United States Patent

US011042519B2

(12) (10) Patent No.: US 11,042,519 B2
Dixit et al. 45) Date of Patent: Jun. 22, 2021
(54) REINFORCEMENT LEARNING FOR 9,424,285 B1* 8/2016 Condict GOG6F 3/0608
OPTIMIZING DATA DEDUPLICATION 9,461,881 B2 10/2016 Kumarasamy et al.
9,864,658 B1* 1/2018 Barcello GO6F 11/1453
(71) Appheant: Cisco Technology, Inc., San Jose, CA igzg%%g Bl + gggig il;nmgmganathan GO6F 3/0679
(US) 2009/0228888 Al1l* 9/2009 Vengerov GOOF 9/5083
(72) Inventors: Sagar Shyam Dixit, Sunnyvale, CA (Continued) 718/102
(US); Shravan Gaonkar, Gainesville,
FL (US)
OTHER PUBLICATIONS
(73) Assignee: CISCO TECHNOLOGY, INC., San | | o
Jose, CA (US) International Search Report and Written Opinion from the Interna-
tional Searching Authority, dated Mar. 17, 2020, 12 pages, for
(*) Notice: Subject to any disclaimer, the term of this corresponding International Patent Application No. PCT/US2019/
patent 1s extended or adjusted under 35 066772,
U.S.C. 154(b) by 2035 days. (Continued)
(21) Appl. No.: 16/248,322 _ _
Primary Examiner — Uyen 1 Le
(22) Filed: Jan. 15, 2019 (74) Attorney, Agent, or Firm — Polsinell1 PC
(65) Prior Publication Data (57) ABSTRACT
US 2020/0226107 Al Jul. 16, 2020 _ o _
Systems and methods provide for optimizing data dedupli-
(51) Int. CL cation. A physical storage nodg can determine a costiof
GO6F 167215 (2019.01) performing each exclusive action of a set of exclusive
GO6N 20/00 (2019.01) actions associated with data deduplication for a predeter-
GO6F 3/06 (2006.01) mined number of epochs to populate an exclusive action cost
(52) U.S. Cl. matrix. The node can select an optimal exclusive action from
CPC GOG6F 16/215 (2019.01); GO6F 3/0608 among the set of exclusive actions based on the cost of
(2013.01); GO6F 3/0641 (2013.01); GOG6F performing each exclusive action. In response to a random
3/0679 (2013.01); GO6N 20/00 (2019.01) nqmber being below a threshold value, the node can deter-
(58) Field of Classification Search mine a ﬁrst cost of performing a.randm‘nly selected exclu-
None sive action frfjm the set of' excliuswe actions and update the
See application file for complete search history. exclusive action cost matrix with the first cost. In response
to the random number exceeding the threshold value, the
(56) References Cited node can determine a second cost of performing the optimal

U.S. PATENT DOCUMENTS

9,058,298 B2
9,367,558 B2

6/2015 Anglin et al.
6/2016 Rao et al.

exclusive action and update the exclusive action cost matrix
with the second cost.

20 Claims, 5 Drawing Sheets

400

)

COMPUTE A COST OF EACH EXCLUSIVE ACTION OF A SET OF
EXCLUSIVE ACTIONS ASSOCIATED WITH DEDUPLICATION
FOR A PREDETERMINED NUMBER OF EPOCHS

|

DETERMINE AN OPTIMAL STRATEGY FOR PERFORMING DEDUPLICATICN
BASED ON THE COST OF EACH EXCLUSIVE ACTION

SELECT A RANDOM NUMBER

RANCOM NUMBER < THRESHOLD?

g

J’ YES

408

410 -

PERFORM A RANDOMLY SELECTED EXCLUSIVE ACTION AND
UPDATE AN EXCLUSIVE ACTION COST MATRIX WITH THE
RESULTS OF THE RANDOMLY SELECTED EXCLUSIVE ACTION

—N

PERFORM THE OFTIMAL EXCLUSIVE ACTION AND UPRATE THE EXCLUSIVE
AGTION COST MATRIX WITH THE RESULTS OF THE OPTIMAL EXCLUSIVE ACTION

~ 412

US 11,042,519 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0238614 Al1* 9/2011 Yoonceceeevernnn, GO6N 5/045
706/52
2012/0166401 Al* 6/2012 Li .ccoovvviiniiiinnnnnn, GOO6F 16/2246
707/692
2014/0129499 Al* 5/2014 Hawkins GO6N 3/02
706/46

2016/0094649 Al
2018/0314727 Al

3/2016 Dornquast et al.
11/2018 Epstein et al.

OTHER PUBLICATIONS

Author Unknown, “Multi-armed bandit—Wikipedia,” Mar. 1, 2016,
10 pages.

Cano, Ignacio, et al., “Curator: Self-Managing Storage for Enter-
prise Clusters,” 14”* USENIX Symposium on Networked Systems

Design and Implementation, The Advanced Computing Systems
Association, Mar. 27, 2017, pp. 51-66.

Tudoran et al., “Overflow: Multi-Site Aware Big Data Management
for Scientific Workflows on Clouds.,” IEEE Transactions on Cloud
Computing, Aug. 2014, pp. 1-15.

“Multi-armed bandit,” Wikipedia, Last Edited Dec. 24, 2018, pp.
1-15.

Wong, “Solving the Multi-Armed Bandit Problem,” Sep. 24, 2017,
pp. 1-9.

Knotko, “ Advancing Mobile A/B Testing with Bayesian Multi-
Armed Bandit,” Jun. 28, pp. 1-22.

Altamirano, “An Introduction to Contextual Bandits,” Aug. 23,
2016, pp. 1-12.

Davidson-Pilon, “Multi-Armed Bandits,” Apr. 6, 2013, pp. 1-19.
Srinivasa et al., “iDedup: Latency-aware, inline data deduplication
for primary storage,” pp. 1-14.

Cano et al., “Curator: Self-Managing Storage for Enterprise Clus-
ters,” USENIX, The Advanced Computing Systems Association,
Proceedings of the 14th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI *17), Mar. 27-29, 2017, pp.
1-17.

* cited by examiner

Jun. 22, 2021 Sheet 1 of 5 US 11,042,519 B2

U.S. Patent

-
o
—

ll

NAN| 10SS d N i o | 1408S| {4GdH
_ <> I >

OCv1 IAON TVOISAHd dévl 00N TVOISAHd . vévrl dAON TVOISAHd

071 ¥3AVTIHNLONYLSVHANI TYIISAHd

rr

9€1 ddAV1 S3OINGLS VAIVA JOVHOLS

¢l AOV4HAINI 011 3OV443LNI LWOW 801 JOVLYIIN 901 JOV4Y3INI 701 IOV LN

LANOIN daANIVINQD NOILVZITVLAIA LANDN 4SvE-adno1o LNOW SASINTHd-NO ANIT ONVINA QO

¢0l 4JAVT INJWZOVNVIA

US 11,042,519 B2

Sheet 2 of §

Jun. 22, 2021

U.S. Patent

@) (7] @) (7] [@) (5] (@] [/ [© (5 [# 5 © EEE.

| V022 INOZ ALIMIGYTIVAY TVIID0T

0912 %2078 311 g91¢ 00149 3114 m V912 ¥0018 311

7€ W31SAS 3114 F400

av1¢ o018 314

ininjainlyjnlnipluipininjsiniyininiplsin}

¢ ¢ SAOINGAS INALSAS 01¢ SIDINYIS V1Va

iniainininipinivjuiinivjuininisialsiniy

0¢ SHOIAYLS d41SNTO

90¢ AVM3LVYO 03SVE-H3aNIVINOD | 870Z AYM3LVYD Q3Sva-HOSIAYIdAH Vr0¢ AVMALVO 0JSv8-dOSINdddAH

¢0¢ SADIAMIS ONIINNOIIY ANV ‘NOILVZIMOHLNY ‘NOILVYOILNIHLNY

0¢ S40V444INI

9C] ¥IAVTSIDINGIS V.IVA FIOVHOLS

US 11,042,519 B2

¢ Ol

ACPl 300N 13D4V1

A

\f
= MIOMLIN
7
g
=
s 9,
- _
m I _
< X¥SE _
o X0 'X8¥l _
“ JOVHOLS | NOILOV |
INIONT NOLLYOINd3Y v 1
X9¥L
NdO
XZ7T 300N 30UN0S

423

< [O1MENE
NOILOV

Ol

ap

I

ANIONS T

ylg

XId1LVA
1500 NOILLIV

U.S. Patent

00t

U.S. Patent Jun. 22, 2021 Sheet 4 of 5 US 11,042,519 B2

NG

COMPUTE A COST OF EACH EXCLUSIVE ACTION OF A SET OF
EXCLUSIVE ACTIONS ASSOCIATED WITH DEDUPLICATION -
FOR A PREDETERMINED NUMBER OF EPOCHS 402

DETERMINE AN OPTIMAL STRATEGY FOR PERFORMING DEDUPLICATION
BASED ON THE COST OF EACH EXCLUSIVE ACTION \- 404

RANDOM NUMBER < THRESHOLD? —
408

YES

PERFORM A RANDOMLY SELECTED EXCLUSIVE ACTION AND
UPDATE AN EXCLUSIVE ACTION COST MATRIX WITH THE
RESULTS OF THE RANDOMLY SELECTED EXCLUSIVE ACTION

PERFORM THE OPTIMAL EXCLUSIVE ACTION AND UPDATE THE EXCLUSIVE
ACTION COST MATRIX WITH THE RESULTS OF THE OPTIMAL EXCLUSIVE ACTION

412

FIG. 4

400

U.S. Patent Jun. 22, 2021 Sheet 5 of 5 US 11,042,519 B2

500 530
STORAGE
515 520 525 D;;;Cf .
545 INPUT - O] e "
DEVICE MOD 2 || 534
535 | OUTPUT MEMORY m m MOD3 k|, 536
DEVICE | e I I A —
1 BUS
505
c40 —| COMMUNICATION =
INTERFACE CACHE b— PROCESSOR |
512 - | ~— 510

FIG. 5A

550

580 399 ~Y PROCESSOR 590
USER INTERFACE |
COMPONENTS | _ 560
- L COMMUNICATION
s BRIDGE CHIPSET | iyl

OUTPUT STORAGE AN
DEVICE DEVICE

965 570 575

FIG. 5B

US 11,042,519 B2

1

REINFORCEMENT LEARNING FOR
OPTIMIZING DATA DEDUPLICATION

TECHNICAL FIELD

The subject matter of this disclosure relates 1n general to
the field of computer networking, and more particularly, to
systems and methods for optimizing data deduplication for
a distributed computing system.

