or inability) to parse rows in the server’s
database storage format (e.g. to collate row and/or column
pieces, re-order and re-format column values, and convert
data types in rows expressed 1n the server’s database storage
format) to generate rows expressed 1n a normal format of a
query response (also called “query response format™) which
may be predetermined, such as comma separated values.
Typically, rows 1n the query response format are expressed
in a per column format, wherein multiple portions (also
called “pieces”) of any column (which may be split on disk,
across multiple disk blocks in the server’s database storage
format) are joined together, to form each column’s value.
Moreover, multiple portions (also called “pieces™) of any
row (which may additionally be split on disk, across mul-
tiple disk blocks 1in the server’s database storage format) are
jomed together, to form the row’s information (which may
include pairs of length, and value of each column), and
typically each row 1n the query’s response format (after
column processing) has multiple column values, e¢.g. values
separated by commas.

An 1illustrative example of such a query 1s “select col-
umnS, column7, columnl from Table A” where Table A has
ten columns, namely columns 1-10. The reordering of these
ten columns from their storage order (in which the columns
are stored on disk, e.g. sequentially from column 1 to
column 10), to query-specified order (e.g. column 1 occurs
after column 7) 1s done on a client 170, which results 1n
saving of CPU processing at server 100. Thus, processing
power savings 1n server 100 are obtained 1n several embodi-
ments, by transmission of one or more rows in the server’s
database storage format (which column values are arranged
in the server’s database storage order), due to server 100 not
being required to join row pieces before transmission, or not
being required to join (before transmission) column pieces
of a column split on disk across multiple disk blocks, or not
being required to reorder columns (e.g. when performing
operation 130 or operation 140). In such embodiments, CPU
power of server 100 1s considered more precious, as it
services thousands of clients concurrently.

Use of redaction techniques, such as excising, masking,
nulling of original rows 1n the server’s database storage
format as described in some embodiments herein, makes
these embodiments independent of any thresholding test
(c.g. 80%) to be applied to a number of columns selected
from a table 1n a query (relative to total number of columns
in the table), as may be required when transmitting all
columns of one or more rows 1n server’s database storage
format. Hence such non-thresholding embodiments (e.g.
implemented by use of branch 114 1n FIGS. 1D, 1N) provide
improvements over transmission of all columns of one or
more rows, because use of redaction techniques 1s applicable
to a server’s responses to all queries from a client capable of
parsing the server’s database storage format (instead of just
those queries that satisiy a thresholding test on the percent
of total columns that are query-selected columns, as may be
required for transmission of all columns of one or more

US 11,055,289 B2

27

rows). Moreover, use of redaction techniques as described
herein improves security because columns not to be sent are
redacted, and use of the storage format reduces processing
load at the server.

In some embodiments, an excising redaction technique 1s
used to 1ncrease security, because in some situations a weak
data modification technique (e.g. by certain types of mask-
ing) 1s vulnerable to hackers, who can recover the original
data from the modified data.

The redaction techniques described herein may be applied
to data in other storage formats used 1n server 100, where a
raw version of data in the server’s other storage format 1s
sent to client 170 without changing the format. For example,
server 100 may store original rows 1n a spreadsheet, or 1n a
file as comma separated values, or 1n an 1mage or 1n video
based files, and these rows (in the server’s other storage
formats) are sent unchanged to a client.

Information 204 (see FIG. 2A) may include one or more
specific flags which informs server 100 regarding client
170’s ability (or 1mnabaility) to perform row format processing
¢.g. based on software installed 1n client 170, to disassemble
a row ol data into individual columns selected 1n a query
(c.g. by using metadata to extract length and value of each
individual column), when the row 1s expressed 1n a server-
specified format related to storage in a RDBMS database
(e.g. the server’s database storage format), which 1s different
from the format of columns of data normally transmitted to
a client, 1n response to a SQL query (e.g. the SQL response
format), or query’s response format. Information 204 may
further include one or more latency measurements (also
called *“past latency measurements”™) of past query responses
received 1n client 170 from server 100.

In illustrative embodiments, client 170 1s programmed
with software to parse the server’s database storage format
that may be identified by server 100, and use the server’s
database storage format to extract columns and perform
per-column processing, on rows expressed in the server’s
database storage format. The just-described ability of client
170 to parse and use the server’s database storage format 1n
performing per-column processing is 1identified in the one or
more specific flags included 1n information 204, which 1s
transmitted by client 170 to server 100. Hence, based on
information 204, in response to client 170 idicating it 1s
able to parse server’s database storage formats, server 100
transmits (as per act 222 i FIG. 2B) to client 170, a
definition 205 (see FIG. 2A) of the server’s database storage
format (also called “server’s storage format” or simply,
“storage format™) 1n which data in columns of each row are
to be supplied, 1n response to queries from client 170.

The server’s database storage format defined in definition
205 (see FIG. 2A) may be similar or identical to a format of
columns 1n storage, 1n one or more blocks (also called “disk

blocks™) of relational database 202. An 1illustrative example
of definition 205 (see FIG. 2A) of such a database storage

format 1n server 100 1s described in U.S. Pat. No. 7,188,202
(see above) as a “disk row format” wherein rows 1n a
database table may be stored as a contiguous set of a row’s
column values, and these column values may be stored 1n the
same order relative to one another (“storage order”), 1n each
row of a table. Another 1llustrative example of definition 205
of the server’s database storage format includes a sequence
of cells (or tuples) containing one or more of: size (also
called length) and data-type, wherein size (or length) 1s the
width of a column in number of bytes (or alternatively
another attribute or field of the column), and wherein
data-type 1s the data-type of the column (e.g. character
string, integer, etc). Any other such definition 205 of the

10

15

20

25

30

35

40

45

50

55

60

65

28

database storage format may be supplied by server 100 to
client 170 (see FIG. 2A), depending on the embodiment.
Hence, a specific database storage format’s definition 205
provided by server 100 can be diflerent, in different embodi-
ments. In some embodiments, a server’s database storage
format 1dentifies each column’s position within a row from
the beginming of the row, e.g. by i1dentilying lengths of all
columns 1n the row, which are arranged sequentially one
after another from the beginning of the row (wherein each
column may contain a pair of numbers, namely the column’s
length and the column’s value).

Note that a disk block (also called “data block™ or simply
“block™) 1s the smallest unit of on-disk storage accessed (e.g.
read and/or written) 1n one or more storage devices, by an
application (e.g. RDBMS that accesses relational database
202) executed by server 100. A disk block corresponds to a
specific number of bytes of physical space on disk.

After establishment of a session, client 170 may send to
server 100, one or more queries, such as queries 206, 208
(see FIG. 2A). Server 100 responds to receipt of a query (e.g.
in act 223 in FIG. 2B), based on capabilities of client 170 (as
identified in information 204), by transmitting (e.g. 1 act
141 or act 131 1n FIGS. 2B and 1C), 1n server’s database
storage format (as per definition 2035), one of two versions
207, 209 (FIG. 2A) of one or more rows retrieved respec-
tively from one or more database tables (e.g. Table A and/or
Table B) identified 1n queries 206, 208 (FIG. 2A). The two
versions 207, 209 (see FIG. 2A) which are both expressed in
the server’s database storage format may be, for example, a
redacted version 207 of the one or more retrieved rows when
one or more columns of the one or more database tables are
not to be sent (see act 131 in FIGS. 2B and 1C), or
alternatively an unredacted version (also called “raw” ver-

sion) 209 of the one or more retrieved rows when all
columns of the one or more database tables are to be sent
(see act 141 1n FIGS. 2B and 1C).

Specifically, after receipt of each query 206, 208 (see FIG.
2A), server 100 retrieves (see act 224 1n FIG. 2B) original
rows 240 from one or more tables 1n database 202 that are
identified by the query. Depending on the embodiment, act
224 1n FIG. 2B may be performed at any time after receipt
of query 206 and before preparation of a version of each
retrieved row for transmission (as per operation 120, 130 or
140 1n FIGS. 1D, 1N, 10). Hence, after act 223, but either
before or after act 224, server 100 checks (see act 112 1n
FIG. 2B) whether any columns 1n any of tables (e.g. Table
A or Table B 1n FIG. 2A) identified 1n a received query 206,
208 are not to be sent to client 170 1n executing the received
query, for any reason. One reason may be, 1f any columns,
c.g. columns Al, AJ in Table A (see FIG. 2A) are not
requested, e.g. by being not i1dentified 1n a select clause of
the query. Another reason may be, e.g. that one or more
columns, e.g. columns BI, BJ in Table B (see FIG. 2A) are
determined by server 100 as being inaccessible (or unau-
thorized, or not visible), if client 170 does not have access
to them (e.g. due to access control). These are just two
examples, of any number of reasons, why server 100 may
determine (in act 112 in FIG. 2B) that certain columuns, e.g.
columns Al, Al, BI, BJ in certain tables, e¢.g. tables A, B
identified 1n query 206 are not to be sent to client 170.

When a result 234 (see FIG. 2B) of checking 1n act 112
1s true, e.g. in response to query 206 (FIG. 2A), server 100
prepares (as per operation 130 1n FIGS. 2B and 1A, 1K, 1L),
in a database storage format (which 1s defined in definition
205 and related to storage in relational database 202), a
redacted version 207 of rows identified by execution of
query 206 from tables A, B. Prior to preparing redacted

US 11,055,289 B2

29

version 207 i1n the database storage format, server 100
checks, 1n act 111 whether the client that sent the query can
parse a row 1n the database storage format, and 1f not then
server 100 performs operation 120, but 11 yes then server 100
performs either operation 140 (if there are no columns not to
be sent) or operation 130 (1f there are one or more columns
not to be sent).

Redacted version 207 (see FIG. 2A) may be prepared in
operation 130 (FIGS. 2B and 1A, 1K, 1L) by server 100
redacting (e.g. by modilying or excising) from original rows
240 (see FIG. 2A), any columns Al, Al, BI, Bl that are to not

be sent. The discarding by server 100 may be performed by
applying a specific redaction technique selected from among
multiple redaction techmiques, while maintaining unchanged

the formatting of the remaining columns that are to be sent
(c.g. columns Al ... AI-1, Al+1 ... AJ-1, AJ+1 . . . AN,
B1 ... BI-1, BI+1 ... BJ-1, Bl+1 . . . BZ in FIG. 2A),

namely in the database storage format (and also maintaining,
a sequence of these columns in the storage order, relative to
one another).

The just-described redaction of not-to-be-sent columns
Al, Al, BI, BJ (see FIG. 2A) may be performed by server

100 1n any manner 1n operation 130 (FIGS. 2B and 1A, 1K,
1L), depending on the embodiment. In some embodiments
described below 1n reference to FIG. 3A, server 100 may use
in operation 130, at a selected granularity level, a specific
redaction technique selected from a group of redaction
techniques, e.g. to excise (or cut), or to mask or null or
randomize, any to-be-not-sent columns from original rows
240 (FIG. 2A). On completion of operation 130, server 100
transmits (in act 131) to client 170, a redacted version 207
(see FIG. 2A) of rows, 1n the tables 1dentified by query 206.
In some embodiments, operation 130 1s based on table-
related statistics 235 which are stored in database 202 and
updated 1n an act 134 (FIGS. 2B and 1C). Examples of
table-related statistics 2335, which may be used to select a
granularity level i act 111 (which 1s performed within
operation 130), include cardinality of the result set of the
query, and/or number of rows and/or number of columns
identified based on the query, and/or number of nulls 1n each
column and/or average size of each column. In some
embodiments, when the number of query-responsive rows 1s
more than N1 (e.g. more than 5000 rows are responsive to
the query, where N1=3000), the granularity may be pro-
grammed to default to mtermediate level, and when this
number 1s more than N2 (e.g. more than 500,000 rows,
where N2=500,000) the granularity may be programmed to
default to minmimal level.

In operation 130, 11 there are no columns that can be sent,
¢.g. due to one or more columns being inaccessible to the
client and remaining columns not being selected in the
query, then 1n act 131, no rows are sent, and instead an error
1s returned to the client. Moreover, 1f the number of columns
selected 1n a query 1s too small (e.g. 15% of the columns),
server 100 may be configured to perform operation 120,
wherein a column-processed version of each row 1s prepared
for transmission of only those columns which are selected 1n
the query.

Hence, operation 130 may be performed 1n some embodi-
ments, to prepare a redacted version 207 of rows 1n the tables
identified by query 206, even when the percent of total
columns that are query-selected (e.g. see act 113 1n FIG. 10)
1s lower than prior-art thresholds thereon used previously to
perform traditional row shipping. For example, even when
less than 50% of columns in query-identified tables are
selected, operation 130 1s still performed 1n such embodi-

10

15

20

25

30

35

40

45

50

55

60

65

30

ments, to prepare redacted rows in the server’s database
storage format, for transmission 1n act 131.

Act 134 to update statistics may be performed iteratively
for each query, at any time after receipt of the query in act
223. However, 1n some embodiments act 134 to update
statistics may be performed after server 100 transmits to a
client, a result set of one or more rows. The result set of rows
transmitted by server 100 1n acts 131, 141 or 121 may be 1n
a corresponding one of (1) redacted version 207 or (2)
unredacted version 209 or (3) processed version 213 (after
complete server-side processing of a query, by performing
per-column processing 1n operation 120), as shown in FIG.
2B.

Another query 208 (see FIG. 2A) from client 170 may
select all columns of a table, e.g. Table A (FIG. 2A). In this
example, none of the columns in Table A are i1dentified 1n
server 100 as sensitive, e.g. because client 170 has access to
all columns (e.g. allowed by access control). Hence, server
100 may find a result 234, obtained by checking (in act 112
in FIGS. 2B and 1C) in response to receipt of query 208,
indicating that there are no “not-to-be-sent” columns 1n
Table A, 1.e. all columns A1...AI...AJ...AN of Table
A may be sent to client 170 1n response to query 208. Thus,
in response to query 208, server 100 prepares for transmis-
sion (as per operation 140 in FIG. 2B) in the server’s
database storage format, an unredacted version 209 of rows
in the result set for query 208. Depending on the embodi-
ment, operation 140 to prepare for transmission to client 170
may 1include, for example, adding a check sum, and/or
compression and/or encryption of one or more original rows
240A (and 240B). Thus, server 100 transmits unredacted
version 209 of the rows 1n the query’s result set as per act
141 (see FIG. 2B) to client 170, in response to query 208
(see FIG. 2A).

