12 United States Patent

Araki et al.

US011036676B2

US 11,036,676 B2
Jun. 15, 2021

(10) Patent No.:
45) Date of Patent:

(54) MODIFYING STORAGE SPACE CONSUMED
BY SNAPSHOTS

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Hiroshi Araki, Yokohama (JP); Shah
Mohammad R. Islam, [ucson, AZ
(US); Hiroyuki Miyoshi, Kawasaki
(JP)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 846 days.

(21) Appl. No.: 15/060,894

(22) Filed: Mar. 4, 2016

(65) Prior Publication Data
US 2017/0255638 Al Sep. 7, 2017

(51) Int. CL
GO6F 16/00 (2019.01)
GO6F 16/11 (2019.01)
GO6F 16/13 (2019.01)
GO6F 16/178 (2019.01)
GO6F 16/17 (2019.01)

(52) U.S. CL
CPC Gool’ 167128 (2019.01); GO6F 16/13

(2019.01); GO6GF 16/178 (2019.01); GO6F
16/1727 (2019.01)

(58) Field of Classification Search
CPC ... GO6F 17/30088; GO6F 17/30091; GO6F
17/30138; GO6F 17/30174; GO6F 16/128;
GO6F 16/1727; GO6F 16/178; GO6F
16/13
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,072,910 B2* 7/2006 Kahn GO6F 17/3015
707/639
7,373,364 B1* 5/2008 Chapman GO6F 11/1451
8,027,958 B1* 9/2011 Chapman GO6F 11/1451
707/639

(Continued)

OTHER PUBLICATTIONS

Wu et al., “Total COW: Unleash the Power of Copy-On-Write for
Thin-provisioned Containers”, APSys *15, Jul. 27-28, 20135, Tokyo,
Japan, Copyright © 2015 ACM, 7 pages, <http://dx.do1.org/10.1145/
2797022.2797024>,

Primary Examiner — Hung Q Pham

(74) Attorney, Agent, or Firm — Monchar Chuaychoo;
Nicholas L. Cadmus

(57) ABSTRACT

The method 1ncludes identitying, by one or more computer
processors, a live file. The method turther includes 1denti-
tying, by one or more computer processors, a snapshot that
corresponds to the live file. The method further includes
amending, by one or more computer processors, data cor-
responding to the 1dentified live file to include tracking data
for the identified snapshot. The method further includes
amending, by one or more computer processors, data cor-
responding to the identified snapshot of the live file to
include tracking data for the 1dentified live file. The method
further includes determining, by one or more computer
processors, a difference in the data between the i1dentified
live file and the identified snapshot. The method further
includes amending, by one or more computer processors, the
identified snapshot to include only the determined difference
in data between the identified live file and the identified
snapshot.

17 Claims, 5 Drawing Sheets

Prevdd

300

DETERMINE THE DIFFERENCES BETWEEN THE

FILE IN THE LIVE FILE SYSTEM AREA AND THE

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrr

- 304

US 11,036,676 B2

Page 2
(56) References Cited 2008/0256399 A1 10/2008 Erdosi et al.

2009/0150599 Al* 6/2009 Bennett GO6F 11/1441
U.S. PATENT DOCUMENTS 711/103
2010/0211547 Al* &/2010 Kamer GO6F 11/1451
8417987 B1* 4/2013 Goel GO6F 11/1076 707/649
714/6.1 2010/0312783 Al* 12/2010 Brady GO6F 17/30088
8,452,929 B2* 5/2013 Bennett GO6F 11/1441 707/769
711/156 2011/0161381 Al* 6/2011 Wang GO6F 17/30088
8,751,523 B2* 6/2014 Brady GO6F 17/30088 707/814
707/639 2012/0017060 Al* 1/2012 Kapanipathi GO6F 3/0608
8,800,154 Bl 8/2014 Gupta et al. 711/162

9,020,903 B1* 4/2015 Vempati GO6F 12/121 2012/0254122 Al 10/2012 Benhase et al.
707/674 2013/0054530 Al1* 2/2013 Bakerooeo..... GO6F 16/119
9,201,887 B1* 12/2015 Earl GO6F 16/128 707/639

9,251,198 B2* 2/2016 Mutalik GO6F 17/30162 2013/0086007 Al 4/2013 Bandopadhyay

9,898,369 B1* 2/2018 Moghe GO6F 11/1451 2014/0025641 Al 1/2014 Kumarasamy et al.

10,042,710 B2* 8§/2018 Mutalik GOOF 11/1456 2014/0181579 Al* 6/2014 Whitehead GO6F 17/30289
2004/0210608 Al1™* 10/2004 Lee ..occooveeveevenenn, GOO6F 11/1451 714/15
2005/0086241 Al* 42005 Ram ... GOOF 11/1453 2015/0312340 Al* 10/2015 Zhou HO4L 67/1095
2005/0204147 Al1* 9/2005 Yamasaki GO6F 21/31 700/217

| 713/183 2016/0335278 Al* 11/2016 Tabaaloute GO6F 16/184
2008/0126773 Al* 5/2008 Martinez GO6F 21/57
713/1 * cited by examiner

U.S. Patent

Jun. 15, 2021

112

COMPUTING DEVICE

DATABASE

Sheet 1 of 5

— 102

1 .

1
1
1
1
1
1
1
1

r; .

1

1

1

1

1

1

1

1

1

1

. 1

. 1

. + 1

. 1

. 1

1 .

1 .

1 .

1 .

1 .

1 .

1 .

1 .

1 .