BACKGROUND

Data deduplication 1s a technique for eliminating dupli-
cate or redundant data for improving storage utilization
and/or reducing transmission of data over a network. Dedu-
plication can include a first stage involving 1dentifying and
storing unique sequences or patterns of bytes of data. For
example, the deduplication process can extract the
sequences from storage and/or prior to network transmis-
sion, compute a hash of the sequences, and store the hash
values 1 a deduplication database. Deduplication can also
include a second stage involving comparing the sequences to
stored copies, such as by hashing these sequences and
performing a lookup i1n the deduplication database. If a
match 1s found, the matched sequence can be replaced with
a pointer or other reference to the stored copy. The frequency
of matches can depend on the size of the sequences, which
can in turn affect the amount of data that deduplication can
reduce for storage and/or transier over the network. For
example, a smaller size for the sequences can increase the
rate of matches while a larger size for the sequences can
result in a smaller deduplication database size, faster dedu-
plication, and less fragmentation. Some deduplication pro-
cesses may apply compression to reduce the data footprint
prior to hashing and/or apply defragmentation to coalesce
multiple contiguous duplicates. These different consider-
ations for how to implement deduplication, whether to
compress the data and to what extent the data should be
compressed, whether to hash the data and map the hashes to
a deduplication database, whether to coalesce multiple con-
tiguous sequences of the data, and the size of sequence sizes,
have various trade-ofls, and determining the right configu-
ration 1s a trenchant problem for network operators.

BRIEF DESCRIPTION OF THE FIGURES

To provide a more complete understanding of the present
disclosure and features and advantages thereof, reference 1s
made to the following description, taken 1n conjunction with
the accompanying drawings, 1n which:

FIG. 1 1llustrates an example of a storage data platform in
accordance with an embodiment;

FIG. 2 illustrates an example of a storage data services
layer in accordance with an embodiment;

FIG. 3 illustrates an example of a reinforcement learning
engine for optimizing deduplication of storage data in accor-
dance with an embodiment;

FI1G. 4 1llustrates an example of a process for optimizing
deduplication of storage data 1n accordance with an embodi-
ment; and

FIGS. SA and 5B illustrate examples of systems in
accordance with some embodiments.

DESCRIPTION OF EXAMPLE EMBODIMENTS

The detailed description set forth below 1s intended as a
description of various configurations of embodiments and 1s

10

15

20

25

30

35

40

45

50

55

60

65

2

not itended to represent the only configurations 1n which
the subject matter of this disclosure can be practiced. The

appended drawings are icorporated herein and constitute a
part of the detailed description. The detailed description
includes specific details for the purpose of providing a more
thorough understanding of the subject matter of this disclo-
sure. However, 1t will be clear and apparent that the subject
matter of this disclosure 1s not limited to the specific details
set forth herein and may be practiced without these details.
In some 1nstances, structures and components are shown 1n
block diagram form in order to avoid obscuring the concepts
of the subject matter of this disclosure.
Overview

Systems and methods provide for optimizing data dedu-
plication for a distributed storage data system. A physical
storage node of the system can determine a cost of perform-
ing each exclusive action of a set of exclusive actions
associated with data deduplication for a predetermined num-
ber of epochs to populate an exclusive action cost matrix.
The physical storage node can determine an optimal exclu-
s1ve action from among the set of exclusive actions based on
the cost of performing each exclusive action. In response to
a random number being below a threshold value, the physi-
cal storage node can determine a first cost of performing a
randomly selected exclusive action from the set of exclusive
actions and updating the exclusive action cost matrix with
the first cost. In response to the random number exceeding
the threshold value, the physical storage node can determine
a second cost of performing the optimal exclusive action and

updating the exclusive action cost matrix with the second
COst.

Example Embodiments

Data deduplication can mvolve eliminating duplicate or
redundant data 1n storage and/or before transmitting the data
over a network. There can be costs associated with data
deduplication, such as in terms of processing, memory, and
storage utilization by nodes (also referred to as hosts,
servers, endpoints, computing devices, and so forth) storing,
data and network throughput and latency between source
and target nodes. For example, certain amounts of process-
ing and memory can be used for calculating hashes for
deduplication, compressing data, and/or defragmenting data,
and certain amounts of storage can be set aside for storing
data depending on the rate of deduplication, compression,
and/or defragmentation, and network latency may be
allected and certain amounts of network bandwidth can be
consumed depending on how fast and how much data is
transmitted. These computing resources (e.g., processing,
memory, storage, network, power, etc.) are generally limited
in a computing environment. For example, there can be
heavy contention among multi-tenant applications 1n public
clouds or networks. As another example, virtual istances
(e.g., virtual machines (VMs), containers, etc.) in private
clouds or enterprise networks can compete with one another
for these computing resources. In such environments, where
data and resource availability are unpredictable, a network
operator may not be capable of assessing the rewards (or
costs) of deduplication.

For example, in periods when the central processing unit
(CPU) 1s under heavy contention 1n a network and data to be
transierred from a source to a target 1s associated with a low
deduplication ratio (e.g., the ratio between total capacity for
storage data before removing duplicates and the actual
capacity after deduplication), the cost 1n CPU utilization
incurred in calculating hashes for the data and 1n network

US 11,042,519 B2

3

round trip time (RTT) incurred in sending the hashes for
deduplication can outweigh the benefits of deduplication
with respect to computing resource utilization. In such cases,
the network or network operator may be better off taking a
different set of actions for more effective utilization of the
computing resources. On the other hand, when there 1s little
contention for CPU and when data i1s associated with a high
deduplication ratio, the network can benefit by sending only
hashes of data for deduplication and preserving network
bandwidth.

However, the network or network operator may not be

capable of predicting the rewards (or costs) associated with
a particular implementation of deduplication because the
characteristics of the data and contention for computing
resources may be unpredictable. The network or network
operator may need to vigilantly monitor the data to under-
stand 1ts nature and, depending on availability of computing
resources, determine how to perform deduplication to
achieve optimal results (e.g., distributing computing
resources 1n accordance with user-specifiable allocations).
Various embodiments of the present disclosure can over-
come these and other deficiencies of the prior art by utilizing
reinforcement learning to determine the set of actions to take
for data deduplication to optimize computing resource uti-
lization. In some embodiments, reinforcement learning can
be utilized for determining how to implement deduplication
within a distributed computing system. For example, dedu-
plication can be modeled as a multi-armed bandit (MAB)
problem in which each set of actions (or arm) has an
associated reward (or cost) and 1t 1s unknown at a given time
which set of actions (or arm) produces the optimal results.
The MAB problem and solution 1s derived from a scenario
in which a gambler must decide which slot machine among
a set of slot machines (e.g., one-armed bandits) to play, how
many times to play each machine, which order to play them,
and whether to continue with the current machine or try a
different machine.
In the MAB problem and solution, each set of actions can
provide a random reward (or cost) from a probability
distribution specific to that set of actions. The objective of
the gambler 1s to maximize the sum of rewards (or minimize
the sum of costs) earned through a sequence of lever pulls.
At each round, the gambler must balance between “exploi-
tation” of the machine that has the highest expected payoll
and “exploration” to get more information about the
expected payolils of the other machines.

Turning now to the drawings, FIG. 1 shows an example
of a logical architecture for a distributed storage data plat-
form 100 that can be used for deploying various embodi-
ments of the present technology. An example of an 1mple-
mentation of the distributed storage data platform 100 1s the
Cisco HyperFlex™ HX Data Platform as realized by Cisco
HyperFlex™ HX-Series nodes and Cisco® network devices
(e.g., Cisco UCS® 6200 Series fabric interconnects, 6300
Series fabric interconnects, 6454 fabric interconnects, etc.).
However, one of ordinary skill in the art will understand
that, for the distributed storage data platform 100 and any
other system discussed 1n the present disclosure, there can be
additional or fewer component in similar or alternative
configurations. The illustrations and examples provided 1n
the present disclosure are for conciseness and clarity. Other
embodiments may include different numbers and/or types of
clements but one of ordinary skill the art will appreciate that
such variations do not depart from the scope of the present
disclosure.