In establishing a session, another client 160 (FIG. 2A)
may send to server 100, mmformation 211 indicating that
client 160 1s incapable of row format processing (see FIG.
2A), by use of server’s database storage format. Hence, 1n
act 221 (see FIG. 2B), server 100 which performs method
220 may receive information 211 (see FIG. 2A) indicating
inability of client 160 to perform row format processing, due
to 1nability to parse rows 1n the server’s database storage
format. Depending on the embodiment, mability of client
160 to parse rows 1n the server’s database storage format
may be determined by server 100, for example on receipt of
an error code from client 160, or due to no response from
client 160 (e.g. to mamntain backward compatibility).
Accordingly, 1mn act 223 (see FIG. 2B), server 100 may
receive from client 160 (FIG. 2A), a query 212 (which may
be similar or 1identical to query 206). In this example, server
100 responds by preparing (see act 231 i FIG. 2B) a
per-column processed version 213, of those rows which are
responsive to query 212 (as specified 1n a predicate which
may be, e.g. 1identified 1n a WHERE clause of query 212).

In the example described 1n the preceding paragraph
above, 1n act 232 (see FIG. 2B), server 100 (see FIG. 2A)
transmits to client 160, a per-column processed version 213
(see FIG. 2A), 1n a normal format of a response to a query
(e.g. a SQL response format). Hence, a per-column pro-
cessed version 213 transmitted by server 100 to client 160
(FIG. 2A) includes only to-be-sent columns (e.g. columns
Al ... AI-1,Al+1 ... AJ-1, AJ+1 ... AN, Bl ... BI-1,
Bl+1...BJ-1,BJ+1 ... BZin FIG. 2A), which are obtained
by server 100 performing per-column processing in act 231,
in a normal manner. During per-column processing in act
231 (see FIG. 2B) to prepare version 213 (see FIG. 2A),

server 100 disassembles each row retrieved into individual

US 11,055,289 B2

31

columns (e.g. columns Al ... AN, and columns B1 .. . BZ)
of original rows 240 (e.g. by using metadata to extract length
and value of each of columns Al and BI), followed by
post-processing such as converting a data-type of a column,
and/or retrieving data related to a column from another table
and/or formatting a column’s data, and/or performing an
operation (e.g. arithmetic operation, by adding a constant 5)
on a column’s data and/or applying a function (such as a
PL/SQL function) to a column’s data, and/or ordering col-
umns relative to one another (in a “query order”), as
specified 1n query 212.

In preparing the per-column processed version 213, dur-
ing a column’s extraction, server 100 may additionally
collate N pieces of a column’s value 1t it 1s stored in
corresponding N disk blocks (and/or similarly collate Z
pieces of a row 1f 1t 1s stored 1n corresponding 7 disk blocks).
Such collation 1s necessary during a column’s extraction
(either at server 100 or at client 170 depending on the
embodiment), when data of a row 1n server’s database
storage format 1s stored 1n multiple disk blocks (e.g. because
the data does not fit within a single disk block). Depending,
on the embodiment, server 100 may additionally decom-
press a column’s value 1t the value was stored 1 a com-
pressed form. If the column 1s not selected in the query, its
value can be redacted or sent as null without decompression
in the second operation 34 i FIG. 1A.

The just-described per-column processing in server 100 in
act 231 (see the preceding two paragraphs), to prepare
version 213 of rows to be transmitted to client 160 1n a result
set responsive to query 212, increases computation load 1n
server 100, relative to preparing redacted version 207 in act
229 (or to prepare an unredacted version 209 1n act 227).
Hence, operations 130 and 140 (see FIG. 2B) to prepare
versions 207 and 209 transier computation load, of per-
column processing, from server 100 to client 170 (which as
noted above, 1s i1dentified 1n information 204, as being
capable of per-column processing), while maintaining secu-
rity of not-to-be-sent columns (by discarding them in opera-
tion 130, before transmission from server 100 in act 131).

As noted above, 1n certain embodiments of operation 130
(see FIG. 3A), server 100 which implements a relational
database management system performs an act 111 (described
briefly above in reference to FIG. 1N, 10), to select and use
a specific granularity level from among multiple granularity
levels, e.g. 3 levels. In some embodiments, the multiple
granularity levels used in act 111 (FIG. 3A) include (1) a
mimmal level granularity (e.g. table level) (2) an interme-
diate level of granulanty (e.g. column level) and (3) a
maximal level of granularity (e.g. row level). In a minimal
level of granularity, a specific redaction technique selected

in act 310 (described below 1n detail 1n reference to FIG. 3A)
1s applied 1dentically to all rows of a table, e.g. all rows
R1-RT of Table A 1n FIG. 2A. In an intermediate level of
granularity, a specific redaction technique selected 1n act 111
(FIG. 3A) 1s applied to at least one to-be-not-sent column 1n
all rows, e.g. column Al 1n all rows R1-RM of Table A (with
another redaction technique selected for another not-to-be-
sent column, e.g. column Al 1n all rows R1-RM 1n Table A).
In a maximal level of granularity, the specific redaction
technique 1s mndividually selected by repeated performance
of act 111, and applied 1n each cell, at each row-column
intersection, of each not-to-be-sent column. For example, 1f
column Al 1s not to be sent, then the specific redaction
technique 1s individually selected for one cell 242 (FIG. 2A)

in one iteration of act 310, at the intersection of row RI and

10

15

20

25

30

35

40

45

50

55

60

65

32

column Al, while another such redaction technique 1s 1ndi-
vidually selected for another such cell 1n another 1teration of
act 310.

Hence server 100 may select (in act 310), a specific
redaction technique from a group of redaction techniques,
¢.g. to excise (or cut), or to mask or null or randomize, any
not-to-be-sent columns from original rows 240 (FIG. 2A).
Specifically, 1 act 310, some embodiments of server 100
may perform steps 311 and 312 and optionally one or more
of steps 313 and 314 (FIG. 3A) to determine multiple
estimates of 1instructions required by respective multiple
redaction techniques. This 1s followed by step 315, to select
one of the multiple redaction techniques 340. Steps 311-315
are described next.

Specifically, in step 311 (FIG. 3A) server 100 prepares a
first estimate 331 of a number of instructions that are
required to perform a nulling redaction technique (in which
one or more bytes of each column to be redacted are set to
Zero), on one or more not-to-be-sent columns of original row
240, to obtain a redacted version 207 of the row. In step 312,
server 100 prepares a second estimate 332 of a number of
instructions that are required to perform a masking redaction
technique (in which existing bytes of each column to be
redacted are changed by applying a masking function
thereon), on one or more not-to-be-sent columns of original
row 240, to obtain redacted version 207 of the row. In
addition to estimates 331, 332, some embodiments may
prepare a third estimate 333 by performing step 313. Spe-
cifically, 1n such embodiments, mn step 313, server 100
prepares estimate 333 of a number of instructions required
to perform an excising redaction technique, 1n which one or
more row pieces to be sent 1s/are divided up into smaller row
pieces, which on being combined with one another (e.g. by
concatenation), omit each not-to-be-sent column from a
redacted version of a row, e.g. as described below in

reference to FIGS. 4A and 4B. Step 314 1s performed similar
to 313.

In some embodiments, after multiple estimates 331, 332
(and optionally estimates 333 and 334) are prepared, server
100 may go to step 315. In step 315, server 100 compares the
multiple estimates 331, 332 (and estimates 333 and 334, if
computed) to 1dentily the lowest estimate, and this lowest
estimate 1s used to 1dentily a corresponding redaction tech-
nique (from among multiple redaction techniques 340) as a
specific redaction technique that 1s selected, on completion
of act 310 (FIG. 3A). In some embodiments of step 315, a
redaction technique to be used on a column 1s 1dentified as
being selected, based partially or wholly on statistics related
to a number of times each redaction technique 1s used to
discard a column’s value, 1n redacting at least a predeter-
mined minimum number of rows responsive to the query.
For example, if a specific redaction technique (e.g. nulling
redaction technique 341) has been used to redact a specific
column’s value 1n more than 50% of the rows, step 315 may
be configured 1n future iterations (based on additional sta-
tistics 351 1llustrated 1n FIGS. 2B and 3A) to identity nulling
as the technique selected to be used 1n redacting this specific
column’s value, and this selection of nulling 1s done without
comparison of estimates 331-334. Alternatively, step 315

may compare the number of times of nulling 351N (FIG.
2B), number of times of excising 351E (FIG. 2B), number

of times of masking 351M (FIG. 2B), and number of times
of randomizing 351R (FIG. 2B) to one another, to 1dentily
a largest value among these numbers, and based on this
identification, identify a redaction techmque which 1s most
frequently used as being selected, such as nulling redaction

technique 341.

US 11,055,289 B2

33

Estimates 330 (which include estimates 331-334, see FIG.
3A) may be stored for future use, e.g. (1) 1n a cursor of the
current query, or (2) 1 a shared memory with the current
query’s other metadata, or (3) persisted 1n a table (also called
“estimates table™) 1n database 202. Storage of estimates 330
cnables their re-use when the same or similar query is
executed by server 100, e.g. on receipt of the same query
from a different client, and/or receipt of a query with
different bind values 1n the WHERE clause (which 1s oth-
erwise 1dentical to the query used to generate estimates 330).
Examples of estimates 330, which may be used to select a
redaction technique 1n act 310, include the CPU cost (e.g. in
number of instructions) of performing each redaction tech-
nique. In certain first embodiments, estimates 330 are stored
in the query’s cursor. In certain second embodiments, esti-
mates 330 are stored in shared memory (e.g. 1n a shared
cursor) with metadata (e.g. privilege) of the query. In certain
third embodiments, estimates 330 are stored in in an esti-
mates table (which 1s independent of the cursor). Therelore,
in certain embodiments, when a new query 1s processed but
has different bind values 1n the WHERE clause, server 100
1s programmed to use stored estimates 330 of an earlier
query that 1s otherwise 1dentical to the new query.

Two 1llustrative examples, of server 100 performing steps
311-313 (see FIG. 3A) 1in preparing estimates 331-333 for
redacting a row, 1n one specific embodiment, are based on
the following statistics. In a first example, an original row
(which includes one or more columns to be redacted) has
100 columns, and values 1n columns 22 and 56 are to be
discarded before the row (also called “current row”) can be
sent to client 170. In this specific embodiment, rows may be
stored 1in database 202 as one or more row pieces, wherein
no single row piece 1s allowed to be of a length so large as
to span across a boundary of two adjacent disk blocks in
database 202.

In the above-described first example, the size of column
22 1s 8 bytes, and the size of column 56 i1s 14 bytes.
Moreover, the average number of instructions required to
perform a nulling redaction technique 341 on a cluster of
columns, 1s 2 instructions per byte (for each byte 1 each
column to be nulled). Although 1n some embodiments each
byte 1n a column 1s set to 0 by a nulling redaction technique
as just described, 1n other embodiments a nulling redaction
technique may be implemented to set each to-be-nulled
column to a single byte of value 0, regardless of the length
of the column 1n the orniginal row, 1n which case the number
ol instructions required to perform nulling 1s significantly
lower, and independent of the length of each to-be-nulled
column. A cluster constitutes columns that are not to be sent,
and are sequential and co-located with one another, 1n a disk
block on database 202. In this example, column 22 forms in
a cluster of size 1 and column 56 forms another cluster of
s1ze 1. Hence, 1n step 311 (see FIG. 3A), server 100 prepares
nulling estimate 331 1in this first example=(8+14)*2=44
instructions.

In the above-described first example, the average number
of instructions required to perform a masking redaction
technique 342 (also called “scratch cost”) 1s 3 instructions
per byte (for each byte 1mn each column to be masked). The
cost can include one or more nstructions to 1dentily which
redaction technique to use, and this i1dentification can be
based on various criteria including data-type of a column to
be redacted. In some embodiments wherein table-related
statistics 235 are maintained by server 100 1n database 202,
the percentage ol columns that are null may be i1dentified
therefrom as 60% 1n this example. In some embodiments,
columns which are null do not require execution of masking

10

15

20

25

30

35

40

45

50

55

60

65

34

instructions. Hence, 1n step 312 (see FIG. 3A), server 100
prepares masking estimate 332 in this first example=(8+14)
* 3 *0.60=39.6 mstructions. For the purpose of comparison
with the just-described cost, in previous paragraph above,
the cost for nulling can also be modified to be 44*0.6=26.4
instructions.

In some embodiments, an original row 240 (FIG. 2A)
which 1s retrieved from database 202 (also called “retrieved
row”’) may have been stored 1n a single block (also called
“database block™ or “disk block™). In this example, original
row 240 has just a single row piece 410, which includes a
header 411 (FIG. 4A) and data 412, although other original
rows 240 may have multiple row pieces. In addition to
header 411, original row 240 may, depending on the embodi-
ment, additionally include a tail (not shown). In row piece
410 1n the embodiment shown in FIG. 4A, data 412 1s
expressed in the database storage format and includes tuples
of length and value (in pairs), in the form of a sequence of
N cells that correspond to N columns A1-AN of original row
240 (which may be, for example, row RI in FIG. 2A).
Specifically, each cell 242 of row RI (at column Al, see FIG.
2A), normally includes a length (1n number of bytes) and a
value (in bytes of the just-described length), although when
the value 1s null the cell has only a length field, which 1s
assigned a predetermined value, such as value FF (1in hex)
the cell has no byte for the value field (because the value 1s
null).

In some embodiments, during act 224 (described above 1n
reference to FIG. 2B), two or more existing row pieces (of
the type described above, e.g. row piece 410) are retrieved
from database 202 (e.g. from corresponding two tables A,
B), 1n the form of retrieved rows 240. Hence, retrieved rows
240 may include an existing row 240A (FIG. 4A) retrieved
from table A (and an existing row 240B (not shown)
retrieved from table B). To redact columns Al and Al from
existing row 240A, server 100 may apply an excising
redaction techmque 343 to row 240A 1n performing opera-
tion 130 (e.g. by performing act 229 A, which 1s 1llustratively
shown by an arrow 1n FIG. 4A), which splits existing row
piece 410 into three new row pieces 420, 430 and 440.
Specifically, i operation 130, server 100 splits or divides up
existing row piece 410 to (1) obtain a first new row piece 420
by retaining 1n data 422 only columns Al-Al-1 while
removing column Al (thereby to discard Al’s value), and (2)
creates a second new row piece 430 to include 1n data 432
the columns Al+1-AJ-1 while removing column Al (thereby
to discard Ar s value), and (3) further creates a third new row
piece 440 to include 1n data 442, the columns AJ+1-AN.