. .

. + +

120

140

132

134

136

100

US 11,036,676 B2

U.S. Patent Jun. 15, 2021 Sheet 2 of 5 US 11,036,676 B2

,/1//200
202
IDENTIFY A THE OVER-WRITTEN FILE AND |
CORRESPONDING DATA SYSTEM NUMBER [~ 204
INSERT THE DATA SYSTEM NUMBER
FROM THE RENAMED FILE INTO THE }~ 206
METADATA OF THE SECOND FILE
INSERT THE DATA SYSTEMNUMBER |
FROM THE OVER-WRITTEN FILE INTO |~ 208
THE METADATA OF THE RENAMED FILE
‘/1/300

DETERMINE THE DIFFERENCES BETWEEN THE
FILE IN THE LIVE FILE SYSTEM AREA AND THE -~ 304

e R R e R R R R R R

U.S. Patent Jun. 15, 2021 Sheet 3 of 5 US 11,036,676 B2

40

STORAGE SYSTEM

- LIVE FILE SYSTEM AREA 1 . SNAPSHOT AREA 2

FILE A | FILE A

(DATA SYSTEM NUMBER 2001 | | (DATA SYSTEM NUMBER 1001 ||
NUMBER 1001) | | M NUMBER 2001) | |

FIG. 4

U.S. Patent

Snapshot area

Data system number
1001

Live data system area
Data system number

2001

Jun. 15, 2021

Sheet 4 of 5

Snapshot area
Data system number
1001

* Live data system area
Data system number
3001

- Snapshot area

Data system number
1001

2001

US 11,036,676 B2

file name (Pre-gata system number, Next-data system number) |

fileA (NULL, 2001)

file name (Pre-data system number, Next-data system number) |

fileA (1001, NULL) '
FIG. 5A

file name (Pre-data system number, Next-data system number)

fileA (NULL, 3001) :

file name (Pre-data system number, Next-data system number)

fileA (1001, NULL) :
FIG. 5B

file name (Pre-data system number, Next-data system number)

fileA (snap 1) (NULL, 2001)
fileA (snap 2) (1001, NULL)

Live data system area
Data system number
2001

Snapshot area

Data system number
1001

2001

Live data system area

Data system number
4001

Ny L

fileA

file name (Pre-data system number, Next-data system number)

fileA (1001, NULL) :
FIG. 5C

flename (Pre-data system number, Next-data system number)

fileA (snap 1) (NULL, 2001)
fileA (snap 2) (1001, 4001)

file name (Pre-data system number, Next-data system number)

(2001, NULL)

ol e e) T iyl P, Rl el el ek e gl kel ™l el ek el el Yo} Sl kel A W bk ok L e W ol g ol e N g el el ol e e

U.S. Patent Jun. 15, 2021 Sheet 5 of 5 US 11,036,676 B2

600

606

‘ 608
MEMORY

614 < T
. : - PERSISTENT |
| STORAGE

604 spreneen N——— _ : . SOFTWARE ;

1 ; - ANDDATA | |

602~ o
620 a1o || —

- R — 610

10
DISPLAY == INTERFACE(S) | COMMUN]

ONS UNIT

618

EXTERNAL |
DEVICE(S) |

FIG. 6

US 11,036,676 B2

1

MODIFYING STORAGE SPACE CONSUMED
BY SNAPSHOTS

BACKGROUND OF THE INVENTION

The present invention relates generally to snapshots, and
more particularly to decreasing the storage consumption of
the snapshot meta area.

A snapshot 1s a quick backup of data at a certain point of
time. The snapshot does not copy the entirety of the data.
The snapshot only saves incremental data and manages
pointers to live data. A copy-on-write algorithm occurs when
there 1s a write request to a file. Before over-writing the data
on the live file, a program reads the file data and copies the
data to the snapshot meta areca. Then, the program over-
writes the data on the live file. When a user i1ssues a read
request of a snapshot file, a file system/storage product will
read the snapshot metadata stored in the snapshot meta area,
read the data in the live file, and merge the two to create a
file 1image at the time of snapshot creation, which 1s pre-
sented to the user.

SUMMARY

Aspects of the present invention disclose a method, com-
puter program product, and system for reducing the storage
space consumed by snapshots. The method includes 1denti-
fying, by one or more computer processors, a live file. The
method further includes identifying, by one or more com-
puter processors, a snapshot that corresponds to the live file.
The method further includes amending, by one or more
computer processors, data corresponding to the identified
live file to include tracking data for the identified snapshot.
The method further includes amending, by one or more
computer processors, data corresponding to the identified
snapshot of the live file to include tracking data for the
identified live file. The method turther includes determining,
by one or more computer processors, a difference in the data
between the i1dentified live file and the i1dentified snapshot.
The method further includes amending, by one or more
computer processors, the identified snapshot to include only
the determined difference in data between the i1dentified live
file and the 1dentified snapshot.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a functional block diagram 1llustrating a distrib-
uted data processing environment, 1 accordance with one
embodiment of the present invention;

FIG. 2 depicts a flowchart depicting operational steps of
a program for adjusting data system numbers of snapshots,
executing within the computing system of FIG. 1, 1n accor-
dance with one embodiment of the present invention;

FIG. 3 1s an example embodiment of a program ifor
determining the difference between the new and old snap-
shots 1 FIG. 2, executing within the computing system of
FIG. 1, in accordance with one embodiment of the present
invention;

FIG. 4 depicts an example embodiment of a storage
system representing a live file system and a snapshot area as
amended 1n accordance with one embodiment of the present
invention;

FIGS. 5 A, B, C, and D depict an example embodiment of
a snapshot area and a live data system area as amended 1n
accordance with one embodiment of the present invention;
and

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 depicts a block diagram of components of the
server and/or the computing device of FIG. 1, 1n accordance
with another embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments of the present invention recognize that
whenever a snapshot has been created and the file has been
modified, the data that exists before an update 1s preserved
in the snapshot area. Embodiments of the present invention
recognize that a snapshot version of a file will have the same
data system number as the data system number of the file 1n
the live file area. A data system number may be any
nomenclature used to 1dentify a file within a storage system,
such as an inode number.