The distributed storage data platform 100 can generally
provide distributed storage of data to one or more applica-

10

15

20

25

30

35

40

45

50

55

60

65

4

tions that make use of the storage and/or storage services
provided by the system. In this example, the distributed
storage data platform 100 1includes a management layer 102,
a controller layer 120, and a physical layer 140. The man-
agement layer 102 can include one or more interfaces for
centralized administration of the distributed storage data
plattorm 100, such as a command line interface 104, an
on-premises data management system interface 106 (e.g.,
Cisco HyperFlex™ Connect), a cloud-based data manage-
ment system interface 108 (e.g., Cisco Intersight™), a
virtualization platform management interface 110 (e.g.,
VMware vSphere®, Microsoft® System Center Virtual
Machine Manager, etc.), and a container platform manage-
ment nterface 112 (e.g., Cisco® Container Platform). The
various interfaces of the management layer 102 may execute
within the nodes of the physical layer 140 and/or within
separate dedicated servers that may be on-premise or co-
located or off-premise and accessible as a cloud service.

The controller layer 120 can comprise one or more
virtualization platforms, including one or more hypervisor-
based virtualization platforms, container-based virtualiza-
tion platforms, or other virtualization platforms, and storage
data services layer 136. In this example, the controller layer
120 1ncludes a first hypervisor-based virtualization platform
122A, a second hypervisor-based virtualization platform
1228, and a container-based virtualization platform 124
(collectively, virtualization platforms 122 and 124). The
virtualization plattorms 122A, 122B, and 124 can respec-
tively include a data platiorm controller 128 A, 128B, and
128C (collectively, 128). The data platform controllers 128
can operate to integrate the specific virtualization platform
implemented by a storage node (also referred throughout the
present disclosure as a server or host) and the distributed
storage data platform 100. The data platform controllers 128
can communicate with each other over high-speed data links
(e.g., 10 or 40 Gb Ethernet connections) to present a single
pool of storage that spans the storage nodes of the physical
layer 140.

Each of the virtualization platforms 122 and 124 can run
on one or more physical servers of the physical layer 140. In
some embodiments, the distributed storage data platform
100 can also support bare-metal instances (e.g., physical
servers that do not implement virtualization). In addition to
the data platform controller 128, the hypervisor-based vir-
tualization platforms 122A and 122B (collectively, 122) can
also respectively include a hypervisor 130A and a hypervi-
sor 130B (collectively, hypervisors 130 or virtual instance
managers 130) (e.g., Microsoft Hyper-V®, VMware
vSphere®, etc.) for managing one or more virtual machines
126 A-C and 126D-F (collectively, 126). Each physical
server of the container-based virtualization platform 124 can
include a container engine (e.g., Docker®, CoreOS® rkt,
Linux® Contaimners (LXC), etc.), container orchestrator
(c.g., Kubemetes® (k8s™), Docker Swarm®, Apache
Mesos®, etc.), and/or other container software (collectively,
container software 132 or virtual instance manager 132) for
managing one or more containers 134A-F (collectively,
134). In some embodiments, one or more containers can run
in an individual virtual machine 126 and/or on bare metal.

The storage data services layer 136 can provide storage
and storage services to applications that may be executing 1n
the virtual machines 126, containers 134, bare-metal servers,
or other physical or virtual computing devices having access
to the distributed storage data platform 100. The storage
nodes of the distributed storage data platform 100 can access
data through a data layer using data abstractions, such as
files, blocks, objects, or other units of storage. Operation of

US 11,042,519 B2

S

the storage data services layer 136 1s discussed further below
with respect to FIG. 2 and elsewhere 1n the present disclo-
sure.

The physical layer 140 can include one or more physical
nodes 142A-C (collectively, 142) and one or more network
devices 156 A-B (collectively, 156). The physical nodes 142
can comprise any number of nodes and any configurations
and form factor. As an example, the physical node 142A
includes one or more network elements 144 A (e.g., network
interface card or controller (NIC), network adapter, local
area network (LAN) adapter, wireless LAN (WLAN)
adapter, Ethernet adapter, physical network interface, etc.);
central processing units (CPUs) and memory 146A; hard
disk drives (HDDs) 148A; solid state drives (SSDs) 150A;
and graphical processing units (GPUs) 152A. The physical
node 142A may be characterized as a hybrid storage node
because 1t includes two diflerent types of storage, the
HDD(s) 148 and the SSD(s) 150A. The physical node 142B
can include one or more network elements 144B, CPUs and
memory 146B, SSDs 150B, non-volatile random-access
memory express (NVMe) storage devices 154, and GPUs
152B. The physical node 142B can be characterized as an
all-Flash storage node (or Flash storage node) because 1t
includes only Flash memory for storage (e.g., the SSD(s)
1508 and the NVMe storage devices 154). The physical
node 142C can include one or more network elements 144C,
CPUs and memory 146C, and GPUs 152C. The physical
node 142C can be characterized as a compute-only storage
node because 1t can be used for processing storage requests
in the distributed storage data platform 100 but does not
include storage that can be used by the distributed storage
data platform 100 for persistently storing data. In other
embodiments, the storage nodes 142 can also include servers
including only HDDs, SSDs, or NVMe storage; servers
including self-encrypting drives, large form factor drives, or
other types of storage; storage data platform edge nodes
(e.g., nodes that may be purpose-built for operation at the
edge of a network, such as, for example, Cisco HyperFlex™
Edge nodes); and non-native nodes (e.g., nodes that may not
operate “out of the box” with the distributed storage data
plattorm 100 and may require additional software and/or
other components, such as, for example, Cisco Unified
Computing System™ (UCS®) M35 nodes or servers from
other vendors); among other types ol servers. Tower case
servers, rack-mount servers, blade servers, or any other type
of computing device capable of storing data can be used to
implement the physical nodes 142 1n various embodiments.
In some embodiments, Cisco HyperFlex™ nodes may oper-
ate as the physical nodes 142.

The network devices 156 can comprise any number of
physical and/or virtual network devices and various con-
figurations and physical form factors, such as network fabric
interconnects (e.g., Cisco UCS® 6200 Series fabric inter-
connects, 6300 Series fabric interconnects, 6454 fabric
interconnects, etc.); switches (e.g., Cisco® Catalyst
switches, Cisco Nexus® switches, Cisco® Industrial Ether-
net switches, Cisco Meraki® MS switches, etc.); routers
(e.g., Cisco® Integrated Services Routers (ISRs), Cisco®
Aggregation Services Routers (ASRs), Cisco® Network
Convergence Systems (NCS) routers, Cisco Meraki® MX
systems, etc.); access points (e.g., Cisco Aironet® access
points, Cisco Meraki® MR access points, Cisco® Small
Business access points, etc.); wireless network controllers
(e.g., Cisco Catalyst® wireless LAN controllers (WLCs),
Cisco® 8540 WLCs, Cisco® 5520 WLCs, Cisco® 3504
WLCs, etc.); network management appliances (e.g., Cisco®
Application Policy Infrastructure Controller (APIC) appli-

10

15

20

25

30

35

40

45

50

55

60

65

6

ances, Cisco Digital Network Architecture (DNAT™) Center
appliances, Cisco Prime® appliances, etc.); firewalls or
other network security appliances and services (e.g., Cisco®
Advanced Malware Protection (AMP) appliances, Cisco®
Industrial Security Appliances (ISAs), Cisco® Adaptive
Security Appliances (ASAs), Cisco® Identity Services
Engine (ISE) appliances, Cisco Firepower® appliances,
Cisco Cisco® Content Security Management appliances,
Cisco® Security Packet Analyzers, etc.); network analytics
applhiances (e.g., Cisco Tetration® appliances); and other
network appliances and services.

In some embodiments, an individual data platform con-
troller 128 can reside in a separate virtual machine, con-
tainer, or other virtual instance (collectively, virtual instance
126 or 134) 1n each physical node 142. The virtual instance
126 or 134 can use dedicated CPU cores and memory so that
its workload fluctuations may have little to no 1mpact on
applications running on 1ts host. The data platform controller
128 can access all of its host’s storage through bypass
mechanisms provided by a hypervisor, virtual machine
manager, virtual machine monitor, container orchestrator,
container engine, or other virtualization software (collec-
tively, virtual instance manager 130 or 132). The data
platform controller 128 can implement a distributed, log-
structured file system that uses high-performance memory
(e.g., 1ts host’s memory, solid state drives (SSDs), non-
volatile memory express (NVMe) storage, or other fast
memory/storage) as part of a distributed caching layer for
accelerating write responses and read requests. The data
platform controller 128 can use 1ts node’s HDDs, SSDs,
NVMe storage, or other storage as part ol a distributed
capacity layer.

The data platform controller 128 1n each physical node
142 can interface with the virtual instance manager 130 or
132 1n various ways. In some embodiments, the data plat-
form controller 128 can include an agent (e.g., IOVisor) (not
shown) that intercepts mput/output (1/0) requests and routes
requests to the physical nodes 142 responsible for storing or
retrieving requested storage data. The agent can present a
file system, device interface, or other data management
abstraction to the virtual instance manager 130 or 132 to
abstract away the distributed nature of storage in the dis-
tributed storage data platiorm 100. Alternatively or 1n addi-
tion, the data platform controller 128 can utilize application
programming 1nterfaces (APIs) of the virtual instance man-
ager 130 or 132 to offload certain storage operations, such as
snapshots and cloning. These operations can be accessed
through the virtual instance manager 130 or 132.