In addition to preparing data 422, 432 and 442 for row
pieces 420, 430 and 440 (FIG. 4A) based on data 412 1n row
piece 410, when applying the excising redaction technique
343, server 100 may additionally update and/or create head-
ers 421, 431 and 441. Specifically, in some embodiments,
header 441 of row piece 440 1s created to include one or
more tlags, such as a flag of value “L” to indicate that a
current row piece 1s the last row piece 1n row 207A.
Similarly, header 431 of row piece 430 1s created to include
a flag of value “P” to indicate that the current row piece 1s
a continuation of a previous row piece 1 row 207A. And,
header 421 of row piece 420 1s updated (e.g. based on header
411 of row piece 410 1n retrieved row 240A), to update a flag
to value “N”, to indicate that data of this row 207 A continues
in a next row piece 430.

The just-described flags 1n headers 421, 431 and 441
(F1G. 4A) constitute metadata which interrelate data 422,
432 and 442 of respective row pieces 420, 430 and 440 of
row 207A. The just-described headers 421, 431, and 441

US 11,055,289 B2

35

may include, depending on the embodiment, other such
metadata which 1s appropnately updated and/or created as
needed, to complete creation of new row pieces 420, 430 and
440, which when combined, form row 207A that 1s
expressed 1n the server’s database storage format and
excludes not-to-be-sent columns Al and AJ. As discussed
below 1n reference to FIG. SA, these flags may also be set
in headers of original row pieces (1.¢. row pieces 1n database
storage format), e.g. 11 a column CI 1n storage 1s already split
across row pieces 510, 520 and 330.

Hence, on excising retrieved row 240A, on completion of
act 229A, server 100 obtains redacted row 207A, which

includes the three new row pieces 420, 430 and 440 (FIG.
4A). Server 100 may similarly redact row 240B (not shown)
retrieved from table B, by applying just-described excising
redaction technique 343 to row 240B 1n performing act 229
(e.g. by performing act 229B shown 1n FIG. 4B). Specifi-
cally, act 229B splits row piece 450 1n row 240B, to create
the new row pieces 470, 480 and 490 1n row 207B. Row
207B, which 1s formed by combination of row pieces 470,
480 and 490, excludes columns BI and BJ on performance

of 229B.

Redacted rows 207A and 207B shown i FIGS. 4A and
4B respectively, are redacted versions of corresponding
rows 240A and 240B retrieved from respective tables A and
B (FIG. 2A), as responsive to query 206. Hence, rows 207A
and 207B are concatenated by server 100, to form a query-
responsive row 207 (FIG. 4C), which 1s then transmitted by
server 100 to client 170. Row 207 of FIG. 4C 1s expressed
in the database storage format, and omits not-to-be-sent
columns Al, AJ, Bl and BJ. In other embodiments, other
redaction techniques 360 may modily (instead of omuit)
not-to-be-sent columns Al, Al, Bl and BJ, 1in preparing a

similar row for transmission to client 170, as shown in FIGS.
4D, 4FE and 4F, and described next.

FIG. 4D illustrates an act 229M in which a masking
redaction technique 342 (FI1G. 3A) 1s applied to original row
240A (described above), to prepare redacted row 207M
which includes 1n partially masked data 412M, at least
masked values 242M and 243M, that replace corresponding,
original values 242 and 243 of columns Al and Al in original
row 240A (thereby to discard values 242 and 243). Note that
lengths of columns Al and AJ 1n row piece 413 1n redacted
row 207M are 1dentical to corresponding lengths of these
same columns Al and AJ in row piece 410 1n row 240A.

As columns Al and Al are the only columns that are
masked by application of masking redaction technique 342,
data 412M of row piece 413 (FIG. 4D) includes, 1n addition
to masked values 242M and 243M, the rest of the original
values 1n data 412 e.g. orniginal values of columns Al,
A2 .. Al-1, AI+1 .. . AJ-1, and AJ+1 . . . AN (see FIG.
4A) that are kept unchanged in data 412M of redacted row
207M (FIG. 4D). Also, all the lengths of columns A1-AN 1n
data 412 are unchanged (and 1dentical) in data 412M (FIG.
4D). Hence data 412M 1s also referred to herein, as partially-
masked data. Moreover, header 411 1n row piece 413 of
redacted row 207M 1s 1dentical to header 411 1n row piece
410 in original row 240A.

In some embodiments, masking redaction technique 342
1s implemented to generate masked values 242M and 243M
from corresponding original values 242 and 243 by use of a
function, or alternatively by a predetermined mapping there-
between. In certain embodiments, exactly how each of
original values 242 and 243 are mapped by masking redac-
tion technique 342 to corresponding masked values 242M
and 243M may be specified by a user, e.g. in a table 1n
database 202 (also called “configuration table”). For

10

15

20

25

30

35

40

45

50

55

60

65

36

example, 11 value 242 1s a date, which includes three values
concatenated with one another, including a first value of day,
a second value of month, and a third value of year, these
three original values 1n original row 240A may be replaced
by masking redaction technique 342 to corresponding three
new values, which may be preset by a user to, for example,
01 as the new value of day, 01 as the new value of month,
and 01 as the new value of year, which when concatenated
together from the new value 242M. In the just-described
example, a snooper who sees the new value 242M may
know based on general knowledge that the original value
242 has been replaced, because the date 01/01/01 1s too old
to be meaningful (depending on the application and the field,
¢.g. 1f the field 1s the birthdate of an employee). In certain
embodiments, masking redaction technique 342 implements
a one-way hash function to generate masked values 242M
and 243M from corresponding original values 242 and 243.
The one-way hash function prevents a snooper from deter-
mining the original values 242 and 243 based on masked
values 242M and 243M (which may be obtained by the
snooper, from a result set of redacted rows transmitted by
server 100, 1n response to a query).

FIG. 4E 1illustrates an act 229N in which a nulling
redaction technique 341 is applied to original row 240A
(described above), to prepare redacted row 207N which
includes nulled values 242N and 243N, that replace corre-
sponding values 242 and 243 of columns Al and Al 1n
original row 240A (thereby to discard values 242 and 243).
Lengths of columns Al and Al 1n row piece 414 1n redacted
row 207N are identical to corresponding lengths of these
same columns Al and AJ 1n row piece 410 1mn row 240A.
Moreover, header 411 1 row piece 413 of redacted row
207N 1s 1dentical to header 411 in row piece 410 1n original
row 240A.

Similarly, FIG. 4F illustrates an act 229N in which a
randomizing redaction technique 344 1s applied to original
row 240A (described above), to prepare redacted row 207F
which includes randomized values 242R and 243R, that
replace corresponding values 242 and 243 of columns Al
and AJ 1n original row 240A (thereby to discard values 242
and 243). Lengths of columns Al and AJ in row piece 414
in redacted row 207R are i1dentical to corresponding lengths
of these same columns Al and AJ in row piece 410 in row
240A. Moreover, header 411 in row piece 413 of redacted
row 207R 1s 1dentical to header 411 1n row piece 410 1n
original row 240A.

In some embodiments, randomizing redaction technique
344 1s implemented to generate randomized values 242R
and 243R from corresponding original values 242 and 243
by use of a randomizing function that selects a new value
242R from within a range of predetermined valid values.
The range of predetermined valid values may be preset by
the user or database administrator to real values 11 he/she
believes 1t may prevent a snooper from immediately know-
ing (based on general knowledge) that the original value 242
has been altered. For example, if value 242 1s a first name of
an employee, the randomized value 242R may be selected
from within a range of predetermined valid values of
employee names. Therefore, 1t the value 242 15 “Jay”,
randomizing redaction technique 344 may use “Peter” as the
new value 242K selected at random from among a list of first
names of employees which occur 1n the query-identified
table. Similarly, 1f the value 243 1s “John”, randomizing
redaction technique 344 may use “Steve” as the new value
243R selected at random from among this same list of first
names. A snooper who sees the names “Peter” and “Steve”
as the values 242R and 243R would be misled 1nto believing

US 11,055,289 B2

37

that these values are not altered, when in reality they are
changed from the original values 242 and 243 (in this
example, “Jay” and “John”). Thus, randomizing redaction
technique 344 as just described 1s a type of masking, to
prevent a snooper from knowing that one or more values, in
a result set of rows returned by server 100, are altered.

Although, original rows 240A and 240B 1llustrated 1n 1n
FIGS. 4A and 4B require only a single row piece to store
their data 1n database 202, specifically the respective row
pieces 410 and 450, other original rows 1n storage in
database 202 may need to store their data in multiple row
pieces, €.g. when data of all columns of a row (or even data
of a single column within a row) does not fit into a database
block, as illustrated 1n FIGS. 5A and 5B (described below).

In the above-described first example of preparing esti-
mates 331-333 (shown 1n FIG. 3A) for redacting a row, the
average cost of creating a new row piece (e.g. by including
one or more columns of the current row piece 1n the new row
piece, and updating metadata of the current row piece) 1s 35
instructions per new piece, wherein 20 instructions are
required to create a new header, and 15 instruction are
required for updating lengths 1 a retrieved row piece’s
header. For example, excising a column reduces the length
of the row piece, hence 1ts header 1s updated when perform-
ing excising redaction technique 343. In this example, as
two columns 22 and 56 are to be redacted, hence two new
pieces need to be created, by excising redaction technique
343. Thus, excising estimate 333 1n this first
example=2*35=70 1nstructions.

There may be certain data types of columns such as user
defined types where the cost of randomizing function or
masking function may be more expensive than the costing of
nulling the columns not selected in the query.

Accordingly, 1 step 315, the above-described values of
two or more of estimates 331, 332, 333 and 334 (whichever
are prepared 1n steps 311-314) are compared to one another
to 1dentily the least estimate, which in this first example 1s
masking estimate 332 (which 1s 26.4 instructions) and
hence, masking redaction techmque 342 (FIG. 3A) 1s 1den-
tified as the specific redaction technique (which has the
lowest estimate) at the end of act 310.

In the above-described first example, instead of using a
first nulling redaction technique (described above), which
sets each byte to be nulled to the value 00 as described
above, a second nulling redaction technique creates new
metadata for a column to be nulled which requires 20
instructions and updates size 1n the header (e.g. to value FF,
as described above), which requires 2 instructions. Hence,
nulling of columns 22 and 56 requires creation of two new
metadata (for these two columns), and two updates, so the
nulling estimate=20%2+2%2=44 1nstructions. Note that as
this nulling estimate happens to be exactly same as the
above-described nulling estimate, masking redaction tech-
nique 342 (FIG. 3A) 1s still identified as the specific redac-
tion technique (which has the lowest estimate) at the end of
act 310. In another embodiment, the size of row piece 1s not
included 1n the header of the row piece, and the header 1s
tollowed by (length, value) pairs of columns. In this embodi-
ment, there 1s zero cost to update the header (as no metadata
needs to be created), and hence in the above-described
example the nulling estimate=0%*2+2%*2=4 1nstructions. This
1s an example of in-line row piece transformation.

The comparison to choose the redaction technique used
the computation load. In some embodiments, the compari-
son to choose the redaction technique can include usage of
other resources such as I/O resources 1n selecting one or
more redaction techniques.

10

15

20

25

30

35

40

45

50

55

60

65

38

A randomizing redaction technique may include (1n addi-
tion to using the above-described excising redaction tech-
nique), setting a column being nulled to a random value
instead of a null value, in which case the nulling estimate
331 1s increased by the number of nstructions to create the
random value of the column, e.g. 15 nstructions per column.
The randomizing redaction technique may send a random
value instead of a null value, to deceive a “man-in-the-
middle” snooper.

In a second example, an original row to be redacted has
100 columns, and this row 1s split into two row pieces, with
columns 1-40 1n a first row piece, and columns 41-100 1n a
second row piece. In this second example, columns 22, 56
and 87-98 are to be redacted before the row (also called
“current row”) can be sent to client 170. In this second
example, the size of column 22 1s 8 bytes, and the size of
column 56 1s 14 bytes, and the average size of columns

87-98 15 20 bytes.

In the above-described second example, the average num-
ber of instructions to perform the above-described second
nulling redaction techmique 341, requires 1nstructions to null
column 22 (which forms in a first cluster of size 1),
instructions to null column 56 (which forms a second cluster
of size 1), and structions to null columns 87-97 (which
forms a third cluster of size 12). Hence, nulling estimate 331
in this second example (based on the above-described sec-
ond nulling redaction technmique) 1s 20%2*1+420%2%*1+
20%2*]12=88 mstructions. Preparation of this estimate 1is
based on the 1nstructions being 20 for metadata creation, and
2 for updating size with the value FF, as noted above.
Moreover, 1n the above-described second example, as three
clusters are to be redacted, use of excising redaction tech-
nique 343 requires three new pieces need to be created.
Thus, excising estimate 333 1 this second
example=3*35=2035 1nstructions. Furthermore, in the above-
described second example, the number of bytes to be
masked=8+14+11*20, or 242, so masking estimate
332=242%2 1nstructions/byte™0.6 (percentage of nulls)=314
instructions.

Accordingly, 1n step 315 (FIG. 3A), the above-described
values of estimates 331, 332, 333 (and 334 if prepared) are
compared to identily the least estimate, which in this second
example 1s nulling estimate 331(which 1s 88 1instructions)
and hence, nulling redaction technique 341, 1s identified as
the specific redaction techmique (which has the lowest
estimate) at the end of act 310.

A specific redaction technique, which may be selected 1n
act 310 (e.g. as described 1n any of the above examples) 1s
applied 1 act 113 (FIG. 3A). In several embodiments, in act
111, using statistics 352 and other parameters, such as
previous granularity level 353, count 355 of executions of
query 206 at the previous granularity level, and a limit 356
on the count of query executions whose statistics are to be
stored, a current level of granularity 1s automatically
selected 1n act 111 (FIG. 3A), from among multiple levels of
granularity. In some embodiments, the just-described limait
356 1s computed (e.g. 1 act 111), as a function of compu-
tation load in server 100. Depending on the embodiment,
statistics 352 which are used in granularity selection may be
related to data in tables identified 1in the query 206 (e.g.
number of columns and number of rows), and/or statistics
recorded during execution of query 206 in one or more prior
iterations. Subsequently 1n act 113 (FIG. 3A), a speciiic
redaction technique (e.g. techmique 342), which 1s selected

in step 313 1s applied, at a granularity level selected 1n act
111.