Embodiments of the present invention also recognize that
whenever a file 1s renamed to have a new file name or moved
to a different directory and the system had a file with the new
file name or a file 1 the destination directory, the existing
file 1s first deleted, and then the renaming takes place. The
previously described process 1s referred to as over-writing of
a file for the purposes of this application. Embodiments of
the present invention recognize that 11 a snapshot has been
created and an over-write of a file has been executed, the
deleted file (e.g., the over-written file), which includes 1ts
metadata and the entire content data, 1s preserved in the
snapshot area while the renamed file exists 1n the live area.
The file 1n the snapshot area and the file 1n the live area have
different data system numbers, and the files are not 1n
copy-on-write relationship. In other words, when a file 1s
renamed 1n a conventional data system, regardless of the
level of similanity of the over-written file and the new file,
the entirety of data from the over-written file 1s preserved in
the snapshot meta area which consumes storage space.

Embodiments of the present invention recognize that
some applications require a complete shadow file 1n order to
update a file, and an application must over-write the file by
renaming the shadow file. The previously described process
updates a file 1n an atomic manner so that the file level data
consistency 1s guaranteed. In an example, an application
may be an asynchronous replication of a storage system. A
replication destination system may receive the incremental
data from the replication source system and update files by
the atomic operation as described. Typically, snapshots are
created on a replication destination system. Embodiments of
the present invention recogmize that as more files are
updated by users on the replication source system, more
incremental data 1s sent to the replication destination system
and more files on the replication destination system are
updated by the over-write operation, which results 1n con-
suming large amounts of data for the snapshot meta area.

Implementation of embodiments of the invention may
take a variety of forms, and exemplary implementation
details are discussed subsequently with reference to the
Figures.

The present invention will now be described 1n detail with
reference to the Figures. FIG. 1 1s a functional block diagram
of computing system 100, in accordance with one embodi-
ment of the present invention. FIG. 1 provides only an
illustration of one implementation and does not imply any
limitations with regard to the environments 1n which difler-
ent embodiments may be implemented. Many modifications
to the depicted environment may be made by those skilled
in the art without departing from the scope of the mnvention
as recited by the claims.

In the depicted environment, computing system 100
includes computing device 102 1s connected to network 112.

US 11,036,676 B2

3

Network 112 may be a local area network (LAN), a wide
areca network (WAN), such as the Internet, a cellular data
network, any combination thereof, or any combination of
connections and protocols that will support communications
between computing device, i accordance with embodi-
ments ol the mvention. Network 112 may include wired,
wireless, or fiber optic connections. Network 112 includes
one or more wired and/or wireless networks that are capable
of receiving and transmitting data, voice, and/or video
signals, 1ncluding multimedia signals that include voice,
data, and video information. Computing system 100 may
include other devices not shown that are able to communi-
cate with computing device 102 via network 112.
Computing device 102 may be any computing device,
such as a management server, a web server, or any other
clectronic device or computing system capable of processing
program 1nstructions and recerving and sending data. In
some embodiments, computing device 102 may be a laptop
computer, a tablet computer, a netbook computer, a personal

computer (PC), a desktop computer, or any programmable
clectronic device connected to network 112. In other
embodiments, computing device 102 may represent a server
computing system utilizing multiple computers as a server
system, such as 1 a cloud computing environment. In
general, computing device 102 may be any electronic device
or computing system capable of processing program instruc-
tions, sending and receiving data and communicating with
network 112. In the depicted embodiment, computing device
102 contains reduction program 120 and database 140. In
some embodiments, computing device 102 may include
additions programs, databases, or interfaces which are not
depicted. Computing device 102, reduction program 120,
database 140, and/or other components, are depicted and
described in further detail with respect to FIG. 4.

Reduction program 120 reduces data stored in the meta
area for snapshots. In various embodiments, reduction pro-
gram may have subprograms, subroutines, or other programs
that work 1n conjunction with reduction program 120 to
reduce data stored in the meta area for snapshots. In some
embodiments, reduction program 120 may be located on one
of the device or another device (not depicted) and reduce
data stored 1n the meta area for snapshot 1n a database or data
system via network 112. In various embodiments, reduction
program 120 adds additional information to the live file area
and the meta area, such as previous and future data structure
numbers (e.g., an mode number). Reduction program 120
may then identify the difference between two files, two
snapshots, a file and a snapshot, etc. and store the difference
along with the additional information to the meta area for
snapshots. Reduction program 120 1s depicted and described
in further detail in FIGS. 2, 3, 4 and 5.