FIG. 2 shows an example of a logical architecture of the
storage data services layer 136. The storage data services
layer 136 can include interfaces 200, authentication, autho-
rization, and accounting (AAA) services 202, a hypervisor-
based gateway 204 A, a hypervisor-based gateway 204B, a
container-based gateway and manager 206, cluster services
208, data services 210, and system services 212.

The interfaces 200 can provide {for interoperability
between the storage data services layer 136, other elements
of the distributed storage data plattorm 100 (e.g., the inter-
faces of the management layer 102, applications running in
the virtual machines 126 and containers 134, the virtual
instance managers 130 and 132, and the physical nodes 142,
etc.), and external elements (e.g., other networks, network
devices, physical servers, virtual mstances, etc.). The inter-
taces 200 can include one or more application programming
interfaces (APIs), such as a restful state transfer (REST)
API, remote procedure calls (e.g., gRPC Remote Procedure
Call (gRPC)), querying languages (e.g., The Linux Foun-

US 11,042,519 B2

7

dation® GraphQL), event-driven interfaces (e.g., web-
hooks), and other APIs. Alternatively or in addition, the
interfaces 200 can include modules for supporting one or

more storage standards or protocols, such as Internet Small
Computer System Interfaces (1SCSI), Fibre Channel (FC),

Fibre Channel over Ethernet (FCoE), Advanced Technology
Attachment (ATA), ATA over Ethernet (AoE), Network File
System (NFS), Common Internet File System (CIFS),
Server Message Block (SMB), Apple® Filing Protocol
(AFP), Object Storage Devices (OSD), and so forth.

The AAA services 202 can include authentication services
for verifying user, group, and/or system credentials and
associating sessions with entities logged into the distributed
storage data platform 100; authorization services allowing or
prohibiting users, groups, and/or systems from performing
various actions within the distributed storage data platform
100, such as creating, reading, updating, or deleting storage
resources or executing a program based on an enftity’s
identity or role; and accounting services for record-keeping
and tracking entity activities, such as login sessions and
command execution. In some embodiments, the Cisco®
Identity Services Engine (ISE) can be used to provide the
AAA services 202.

The hypervisor-based gateways 204A and 204B and the
container-based gateway 206 (collectively, virtualization
gateways 204 and 206) can each support their respective
virtualization platforms 122 and 124 and provide higher
layers of software within each virtualization platform with
storage access suited to the needs of the wvirtualization
platform.

The cluster services 208 can be responsible for coordi-
nation of the various components of the distributed storage
data platform 100, delegating responsibilities, and maintain-
ing a consistent global state of the distributed storage data
plattorm 100. The cluster services 208 can include role
assignment, distributed synchromzation, group services, and
so forth. The cluster services 208 can also be responsible for
resiliency and making sure that data 1s available and con-
sistent even after the failure of a software or hardware
component (disk, server, network, etc.) of the distributed
storage data platform 100. Thus, the cluster services 208 can
include mirroring, failover, mirror resynchronization ser-
vices. In some embodiments, the cluster services 208 can
also include logical availability zones, native replication,
stretch clusters, cloning, and high availability as discussed
turther below.

The data services 210 can include data distribution, data
read and write operations, data optimization, data dedupli-
cation, data compression, log-structured distributed objects,
encryption, thin provisioning, snapshots, native replication,
and data rebalancing, among other storage data services as
discussed further below.

The system services 212 can include garbage collection
services for reclaiming memory and storage due to deletion
or update of resources and system management services for
configuring, monitoring, analyzing, and reporting on the
entirety of the distributed storage data platform 100, clus-
ters, the logical availability zones 220, sets of physical nodes
142, or individual physical nodes 142. One or more of the
interfaces of the management layer 102 may interact directly
or indirectly with the system management services.

The core file system 214 can be a distributed, log-
structured file system that can dynamically handle caching
and storage capacity depending on the configuration of an
individual physical node 142. For example, the SSD(s)
150A of the hybrid node 142A can be utilized as part of a

storage caching layer to accelerate read requests and write

10

15

20

25

30

35

40

45

50

55

60

65

8

responses, and the HDD(s) 148 of the hybrid node 142A can
be utilized as part of a capacity layer for persistent storage.
As another example, the SSD(s) 150B and/or the NVMe
storage device(s) 154 of the all Flash node 142B can be
utilized as part of the caching layer to accelerate write
responses and the SSD(s) 150B and/or the NVMe storage
device(s) 154 of the all Flash node 142B can be utilized as
part ol the capacity layer for persistent storage. Read
requests to the all flash node 142B can be fulfilled directly
from data obtained in the capacity layer, and a dedicated
read cache may not be required to accelerate read operations.

In this example, the core file system 214 can include file
blocks 216 A-D (collectively, 216). In some embodiments,
the data services 210 can provide for data distribution by
apportioning incoming data across the physical nodes 142 to
optimize performance using the caching layer. Effective data
distribution can be achieved by mapping the imncoming data
to stripe units that can be stored evenly across the physical
nodes 142, with the number of data replicas determined by
policies that an end user can configure. For example, FIG. 2
shows how the file block 216A 1s distributed across the
physical nodes 142¢.-0 and 142¢-0 as stripe units A1-Ad, the
file block 216B 1s distributed across the physical nodes
142a-0 and 142¢-0 as stripe units B1-B4, the file block 216C
1s distributed across the physical nodes 142¢0-6 and 142¢-0
as stripe umts C1-C4, and the file block 216D 1s distributed
across the physical nodes 142a-0 and 142¢-0 as stripe units
D1-D4. When an application 1n a virtual instance 126 or 134
writes data, the data can be sent to an appropriate physical
node 142 (e.g., the unit including the relevant block of
information) based on the stripe unit. This approach, 1n
combination with the capability to have multiple streams
writing at the same time can prevent both network and
storage hotspots, can deliver the same or similar I/O per-
formance across any storage node of the distributed storage
data platform 100 regardless of the location of the virtual
instance 126 or 135, and can provide more flexibility 1n
workload placement. In contrast, conventional systems may
use a locality approach that does not make full use of
available networking and I/O resources. In addition, when a
virtual mstance 126 or 134 1s migrated to a new location, the
distributed storage data platform 100 does not require data
to be removed. This can significantly reduce the impact and
cost of the migration of the virtual instance 126 or 134.

In some embodiments, the striping of data across the
physical nodes 142 can support two or more logical avail-
ability zones 220A and 220B (collectively, 220). This fea-
ture can automatically partition a set of nodes 142 of the
distributed storage data platform 100 into a set of availabil-
ity zones based on the number of nodes 1n a cluster and the
replication factor for the data. Each availability zone 220 can
have one copy of each file block 216 (e.g., the logical
availability zones 220A and 220B both include the set of file
blocks A-D in the form of stripe units Al-Ad4, B1-B4,
C1-C4, and D1-D4). Thus, when multiple component or
node failures occur 1n a single availability zone 220 and
make the single availability zone unavailable, the distributed
storage data platiorm 100 can continue to operate 11 another
logical availability zone 220 has a copy of the data. For
example, a conventional system, which does not support
logical availability zones and consists of 20 nodes and
configured for a replication factor of three, can have no more
than two nodes fail without the conventional system having
to shut down. On the other hand, the distributed storage data
plattorm 100, having the same number of nodes and the
same replication factor, can be partitioned nto five logical
availability zones (three of which are not shown 1n FIG. 2)

US 11,042,519 B2

9

with four nodes 1n each zone, and can continue operation
even 11 all of the nodes 1n up to two availability zones fail.

In some embodiments, the data services 210 can assemble
blocks to cache until a configurable-sized write log 1s tull or
until workload conditions dictate that 1t can be propagated to
the capacity layer. When existing data 1s logically overwrait-
ten, the data services 210 can append a new block to the
write log and update the metadata. When the data 1s propa-
gated to an HDD, the write operations can include a single
seek operation with a large amount of sequential data
written. This can improve performance relative to conven-
tional systems that use a read-modify-write model charac-
terized by numerous seek operations on HDD(s) with small
amounts of data written at a time. This approach can also
benefit sold-state configurations (in which seek operations
may not be as time consuming) by reducing the write
amplification levels of SSDs and the total number of writes
that the Flash memory experiences due to mmcoming write
operations and the random overwrite operations of the data
that can result 1n conventional systems.

In some embodiments, when data 1s propagated to a disk
in an 1ndividual physical node 142, the data can be dedu-
plicated, compressed, and/or defragmented. This can occur
after the write operation 1s acknowledged so that no perfor-
mance penalty may be incurred for these operations. Data
can then be moved to the capacity layer and the correspond-
ing write cache segments can be released for reuse. In some
embodiments, the distributed storage data platform 100 can
utilize reinforcement learning to automate how to implement
deduplication, such as whether to compress the data and to
what extent the data should be compressed, whether to hash
the data and map the hashes to a deduplication database,
whether to coalesce multiple contiguous file blocks, the size
of file blocks, and so forth to optimize computing resource
utilization and performance as discussed further below with
respect to FIG. 3 and elsewhere 1n the present disclosure.

In some embodiments, the data services 210 can also
support hot data sets (e.g., caching, 1n memory, data that
may be frequently or recently read from the capacity layer).
In the physical nodes 142, hot data sets may also be cached
in the SSD(s) 150, NVMe storage device(s) 154, and/or
other fast memory/storage. This can be especially advanta-
geous for the physical node 142 A that includes the HDD(s)
148 for persistent storage because having the most fre-
quently used data 1n the caching layer can help accelerate the
performance of workloads. For example, when applications
and the virtual machines 126 and containers 134 1in the
physical node 142A attempt to modily data, the data can be
read from the cache so that data on the HDD(s) 148 may not
need to be read and expanded. As the distributed storage data
plattorm 100 decouples the caching and capacity layers, a
network operator can mdependently scale 1/O performance
and storage capacity.