US 11,055,289 B2

39

Examples of table-related statistics 235 (FIG. 2B) which
may be used 1n act 310 as described above include one or
more of: percentage of nulls, size of clusters of columns in
user 1ssued query, average size ol columns, scratch cost per
byte, number of instructions for metadata creation, eftc.
Examples of additional statistics 351 (FIG. 3A) which may
be additionally used i act 310 include number of rows
redacted by excising, number of rows redacted by masking,
and number of rows redacted by nulling, as discussed below.
In certain embodiments, additional statistics 351 (FI1G. 2B)
used 1n act 111 and/or act 112 to select a specific redaction
technique and/or a granularity level include number of times
nulling has been used, number of times excising has been
used, number of times masking has been used, and number
of times randomizing has been used, and these numbers may
be maintained on a per-column basis and/or on a per-query
basis, depending on the granularity level and/or depending
on the embodiment. For example, when a specific redaction
technique (such as nulling) 1s used to redact a specific
column 1n more than 50% of rows at the maximum granu-
larity level, server 100 of some embodiments may be
programmed to simply use this specific redaction technique
to redact this column 1n future iterations, without computing,
and comparing multiple estimates of corresponding multiple
redaction techniques applicable thereto (without perform-
ing, for example, steps 311-313 described above).

An onginal row 240C as stored in database 202 may
include a column, e.g. column CI (FIG. SA), whose data
does not {1t within a single database block (and also does not
fit within a single row piece). Specifically, in an example
row 240C, which 1s expressed 1n database storage format as
shown 1n FIG. 5A, the data of column CI 1s stored 1n three
parts, wherein a {irst part of column CI 1s stored at the end
of data 512 of row piece 510, a second part of column CI 1s
stored 1n data 522 of row piece 520, and a third part of
column CI 1s stored 1n the beginning of data 532 of row piece
530. In response to a query, 11 column CI 1s a not-to-be-sent
column, then server 100 may perform act 229C on row 240C
(FIG. 5A), to implement excising redaction technique 343
(FIG. 3A), resulting 1n redacted row 501 which includes
only two row pieces 540 and 550. Row piece 540 1s obtained
as follows: header 511 may be updated 1f necessary to obtain
header 541 (e.g. by updating one or more flags), which
excludes any reference to column CI, and data 512 1is
updated to obtain data 542, e.g. by omitting the length of the
first part of column CI and the value of the first part of
column CI. Stmilarly, row piece 550 1s obtained as follows:
header 531 1s updated 1f necessary to obtain header 551 (e.g.
by updating one or more flags), which excludes any refer-
ence to column CI, and data 532 is updated to obtain data
552 by omitting the length of the last part of column CI and
the value of the last part of column CI. In some embodi-
ments, headers 511 and 531 may include corresponding
s1zes of the row pieces, and these sizes are updated to obtain
the corresponding headers 541 and 551. Including a row
piece’s size 1n the header has the advantage of being useable
by client 170 (e.g. 1n act 175 1 FIG. 1G) as a checksum to
confirm proper receipt of the row piece via a network, from
server 100.

In another embodiment, 11 column C2 was not selected 1n
query and to be excised, the row piece 510 could be divided
into two row pieces one containing column C1, and other
contaiming columns C3 to CI-1. If Column CI was selected
in query, the second row piece would include column C3 to
CI. In this embodiment, the number of row pieces increases.

Instead of performing act 229C, some embodiments of
server 100 may perform an alternative act 229D (FIG. 3B)

10

15

20

25

30

35

40

45

50

55

60

65

40

to implement a masking redaction technique 342 (FIG. 3A),
resulting 1n redacted row 502 which includes row pieces
560, 570 and 580 that are obtained by masking correspond-
ing row pieces 510, 520 and 530 of original row 240C.
Specifically, each value of column CI in original row 240C
1s masked to obtamn a corresponding masked value 1n
redacted row 502. For example, as illustrated 1n FIG. 5B,
masked value 513M of a first part of column CI 1n row piece
560 1s obtained by masking an original value 513A of the
first part of column CI 1n row piece 5310. Similarly, masked
value 523M of a Jth part of column CI in row piece 570 1s
obtained by masking an original value 5231J of the Jth part
of column CI 1n row piece 520. And masked value 533M of
a Nth part of column CI 1n row piece 570 1s obtained by
masking an original value 533N of the Nth part of column
CI 1 row piece 530. Other than the just-described changes,
at the end of performing act 229C 1n some embodiments, the
rest of the information 1n redacted row 502 (FIG. 5B) may
be 1dentical to corresponding information in original row
240C, as stored in database 202.

FIG. 5C illustrates an original row 240C being redacted
by application of a combination redaction technique, which
includes moditying a portion of the data 1n column CJ which
1s being redacted (by setting the length of CJ to zero) and
excising another portion of the data 1n column CJ which 1s
being redacted by excising the value of CJ (thereby to
discard this value). Hence, in this example, server 100
transmits data 535 of row piece 5390 1n redacted row 3503 to
client 170 (FIG. 2A), 1n addition to transmitting thereto, row
pieces 560 and 570 (1n redacted row 503). In the example
shown 1n FIG. 5C server 100 transmits a multi-piece column
C4, after redaction of a single-piece column CJ (by use of a
combination redaction techmique). In contrast, in the
example shown 1n FIG. 5A, the server 100 redacts multi-
piece column CI which 1s not transmitted due to use of an
excising technique thereon. As noted elsewhere herein,
which particular column CI or CIJ 1s redacted by server 100
depends on several reasons for not sending the column (e.g.
client 1s not authorized to receive the column and/or the
column 1s not selected 1n the query).

Original row 240C as stored in database 202 1n which
column CI (FIG. 5A) 1s stored 1n three parts as described
above, 1s excised 1n some embodiments as shown 1n FIG. 5D
if 1n response to a query, column CI 1s a not-to-be-sent
column. Server 100 may perform act 229F on row 240C
(FIG. 5D), to implement an alternative embodiment of
excising redaction technique 343, resulting 1n redacted row
592 which includes the same number of row pieces, namely
row pieces 560, 570 and 580 (FIG. 5D). Row piece 560 1s
obtained as follows: header 511 1s unchanged, as 1t excludes
any reference to column CI, and data 512 1s updated to
obtain data 312E, which includes length 561 of the first part
of column CI set to 1, and value 562 of the first part of
column CI set to 0. Similarly, row pieces 570 and 580 are
obtained by setting to 0, the lengths 571 and 581 of the Jth
part and the last part of column CI and by setting to O the
values 572 and 582 of the Jth part and last part of column CI.
A vanant of the just-described alternative embodiment may
set the lengths 561, 571 and 381 to 0, and omait the values
562, 572 and 3582 (see FIG. 5D). Another alternative
embodiment of the excising redaction technique 343 is
shown 1n FIG. SE, wherein row 3593 1s obtained by server
100 performing act 229G on original row 240C, resulting 1n
redacted row 593. Row 593 includes an excised row piece
595 obtained by setting to 0, length 394 of column CI,
omitting the value of column CI, and updating header 511 to
point to row piece 550 to obtain header 596. Row piece 5350

US 11,055,289 B2

41

1s obtained by omitting from data 552, the length of the Nth
part of CI and the value of the Nth part of CI, e.g. as
described above 1n reference to FIG. SA.

In some embodiments, a server 100 that performs method
220 may execute a procedure 610 (FIG. 6A) to implement
act 111 of FIG. 3A (described above), at which to apply a
specific redaction techmique. Specifically, in acts 611 and
612, server 100 tests the current computation load (e.g. due
to other processes and/or threads in server 100 and/or other
soltware executed by server 100), to determine a granularity
level. More specifically, i act 611, server 100 checks if the
computation load 1s greater than a first limit L1, which may
be, for example, 60%. When the result of checking in act 611
1s true, server 100 goes to act 617, in which the minimal
level of granularity 1s selected.

Hence, 1n act 617, server 100 applies a specific redaction
technique which 1s selected 1mn act 310 1n common to all
original rows 240 (FIG. 2A) retrieved from one or more
tables A, B 1dentified 1n the query, specifically to redact all
not-to-be-sent columns, e.g. columns Al, Al, BI and BJ in
FIG. 2A. The selected redaction technique which 1s applied
in act 617 (FIG. 6A) may, for example, modity all not-to-
be-sent columns in all rows i1dentically, e.g. by masking
them 1f masking was selected 1n a previous performance of
act 310 (specifically, 1 masking was previously determined
in act 310, to require the lowest estimated number of
instructions, among multiple redaction techniques).

Thereatter, server 100 returns to act 611. In act 611, 1 the
answer 1s no, server 100 goes to act 612, to check 1t the
computation load 1s greater than a second limit L2, which
may be, for example, 40%. When the result of checking in
act 611 1s true, server 100 goes to act 614, in which the
intermediate level of granulanty 1s selected. Hence, 1n act
614, server 100 applies a specific redaction technique (e.g.
masking) which was selected previously (e.g. i act 310 of
FIG. 3A, or 1n an earlier performance of act 310A or 3108
of FIG. 6A), to redact a single not-to-be-sent column (e.g.
column Al 1n FIG. 2A) 1n all original rows 240 to be sent 1n
response to the query. If there are one or more additional
not-to-be-sent columns, they are similarly redacted i act
614 (or on 1ts repetition, depending on the embodiment), by
application of one or more redaction techniques respec-
tively, to all oniginal rows 240. After applying the specific
redaction techmiques, server 100 updates one or more sta-
tistics, e.g. the number of times each specific redaction
technique has been applied in the current table and/or to
retrieved rows 240 of the current query. After act 614, server
100 goes to act 615A to check if the number of times that
query has been executed a predetermined limit M (e.g. 500
times), and 1 the answer 1s no, server 100 selects a redaction
technique (as per act 112A in FIG. 6 A, implemented 1den-
tical to act 112 in FIG. 3 A described above) and goes to act
618A. In act 618A, server 100 checks 1f all rows and
columns responsive to the query have been processed and 1f
the answer 1s no, then server 100 returns to act 611, to
iteratively redact any other not-to-be-sent columns in a
current row, €.g. column AJ in row RI of table A, or to redact
one or more columns in to-be-sent rows.

In some embodiments, n act 615A of checking on
whether a query has been executed M times, server 100 may
be additionally or alternatively programmed to check
whether a predetermined amount of time has passed, e.g.
whether 10 minutes have passed, since the last time act
615A was performed.

In the intermediate level of granularity applied on act 614,
a first redaction technique (e.g. masking) which 1s applied to
a cell 242 1n a first not-to-be-sent column Al of row RI 1s

5

10

15

20

25

30

35

40

45

50

55

60

65

42

also 1dentically applied to another cell 243 (FIG. 2A) 1n the
first not-to-be-sent column Al of another row RJ. Similarly,
a second redaction techmque (e.g. nulling) which 1s applied
to a cell 244 1n a second not-to-be-sent column AJ of row RI
1s also 1dentically applied to a cell 245 (FIG. 2A) 1n the
second not-to-be-sent column AJ of another row RJ.

If the answer 1n act 615A 1s yes (because the query has
been already executed M times), then server 100 goes to act
6158 to check 11 data in the table has been modified and/or
if metadata of the table has been modified (depending on the
embodiment). In act 615B, 1f the answer 1s yes then server
100 goes to act 310A 1n which the redaction technique 1s
again selected (because a previously selected technique may
be no longer applicable). Specifically, 1n act 615B, server
100 may check 1f an indicator of alteration of the table
satisfies a preset limit thereon. The just-described alteration
indicator may be computed, for example, as a diflerence
between a previous data version number V1 of the table (at
which a redaction technique currently 1n use was selected),
and a current data version number V2 of the same table
(1dentified 1n the query’s select clause), and the preset limit
on the difference may be, e.g. 100. In such embodiments,
server 100 increments the current data version number of the
table, each time that any change 1s made, to the table’s data.
Depending on the embodiment, 1n act 6135B, server 100 may
alternatively or additionally check on another alteration
indicator, e.g. whether a metadata version number MV1 of
the table (at which the currently-in-use redaction technique
was selected) differs from a current metadata version num-
ber MV2 of the same table, by a metadata change threshold,
¢.g. 0 or 1. In the example of the metadata change threshold
being zero, the redaction technique is reselected each time
that the definition of the table 1s changed (by execution of
any DDL statement thereon, by server 100).

In certain implementations of act 6158, instead of (or 1n
addition to) using alteration indicator, server 100 may be
programmed to check whether any DDL statement has been
executed on any table identified 1n the query (to add or drop
one or more columns), and 11 so then the test 1s satisfied and
the answer 1n act 613B 1s yes. Depending on the embodi-
ment, server 100 may be programmed to check 1n act 615B,
whether more than a predetermined percentage (e.g. X %) of
rows are modified by execution of DML statements and/or
whether a predetermined number (e.g. Y number) DML
statements have been executed. One example of X % 15 20%
and one example of Y number of DMLs 1s 1000. In some
embodiments, server 100 may be programmed to check on
both these conditions (check on both X % of rows and Y
number of DML statements), which may be 1n addition to
server 100 checking on whether even a single DDL state-
ment has been executed. In some embodiments, when the
answer 1n act 6135B 1s yes (due to alteration of any table
identified 1n the query), additional statistics 351 related to
number of times one or more redaction techniques are used,
to redact rows responsive to the query, by discarding values
ol one more columns not selected in the query, are 1nitialized
to zero.

If the answer 1n act 615B 1s no, then server 100 goes to
act 616 to check 1f a threshold T (e.g. 50%) 1s exceeded by
a number of times that a specific redaction technique was
previously used to redact one or more columns 1n this query
(e.g. relative to a total number of times redaction was
performed on retrieved rows 240 for this query). If the
answer 1 act 616 1s yes, then server 100 goes to act 617
(described above). I the answer 1n act 616 1s no, then server
100 goes to act 310B i FIG. 6A to select a redaction
technique (implemented identical to act 310 in FIG. 3A

US 11,055,289 B2

43

described above), and then returns to act 611. If 1n act 612,
the answer 1s no, then server 100 goes to act 613, 1n which
the maximum level of granularity 1s selected.

In an 1llustrative example, while performing act 616 at an
intermediate level of granularity, if server 100 finds that a
specific redaction technique (e.g. masking) 1s used more
than a predetermined percent (e.g. 50%) of the times, then
act 617 may be programmed to select minimum granularity
for application of this specific redaction technique (e.g.
masking 1s to be used to redact all the remaining not-to-be-
sent columns).