In some embodiments, reduction program 120 may
include a rename API enhancement that renames OLD and
NEW files (renaming OLD to NEW f{ile). In an example, a
NEW file already exists, and the existing file will be deleted
first and then the OLD will be renamed to NEW. If a
snapshot already existed, the original NEW file can not be
deleted because the snapshot needs to preserve the original
NEW file. Thus, the original NEW data 1s preserved, hidden
from the users, and 1s treated as snapshot metadata. Reduc-
tion program 120 will identily the original NEW file in the
snapshot area as a file with the “second” data system
number. In the example, reduction program 120 will identify
the NEW f{ile 1n the live area as the “first” file 1n the live area.

Database 140 may be a repository that may be written to
and/or read by reduction program 120. A database 1s an
organized collection of data. In some embodiments, reduc-

10

15

20

25

30

35

40

45

50

55

60

65

4

tion program 120 may store snapshots, metadata associated
with snapshots, etc., and other information 1n database 140.
In another embodiment, reduction program 120 may access
snapshots and/or information associated with snapshots
which are stored in database 140 by reduction program 120
or another program (not depicted). In various embodiments,
other programs (not depicted) or other computing devices
(not depicted) may be store information related to snapshots
in database 140. In yet other embodiments, database 140
may comprise multiple databases that may be located on
computing device 102, and/or other computing devices (not
depicted) but connected via network 112. In other embodi-
ments, database 140 may reside on a server, another com-
puting device (not depicted), or independently as a stand-
alone database that 1s capable of communicating with
computing device 102 via network 112.

Snapshots 132, 134, and 136 represent a collection of
snapshots located on computing device 102. A snapshot 1s a
file containing the state of a system at a particular point 1n
time. Typically, a snapshot will be created against a file
system or a {ile set (a group of files with certain character-
1stics). A snapshot will contain files with the state of a system
at a particular point in time (e.g., the snapshot created time).
For example, a computing program may capture the state of
a file at a particular time and store the state of the file as a
backup prior to manipulation of a live file. Snapshots 132,
134, and 136 are a depicted representation of three snapshots
located on computing device 102, but in some embodiments,
there may be more snapshots located on computing device
102. Typically, the live file and files 1n each snapshot have
a corresponding data system number. In some embodiments
of this mvention, as a result of rename operations 1n an
environment with multiple snapshots, the live file and the
files 1n snapshots who have different data system numbers
are determined to be related.

In some embodiments, snapshots 132, 134, and 136 may
be located on different computing devices (not depicted), but
can communicate with reduction program 120 via network
112. In some embodiments, snapshots 132, 134, and 136
may be part of a collection of hundreds of snapshots. For
example, snapshot 132, 134, and 136 represent only 3 of the
many snapshots located on computing device 102.

FIG. 2 1s a flowchart depicting operational steps of
program 200, which 1s a function of reduction program 120,
in accordance with an embodiment of the present invention.
In some embodiments, program 200 1s a sub-routine of
reduction program 120 which contains enhancement of a
rename() API for a file system. In some embodiments,
program 200 begins upon renaming ol a file. In some
embodiments, program 200 1s invoked when one or more
snapshots exist in the system.

Program 200 identifies a renamed file and corresponding
data system number (step 202). In some embodiments,
program 200 1dentifies the final renamed file as the first file
and 1dentifies data system number of the final renamed file
as the first data system number. In various embodiments,
program 200 1dentifies the most recently renamed file and
identifies a data system number corresponding to the most
recently renamed file. In some examples, when creating a
new file, the file and corresponding data system number may
be assigned any number as long as the number does not
already exist for another file. In other examples, when
renaming a file (e.g., from fileA to fileA_renamed), the data
system number does not change.

Program 200 identifies the over-written file and corre-
sponding data system number (step 204). In some embodi-
ments, program 200 1dentifies the over-written file, which 1s

US 11,036,676 B2

S

preserved 1n the snapshot meta area as the second file and
identifies 1ts data system number as the second data system
number. In various embodiments, program 200 identifies the
over-written file in the snapshot meta area as well as the
corresponding data system number for the over-written file
in the snapshot meta area. In an example, the data system
number of a file does not change when moved to a snapshot
area. The snapshot 1s to preserve the files and the data system
number may not change. For example, program 200 iden-
tifies a data system number for a renamed file as 1001 and
the data system number for the over-written file as 2001.

Program 200 inserts the data system number from the
renamed {ile into the metadata of the second file (step 206).
In some embodiments, program 200 inserts the first data
system number 1nto the metadata of the second file as the
next-data system number. In other words, program 200
creates a relation between the over-written file 1n the snap-
shot area and the updated file 1n the live file system area. In
an example, upon a rename of file A, the final fileA 1n the live
file system area has a current data system number of 2001.
The over-written fileA which 1s preserved in the snapshot
area has the data system number of 1001. Program 200
stores data system number 2001 as the next-data system
number 1n the metadata of the snapshot fileA.

In some embodiments, a new field may be added to the
extended attribute of the file. In an embodiment, program
200 stores null or empty 11 no next-data system number exist
for a file. In various embodiments, program 200 creates a
new field 1n the metadata for a file to allow for correspond-
ing files to be stored as related. For example, program 200
inserts a next-data system number field into the metadata for
a file so a next-data system number can be stored (e.g., data
system number 2001 1s stored as the next-data system
number for the snapshot of fileA).

Program 200 inserts the data system number from the
over-written file into the metadata of the renamed file (step
208). In some embodiments, program 200 inserts the second
data system number mnto the metadata of the first file as the
pre-data system number. In other words, program 200 cre-
ates a relation between the updated file 1n the live file system
arca and the over-written file in the snapshot area. In an
example, upon a rename of fileA, the final fileA 1n the live
file system area has a current data system number of 2001.
The over-written fileA which 1s preserved in the snapshot
area has the data system number of 1001. Program 200
stores data system number 1001 as the pre-data system
number 1n the metadata of the live fileA.