As discussed, all Flash or all NVMe nodes may not use a
read cache. Data caching may not provide any performance
benefit because the persistent data copy already resides on
high-performance storage for the all Flash and all NVMe
nodes. Instead, dispatching read requests across the whole
set of SSDs or NVMe storage devices can prevent a par-
ticular cache from becoming a bottleneck.

In some embodiments, the data services 210 can provide
for data optimization via deduplication, compression, and/or
defragmentation that 1s always on for objects in the cache
(e.g., SSD, NVMe, memory, etc.) and capacity (SSD,
NVMe, HDD, etc.) layers. Unlike conventional systems,
which require these features to be turned ofl to maintain
performance, the deduplication, compression, and defrag-

10

15

20

25

30

35

40

45

50

55

60

65

10

mentation capabilities of the data services 210 can be
designed to sustain and enhance performance and signifi-
cantly reduce physical storage capacity requirements.

In some embodiments, data deduplication can be used on
all storage 1n the storage data platform 100, including
memory, SSDs, NVMe, and HDDs. Data can be dedupli-
cated in the capacity layer to save space, and it can remain
deduplicated when 1t 1s read into the caching layer in the
hybrid nodes 142A. This can allow a larger working set to
be stored 1n the caching layer and accelerate read perfor-
mance for configurations that use HDD:s.

In some embodiments, the data services 210 can apply
compression on data to save storage capacity. The data
services 210 platiorm can use CPU-oflload mstructions to
reduce the performance impact of compression operations.
In addition, the log-structured distributed objects store can
be leveraged so that compression may have little to no effect
on modifications (write operations) to previously com-
pressed data. For example, mmcoming modifications can be
compressed and written to a new location, and the existing
(old) data can be marked for deletion (unless the data needs
to be retained for a snapshot).

In some embodiments, the data services 210 can apply
defragmentation on data. The data services 210 can use
CPU-oflload instructions to coalesce multiple contiguous
file blocks to optimize performance. In addition, the data
services 210 can utilize the log-structured distributed objects
store to further optimize performance of defragmentation.
For example, incoming modifications can be defragmented
and written to a new location, and the existing (old) data can
be marked for deletion (unless the data needs to be retained
for a snapshot).

In some embodiments, the data services 210 can use a
log-structured distributed-object store that groups and com-
presses data that filters through deduplication services into
self-addressable objects. These objects can be written to disk
in a log-structured, sequential manner. Incoming I/0, includ-
ing random 1/O requests, can be written sequentially to both
the caching and capacity tiers. The objects can be distributed
across all the nodes 142 1n the distributed storage data
platiorm 100 to make uniform use of storage capacity. By
using a sequential layout, the data services 210 can help
increase flash-memory endurance and make the best use of
the read and write performance characteristics of HDDs,
which may be well suited for sequential 1/O operations.
Because read-modify-write operations can be avoided, com-
pression, snapshot, and cloning operations may have little or
no impact on overall performance.

In some embodiments, the data services 210 can compress
data blocks into objects that are sequentially laid out 1n
fixed-size segments, and that can in turn be sequentially laid
out in a log-structured manner. Each compressed object 1n a
log-structured segment can be uniquely addressable using a
key, with each key fingerprinted and stored with a checksum
to provide high levels of data integrity. In addition, the
chronological writing of objects can help the distributed
storage data platform 100 to quickly recover from media or
node failures by rewriting only the data that came into the
platform after 1t was truncated due to a failure.

In some embodiments, the storage data services layer 136
can include self-encrypting drives (SEDs) for encrypting
both the caching and/or capacity layers of the distributed
storage data platform 100. Integrated with key management
software or with passphrase-protected keys, encryption of
persistent storage data can facilitate compliance with regu-
latory and industry standards, such as the Health Insurance
Portability and Accountability Act (HIPAA), Payment Card

US 11,042,519 B2

11

Industry Data Security Standard (PCI-DSS), Federal Infor-
mation Security Management Act (FISMA), Sarbanes-Ox-
ley regulations, Federal Information Processing Standard
(FIPS), and so forth.

In some embodiments, the data services 210 can include
thin provisioning features for providing eflicient use of
storage by eliminating the need to forecast, purchase, and
install disk capacity that may remain unused for a long time.
The data services 210 can present virtual data stores having
any amount of logical space to applications while the
amount of physical storage space that 1s actually needed can
be determined when the data 1s written. As a result, a
network operator can expand storage on existing nodes
and/or expand the storage plattorm 100 by adding more
storage-intensive nodes as business requirements dictate,
climinating the need to purchase large amounts of storage
before 1t may be needed.

In some embodiments, the distributed storage data plat-
form 100 can use metadata-based, zero-copy snapshots to
tacilitate backup operations and remote replication for appli-
cations that may require always-on data availability. In this
manner, space-eflicient snapshots can allow for frequent
online backups of data without needing to worry about the
consumption of physical storage capacity. Data can be
moved oflline or restored from these snapshots instanta-
neously. The snapshot services can include fast snapshot
updates in which modified data that 1s contained in a
snapshot can be written to a new location and metadata can
be updated without the need for read-modity-write opera-
tions; rapid snapshot deletions 1n which only a small amount
ol metadata that 1s located on an SSD may be deleted 1n
contrast to conventional solutions that use delta-disk tech-
niques that require a long consolidation process; and highly
specific snapshots 1n which snapshots can be taken on an
individual file basis and can be mapped to drives 1n a virtual
instance to enable different snapshot policies on different
virtual 1nstances.

In some embodiments, the distributed storage data plat-
form 100 can 1nclude native replication services to provide
policy-based remote replication for disaster recovery and
virtual instance migration purposes. Through the manage-
ment layer 102, an administrator can create replication
policies that specily the repair point objective (RPO) and
add virtual instances to protection groups that inherit user-
defined policies. Native replication can be used for planned
data movement (for example, migrating applications
between locations) or unplanned events, such as data center
tailures. Test recovery, planned migration, and failover can
be scripted through PowerShell® or other suitable interface.

In some embodiments, the distributed storage data plat-
tform 100 can replicate data on a per-virtual-instance basis.
Thus, unlike conventional systems which may replicate
entire volumes, replication can occur in the distributed
storage data platform 100 on a fine-grained basis on only
those remote copies of the data of interest to the adminis-
trator. The distributed storage data platform 100 can coor-
dinate the movement of data, and the physical nodes 142 can
participate in the data movement using a many-to-many
connectivity model. This model can distribute the workload
across all participating nodes, thereby avoiding hot spots
and minimizing performance impacts. Once the first data 1s
replicated, subsequent replication can be based on data
blocks changed since the last transfer. As an example,
recovery point objectives (RPOs) can be set in a range from
15 minutes to 25 hours. An administrator can utilize con-

10

15

20

25

30

35

40

45

50

55

60

65

12

figuration settings to constrain bandwidth so that remote
replication does not overwhelm a wide-area network (WAN)
connection.

In some embodiments, the distributed storage data plat-
form 100 can include support for stretch clusters. Stretch
clusters can allow for two 1dentical configurations of clusters
in two locations to operate as a single cluster. With syn-
chronous replication between sites, a complete data center
tailure can occur, and applications can still be available with
zero data loss. In other words, applications can continue
running with no loss of data. The recovery time objective
can be the time that 1t takes to recognize the failure and put

il

a failover into eflect.

In some embodiments, the distributed storage data plat-
form 100 can include support for clones or writable snap-
shots that can be used for rapid provisioning, such as for
instantiating virtual mstances executing virtual desktops or
applications for test and development environments. Clones
can be implemented to be fast and space-eflicient by repli-
cating storage volumes for virtual instances through meta-
data operations, with actual data copying performed only for
write operations. With this approach, any number of clones
can be created and deleted 1n very short periods of time.
Compared to conventional systems that use full-copy meth-
ods, this approach can save a significant amount of time,
increase operational agility, and improve developer produc-
tivity. Clones can be deduplicated when they are created.
When clones start diverging from one another, data that 1s
common between them can be shared, with only unique data
occupying new storage space. The deduplication services
can climinate data duplicates in the diverged clones to
turther reduce the clone’s storage footprint. As a result, a
large number of application environments can be deployed
with relatively little storage capacity.

In some embodiments, the distributed storage data plat-
form 100 can support high availability by using the log-
structured distributed-object store to replicate incoming
data. Based on user-configurable policies, data that 1s written
to the write cache can be synchronously replicated to one or
more caches located in different nodes before the write
operation 1s acknowledged to the application. This can allow
incoming write operations to be acknowledged quickly
while protecting data from storage device or node failures.
If an SSD, NVMe device, or node fails, the replica can be
quickly recreated on other storage devices or nodes using the
available copies of the data.

In some embodiments, the log-structured distributed-
object store can also replicate data that 1s moved from the
write cache to the capacity layer. This replicated data can
likewise be protected from storage device or node failures.
With two replicas, or a total of three data copies, a cluster
can survive uncorrelated failures (e.g., failures that occur on
different physical nodes) of two storage devices or two
nodes without the risk of data loss. Failures that occur on the
same node can aflect the same copy of data and may be
treated as a single failure. For example, 11 one disk 1n a node
fails and subsequently another disk on the same node fails,
these correlated failures can count as one failure in the
system. In this case, the cluster could withstand another
uncorrelated failure on a different node.