In act 613, server 100 applies a specific redaction tech-
nique (e.g. masking) which was selected previously (e.g. in
act 310 of FIG. 3 A, or 1n an earlier performance of act 310A
or act 310B of FIG. 6A), to redact a single not-to-be-sent cell
(e.g. cell 242 at the intersection of column Al and row RI 1n
FIG. 2A). After act 613, server 100 goes to act 310B to select
a redaction technique and goes to act 618B. In act 618B,
server 100 checks 11 all rows and columns responsive to the
query have been processed and 1f the answer 1s no, then
server 100 returns to act 611, to iteratively redact any other
not-to-be-sent cell 1n a current row, e.g. cell at the intersec-
tion of column AJ 1n row RI (or if already redacted, a cell
at column BI 1n row SI of table B), see FIG. 2A. Hence, by
performing act 613, the redaction techniques applied to
other not-to-be-sent CELLS (e.g. cells at row-column inter-
sections RI-AJ, RI-Al, RJ-Al, SI-BI and SI-BJ in FIG. 2A)
are selected by performance of act 310 of FIG. 3A or act
310A of FIG. 6A or act 310B of FIG. 6A a corresponding
number of times, 1.¢. selected individually, for each cell to
redact, in retrieved rows 240.

At the mtermediate granularity level, multiple redaction
techniques may be applied to respective multiple columns
by server 100, to redact all the rows responsive to a query,
when there 1s no change 1n granulanty level during query
execution. Depending on the query, granularity level during
query execution may change at the end of redacting a block
(or group) of rows (e.g. 5000 rows) responsive to a query,
when multiple blocks (or multiple groups) of query-respon-
stve rows (e.g. 200 blocks, 1f the result set has 1 million
rows) are being redacted, e.g. during corresponding multiple
iterations of acts 614, 615A and 618A (followed by returning
to act 614 via acts 611 and 612), as described above. At each
such 1iteration, server 100 may change the above-described
correspondence (used 1 each block of rows), between
multiple redaction techniques and respective multiple col-
umns. For example, 1f server 100 changes granularity level
from intermediate granularity to mimmimum granularity at the
end of processing a block of rows, in the next block of rows
a single common redaction technique may be applied to all
the multiple columns. As another example, if server 100
changes granularity level from intermediate granularity to
maximum granularity at the end of a block of rows, in
redacting the next block of rows the redaction technique
used may be individually selected for each column’s value
in each row.

When all rows responsive to a query have been processed,
the answer 1n acts 618A and 618B 1s yes, hence preparation
of rows 1n storage format containing only query-selected
columns 1n procedure 610 ends. In embodiments wherein
procedure 610 implements acts 111-113 (see FIGS. 3A and
3B), on completion of procedure 610, an act 230 may be
performed 1n some embodiments, to transmit redacted rows,
as described above 1n reference to FI1G. 2B.

In certain embodiments, client 170 which 1s capable of
receiving and processing redacted rows 1n database storage
format 1s programmed to i1dentily a specific redaction tech-

10

15

20

25

30

35

40

45

50

55

60

65

44

nique used to redact a row 207, as being excising redaction
technique 343. Use of excising redaction technique 343 may
be 1dentified 1n client 170, e.g. when the number of columns
received 1n a redacted row 207 1s 1identical to the number of
columns 1n the select clause of query 206. When the
redaction technique used 1s excising redaction technique
343, client 170 does not process one or more columns (e.g.
columns Al, Al, Bl and BJ of Tables A and B) which are not
identified 1n the select clause of query 206. Lack of need for
client 170 to process such not-to-be-sent columns reduces
processing load on client 170 (from which the query 1s
received). Hence, 1n several such embodiments, an estimate
ol a size of reduction 1n processing load at client 170 (due
to not processing the one or more not to be sent columns) 1s
used to reduce or oflset an estimate of the number of server
instructions required to perform a corresponding redaction
technique, as illustrated by step 313C (e.g. performed 1n a
relational database management system, which 1s 1mple-
mented by server 100), as illustrated in FIG. 3B.

Specifically, 1n the above-described second example, an
estimate to perform an excising redaction technique 343 is
reduced from 35 to 25 mstructions, wherein the savings from
not processing not-to-be-sent columns 1s estimated to be 10
instructions (at client 170). Thus the excising estimate 333C
1s 3*25=75 1nstructions. In this example, estimates 331C and
332C (FIG. 3B) for performing nulling redaction technique
341 and masking redaction technique 342 1n the server 100
are unchanged by savings from reduced client load (and thus
identical to estimates 331 and 332 discussed above 1n
reference to FIG. 3A), because client 170 simply drops any
columns not 1n the query’s select clause. Accordingly, in step
315 (FIG. 3B), the above-described values of estimates
331C, 332C and 333C are compared to identily the least
estimate, which 1n this revised second example 1s excising
estimate 331C (because 1t 1s just 75 1nstructions). Hence,
excising redaction technique 343 1s identified as the specific
redaction technique (as having the lowest estimate), at the
end of act 310 1n FIG. 3B.

Although 1n some embodiments, a level of granularity, at
which a redaction technique 1s applied is selected as shown
in FIG. 6A normally, in other embodiments the level of
granularity may be increased 1 client 170 (from which query
206 1s recerved as shown 1n FIG. 2A) provides to server 100,
certain indicators to increase granularity. Two examples of
granularity increase indicators iclude (1) privilege of client
170 (or user within client 170) or (2) latency of the client 170
(e.g. based on past latency measurements therein), which are
illustrated 1n FIGS. 6B and 6C and described next. In certain
embodiments, when the result of checking in act 611 1s true,
instead of server 100 selecting minimum granularity in act
617 (as shown 1n FIG. 6A), server 100 checks a granularity
increase ndicator 1n acts 622, 632 (see FIGS. 6B, 6C), and
depending on the outcome of this checking, server 100
performs either act 614 (to select intermediate granularity),
or act 617 (to select mimimum granularity), followed by
checking 1f all data responsive to the query has been
processed (1n act 618A or act 618B) and i1 the answer 1s no,
returns to act 611. Moreover, when the result of checking in
act 612 1s true, instead of server 100 selecting intermediate
granularity 1 act 614 (as shown i FIG. 6A), server 100
checks the granularity increase indicator in acts 621, 631
(see FIGS. 6B, 6C), and depending on the outcome of this
checking, server 100 performs either act 613 (to select
maximum granularity), or act 614 (to select intermediate
granularity).

Specifically, 1n the embodiment shown in FIG. 6B, 1n act
622, server 100 checks i1 the client 170 has high privilege.

US 11,055,289 B2

45

If the answer 1s ves, server 100 goes to act 614 (from act
622), but 11 the answer 1s no server 100 goes to act 617 (irom
act 622). Hence, when computation load in server 100
1s >L.1, server 100 selects intermediate granularity for high-
privileged clients (1n act 614), although server 100 selects
mimmum granularity for normal privileged clients (in act
617). Also 1n the embodiment shown in FIG. 6B, 1n act 621,
server 100 checks if the client 170 has high privilege. If the
answer 1s yes, server 100 goes to act 613 (from act 621), but
if the answer 1s no server 100 goes to act 614 (1rom act 621).
Hence, when computation load in server 100 1s >1.2, server
100 selects maximum granularity for high-privileged clients
(in act 613), although server 100 selects intermediate granu-
larity for normal privileged clients (in act 614).

Moreover, 1n the embodiment shown 1n FIG. 6C, 1n act
632, server 100 checks 1f information 204 received from the
client 170 (e.g. latency measurements of past query
responses) meet a test (e.g. a preset limit on latency 1s
exceeded) which indicates that client 170 has seen high
latency (or high response times) of queries. This test (also
called “optimization test”) being satisfied by information
204 from client 170 1indicates that client 170 has high latency
(e.g. checked 1n act 631 in FIG. 6C) and better optimization
1s needed by server 100, in executing the query from this
client 170. Some embodiments of the optimization test are
performed by server 100 without information from client
170, specifically by mternally comparing CPU cost of
responding to a query to another preset limit thereon.
Moreover, 1nstead of using response time (or alternatively
CPU cost) 1n the optimization test, other embodiments may
compute a difference between a response time (or CPU cost)
of responding to a query and a baseline value, followed by
comparing this difference to another preset limit thereon. In
the just-described optimization test, the baseline value may
be generated in some embodiments, by measuring latency of
server 100°s response (or alternatively CPU cost) to the
same query, when the response 1s expressed 1n SQL response
format (1.e. difference between time to respond i SQL
response format and time to respond in database storage
format).

If the answer 1s yes, server 100 goes to act 614 (from act
632), but 11 the answer 1s no server 100 goes to act 617 ({rom
act 632). Hence, when computation load in server 100
1s >L.1, server 100 selects intermediate granularity for high-
latency clients (in act 614), although server 100 selects
mimmum granularity for normal latency clients (1n act 617).
Also 1n the embodiment shown 1n FIG. 6C, 1n act 631, server
100 checks if the client 170 has high latency. If the answer
1s yes, server 100 goes to act 613 (from act 621), but if the
answer 1s no server 100 goes to act 614 (from act 631).
Hence, when computation load in server 100 1s >1.2, server
100 selects maximum granularity for high-latency clients (1n
act 613), although server 100 selects intermediate granular-
ity for normal latency clients (1n act 614).

Although a certain illustrative sequence of acts are shown
in FIGS. 6 A-6C described above, other sequences may be
used 1n other embodiments. Hence, 1n several embodiments,
server 100 selects from among multiple redaction tech-
niques, a specific redaction technique, and server 100 selects
from among several levels of granularity, a current level of
granularity. The just-described two selections are performed
in different sequence relative to one another, in different
embodiments. Moreover, depending on the embodiment, the
just-described two selections may be performed before or
alter receipt of a query whose response 1s prepared by using
these selections. Specifically, in the some embodiments,
server 100 uses the selected specific redaction technique at

10

15

20

25

30

35

40

45

50

55

60

65

46

the selected current level of granularity (1.e. the two selec-
tions) to redact one or more not-to-be-sent columns in
original rows stored 1n an object 1n a database storage format
that are responsive to the query, such as a table 1n a relational
database, after performing the two selections.

As noted earlier above 1n reference to FIGS. 6 A-6C, the
several levels of granularty in the immediately preceding
paragraph above may include a minimal level of granularity,
wherein the specific redaction technique 1s applicable to all
cells of the object, an intermediate level of granularity,
wherein the specific redaction technique 1s applicable to at
least a first column 1n each row of the object and another
redaction technique 1s applicable to at least a second column
in said each row, and a maximal level of granularity, wherein
the specific redaction technique 1s selected for application to
only one cell 1n the object. Accordingly, server 100 prepares
and transmits, 1n the storage format in which the object 1s
stored 1n one or more storage devices, a redacted version of
a row 1dentified 1n response to the query, by use of the
selected specific redaction technique at the selected current
level of granulanty.

Depending on the embodiment, any or all of server 100
and clients 160, 170 which perform one or more acts or steps

described above in reference to FIGS. 1A-1D, 1K, 1L, 1M,
1IN, 10, 1P, 2B, 3A, 3B, 6A, 6B and 6C, may be imple-
mented 1 a system 1000, described below as a *“cloud”.
Cloud 1000 (FIG. 7A) of some embodiments includes a pool
of resources including, for example, a relational database
management system (RDBMS) executing in one or more
processors 1105 of server 100. Examples of additional
resources 1030 which may be included i the pool are
processor, server, data storage, virtual machine (VM), plat-
form, and/or other software applications. The pool of
resources 1n cloud 1000 may be geographically centralized
and/or distributed. As an example, the pool of resources 1n
cloud 1000 may be located at one or more datacenters.

Client devices 1010 outside cloud 1000 may indepen-
dently request resources in the form of computing services,
such as CPU time (e.g. 1n processors 1105 in computers 160,
170) and storage (e.g. in disks 1110 used by database 202 1n
computer 100), as needed. The just-described resources
1105, 1110 and additional resources 1130 may be dynami-
cally assigned by server computer 100 to the requests and/or
client devices 1010 on an on-demand basis. One or more
resources 1105, 1110 and 1130 which are assigned to each
particular client device 1010 may be scaled up or down
based on the services requested by the particular client
device. The resources 1105, 1110 and 1130 assigned to each
particular client device 1010 may also be scaled up or down
based on the aggregated demand for computing services
requested by all client devices 1010. In an embodiment, the
resources 1105, 1110 and 1130 included 1n cloud 1000 are
accessible via switch 1175 over a network 1120, such as a
private network or the Internet. One or more physical and/or
virtual client devices 1010 demanding use of the resources
1105, 1110 and 1130 may be local to or remote from cloud
1000. The client devices 1010 may be any type of computing,
devices, such as computers or smartphones, executing any
type of operating system. The client devices 1010 commu-
nicate requests to access the resources 1105, 1110 and 1130
in cloud 1000 using a communications protocol, such as
Hypertext Transier Protocol (HT'TP). Such requests, which
are communicated by client devices 1010 via network 1120
to the resources 1105, 1110 and 1130, may be expressed in
conformance with an interface, such as a client interface
(e.g. a web browser), a program 1interface, or an application
programming interface (API).

US 11,055,289 B2

47

In some embodiments, a cloud service provider provides
access to cloud 1000 to one or more client devices 1010.
Various service models may be implemented by cloud 1000
including but not limited to Software-as-aService (SaaS),
Platform-as-a-Service (PaaS), and Infrastructure-as-a-Ser-
vice (IaaS). In SaaS, a cloud service provider provides client
devices 1010 the capability to use the cloud service provid-
er’s applications, which are executing on the resources in
cloud 1000. In PaaS, the cloud service provider provides
he capability to deploy onto cloud resources

cloud users t
1105, 1110 and 1130 custom applications, which are created
using programming languages, libraries, services, and tools
supported by the cloud service provider. In Paas, the cloud
service provider may make available to client devices 1010,
one or more applications, such as a Relational Database
Management System (RDBMS) as a service, Customer
Relationship Management (CRM) application as a service,
Enterprise Resource Planning (ERP) as a service, an Java as
a service.

In IaaS, the cloud service provider provides cloud users
the capability to provision processing, storage, networks,
and other resources 1105, 1110 and 1130 1n the cloud 1000.
Any applications and/or operating systems, may be
deployed on the resources 1105, 1110 and 1130. Resources
1105, 1110 and 1130 may be used to implement processes to
perform one or more acts or steps or operations described
above 1n reference to FIGS. 1A-1D, 1K, 1L, 1M, 1N, 10, 1P,
2B, 3A, 3B, 6A, 6B and 6C.