In some embodiments, a new field may be added to the
extended attribute of a file. In an embodiment, program 200
stores null or empty 1f there 1s no pre-data system number.
In various embodiments, program 200 creates a new field 1n
the metadata for a file to allow for corresponding files to be
stored as related. For example, program 200 inserts a
pre-data system number field into the metadata for a file so
a pre-data system number can be stored (e.g., data system
number 1001 1s stored as the next-data system number for
the live fileA).

In a detailed example of reduction program 120, FIG. 4
depicts a storage system 40 in which reduction program 120
has performed the operational steps to adjust metadata
pertaining to files. In FIG. 4, live file system area 1 contains
file A. File A has metadata associated with file A, which
includes data system number 2001, as well as the adjusted
information of pre-data system number 1001. The pre-data
system number 1001 indicates that the previous snapshot
corresponding to file A has a data system number of 1001.
In FIG. 4, snapshot area 2 contains file A as has metadata

10

15

20

25

30

35

40

45

50

55

60

65

6

association with file A, which includes the data system
number for the snapshot of file A, 1001, and the next-data
system number for the snapshot of file A, 2001.

FIG. 3 1s a flowchart depicting operational steps of
program 300, which 1s a function of reduction program 120,
in accordance with an embodiment of the present invention.
In some embodiments, the operational steps of program 300
begin 1n response to a new snapshot being taken. In other
embodiments, the operational steps of program 300 begin 1n
response to the completion of program 200. In yet other
embodiments, program 200 begins in response to a prompt
from a user. In an embodiment, program 300 may begin
when a threshold storage consumption 1s reached. In some
embodiments, program 300 may operate 1in parallel with
program 200.

In some embodiments, program 300 may begin based
upon a de-fragmentation command. In an example, a flag
can be added to the data system number, such as snap-difl-
comp-iflag, which indicates if program 300 has completed
the steps of flowchart 300. If program 300 has fimished for
a given lile program 300 can indicate completion by setting
the tlag to 1. In another example, program 300 may scan a
directory tree of a snapshot and/or metadata associated with
a snapshot to determine if the next-data system number
exists and the flag 1s set to 0. Program 300 may then begin
the operational step of flowchart 300.

Program 300 identifies a file 1n the live file system area
and 1dentifies a corresponding file 1n the snapshot area (step
302). In some embodiments, program 300 may i1dentify afile
in the live file system area, and 1dentity the pre-data system
number. Once, program 300 1dentifies the pre-data system
number (e.g., pre-data system number 1001 in the metadata
area of File A 1n FIG. 4), program 300 then searches for the
corresponding file 1n the snapshot area (e.g., snapshot area
2 1n FIG. 4). Program 300 may identily the corresponding
file by searching for the data system number corresponding
to the pre-data system number that was 1dentified 1n the live
file system area (e.g., data system number 1001 1n FIG. 4).
In another embodiment, program 300 may search for a
next-data system number in the snapshot area that corre-
sponds to the data system number 1n the live file system area.
For example, program 300 search for next-data system
number 2001 in snapshot area 2 1n FIG. 4.

Program 300 determines the difference between the file 1n
the live file system area and the corresponding file in the
snapshot area (step 304). In some embodiments, once pro-
gram 300 has i1dentified corresponding files 1n the live files
system area and the snapshot area, program 300 determines
the difference between the two files. In some embodiments,
program 300 determine 1 there are difference in files by
checksums on the stored files. In an example, program 300
uses a checksum function on the block of data for file A in
the live file system area against the block of data for file A
in the snapshot area. If program 300 determines that there 1s
no difference, program 300 may proceed to step 306. IT
program 300 determines that the checksum indicates that
there 1s a difference between the two files, program 300 may
compare the individual bytes of the files to determine which
are different. In other embodiments, program 300 may use
other methods known 1n the art to determine and 1dentify the
difference 1n corresponding files.

In some embodiments, program 300 may 1dentily a sec-
tion of sequential bytes that are diflerent in files. Program
300 may flag the bytes for future steps. In other embodi-
ments, program 300 may create a list or table containing the
difference between corresponding bytes. In some embodi-
ments, program 300 may determine that an entire block of

US 11,036,676 B2

7

data 1s different and flag the block of data. In other embodi-
ments, program 300 may determine that a threshold per-
centage ol data 1s different, and therefore, flag the entire
block. In yet other embodiments, program 300 may deter-
mine that under a threshold percentage of data 1s diflerent,
and therefore, perform a byte analysis of the block of data
to determine which bytes are diflerent. Program 300 may
then flag or store the different bytes.

Program 300 stores the determined differences in the
snapshot area (step 306). In various embodiments, program
300 stores the determined difference 1n data in the snapshot
area. In an example, program 300 determines a difference 1n
a block of data for file A 1n snapshot area 2 and stores only
the determined diflerence as file A 1n snapshot area 2 along
with the metadata information, such as data system number
1001 and next-data system number 2001. In various embodi-
ments, program 300 may determine various pieces of data
are different for a specific file and store only the different
pieces of the file. In an example, program 300 does not store
an entire file 1 the snapshot area, but rather only the
difference 1n the files. In some embodiments, program 300
may determine that no differences in the file from the live
file system area and the corresponding file 1n the snapshot
area exist. Program 300 may then just store the metadata
associated with the file (e.g., the data system number and
next-data system number), but no data from the actual file
(c.g., file A).