If a problem occurs 1n the data platform controller 128 of
an 1ndividual physical node 142, data requests from the
applications residing in that node can be automatically
routed to other controllers 1n the distributed storage data
plattorm 100. This same capability can be used to upgrade
or perform maintenance on the data platform controller 128

US 11,042,519 B2

13

on a rolling basis without aflecting the availability of the
distributed storage data platform 100 or data.

In some embodiments, the data services 210 can include
data rebalancing functions. In the distributed storage data
plattorm 100, no overhead 1s associated with metadata
access, and rebalancing can be extremely eflicient. Rebal-
ancing can be a non-disruptive online process that occurs 1n
both the caching and capacity layers, and can be 1s moved
at a fine level of specificity to improve the use of storage
capacity. The data services 210 can automatically rebalance
existing data when nodes and drives are added or removed
or when they fail. When a new node 1s added to the
distributed storage data platform 100, its capacity and per-
formance can be made available to new and existing data.
The rebalancing services can distribute existing data to the
new node and help ensure that all nodes 1n the distributed
storage data platform 100 are used uniformly from both
capacity and performance perspectives. IT a node fails or 1s
removed from the distributed storage data platform 100, the
rebalancing engine can rebuild and distributes copies of the
data from the failed or removed node to available nodes 1n
the distributed storage data plattorm 100.

FIG. 3 shows an example of a block diagram 300 illus-
trating how deduplication can be implemented by the stor-
age data services layer 136 (e.g., such as part of the data
services 210). In this example, the block diagram 300
includes a source storage node 142X connected to a target
storage node 142Y over a network 302. The network 302 can
comprise any number of network devices and any number of
nodes 1n any configuration. For example, the source storage
node 142X and the target node 142Y may be connected
across a wide area network (WAN) spanning one or more
dispersed geographic regions; connected within a local area
network (LAN) in the same data center, co-location, campus
network, or other type of LAN; located within the same rack
or chassis; and so forth.

The source storage node 142X can include a remnforce-
ment learning (RL) engine 310 and a replication engine 320
for carrying out deduplication operations. The target storage
node 142Y may include the same or similar elements and/or
complementary elements (e.g., elements for reconstructing
deduplicated data or decompressing compressed data) but
are not shown here for purposes of simplicity and concise-
ness. In general, the RL engine 310 can approach dedupli-
cation as a multi-armed bandit (MAB) problem that adapts
to maximize the rewards (or minimize the costs) among
separate sets ol one or more actions for deduplicating data
from the source storage node 142X to the target storage node
142Y.

In this example, the RL engine 310 includes an MAB
exclusive action selector element 312 and an exclusive
action cost matrix 314. The MAB exclusive action selector
clement 312 can set forth the set of exclusive actions (or
arms) that the RL engine 310 can take for deduplication and
the logic for selecting a particular exclusive action (or arm).
As a simple example, the set of independent actions can
include:

Compressing the data (e.g., Run-length encoding (RLE),
Huflman coding, Prediction by partial matching
(PPM), Burrows-Wheeler, Lempel-Z1v (LZ) and vari-
ants, etc.);

Computing hashes for the data (e.g., Cyclic Redundancy
Check (32-bit) (CRC-32), Message Authentication

Code (MAC), Universal Hashing Message Authentica-
tion Code (UMAC), Message Digest Algorithm Num-
ber 5 (MD?3J), Secure Hash Algorithm (SHA-1),
Research and Development 1n Advanced Communica-

5

10

15

20

25

30

35

40

45

50

55

60

65

14
tions Technologies ((RACE) Integrity Primitives
Evaluation (RIPE)) Message Digest (160-bits) (RIP-
EMD-160), etc.) and mapping the hashes to a dedupli-
cation database; and

Coalescing contiguous duplicate file blocks.

One of ordinary skill in the art will appreciate that there
can be any number of diflerent actions and any number of
combinations of different actions 1n various other embodi-
ments but these three actions are provided herein as a set of
independent and exclusive deduplication actions for brevity
and ease ol understanding. Table 1 sets forth the set of
exclusive actions (or arms) derived from the independent

actions. For 1nstance, as there are three independent actions
‘M’ in this example, there can be 2™ or eight exclusive
actions ‘A’ 1n which a value of zero can indicate that an
independent action 1s not performed and a value of one can
represent that the independent action 1s performed during an
epoch.

TABLE 1
Example of Exclusive Actions ‘A’ of RIL Engine for Deduplication
Action 1 2 3 4 5 6 7 8
Compress 0 1 0 1 0 1 0
Compute Hash 0 0 1 1 0 0 1
Coalesce 0 0 0 0 1 1 1
The exclusive action cost matrix 314 sets forth the cost for

cach exclusive action taken by the RL engine 310 and the
logic for calculating the costs. One of ordinary skill in the art
will understand that minimizing a cost ‘C’ 1s equivalent to
maximizing a reward ‘R’ (e.g., R==C) for all relevant
purposes. In this example, the costs for each exclusive action
can be determine based on the computing resources that are
available for deduplication when the resources are being
utilized by other processes. For i1nstance, Available
CPU=Total CPU-Utilized CPU by processes besides data
replication (e.g., processes unassociated with data replica-
tion). The Available CPU can be used towards compressing
data, coalescing data, or computing hashes at different
quantities. Similarly, Available Network Bandwidth can be
used towards sending data and/or hashes. In some embodi-
ments, diflerent computing resources can be quantified
under a common metric. Table 2 sets forth an example of an
approach for normalizing metrics of different computing
resources associated with an exclusive action.

TABLE 2
Example Approach for Normalizing Cost of Exclusive Action
Common

Resource Measurement Conversion Used Metric/Unit
CPU Cycles (C) Number of Cycles (N_) N_x C
Bandwidth Bytes/second (B/s) Bytes (B) B/B/s
Latency Time in seconds (1) 1 T

In this manner, the RL engine 310 can compute the total
cost consumed by each exclusive action for a batch of ‘b’

blocks. For example, the RL engine 310 can define the cost
from each exclusive action with respect to a random variable
a' as the set of costs {R', R?, ..., R*} and the expected value
as the set of means {m', m?, . . ., m*}. As discussed, the
MAB exclusive action selector 312 may select only one
exclusive action (or arm) at each epoch. The RL engine 310
can optimize deduplication for a particular time frame, such

US 11,042,519 B2

15

as the last ‘N’ epochs or a time interval ‘t’ (e.g., last 6 hours).
In particular, the RL engine 310 can attempt to maximize the
rewards (or minimize the costs) over the time frame as:

Q(A —d, z) :2 1'=EN+E(F' I')YN+E_I. "

where 1, 1s the reward (or cost) of an action at epoch i=a
and v 1s the discount factor O=y<1 (where 1 can represent the
algorithm running beyond ‘N’ epochs such that the discount
factor makes their impact negligible).

The number of times the reward was chosen can be
defined as:

Nd=a,)=2._""a.=a),

(Equation 1)

(Equation 2)

where a, 1s the action selected at epoch 1=a.
Table 3 sets forth an example of the exclusive action cost
(or reward) matrix 314 for each action after a choice of an

exclusive action at each epoch. At each epoch, the choice of

action R’ can define the cost (or reward) for a batch and O for
the rest. The cost (or reward) for the time frame can be
computed as the sum of the matrix entries.

TABLE 3

Example of Cost {(or Reward) Matrix for .ast N actions

16
TABLE 5-continued

Example Pseudo Code for Update Bandit

Epoch 1+1 1+2 1+3 1+4
R! 0 R, 0 0 0 0 0 0
R~ R, 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 R3 ..
R* 0 0 1 R%, 0 0 0 0
R” 0 0 0 0 0 R” .. 0 0
R® 0 0 0 0 0 0 0 0
R’ 0 0 0 0 0 0 0 0
R® 0 0 0 0 RS 0 R® 0

The last column (e.g., 1+N+1) epoch 1s where the RL
engine 310 can make a decision for an action ‘1’. Tables 4-6
set forth pseudo code showing how the action can be
selected 1n some embodiments.