In some embodiment, various deployment models may be
implemented by cloud 1000, including but not limited to a
private cloud, a public cloud, and a hybrid cloud. In a private
cloud, cloud resources 1105, 1110 and 1130 are provisioned
for exclusive use by a particular group of one or more users,
referred to below as entities, examples of which are a
corporation, an organization, a single person, a family, or
other such groups of users. The cloud resources may be
located on the premises of one or more entities in the
particular group, and/or at one or more remote ofl-premise
locations. In a public cloud, cloud resources are provisioned
for use by multiple enftities (also referred to herein as

“tenants” or “customers”). Each tenant uses one or more
client devices 1010 to access cloud resources 1105, 1110 and
1130. Several tenants may share their use of a particular
resource, such as server computer 100 1 cloud 1000 at
different times and/or at the same time. Cloud resources
1105, 1110 and 1130 may be located at one or more remote
ofl-premise locations, away from the premises of the ten-
ants.

In some embodiments referred to as hybrid cloud, cloud
1000 includes a private cloud (not shown) and a public cloud
(not shown). A cloud interface (not shown) between the
private cloud and the public cloud allows for data and
application portability. Data stored at the private cloud and
data stored at the public cloud may be exchanged through
the cloud interface. Applications implemented at the private
cloud and applications implemented at the public cloud may
have dependencies on each other. A call from an application
at the private cloud to an application at the public cloud (and
vice versa) may be executed through the cloud interface.

In certamn embodiments, cloud 1000 1s configured to
support multiple tenants such that each tenant 1s independent
from other tenants. For example, a business of one tenant
may be separate from a business of another tenant. Each
tenant may require different levels of computing services to
be provided by the cloud computing network. Tenant

10

15

20

25

30

35

40

45

50

55

60

65

48

requirements may include, for example, processing speed,
amount of data storage, level of security, and/or level of
resiliency.

In various embodiments, tenant 1solation 1s implemented
in cloud 1000. Each tenant corresponds to a unique tenant
identifiers (IDs). Data sets and/or applications implemented
on cloud resources that are associated with a particular
tenant are tagged with the tenant ID of the particular tenant.
Before access to a particular data set or application 1s
permitted, the tenant 1D 1s verified to determine whether the
corresponding tenant has authorization to access the par-
ticular data set or application.

In several embodiments of cloud 1000, data sets corre-
sponding to various tenants are stored as entries in a data-
base 202. Each entry 1s tagged with the tenant ID of the
corresponding tenant. A request for access to a particular
data set 1s tagged with the tenant ID of the tenant making the
request. The tenant ID associated with the request 1s checked
against the tenant ID associated with the database entry of
the data set to be accessed. If the tenant IDs are the same,
then access to the database entry 1s permitted.

In a few embodiment of cloud 1000, data sets and virtual
resources (e.g., virtual machines, application instances, and
threads) corresponding to different tenants are isolated to
tenant-specific overlay networks, which are maintained by
cloud 1000. As an example, packets from any source device
in a tenant overlay network may only be transmitted to other
devices within the same tenant overlay network. Encapsu-
lation tunnels are used to prohibit any transmissions from a
source device on a tenant overlay network to devices 1n other
tenant overlay networks. Specifically, the packets, recerved
from the source device, are encapsulated within an outer
packet. The outer packet 1s transmitted from a first encap-
sulation tunnel endpoint (1n communication with the source
device 1n the tenant overlay network) to a second encapsu-
lation tunnel endpoint (1n communication with the destina-
tion device in the tenant overlay network). The second
encapsulation tunnel endpoint de-capsulates the outer packet
to obtain the original packet transmitted by the source
device. The original packet 1s transmitted from the second
encapsulation tunnel endpoint to the destination device 1n
the same particular overlay network.

One or more of steps and acts described above 1n refer-
ence to FIGS. 1A-1D, 1K, 1L, 1M, 1IN, 10, 1P, 2B, 3A, 3B,
6A, 6B and 6C may be used to program one or more
computer(s) 100, 160, 170 each of which may be imple-
mented 1 hardware of the type 1illustrated in FIGS. 7B and
7C. Each of computers 100, 160, 170 include a bus 1102
(FIGS. 7B, 7C) or other communication mechanism for
communicating information. Computers 100, 160, 170 may
include processors 1105 (FIGS. 7A-7C). Bus 1102 (FIGS.
7B, 7C) connects processors 1105 to memory 1107 (FIGS.
7TA-T7C). Memory 1107 may be implemented, for example,
as random access memory (RAM) or other dynamic storage
device, coupled to bus 1102 for storing information and
instructions (e.g. to perform the steps and acts described

above 1n reference to FIGS. 1A-1D, 1K, 1L, 1M, 1N, 10, 1P,
2B, 3A, 3B, 6A, 6B and 6C) to be executed by processors
1105. Memory 1105 (FIGS. 7A-7C) may be used addition-
ally for storing temporary variables or other intermediate
information during execution of mnstructions to be executed
by processors 1105.

For example, memory 1105 (FIGS. 7A and 7B) of server
110 may contain mstructions to perform acts 221-224, 111,
112, 121, 131 and 141 and operations 120, 130 and 140 of
FIG. 2B. Memory 1105 of server 110 may also temporarily
store original rows 240A, 240B and/or redacted versions

US 11,055,289 B2

49

207A, 2078 of these rows shown 1n FIGS. 4A, 4B, and/or
istructions to perform acts 132, 133 and 310 of FIG. 3A,

and/or acts 611-617 of FIG. 6 A. Main memory 1105 of

server 110 also may be used for storing temporary variables
or other itermediate information (e.g. query 206, 212 of

FI1G. 2B, result 234 of FIG. 2B, table-related statistics 235
of FIG. 2B and additional statistics 351 of FIG. 2B) during
execution of 1instructions to perform acts of the type
described above in reference to FIG. 2B by processors 1107
of server computer 100. Moreover, as shown 1 FIGS. 7A
and 7C, memory 1105 of client 170 may temporarily store
rows received in database storage format of server 100,
which are processed by processors 1107 1n client 170 by
performing at least act 175A 1n FIG. 1G (described above)
to generate processed rows also stored temporarily in

memory 1107.
Computers 100, 160, 170 (FIG. 7B, 7C) may include read

only memory (ROM) 1104 or other static storage device
coupled to bus 1102 for storing static information and
instructions for processors 1105, such as one or more
components of software in the form of relational database
management system (RDBMS) software and/or soitware in
the form of BIOS and/or drivers of an operating system. A
storage device 1110, such as a magnetic disk or optical disk
may be included 1n computers 100, 160, 170 and coupled to
bus 1002 for storing information and instructions, such as
middleware (not shown) and/or relational database manage-
ment system.

Computers 100, 160, 170 may include a display device or
video monitor 1112 such as a cathode ray tube (CRT) or a
liquid crystal display (LCD) which 1s coupled to bus 1102
for use 1n displaying information to a computer user. Com-
puters 100, 160, 170 may additionally include an input
device 1114, including alphanumeric and other keys (e.g. of
a keyboard) also coupled to bus 1102 for communicating
information (such as user input) to processors 1105. Another
type of user mput device 1s cursor control 1116, such as a
mouse, a trackball, or cursor direction keys for communi-
cating information and command selections to processors
1105 and for controlling cursor movement on display device
1112. This mput device typically has two degrees of freedom
in two axes, a first axis (e.g., X) and a second axis (e.g., V),
that allows the input device to specily positions 1 a plane.
In addition computers 100, 160, 170 may include a speaker
(not shown) which generates sound, or any other output
device, for use by processor 1105 in 1nteracting locally, with
any users.

As described above, computers 160, 170 may each issue
a query to computer 100 to retrieve rows responsive thereto
from a database 202, by processors 1105 1n computers 160,
170 executing one or more sequences of one or more
instructions that are contained in memory 1107 of computers
160, 170. And, computer 100 may respond to receipt of such
a query by processors 1105 1n computer 100 executing one
or more sequences of one or more instructions that are
contained 1n memory 1107 of computer 100. Such instruc-
tions may be read 1nto the respective memories 1107 from a
non-transitory computer-readable storage medium, such as
storage device 1110. Execution of the sequences of instruc-
tions contained 1n main memory 1107 causes respective

processors 1105 to perform the steps, acts, operations of the
type described above in reference to FIGS. 1A-1D, 1K, 1L,

1M, 1IN, 10, 1P, 2B, 3A, 3B, 6A, 6B and 6C. In alternative
embodiments, hard-wired circuitry may be used 1n place of
or in combination with the just-described software instruc-
tions.

5

10

15

20

25

30

35

40

45

50

55

60

65

50

The term “non-transitory computer-readable storage
medium”™ as used herein refers to any non-transitory storage
medium that participates 1in providing instructions to pro-
cessors 11035 for execution. Such a non-transitory storage
medium may take many forms, including but not limited to
(1) non-volatile storage media, and (2) volatile storage
media. Common forms of non-volatile storage media
include, for example, a tloppy disk, a tlexible disk, hard disk,
optical disk, magnetic disk, magnetic tape, or any other
magnetic medium, a CD-ROM, any other optical medium,
punch cards, paper tape, any other physical medium with
patterns of holes, a PROM, and EPROM, a FLASH-
EPROM, any other memory chip or cartridge that can be
used as storage device 1110, to store program code 1n the
form of instructions and/or data structures and that can be
accessed by computers 100, 160 and 170. Volatile storage
media mncludes dynamic memory, such as memory 1107
which may be implemented 1n the form of a random access
memory or RAM.

Instructions to processors 1105 can be provided by a
transmission link or by a non-transitory storage medium
from which a computer can read information, such as data
and/or code. Specifically, various forms of transmission link
and/or non-transitory storage medium may be mvolved 1n
providing one or more sequences ol one or more mstructions
to processors 1105 for execution. For example, the instruc-
tions may 1nitially be comprised in a non-transitory storage
device, such as a magnetic disk, of a remote computer 1010.
Such a computer 1010 (FIG. 7A) can load the instructions
into 1ts dynamic memory (RAM) and send the instructions
over a telephone line using a modem to any of client
computers 160, 170 and/or server computer 100.

A modem local to computers 100, 160 and 170 can
receive mstructions and/or rows of data via a telephone line,
a cable link, a cellular wireless link, or via a Bluetooth
wireless link, and store the recerved information 1n memory
1107 and/or on storage devices 1110. Moreover, storage
devices 1110 may, in some embodiments, be used to store
database 202, which may place on bus 1102 of server
computer 100 (FIG. 7A), data blocks that hold original rows
responsive to a query. Bus 1102 carries information placed
thereon, to memory 1107, from which processors 1105
retrieve the data blocks and execute instructions of the type
described above 1n reference to FIGS. 1A-1D, 1IN, 10, 1P,
¢.g. to perform operation 120, 130 or 140. Thus, processors
1105 retrieve original rows 240 and 1f necessary redact one
or more not-to-be-sent columns, to prepare for transmaission,
a version of retrieved rows 240, such as redacted version 207
or processed version 213 (see FIG. 2A), or alternatively
prepares for transmission unredacted version 209. Any soft-
ware and/or data, such as rows 240 temporarily stored in
main memory 1107 may optionally be stored on storage
devices 1110 either before or after redaction by processors
1105. Moreover, instructions to perform operations 120, 130
and 140 may be received in memory 1107 and may option-
ally be stored on storage device 1110 either before or after
execution by processors 1105.

Each of computers 100, 160 and 170 includes a network
interface module 1109 coupled to bus 1102 as shown 1n
FIGS. 7B and 7C. Network interface modules 1109 provides
two-way data communication coupling to network link 1120
that 1s connected to a local network 1122. Network link 1120
may interconnect multiple computers (as described above).
For example, network interface module 1109 may be an
integrated services digital network (ISDN) card or a modem
to provide a data communication connection to a corre-
sponding type of telephone line. As another example, net-

US 11,055,289 B2

51

work interface module 1109 may be a local area network
(LAN) card to provide a data communication connection to
a compatible LAN. Wireless links may also be implemented.
In any such implementation, network interface module 1109
sends and receives electrical, electromagnetic or optical
signals that carry digital data streams representing various
types of information.

Network link 1120 typically provides data communica-
tion through one or more networks to other data devices. For
example, network link 1120 may provide a connection
through local network 1122 to data equipment operated by
an Internet Service Provider (ISP) 1126. ISP 1126 in turn
provides data communication services through the world
wide packet data communication network 1124 now com-
monly referred to as the “Internet”. Network 1122 and
network link 1120 both use electrical, electromagnetic or
optical signals that carry digital data streams. The signals
through the various networks and the signals on network
link 1120 and through network interface module 1109 which
carry the digital data to and from computers 100, 160 and
170 are exemplary forms of carrier waves transporting the
information, which may be, for example, instructions of
RDBMS to interface with relational database 202.

Computers 100, 160 and 170 can send messages and
receive data, including program code, through the
network(s), network link 1120 and network interface module
1109. In the Internet example, a server computer 100 might
transmit information retrieved from RDBMS database
through Internet 1124, ISP 1126, local network 1122, net-
work link 1120 and network interface module 1109.
Examples of such information include rows responsive to a
query, ¢.g. redacted version 207 or original version 209 or
processed version 213 described above 1n reference to FIG.
2A, after retrieval of respective original rows 240 by execu-
tion of relational database management system 1220 on
relational database 202 (FIG. 2A) that 1s stored non-transi-
torily, e.g. 1n non-volatile storage media, such as hard disk
included in storage devices 1110 (FIG. 7A)

Computer instructions for performing one or more steps
or acts described above 1n reference to FIGS. 1A-1D, 1K,
1L, 1M, 1N, 10, 1P, 2B, 3A, 3B, 6A, 6B and 6C may be
executed by processors 1105 as they are received, and/or
stored 1n storage device 1110, or other non-volatile storage
for later execution. In this manner, computers 100, 160 and
170 may additionally or alternatively obtain instructions and
any related data.