In some embodiments, program 300 creates a copy-on-
write relationship between two files with different data
system numbers (e.g., the original file in the orlgmal file 1n
the snapshot area and the new over-written file 1n the live
data system area). The entire file data of the original file 1n
the snapshot area will be freed and only the difference will
be saved. Any future update to the new file 1n the live data
system area would utilize the copy-on-write process (e.g.,
copying the necessary data first to the snapshot area and then
executing the data update).

FIG. 4 depicts storage system 40. Storage system 40
contains live file system area 1 and snapshot area 2. Live file
system area 1 1s an active field where a user may modily a
file. Snapshot area 2 contains copies of files from live file
system area 1 before the files from life file system area 1 are
modified. In various embodiments, reduction program 120
receives an indication that a user 1s attempting to rename a
file 1n live file system area 1, and therefore, reduction
program 120 makes a copy of the file to be modified and
stores the copy in snapshot area 2. Once a file 1n live file
system area 1 1s renamed, reduction program 120 determines
the diflerence between the two files and stores only the
difference in the files 1n snapshot area 2. In other words, the
entire modified file 1s located 1n live file system area 1, and
the differences between the modified file and the copy of the
file that was located 1n snapshot area 2 are stored 1n snapshot
arca 2. The entire copy of the file 1s no longer stored in
snapshot area 2.

In a detailed example of reduction program 120, FIGS. 5
A, B, C, and D depict attributes of a snapshot area and a live
file area. In the example embodiment described below, FIG.
5 A flows sequentially to FIG. 5 B. FIG. § A depicts a
snapshot area and a live data system area after program 200
has added the pre-data system number and the next-data
system number (1.e., the rename operation of program 200
has been completed). FIG. 5 B depicts the file from FIG. 5A
alter fileA has been over-written by another file (e.g., a file
with data system number 3001). In other words, fileA has
been renamed for a second time. In this example, the
snapshot area for fileA will be updated to contain the

10

15

20

25

30

35

40

45

50

55

60

65

8

difference 1n data between data system numbers 1001 and
3001, and the next-data system number 1s set to 3001.
Snapshot file A (data system number 1001) and the live fileA
(data system number 3001) are a copy-on-write patr.

In the following example, FIG. 5 A flows to FIG. 5 C and
FIG. 5 D. In FIG. 5 C another snapshot has been created. The
first snapshot 1s referenced as snapl and the second snapshot
1s referenced as snap2. In this example, program 200 has
updated the pre-data system number and the next-data
system numbers for the snapshot area. After the first rename,
the copy-on-write relationship has been created for fileA 1n
the live data system area to fileA (snapl) in the snapshot
arca. When a second snapshot has been created and fileA has
been modified, the conventional copy-on-write relationship
will be created between fileA 1n the live data system area and
fileA (snap2) in the snapshot area. In this example, the data
system numbers for the conventional copy-on-write rela-
tionship are the same. FI1G. 5 D depicts the file from FIG. 5C,
which has been over-written by another file (e.g., a file with
data system number 4001). In this example, the snapshot
area for fileA will be updated to contain the difference 1n
data between data system numbers 2001 and 4001, and the
next-data system number 1s set to 4001. Snapshot fileA (data
system number 2001) and the live fileA (data system number

4001) are a copy-on-write pair. Additionally, snapshot fileA
(1001) and the snapshot fileA (2001) are traceable. When

fileA (snapl) 1s read, fileA (4001) in the live data system
area, filleA (snap2) (2001), and fileA (snapl) (1001) are
referenced.

FIG. 6 depicts computer system 600, which 1s an example
of a system that includes components of computing device
102. Computer system 600 includes processor(s) 604, cache
616, memory 606, persistent storage 608, communications
unit 610, mput/output (I/0) nterface(s) 612, and commu-
nications fabric 602. Communications fabric 602 provides
communications between cache 616, memory 606, persis-
tent storage 608, communications unit 610, and input/output
(I/0) interface(s) 612. Communications fabric 602 can be
implemented with any architecture designed for passing data
and/or control information between processors (such as
microprocessors, communications and network processors,
etc.), system memory, peripheral devices, and any other
hardware components within a system. For example, com-
munications fabric 602 can be implemented with one or
more buses or a crossbar switch.

Memory 606 and persistent storage 608 are computer
readable storage media. In this embodiment, memory 606
includes random access memory (RAM). In general,
memory 606 can include any suitable volatile or non-volatile
computer readable storage media. Cache 616 i1s a fast
memory that enhances the performance of processor(s) 604
by holding recently accessed data, and data near recently
accessed data, from memory 606.

Program 1nstructions and data used to practice embodi-
ments of the present invention may be stored in persistent
storage 608 and in memory 606 for execution by one or
more of the respective processor(s) 604 via cache 616. In an
embodiment, persistent storage 608 includes a magnetic
hard disk drive. Alternatively, or in addition to a magnetic
hard disk drive, persistent storage 608 can include a solid-
state hard drive, a semiconductor storage device, a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM), a flash memory, or any other computer
readable storage media that 1s capable of storing program
instructions or digital information.

The media used by persistent storage 608 may also be
removable. For example, a removable hard drive may be

US 11,036,676 B2

9

used for persistent storage 608. Other examples include
optical and magnetic disks, thumb drives, and smart cards
that are inserted ito a drive for transier onto another
computer readable storage medium that 1s also part of
persistent storage 608.