TABLE 4

Example of Pseudo Code for Main Function

—t

entry set to 1 and the rest of the entries set to 0)

7. oldest_reward = B.RHistory[a].dequeue() * ¥" (can be
> ignored if oldest reward <<< 107)
8. B.Q[a] = B.Q[a] - oldest_reward
9. ((}’ X R) _ B-Q[ﬂﬂur]
B. cur]l = B. cur] +
Olacu,| = B.Qlacu] BN (G
10
TABLE 6
Example Pseudo Code for Get_ Best_ Bandit Function
= 1. Set CDF = 0[1xK], sum= 0
2. For each action ‘a’ in B.Q
3. sum = CDF[a] = sum+ B.QJa]
4. Generate random variable, ‘r,” between (O to sum)
5. prev = 0
[+ N I+N+1
0 _
0 _
0 _
Ry —
0 _
0 _
0 _
0 _
335

Initialize the system to ‘A=a’ (e.g., one of the columns of Table 1 or a 1xK array with one

= O[1xK])

55
TABLE 6-continued
Example Pseudo Code for Get_ Best_ Bandit Function
6. For each action ‘a’ in B.Q
60 7. If ‘r’ 1s between prev and CDFJ[a], return action ‘a’
8. prev = CDF|a]

FIG. 4 1llustrates an example of a process 400 for per-

forming data deduplication in accordance with user-speci-
65 liable allocations of computing resources. One ol ordinary

2. Set ‘a’ to any value between 0 and 1 and ¥y to be between 0 to 1
3. Initialize next action probability (e.g., B.Q = [1/K....,1/K])
4. Initialize the number of times the last action was performed (e.g., B.N
5. Create queue to store the last N rewards (e.g., B.RQueue = O[NxK])
6. Create a queue to store the last N actions taken (e.g., B.NQueue = O[NxK])
7. For each epoch,
8. Generate a random number, rl, between 0 to 1
9. If r1 < a, then choose a random action a_ cur = Random(A)
10. If r1 = a, then Run a_ cur = Algorithm:Get_ Best_ Bandit(B)
11. Run the action a_ cur, and compute the Reward R
12. Run Algorithm:Update_ Bandit{a_ cur, B, v, R(a__cur))
TABLE 5
Example Pseudo Code for Update Bandit
Update_Bandit(A=a, B, v, R) where 'A’ is action, 'B’ 1s bandit,
and 'R’ is the last reward
1. For each action 'a’' in B.Q)
2. chosen = 1 1fl a == a_cur else chosen = 0
3. B.NHistory[a].enqueue(chosen)
4, B.RHistory[a].enqueue(chosen * R)
(reward 1s set only for chosen action)
: oldest_action = B.NHistory[a].dequeue()
6. B.N[a] = B.N[a] + chosen — oldest_action

skill will understood that, for any processes discussed
herein, there can be additional, fewer, or alternative steps

US 11,042,519 B2

17

performed 1n similar or alternative orders, or in parallel,
within the scope of the various embodiments unless other-
wise stated. In some embodiments, the process 400 can be
performed at least 1n part by a storage data platform (e.g., the
distributed storage data platform 100), a storage services
layer of a storage data platform (e.g., the storage data
services layer 136), data services of a storage data platform
(c.g., the data services 210), a physical storage node (e.g.,
the physical storage nodes 142) of a storage data platform,
a remnforcement learning (RL) engine of a physical storage
node (e.g., the RL engine 310), and/or a replication engine
ol a physical storage node (e.g., the replication engine 320).

The process 400 can begin with step 402 1n which a
physical storage node can compute a respective cost for
performing each exclusive action of a set of exclusive
actions associated with data deduplication for a predeter-
mined number of epochs. Each exclusive action can com-
prise one or more independent deduplication actions, such as
compressing the data, computing one or more hashes for the
data and mapping the hashes to a deduplication database
(e.g., storing a hash as a new entry i1 the hash does not match
any other entry in the deduplication database or pointing the
data to an existing entry 1f the hash matches the existing
entry), and/or coalescing multiple contiguous blocks of the
data. In some embodiments, the cost can be calculated as the
available amount of a computing resource (e.g., processing,
memory, storage, network, power, etc.) of the physical
storage node or the difference between the total amount of
the computing resource and the amount of the computing
resource utilized by processes running on the physical
storage node besides replication. For example, Available
CPU=Total CPU-Utilized CPU by processes other than
replication. In some embodiments, computing the cost for
performing each exclusive action of the set of exclusive
actions associated with data deduplication can also include
normalizing the diflerent metrics for each type of computing,
resource and combining them, such as shown in Table 2.
After the predetermined number of epochs, the physical
storage node will have populated an exclusive action cost
matrix (e.g., the exclusive action cost matrix 314, an
example of which 1s set forth 1n Table 3).

At step 404, the physical storage node can determine the
optimal strategy for performing deduplication according to
a user-specifiable allocation of computing resources. For
example, the physical storage node can determine the dedu-
plication strategy that minimizes one or more of CPU
utilization, memory utilization, storage utilization, network
bandwidth utilization, network latency, power, and so forth.
An example of this approach is set forth 1n the pseudo code
of Table 6. As another example, the physical storage node
can determine a deduplication strategy that strikes a balance
between two or more of these objectives. As yet another
example, the physical storage node can determine a dedu-
plication strategy such that utilization of one or more
computing resources does not exceed a predetermined
threshold. In some embodiments, these various deduplica-
tion strategies may also be combined, such as minimizing
utilization of one computing resource and ensuring that
utilization of another computing resource does not exceed a
predetermined threshold.

The process 400 can proceed next to the physical storage
node applying a multi-armed bandit (MAB) algornthm to
select the next exclusive action to perform aiter the prede-
termined number of epochs of step 402, such as set forth in
the pseudo code of Table 4. For example, at step 406, the
physical storage node can select a random number. The
MAB algorithm can continue to a decision block 408 1n

10

15

20

25

30

35

40

45

50

55

60

65

18

which the physical storage node can compare the random
number to a threshold value. If the random number 1s less
than the threshold value, the process 400 can continue to
step 410 1n which the physical storage node may select a
random exclusive action as the next action to perform,
perform the randomly selected exclusive action, and update
the exclusive action cost matrix with the results of perform-
ing the randomly selected exclusive action. The process 400
can then return to step 406 to apply the MAB algorithm
again for selecting the next exclusive action to perform for
deduplication.

If the random wvalue 1s greater than or equal to the
threshold value, then the process 400 can proceed to step
412 1 which the physical storage node can perform the
exclusive action associated with the minimum cost (or
maximum reward), such as determined at step 404. After
step 412, the process 400 can return to step 406 to apply the
MARB algorithm again for selecting the next exclusive action
to perform for deduplication.

In this manner, the physical storage can strategically
calculate rewards of deduplication for dynamically changing
data and availability of computing resources. In some
embodiments, reinforcement learning can enable the physi-
cal storage node to perform deduplication free of configu-
ration, preset models, and/or tuning parameters from admin-
istrators. In other embodiments, the physical storage node
can be capable of performing deduplication operations opti-
mally (e.g., according to user-specifiable allocations of
computing resources) while being cognizant of available
resources.

FIG. 5A and FIG. 5B 1illustrate systems 1n accordance
with various embodiments. The more appropriate system
will be apparent to those of ordinary skill in the art when
practicing the various embodiments. Persons of ordinary
skill 1n the art will also readily appreciate that other systems
are possible.

FIG. 5A 1llustrates an example of a bus computing system
500 wherein the components of the system are 1n electrical
communication with each other using a bus 505. The com-
puting system 500 can include a processing unit (CPU or
processor) 310 and a system bus 505 that may couple
various system components including the system memory
515, such as read only memory (ROM) 520 and random
access memory (RAM) 3525, to the processor 510. The
computing system 500 can include a cache 512 of high-
speed memory connected directly with, 1n close proximity
to, or integrated as part of the processor 510. The computing
system 300 can copy data from the memory 515, ROM 3520,
RAM 5235, and/or storage device 330 to the cache 512 for
quick access by the processor 510. In this way, the cache 512
can provide a performance boost that avoids processor
delays while waiting for data. These and other modules can
control the processor 510 to perform various actions. Other
system memory 5135 may be available for use as well. The
memory 515 can include multiple different types of memory
with different performance characteristics. The processor
510 can include any general purpose processor and a hard-
ware module or software module, such as module 1 532,
module 2 534, and module 3 536 stored in the storage device
530, configured to control the processor 510 as well as a
special-purpose processor where software instructions are
incorporated into the actual processor design. The processor
510 may essentially be a completely self-contained comput-
ing system, containing multiple cores or processors, a bus,
memory controller, cache, etc. A multi-core processor may
be symmetric or asymmetric.

US 11,042,519 B2

19

To enable user mteraction with the computing system 500,
an mput device 545 can represent any number of 1nput
mechanisms, such as a microphone for speech, a touch-

protected screen for gesture or graphical mput, keyboard,
mouse, motion 1nput, speech and so forth. An output device
535 can also be one or more of a number of output
mechamisms known to those of skill in the art. In some
instances, multimodal systems can enable a user to provide
multiple types of input to communicate with the computing,
system 300. The communications mterface 540 can govern
and manage the user mput and system output. There may be
no restriction on operating on any particular hardware
arrangement and therefore the basic features here may easily
be substituted for improved hardware or firmware arrange-
ments as they are developed.

The storage device 330 can be a non-volatile memory and
can be a hard disk or other types of computer readable media
which can store data that are accessible by a computer, such
as magnetic cassettes, tlash memory cards, sohid state
memory devices, digital versatile disks, cartridges, random
access memory, read only memory, and hybrids thereof.

As discussed above, the storage device 330 can include
the software modules 332, 534, 536 for controlling the
processor 310. Other hardware or software modules are
contemplated. The storage device 530 can be connected to
the system bus 505. In some embodiments, a hardware
module that performs a particular function can include a
soltware component stored 1n a computer-readable medium
in connection with the necessary hardware components,
such as the processor 510, bus 505, output device 535, and
so forth, to carry out the function.

FIG. 5B illustrates an example architecture for a chipset
computing system 550 that can be used in accordance with
an embodiment. The computing system 350 can include a
processor 555, representative of any number of physically
and/or logically distinct resources capable of executing
software, firmware, and hardware configured to perform
identified computations. The processor 555 can communi-
cate with a chipset 560 that can control mnput to and output
from the processor 535. In this example, the chipset 560 can
output information to an output device 365, such as a
display, and can read and write information to storage device
570, which can include magnetic media, solid state media,
and other suitable storage media. The chipset 560 can also
read data from and write data to RAM 575. A bridge 580 for
interfacing with a variety of user interface components 583
can be provided for interfacing with the chipset 560. The
user interface components 385 can include a keyboard, a
microphone, touch detection and processing circuitry, a
pointing device, such as a mouse, and so on. Inputs to the
computing system 530 can come from any of a variety of
sources, machine generated and/or human generated.