Note that FIGS. 7A-7C are low-level representations of
some hardware components of computers 100, 160 and 170.
Several embodiments of server computer 100 may have
additional software components and/or related data 1n

memory 1107, as may be needed to implement operations,
steps, and acts, as shown 1n FIGS. 1A-1D, 1K, 1L, 1M, 1N,

10, 1P, 2B, 3A, 3B, and 6 A-6C. In addition to memory 1107,
computers 100, 160 and 170 may include one or more other
types of memory such as tlash memory (or SD card) and/or
a hard disk and/or an optical disk (also called “secondary
memory”) to store data and/or software for loading into
memory 1107 (also called “main memory”) and/or for use
by processors 1105. In some embodiments, server computer
100 implements a relational database management system
1220 (FIG. 7A) to manage data 1n one or more tables of
relational database 202 of the type illustrated in FIG. 2A.
Relational database management system 1220 may manage
a distributed database that includes multiple databases 1n
addition to database 202, and database tables may be stored
on different storage mechanisms instead of or 1n addition to
storage devices 1110.

10

15

20

25

30

35

40

45

50

55

60

65

52

In some embodiments, processors 1107 that execute soft-
ware of a relational database management system can access
and modily the data in a relational database 202, and hence
server computer 100 accepts queries 1n conformance with a
relational database language, the most common of which 1s
the Structured Query Language (SQL). The commands are
used by processors 1105 of some embodiments to store,
modily and retrieve data in the form of rows 1n tables A and
B (FIG. 2A) that are implemented as relational tables (which
may additionally contain one or more indexes pointing to
other relational tables) 1n relational database 202.

Client computers 160 and 170 may include output logic
that makes the data 1n a database table retrieved from
database 202 via server computer 100, available to a user via
a graphical user interface that generates a screen of an
application program on a video monitor 1112. In one
example, the output logic of client computers 160, 170
provides results on a monitor or other such visual display,
via a command line interface. Additionally and/or alterna-
tively, screens responsive to a command 1n a command-line
interface and display on a video monitor may be generated
by server computer 100.

As described elsewhere herein, execution of relational
database management system 1220 (FIG. 7A) 1n server 100
may be implemented by one or more processors 1103
executing one or more sequences of one or more 1nstructions
that are contained 1n main memory 1107. Such instructions
may be read mto main memory 1107 from another non-
transitory computer readable storage medium, such as stor-
age devices 1110. Execution of the sequences of instructions
contained 1n main memory 1107 causes processor 1105 to
temporarily store in memory 1107, original rows which are
retrieved from database 202 as illustrated in FIG. 2A. In
alternative embodiments, hard-wired circuitry may be used
in place of or 1n combination with software instructions 1n
relational database management system 1220, to perform
one or more acts, steps and/or operations described above.

Relational database management system 1220 (FIG. 7A)
in server 100 may further include output logic that makes
rows of data 1n a database table of relational database 202
available to a user via a graphical user interface that gen-
erates a display on a screen 1112 (FIG. 7B) of server 100. In
some embodiments of server 100, functionality in the above-
described operations, steps or acts of FIGS. 1A-1D, 1K, 1L,
1M, 1N, 10, 1P, 2B, 3A, 3B, and 6 A-6C 1s implemented by
processor 1105 (FIG. 7A) executing soltware in memory
1107, although 1n other embodiments such functionality 1s
implemented 1n any combination of hardware circuitry and/
or firmware and/or software 1n one or more of clients 170,
160 and server 100. Depending on the embodiment, various
functions of the type described herein may be implemented
in software (executed by one or more processors or proces-
sor cores) or 1n dedicated hardware circuitry or in firmware,
or in any combination thereof. Accordingly, depending on
the embodiment, any one or more of the means for perform-
ing operations or acts of FIGS. 2B, 3A, 3B, and 6 A-6C can,
but need not necessarily include, one or more microproces-
sors, embedded processors, controllers, application specific
integrated circuits (ASICs), digital signal processors
(DSPs), multi-core processors and the like, appropnately
programmed with software in the form of instructions to
implement one or more operations, steps, or acts of the type
described herein.

In some embodiments, server 100 may include multiple
processors, each of which 1s programmed with software in
a memory 1607 shared with each other to perform acts of the
type described above to implement the mdividual compo-

US 11,055,289 B2

53

nents 1llustrated 1n, for example, FIGS. 1A-1D, 1K, 1L, 1M,
1IN, 10, 1P, 2B, 3A and 6A. For example, a first processor
1605 1n server 100 may be programmed with soitware 1n
memory 1107 to implement steps 311-315 of FIG. 3A1n one
component. A second processor 1605 1n server 160 may be
programmed with software 1n memory 1107 (FIG. 7A) to
implement acts 111, 112, 131 and 134 of FIG. 2B 1n a second
component. Finally, a third processor 1605 in server 100
may be programmed with software in memory 1107 (FIG.
7A) to implement 1 a third component, other processes,
tasks, functions, threads, and logic of relational database
management system 220 to interface with relational data-
base 202 1n the normal manner.

Thus multiple processors 1105 (FIG. 7A) may be used in
some embodiments to individually implement multiple com-
ponents of software (e.g. act 150 to select a specific redac-
tion technique, and act 132 to select a specific granularity
level). In other embodiments a single processor 1105 may be
used 1n a time shared manner to perform all the above-
described operations and/or steps and/or acts. For example,
a server 100 that executes relational database management
system 1220 may also execute acts 221-224(FI1G. 2B)
described above. Such a server 100 may be programmed to
perform any one or more of acts described above 1n refer-
ence to FIGS. 1A-1D, 1K, 1L, 1M, 1IN, 10, 1P, 2B, 3A, 3B,
and 6 A-6C. Furthermore, although multiple processors 1105
for certain embodiments are included 1n a single computer,
in other embodiments multiple processors 1105 may be
included 1n multiple computers, for example two computers
100 may respectively perform the above-described acts 111
and 112. Database 202 of some embodiments may be
implemented as a relational database which 1s accessible by
executing software of a relational database management
system (RDBMS) software 1220 (FIG. 7A), such as Oracle
11gR2 available from Oracle Corporation of Redwood
Shores, Calif.

Server 100 of the type described above may be pro-
grammed with software in a memory 1107 to perform a
computer-implemented method of processing queries, as
follows. In some embodiments, the computer-implemented
method includes (a) receiving a query that references an
object, wherein the object comprises a plurality of cells
located at intersections of columns and rows, (b) selecting
from among multiple redaction techniques, a specific redac-
tion technique, (¢) selecting from among a plurality of levels
of granularity, a current level of granularity, wherein the
plurality of levels of granularity include: (c¢1) a minimal
level of granularity, wherein the specific redaction technique
1s applicable to all cells of the object, (c2) an intermediate
level of granularity, wherein the specific redaction technique
1s applicable to at least a first column 1n each row of the
object and another redaction technique i1s applicable to at
least a second column 1n said each row, (¢3) a maximal level
of granularity, wherein the specific redaction technique 1s
selected for application to only one cell 1n the object, and (d)
preparing and transmitting, in a database storage format in
which the object 1s stored 1n the one or more storage devices,
a redacted version of a row i1dentified 1n response to the
query, by use of the specific redaction technique at the
current level of granularity. In an embodiment of the type
described 1n this paragraph, at the maximal level of granu-
larity in the computer-implemented method, a redaction
technique 1s independently selected from among multiple
redaction techniques, for each cell at a row column inter-
section.

Server 100 of some embodiments may be programmed
with software 1n a memory 1107 to perform a computer-

10

15

20

25

30

35

40

45

50

55

60

65

54

implemented method of processing database queries, by (a)
receiving, 1n one or more computers, a query that identifies
one or more tables 1n a relational database accessible to the
one or more computers through a relational database man-
agement system, wherein the one or more tables comprise a
plurality of columns and a plurality of rows stored in the
relational database, 1n a database storage format, (b) check-
ing whether the plurality of columns comprise any column
not to be sent 1n responding to the query, (¢) when a result
of the checking 1s true, preparing and transmitting from the
one or more computers, a redacted version of a row 1n the
one or more tables identified i1n the query, wherein the
redacted version 1s prepared by redacting said any column
not to be sent, from one or more rows retrieved respectively
from the one or more tables, by applying a specific redaction
technique, while maintaining in the database storage format,
one or more columns selected 1n the query, and (d) when the
result of the checking 1s false, preparing and transmitting
from the one or more computers, in the database storage
format, all columns 1n at least said row 1n the one or more
tables 1dentified 1n the query.

As noted above, 1n some embodiments, a non-transitory
computer-readable medium tangibly embodies software
(also called “computer mnstructions™) to implement one or
more acts or operations described herein and 1illustrated in
FIGS. 2B, 3A, 3B, and 6A-6C. Specifically, such software
includes computer instructions stored in memory 1607 that
when executed by processor 1105 (FIG. 7), cause the
processor 1105 to perform a computer-implemented method,
the computer-implemented method including receirving a
query, checking whether a plurality of columns stored 1n an
object referenced by the query comprise one or more col-
umns not to be sent 1n responding to the query, when the
plurality of columns comprise one or more columns not to
be sent, preparing and transmitting in a database storage
format used in the one or more storage devices, a redacted
version of a row 1dentified in response to the query, wherein
the redacted version 1s prepared by redacting from said row,
at least one column not to be sent, by applying a specific
redaction technique thereto, while maintaining in the data-
base storage format, one or more columns selected 1n the
query, and when the plurality of columns do not comprise
any columns not to be sent, preparing and transmitting in the
database storage format, all columns in said row.

Moreover, 1n some embodiments, an apparatus (such as
server 100) includes one or more computer memories
coupled to one or more processors, the one or more proces-
sors being configured to execute instructions 1n the one or
more computer memories to perform a computer-imple-
mented method, the computer-implemented method 1nclud-
ing receiving a query, checking whether columns stored 1n
one or more objects referenced by the query include any
columns not to be sent 1n responding to the query, and i1 so
preparing and transmitting in a database storage format used
in the one or more storage devices, a redacted version of a
row 1dentified in response to the query, wherein the redacted
version 1s prepared by redacting from said row, at least one
column not to be sent, by applying a specific redaction
technique thereto, while maintaining 1n the database storage
format, columns selected in the query. In the just-describe
embodiments, when the columns stored i1n one or more
objects referenced by the query do not include any columns
not to be sent, the apparatus may prepare and transmit 1n the
database storage format, all columns in each row responsive
to the query.

Server 100 of some embodiments may be programmed
with software 1n a memory 1607 to perform a computer-

US 11,055,289 B2

3

implemented method to execute a query to prepare data for
transmission 1n the database storage format, by using one or
more redaction techniques that are selected by default 1ni-
tially (e.g. based on user-selectable options). After initial
execution of a query, a specific redaction technique that 1s
used, to discard a value at a specific row-column 1ntersection
in data responsive to the query, may be selected by server
100 based on statistics and/or estimates that are generated
during the query’s 1nitial execution. Selection of one or more
redaction techniques, to be used 1n redacting query respon-
sive data, may be 1tself done in server 100, at a selected level
ol granularity, as follows.

Specifically, preparation of redacted versions of one or
more original rows retrieved from database 202 1n response
to a query may be performed by server 100, at any of
multiple levels of granularity, which may include, for
example, (1) a minimal level of granularty (also called
“coarsest granularity”), (2) an intermediate level of granu-
larity, and (3) a maximal level of granularity (also called
“finest granularity”). In some embodiments, server 100 may
prepare a query’s response at the maximal level of granu-
larity, by selecting a respective redaction technique inde-
pendently, for each cell at the intersection of a to-be-
redacted column and a row, from among multiple redaction
techniques (such as nulling, randomizing, masking, excis-
ing, or any combination thereot). Depending on one or more
factors, such as processing load i server 100, statistics
related to size of data 1n the object, and/or latency measure-
ments of past query responses, server 100 may prepare
redacted versions of rows at an intermediate level of granu-
larity. At the intermediate level, server 100 selects and
applies one specific redaction technique to one specific
column 1n each row of the object, while another redaction
technique 1s selected and applied to another column 1n each
row of the object (thereby to implement column-level usage
of redaction techniques). Also depending on one or more
tactors of the type described above, server 100 may prepare
redacted versions of rows at the minimal level of granularity,
wherein one specific redaction technique 1s applied to all
cells of the object.

In such embodiments, a current level of granularity may
be selected by server 100, based at least partially on an
indicator of alteration of the object, a count of executions of
the query at a prior level of granularity, and a limit on the
count of query executions whose statistics are to be stored,
wherein depending on the embodiment, the just-described
limit may be a function of computation load 1n server 100.
In some embodiments, server 100 may select the current
level of granularity based at least partially on a privilege of

10

15

20

25

30

35

40

45

56

technique (which may be used at any of the above-described
levels of granularity), based on respective multiple estimates
of number of instructions required in application of each
redaction technique. Depending on the embodiment, selec-
tion ol a specific redaction technique may be performed
periodically, e.g. every 10 minutes, or performed asynchro-
nously, e.g. alter M executions of a query 1f an indicator of
alteration of the object satisfies a test thereon (e.g. data in the
object 1s changed a certain number of times, or metadata of
the object changed another number of times). In several
embodiments, the multiple redaction techniques include a
first redaction technique of nulling, a second redaction
technique of masking, a third redaction technique of ran-
domizing (all these three redaction techniques modity the
data being redacted), and a fourth redaction technique of
excising (which discards the data being redacted). In some
embodiments, a fifth redaction technique includes a combi-
nation of moditying and excising different portions of the
data being redacted, followed by sending at least the modi-
fied data of the redacted column to the client.

In many embodiments, server 100 responds to a client’s
query, by bulk transfer of data in a database storage format,
wherein the data 1s prepared by server 100: (1) redacting
data of one or more not-to-be-sent columns of a row, when
they cannot be sent (for any reason) 1n a response to the
client’s query while keeping data in other columns of the
row which are to be sent in the storage format, thereby to
obtain a redacted version of original rows for transmission
to the client or (2) retaining all columns of the row without
redaction when they are all needed by the client’s query,
thereby to obtain unredacted versions of original rows for
transmission to the client.

In some embodiments, an object of the type described
above includes a table 1n a relational database as described
in detail below, although in other embodiments, the object
may be organized in a non-relational system of storage. In
examples of a non-database system of storage, data of the
type described above 1s stored 1n files and/or images and/or
videos. In an illustrative embodiment of a non-relational
storage system, the data 1s stored 1n cells at the intersection
of columns and rows, 1n a spreadsheet.

Various adaptations and modifications may be made with-
out departing from the scope of the described embodiments.
Numerous modifications and adaptations of the embodi-
ments described herein are encompassed by the attached
claims.