Communications unit 610, in these examples, provides
for communications with other data processing systems or
devices. In these examples, communications unit 610
includes one or more network terface cards. Communica-
tions unit 610 may provide communications through the use
of etther or both physical and wireless communications
links. Program instructions and data used to practice
embodiments of the present invention may be downloaded
to persistent storage 608 through communications unit 610.

I/O mterface(s) 612 allows for mput and output of data
with other devices that may be connected to each computer
system. For example, /O interface(s) 612 may provide a
connection to external device(s) 618, such as a keyboard, a
keypad, and/or some other suitable input device. External
device(s) 618 can also include portable computer readable
storage media such as, for example, thumb drives, portable
optical or magnetic disks, and memory cards. Software and
data used to practice embodiments of the present invention,
e.g., reduction program 120 and database 140 can be stored
on such portable computer readable storage media and can
be loaded onto persistent storage 608 ol computing device
102 via I/O interface(s) 612 of computing device 102.
Software and data used to practice embodiments of the
present invention, e.g., reduction program 120, can be stored
on such portable computer readable storage media and can
be loaded onto persistent storage 608 of computing device
102 via I/O interface(s) 612 of computing device 102. I/O
interface(s) 612 also connect to display 620.

Display 620 provides a mechanism to display data to a
user and may be, for example, a computer monaitor.

The programs described herein are identified based upon
the application for which they are implemented in a specific
embodiment of the invention. However, 1t should be appre-
ciated that any particular program nomenclature herein 1s
used merely for convenience, and thus the invention should
not be lmited to use solely in any specific application
identified and/or implied by such nomenclature.

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of mtegration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present imvention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or etther source code
or object code written 1n any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart 1llustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a

US 11,036,676 B2

11

computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
istructions which implement aspects of the function/act
specified 1n the flowchart and/or block diagram block or
blocks.

The computer readable program 1nstructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the istructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations ol special purpose hardware and computer
instructions.

The descriptions of the various embodiments of the
present 1nvention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
invention. The terminology used herein was chosen to best
explain the principles of the embodiment, the practical
application or techmical improvement over technologies
found i the marketplace, or to enable others of ordinary
skill 1n the art to understand the embodiments disclosed
herein.

What 1s claimed 1s:
1. A method for reducing storage space consumed by
snapshots, the method comprising:

identifying, by one or more computer processors, a live
file;

identifying, by the one or more computer processors, a
snapshot that corresponds to the identified live file;

amending, by the one or more computer processors, data
corresponding to the identified live file to 1include
tracking data for the identified snapshot;

amending, by the one or more computer processors, data
corresponding to the 1dentified snapshot of the identi-
fied live file to include tracking data for the identified
live file;

determining, by the one or more computer processors, a
value of storage consumption, wherein the value of
storage consumption 1s a percentage of a stored data;

10

15

20

25

30

35

40

45

50

55

60

65

12

in response to determining the value of the storage
consumption exceeds a storage threshold and after
amending the data corresponding to identified live file
and 1dentified snapshot, creating, by the one or more
computer processors, a first field associated with the
amended live file and creating a second field associated
with the amended snapshot, wherein the first field 1s
used for storing pre-data system number and the second
field 1s used for storing next-data system number;

determining, by the one or more computer processors, a

difference 1n data between the amended live file asso-
ciated with the first field and the amended snapshot
associated with the second field;
amending, by the one or more computer processors, the
amended snapshot associated with the second field to
include the determined difference 1n data between the
amended live file associated with the first field and the
amended snapshot associated with the second field; and

storing, by the one or more computer processors, only the
determined difference 1n data to replace the amended
snapshot that was amended to include the determined
difference 1n data.

2. The method of claim 1, wherein amending, by one or
more computer processors, data corresponding to the iden-
tified live file to include tracking data for the identified
snapshot comprises:

adding, by one or more computer processors, metadata to

the identified live file that indicates a data system
number of the i1dentified snapshot.

3. The method of claim 1, wherein amending, by one or
more computer processors, data corresponding to the 1den-
tified snapshot of the live file to include tracking data for the
identified live file comprises:

adding, by one or more computer processors, metadata to

the identified snapshot that indicates a data system
number of the i1dentified live file.

4. The method of claim 1, further comprising:

adding, by one or more computer processors, a flag of

zero or one to the tracking data that indicates that the
storage of the determined difference has completed.

5. The method of claim 1, wherein determining, by one or
more computer processors, a difference in the data between
the amended live file and the amended snapshot comprises:

performing, by one or more computer processors, a

checksum analysis of the amended live file and the
amended snapshot to determine 11 there are diflerences
in data between the amended live file and the amended
snapshot; and

in response to determining that there 1s a diflerence in data

between the amended live file and the amended snap-
shot, performing, by or more computer processors, a
byte analysis of the amended live file and the amended
determine difference to determine the differences
between the amended live file and the amended snap-
shot.

6. The method of claim 1, wherein amending, by one or
more computer processors, the identified snapshot to include
only the determined diflerence in data between the 1dentified
live file and the 1dentified snapshot comprises:

creating, by one or more computer processors, a Copy-

on-write relationship between the identified live file
and the 1dentified snapshot.