The chipset 560 can also interface with one or more
communication interfaces 590 that can have diflerent physi-
cal interfaces. The communication interfaces 590 can
include interfaces for wired and wireless LLANs, for broad-
band wireless networks, as well as personal area networks.
Some applications of the methods for generating, displaying,
and using the technology disclosed herein can include
receiving ordered datasets over the physical interface or be
generated by the machine itself by the processor 5535 ana-
lyzing data stored 1n the storage device 370 or the RAM 575.
Further, the computing system 550 can receive iputs from
a user via the user interface components 5835 and execute
appropriate functions, such as browsing functions by inter-
preting these mputs using the processor 5535.

10

15

20

25

30

35

40

45

50

55

60

65

20

It will be appreciated that computing systems 500 and 550
can have more than one processor 510 and 3355, respectively,
or be part of a group or cluster of computing devices
networked together to provide greater processing capability.

For clarity of explanation, 1n some instances the various
embodiments may be presented as including individual
functional blocks including functional blocks comprising
devices, device components, steps or routines 1n a method
embodied in software, or combinations of hardware and
software.

In some embodiments the computer-readable storage
devices, mediums, and memories can include a cable or
wireless signal containing a bit stream and the like. How-
ever, when mentioned, non-transitory computer-readable
storage media expressly exclude media such as energy,
carrier signals, electromagnetic waves, and signals per se.

Methods according to the above-described examples can
be implemented using computer-executable mstructions that
are stored or otherwise available from computer readable
media. Such instructions can comprise, for example, 1nstruc-
tions and data which cause or otherwise configure a general
purpose computer, special purpose computer, or special
purpose processing device to perform a certain function or
group of functions. Portions of computer resources used can
be accessible over a network. The computer executable
instructions may be, for example, binaries, intermediate
format 1nstructions such as assembly language, firmware, or
source code. Examples of computer-readable media that
may be used to store instructions, information used, and/or
information created during methods according to described
examples include magnetic or optical disks, flash memory,
USB devices provided with non-volatile memory, net-
worked storage devices, and so on.

Devices implementing methods according to these dis-
closures can comprise hardware, firmware and/or software,
and can take any of a variety of form factors. Some examples
of such form factors include general purpose computing
devices such as servers, rack mount devices, desktop com-
puters, laptop computers, and so on, or general purpose
mobile computing devices, such as tablet computers, smart
phones, personal digital assistants, wearable devices, and so
on. Functionality described herein also can be embodied 1n
peripherals or add-in cards. Such functionality can also be
implemented on a circuit board among different chips or

different processes executing 1n a single device, by way of
further example.

The nstructions, media for conveying such 1nstructions,
computing resources for executing them, and other struc-
tures for supporting such computing resources are means for
providing the functions described in these disclosures.

Although a variety of examples and other information was
used to explain aspects within the scope of the appended
claims, no limitation of the claims should be implied based
on particular features or arrangements 1n such examples, as
one of ordinary skill would be able to use these examples to
derive a wide variety of implementations. Further and
although some subject matter may have been described 1n
language specific to examples of structural features and/or
method steps, it 1s to be understood that the subject matter
defined 1n the appended claims 1s not necessarily limited to
these described features or acts. For example, such func-
tionality can be distributed differently or performed in
components other than those i1dentified herein. Rather, the
described features and steps are disclosed as examples of
components of systems and methods within the scope of the
appended claims.

US 11,042,519 B2

21

The 1nvention claimed 1s:

1. A computer-implemented method, comprising:

determining, by one or more processors ol a physical
storage node, a cost of performing each action of a set
of actions associated with data deduplication for a
predetermined number of epochs to populate a cost
matrix, wherein the cost of performing each action 1s a
difference between a total amount of a computing
resource of the physical storage node and an amount of
the computing resource utilized by processes unasso-
ciated with data replication;

determining a first action from among the set of actions

based on the cost of performing each action;

selecting a random number and a threshold value as part
of applying a technique to 1dentily a next action of the
set actions to be performed after the predetermined
number of epochs as part of the data deduplication;

in response to determining that the random number 1s
below the threshold value, determining a first cost of
performing a randomly selected action from the set of
actions and updating the cost matrix with the first cost;
and

in response to determining that the random number

exceeds the threshold value, determining a second cost
of performing the first action and updating the cost
matrix with the second cost.
2. The computer-implemented method of claim 1,
wherein the set of actions associated with data deduplication
include compressing data, determining one or more hashes
for the data and mapping the hashes to a deduplication
database, and coalescing multiple contiguous blocks of the
data.
3. The computer-implemented method of claim 1,
wherein the data deduplication 1s performed 1n response to
an application executing within the physical storage node.
4. The computer-implemented method of claim 3,
wherein the application executes within a virtual machine or
a container of the physical storage node.
5. The computer-implemented method of claim 1, further
comprising:
determining normalized metrics of two or more comput-
ing resources of the physical storage node utilized for
performing each action of the set of actions; and

combining the normalized metrics for determining at least
a portion of the cost of performing each action.

6. The computer-implemented method of claim 1,
wherein one or more actions of the set of actions are
performed via CPU-oflload instructions.

7. The computer-implemented method of claim 1,
wherein the physical storage node 1s one of a plurality of
physical storage nodes of a distributed storage data platform.

8. The computer-implemented method of claim 1,
wherein the physical storage node 1s a hybrid storage node
including at least one hard disk drive and at least one of a
solid state drive (SSD) or a non-volatile memory express
(NVMe) storage drive.

9. The computer-implemented method of claim 1,
wherein the physical storage node 1s a Flash memory storage
node mcluding at least one of an SSD or an NVMe storage
drive.

10. The computer-implemented method of claim 1,
wherein the physical storage node excludes a storage device
for persistently storing data of a distributed storage data
platform.

11. The computer-implemented method of claim 1,
wherein the computing resource includes at least one of

10

15

20

25

30

35

40

45

50

55

60

65

22

processing, memory, storage, network bandwidth, network

latency, or power of the physical storage node.

12. A system, comprising:

one or more processors; and

memory including instructions that, when executed by

one or more processors, cause the system to:

determine a cost of performing each action of a set of
actions associated with data deduplication for a
predetermined number of epochs to populate a cost
matrix, wherein the cost of performing each action 1s
a difference between a total amount of a computing
resource of the physical storage node and an amount
of the computing resource utilized by processes
unassociated with data replication;

determine a first action from among the set of actions
based on the cost of performing each action;

select a random number and a threshold value as part of
applying a technique to identify a next action of the
set actions to be performed after the predetermined
number of epochs as part of the data deduplication;

in response to a determination that the random number
1s below the threshold value, determine a first cost of
performing a randomly selected action from the set
of actions and update the cost matrix with the first
cost; and

in response to a determination that the random number
exceeds the threshold value, determine a second cost
of performing the first action and update the cost
matrix with the second cost.

13. The system of claim 12, wherein one or more actions
of the set of actions are performed via CPU-oflload instruc-
tions.

14. The system of claim 12, wherein the data deduplica-
tion 1s performed in response to an application executing
within a virtual machine or a container of the system.

15. The system of claim 12, wherein the computing
resource includes at least one of processing, memory, stor-
age, network bandwidth, network latency, or power of the
system.

16. The system of claim 12, wherein the instructions
further cause the system to:

determine normalized metrics of two or more computing

resources of the system utilized for performing each
action of the set of actions; and

combine the normalized metrics for a determination of at

least a portion of the cost of performing each action.

17. A non-transitory computer-readable storage medium
including instructions that, upon being executed by one or
more processors of a system, cause the system to:

determine a cost of performing each action of a set of

actions associated with data deduplication for a prede-
termined number of epochs to populate a cost matrix,
wherein the cost of performing each action 1s a difler-
ence between a total amount of a computing resource of
the physical storage node and an amount of the com-
puting resource utilized by processes unassociated with
data replication;

determine a first action from among the set of actions

based on the cost of performing each action;

select a random number and a threshold value as part of

applying a technique to 1dentify a next action of the set
actions to be performed after the predetermined number
of epochs as part of the data deduplication;

in response to a determination that the random number 1s

below the threshold value, determine a first cost of

US 11,042,519 B2

23

performing a randomly selected action from the set of
actions and update the cost matrix with the first cost;
and

in response to a determination that the random number

exceeds the threshold value, determine a second cost of
performing the first action and update the cost matrix
with the second cost.

18. The non-transitory computer-readable storage
medium of claim 17, wherein the set of actions associated
with data deduplication include compressing data, determin-
ing one or more hashes for the data and mapping the hashes
to a deduplication database, and coalescing multiple con-
tiguous blocks of the data.

19. The non-transitory computer-readable storage
medium of claim 17, wherein one or more actions of the set
ol actions are pertormed via CPU-oflload instructions.

20. The non-transitory computer-readable storage
medium of claim 17, wherein the data deduplication 1s
performed 1n response to an application executing within a
virtual machine or a container of the system.

G e x Gx s

5

10

15

20

24

	Front Page
	Drawings
	Specification
	Claims