The mvention claimed 1is:
1. A computer-implemented method of processing que-

a client, from which the query 1s received. In various 50 ries, the computer-implemented method comprising:

embodiments, server 100 may select the current level of
granularity, based at least partially on past latency measure-
ments at a client from which the query 1s received. Depend-
ing on the embodiment, selection of a current level of
granularity may be performed periodically, e.g. every 10
minutes, or performed asynchronously, e.g. on receipt of
cach query, or any combination thereof (e.g. on receipt of a
new query after waiting 10 minutes from the most-recent
granularity level selection).

In several embodiments, server 100 may select from
among multiple redaction techniques, a specific redaction
technique (which may be used at any of the above-described
levels of granularity), based at least partially on a size of
reduction 1 load at a client from which the query 1is
received, due to not processing one or more columns not to
be sent. In certain embodiments, server 100 may select from
among multiple redaction techniques, a specific redaction

55

60

65

recerving from a client computer, a query referencing one
or more objects stored by a database management
system 1n a database on one or more storage devices;

retrieving from the one or more storage devices, one or
more raw rows responsive to the query, the one or more
raw rows being expressed 1n a database storage format
related to storage in the database;

checking a plurality of conditions to decide how to send
to the client computer, the one or more raw rows
responsive to the query;

when at least one of one or more first conditions in the
plurality of conditions 1s satisfied, extracting nto
memory one or more columns selected 1n the query
from the one or more raw rows or portions thereof,
preparing one or more processed rows or portions
thereol 1n a predetermined format which 1s different
from the database storage format and transmitting to

US 11,055,289 B2

S7

the client computer, the one or more processed rows or
portions thereof 1n the predetermined format;

when all of the one or more first conditions are not
satisfied and at least one of one or more second
conditions in the plurality of conditions 1s satisfied,
omitting from or modifying in the one or more raw
rows or portions thereof 1n the database storage format,
one or more columns not to be sent to obtain redacted
versions ol the one or more raw rows or portions
thereol 1n the database storage format and transmitting
to the client computer, the redacted versions of the one
or more raw rows or portions thereof 1n the database

storage format; and
when all of the one or more first conditions are not

satisfied and all of the one or more second conditions
are not satisfied, retaining all columns 1n the one or
more raw rows or portions thereof in the database
storage format, and
transmitting to the client computer, the one or more raw
rows or portions thereof 1n the database storage format;

wherein at least the receiving, the checking, the transmit-
ting, and one or more of the extracting, the preparing,
and the omitting from or modifying are implemented
automatically by one or more processors coupled to the
one or more storage devices.
2. The computer-implemented method of claim 1 wherein
the plurality of conditions are heremnafter a plurality of
run-time conditions, the method further comprising:
checking one or more compile-time conditions to decide
how to send to the client computer, the one or more raw
TOWS;

when none of the one or more compile-time conditions
are satisfied, extracting nto memory one or more
columns selected 1n the query from the one or more raw
rows or portions thereol, preparing one or more pro-
cessed rows or portions thereof and transmitting to the
client computer, the one or more processed rows or
portions thereof; and

when any of the one or more compile-time conditions 1s

satisfied, performing the checking of the plurality of
run-time conditions.

3. The computer-implemented method of claim 1
wherein:

the plurality of conditions comprise one or more attributes

that do not change during query execution.

4. The computer-implemented method of claim 3
wherein:

at least one attribute 1n the one or more attributes 1s related

to the query.

5. The computer-implemented method of claim 1
wherein:

the plurality of conditions comprise one or more param-

cters that vary during query execution.

6. The computer-implemented method of claim 3
wherein:

at least one parameter 1n the one or more parameters 1s

related to a si1ze of a column 1n a row 1n the one or more
raw rows.

7. The computer-implemented method of claim 1
wherein:

among the plurality of conditions, at least one condition

applies one or more access control policies to the one
or more columns i1n the one or more raw rows or
portions thereof.

8. The computer-implemented method of claim 1 wherein
the omitting from or the modifying 1s performed by applying

5

10

15

20

25

30

35

40

45

50

55

60

65

58

one or more redaction techniques at a granularity level, and
the computer-implemented method further comprises:
automatically selecting, from among a plurality of levels
of granularity, a current level of granularity at which
the one or more redaction techniques are to be applied,
based on results of evaluation of one or more additional
conditions; and
determining from among a plurality of redaction tech-
niques, the one or more redaction techniques are to be
used at the current level of granularnty;

wherein the plurality of levels of granularity comprise:

a minimal level of granularity, wherein one of the one or

more redaction techniques 1s commonly applied to all
cells at intersections of the one or more raw rows with
one or more columns;

an intermediate level of granularity, wherein one of the

one or more redaction techniques 1s applied to a spe-
cific column 1n the one or more raw rows, and another
of the one or more redaction techniques 1s applied to
another column 1n the one or more raw rows; and

a maximal level of granularity, wherein one of the one or

more redaction techniques 1s independently selected
from among the plurality of redaction techniques, for
cach application to each cell’s value at each intersec-
tion of the one or more raw rows with the one or more
columns.

9. The computer-implemented method of claim 8 wherein
an additional condition in the one or more additional con-
ditions checks on at least one of: computation load in the one
or more processors or privilege of the client computer or past
latency measurements at the client computer.

10. The computer-implemented method of claim 8
wherein the determining comprises checking one or more of:

an 1ndicator of alteration of the one or more objects; and

a count ol executions of the query, at a prior level of

granularity.

11. The computer-implemented method of claim 8
wherein:

the plurality of redaction techniques comprise at least a

first redaction technique of nulling, a second redaction
technique of masking, and a third redaction technique
ol excising.

12. The computer-implemented method of claim 1
wherein:

among the one or more raw rows, a raw row Comprises

one or more row pieces; and

the omitting from comprises dividing a row piece into

smaller row pieces and forming a redacted version of
the raw row by concatenating at least two smaller row
pieces thereby to omit therefrom at least a value of a
column not selected in the query.

13. The computer-implemented method of claim 1
wherein:

the one or more columns selected 1n the query are ordered

relative to one another 1n a first order that 1s different
from a second order 1n which the one or more columns
are stored 1n the one or more objects; and

the one or more columns selected in the query are

transmitted 1n the second order 1n the redacted versions
of the one or more raw rows.

14. The computer-implemented method of claim 1
wherein:

among the one or more raw rows, a raw row Comprises

one or more existing row pieces;

among the one or more existing row pieces, at least one

existing row piece comprises to-be-sent data 1 one or
more columns selected 1 the query from among a

US 11,055,289 B2

59

plurality of columns, and further comprises not-to-be-
sent data 1n one or more additional columns not
selected 1n the query; and

the omitting from or the modifying comprises preparing

one or more new row pieces to include the to-be-sent
data in the database storage format and omit therefrom
the not-to-be-sent data by at least updating metadata for
the one or more new row pieces.

15. The computer-implemented method of claim 1
wherein the omitting from or the modifying is performed by
applying a redaction technique, and the computer-imple-
mented method further comprises:

determining from among a plurality of redaction tech-

niques, the redaction technique to be used to perform
the omitting from or the moditying.

16. The computer-implemented method of claim 15 fur-
ther comprising;:

storing 1n the memory, statistics related to a number of

times each redaction technique 1s used to discard a
value of a column 1n executing the query;

wherein the determining 1s performed based at least

partially on the statistics.

17. The computer-implemented method of claiam 135
wherein:

the redaction techmnique 1s determined based at least

partially on comparing a plurality of estimates of
number of instructions required to be performed by the
one or more processors in applying the plurality of
redaction techniques.

18. The computer-implemented method of claam 17
wherein:

one or more estimates in the plurality of estimates are

based at least partially on an estimate of reduction 1n
processing load at the client computer that sent the
query, due to not extracting from the one or more raw
rows 1n the database storage format at least the one or
more columns not selected 1n the query.

19. The computer-implemented method of claim 1
wherein:

the plurality of conditions comprise one or more attributes

related to the client computer.

20. The computer-implemented method of claim 1
wherein:

among the plurality of conditions, one or more conditions

determine the one or more columns not be sent to the
client computer.
21. One or more computer-readable storage media com-
prising a plurality of instructions to one or more processors
to perform a method of processing queries, the method
comprising;
receiving from a client computer, a query referencing one
or more objects stored by a database management
system 1n a database on one or more storage devices;

retrieving from the one or more storage devices, one or
more raw rows responsive to the query, the one or more
raw rows being expressed 1n a database storage format
related to storage in the database;

checking a plurality of conditions to decide how to send

to the client computer, the one or more raw rows
responsive to the query;

when at least one of one or more first conditions 1n the

plurality of conditions 1s satisfied, extracting into
memory one or more columns selected in the query
from the one or more raw rows or portions thereof,
preparing one or more processed rows or portions

10

15

20

25

30

35

40

45

50

55

60

60

thereol 1n a predetermined format which 1s different
from the database storage format and transmitting to
the client computer, the one or more processed rows or
portions thereol 1n the predetermined format;
when all of the one or more first conditions are not
satisfied and at least one of one or more second
conditions in the plurality of conditions 1s satisfied,
omitting from or modifying in the one or more raw
rows or portions thereof 1n the database storage format,
one or more columns not to be sent to obtain redacted
versions ol the one or more raw rows or portions
thereol 1n the database storage format and transmitting
to the client computer, the redacted versions of the one
or more raw rows or portions thereof 1n the database
storage format; and
when all of the one or more first conditions are not
satisfied and all of the one or more second conditions
are not satisfied, retaining all columns 1n the one or
more raw rows or portions thereof in the database
storage format, and
transmitting to the client computer, the one or more raw
rows or portions thereof 1n the database storage format.
22. An apparatus comprising one or more computer
memories coupled to one or more processors, the one or
more processors being configured to execute mstructions in
the one or more computer memories to cause the one or
more processors to:
recerve from a client computer, a query referencing one or
more objects stored by a database management system
in a database on one or more storage devices;
retrieve from the one or more storage devices, one or
more raw rows responsive to the query, the one or more
raw rows being expressed 1n a database storage format
related to storage in the database;
check a plurality of conditions to decide how to send to
the client computer, the one or more raw rows respon-
sive to the query;
when at least one of one or more first conditions in the
plurality of conditions 1s satisfied, extract into memory
one or more columns selected in the query from the one
Oor more raw rows or portions thereof, prepare one or
more processed rows or portions thereof 1n a predeter-
mined format which 1s different from the database
storage format and transmit to the client computer, the
one or more processed rows or portions thereof 1n the
predetermined format;
when all of the one or more first conditions are not
satisfied and at least one of one or more second
conditions in the plurality of conditions 1s satisfied,
omit from or modily 1n the one or more raw rows or
portions thereof in the database storage format, one or
more columns not to be sent, to obtain redacted ver-
stons of the one or more raw rows or portions thereof
in the database storage format and transmit to the client
computer, the redacted versions of the one or more raw
rows or portions thereof 1n the database storage format;
and
when all of the one or more first conditions are not
satisfied and all of the one or more second conditions
are not satisfied, retain all columns in the one or more
raw rows or portions thereof i1n the database storage
format, and
transmit to the client computer, the one or more raw rows
or portions thereol 1n the database storage format.

"y

¥ ¥ H ¥ H

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 11,055,289 B2 Page 1 of 2
APPLICATION NO. : 16/040551

DATED cJuly 6, 2021

INVENTOR(S) : Bastawala et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page
Column 2, Item (57), under Abstract, Line 7, delete “to not be” and insert -- not to be --, therefor.

On page 2, Column 1, Item (56), under Other Publications, Line 6, delete
“https://oraclue.wordpress.com” and 1nsert -- https://oracle.wordpress.com --, therefor.

In the Drawings
On sheet 1 of 32, in FIG. 1A, under Reference Numeral 23, Line 2, after “version” insert -- of --.
On sheet 3 of 32, in FIG. 1C, under Reference Numeral 23, Line 2, after “version” insert -- of --.

On sheet 10 of 32, in FIG. 1IN, under Reference Numeral 121, Line 6, delete “paresable” and insert
-- parsable --, therefor.

On sheet 11 of 32, in FIG. 10, under Reference Numeral 121, Line 6, delete “paresable” and insert
-- parsable --, therefor.

On sheet 19 of 32, 1n FIG. 4C, under Reference Numeral 430, Line 4, delete “Lengh”™ and 1insert
-- Length --, therefor.

In the Specification

In Column 6, Line 43, delete “FIG.” and insert -- FIGS. --, therefor.

In Column 7, Line 19, after “FIG. 2A” nsert - . --.

In Column 11, Line 36, delete “runtime,” and insert -- run-time, --, therefor.

Signed and Sealed this
Ninth Day of November, 2021

Drew Hirshfeld
Performing the Functions and Duties of the

Under Secretary of Commerce for Intellectual Property and
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 2
U.S. Pat. No. 11,055,289 B2

In Column 12, Line 34, delete “second-runtime” and nsert -- second run-time --, therefor.
In Column 16, Line 33, delete “IN. 10’ and msert -- IN, 10 --, therefor.

In Column 20, Line 61, delete “IF” and insert -- 1F --, therefor.

In Column 21, Line 5, delete “IF” and insert -- 1F --, therefor.

In Column 22, Line 47, delete “below)” and insert -- below). --, therefor.

In Column 24, Line 26, delete “(FI1G.” and mmsert -- (FIGS. --, theretor.

In Column 31, Line 45, delete “FIG.” and nsert -- FIGS. --, therefor.

In Column 33, Line 18, delete “in in” and insert -- 1n --, therefor.

In Column 34, Line 47, delete “Ar s and nsert -- AJ’s --, therefor.

In Column 37, Line 7, delete “in 1in” and insert -- in --, therefor.

In Column 45, Line 66, after “in” delete “the”.

In Column 47, Line 4, delete “Software-as-aService” and sert -- Software-as-a-Service --, therefor.
In Column 47, Line 14, delete “Paas.” and insert -- PaaS, --, theretor.

In Column 49, Line 18, delete “(FI1G.” and msert -- (FIGS. --, therefor.

In Column 51, Line 38, delete “7A)” and insert -- 7A). --, therefor.

In the Claims

In Column 57, Line &, in Claim 1, delete “sent” and msert -- sent, --, therefor.

In Column 57, Line 34, in Claim 2, delete “are” and insert -- 1s --, therefor.

In Column 58, Line 9, in Claim 8, after “techniques” delete *“‘are”.

In Column 60, Line 10, in Claim 21, delete “sent” and insert -- sent, --, therefor.

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