7. A computer program product for reducing the storage
space consumed by snapshots, the computer program prod-
uct comprising:

US 11,036,676 B2

13

one or more computer readable storage media and pro-
gram 1nstructions stored on the one or more computer
readable storage media, the program instructions com-
prising;:

program 1nstructions to identily a live file;

program 1nstructions to identity a snapshot that corre-
sponds to the live file;

program 1nstructions to amend data corresponding to the
identified live file to include tracking data for the
identified snapshot;

program 1nstructions to amend data corresponding to the
identified snapshot of the live file to include tracking
data for the identified live file;

program 1nstructions to determine a value of storage
consumption, wherein the value of storage consump-
tion 1s a percentage of a stored data;

in response to determine the value of the storage con-
sumption exceeds a storage threshold, program instruc-
tions to create and after program instructions to amend
the data corresponding to identified live file and 1den-
tified snapshot a first field associated with amended live
file and creating a second field associated with the
amended snapshot, wherein the first field 1s used for
storing pre-data system number and the second field 1s
used for storing next-data system number;

program 1nstructions to determine a difference 1n the data
between the amended live file associated with the first
field and the amended snapshot associated with the
second field;

program 1nstructions to amend the amended snapshot

associated with the second field to include the deter-
mined difference 1n data between the amended live file
associated with the first field and the amended snapshot
associated with the second field; and

program 1nstructions to store only the determined differ-

ence 1n data to replace the amended snapshot that was
amended to 1mnclude the determined difference 1n data.

8. The computer program product of claim 7, wherein
program 1nstructions to amend data corresponding to the
identified live file to include tracking data for the identified
snapshot comprises program instructions to:

add metadata to the identified live file that indicates a data

system number of the identified snapshot.

9. The computer program product of claim 7, wherein
program 1nstructions to amend data corresponding to the
identified snapshot of the live file to include tracking data for
the 1dentified live file comprises program instructions to:

add metadata to the i1dentified snapshot that indicates a

data system number of the identified live file.

10. The computer program product of claim 7, further
comprising program instructions to:

add a flag of zero or one to the amended tracking data that

indicates that the storage of the determined difference
has completed.

11. The computer program product of claim 7, wherein
program 1nstructions to determine a difference in the data
between the amended live file and the amended snapshot
comprises program instructions to:

perform a checksum analysis of the amended live file and

the amended snapshot to determine i1 there are differ-
ences 1n data between the amended live file and the
amended snapshot; and

in response to determining that there 1s a difference 1n data

between the amended live file and the amended snap-
shot, program 1nstructions to perform a byte analysis of
the amended live file and the amended determine

5

10

15

20

25

30

35

40

45

50

55

60

65

14

difference to determine the differences between the
amended live file and the amended snapshot.

12. The computer program product of claim 7, wherein
program 1nstructions to amend the i1dentified snapshot to
include only the determined difference 1n data between the
identified live file and the identified snapshot comprises
program 1nstructions to:

create a copy-on-write relationship between the 1dentified

live file and the 1dentified snapshot.

13. A computer system for reducing the storage space
consumed by snapshots, the computer system comprising:

one or more computer processors;

one or more computer readable storage media;

program 1nstructions stored on the computer readable

storage media for execution by at least one of the one

or more computer processors, the program instructions

comprising:

program 1nstructions to identify a live file;

program 1nstructions to identily a snapshot that corre-
sponds to the live file;

program 1nstructions to amend data corresponding to
the 1dentified live file to include tracking data for the
1dentified snapshot;

program 1nstructions to amend data corresponding to
the 1dentified snapshot of the live file to include
tracking data for the identified live file;

program 1nstructions to determine a value of storage
consumption, wherein the value of storage consump-
tion 1s a percentage of a stored data;

in response to determine the value of the storage
consumption exceeds a storage threshold, program
instructions to create and aiter program instructions
to amend the data corresponding to 1dentified live file
and 1dentified snapshot a first field associated with
amended live file and creating a second field asso-
ciated with the amended snapshot, wherein the first
field 1s used for storing pre-data system number and
the second field 1s used for storing next-data system
number;

program 1nstructions to determine a difference in the
data between the amended live file associated with
the first field and the amended snapshot associated
with the second field;

program instructions to amend the amended snapshot
associated with the second field to include the deter-
mined difference in data between the amended live
file associated with the first field and the amended
snapshot associated with the second field; and

program 1instructions to store only the determined dii-
terence 1n data to replace the amended snapshot that
was amended to include the determined diflerence in
data.

14. The computer system of claim 13, wherein program
instructions to amend data corresponding to the identified
live file to include tracking data for the i1dentified snapshot
comprises program instructions to:

add metadata to the 1dentified live file that indicates a data

system number of the 1dentified snapshot.

15. The computer system of claim 13, wherein program
instructions to amend data corresponding to the identified

snapshot of the live file to include tracking data for the
identified live file comprises program instructions to:
add metadata to the identified snapshot that indicates a
data system number of the identified live file.

"y

US 11,036,676 B2
15

16. The computer system of claim 13, wherein program
instructions to determine a difference 1n the data between the
amended live file and the amended snapshot comprises
program 1instructions to:

perform a checksum analysis of the amended live file and 5

the amended snapshot to determine i1 there are differ-
ences in data between the amended live file and the
amended snapshot; and

in response to determining that there 1s a difference 1n data

between the amended live file and the amended snap- 10
shot, program 1nstructions to perform a byte analysis of
the amended live file and the amended determine
difference to determine the differences between the
amended live file and the amended snapshot.

17. The computer system of claim 13, wherein program 15
instructions to amend the identified snapshot to include only
the determined difference in data between the i1dentified live
file and the 1dentified snapshot comprises program instruc-
tions to:

create a copy-on-write relationship between the identified 20

live file and the 1dentified snapshot.

G x e Gx o

16

	Front Page
	Drawings
	Specification
	Claims

