US011029970B2

12 United States Patent (10) Patent No.: US 11,029,970 B2

Sonwane et al. 45) Date of Patent: Jun. 8, 2021
(54) OPERATING SYSTEM EXTENSION (56) References Cited
FRAMEWORK _
U.S. PATENT DOCUMENTS
(71)  Applicant: SAP SE, Walldort (DE) 8,220,007 B1*  7/2012 Yeh oovovoeooooe GOG6F 8/65
719/328
(72) Inventors: Tejram Jagannath Sonwane, 8,667,514 B2*  3/2014 Rastogl ............... GOOF 9/44505

_ 719/328
gaﬂg‘aiore gﬁg gPl?r‘;‘egthg_naﬂ 0,009,739 B2* 4/2015 Labour .............. GOGF 9/44526
angalore . Rikesh Subedi, 719/37%
Hetauda (NP) 9,223,594 B2* 12/2015 Brown ............... GOGF 9/44526
9,250,926 B2* 2/2016 Allyn .................. GO6F 9/44526
: _ 9,262,187 B2* 2/2016 Sheehan ............. GO6F 9/44521
(73) Assignee: SAP SE, Walldort (DE) 0,684,547 B2*  6/2017 KISHC ©ovveveveerernn., GO6F 21/53
9,811,393 B2* 11/2017 Kiehtreiber ............... GO6F 9/54
Sy : : : : * 82018 Marathe .................... GO6F 9/54
(*) Notice: Subject to any disclaimer, the term of this 10,061,601 B2 _ .
: : 10,503,564 B2* 12/2019 Krsti .....oooovivinnnnnnn, GO6F 9/541
patent 1s extended or adjusted under 35 10.943.008 B2* 3/2021 Vinogradov ... GOGF 21/566
U.S.C. 154(b) by 191 days. 2007/0011332 Al* 1/2007 Raghavan .............. GOGF 8/656
709/226
(21) Appl. No.: 16/169,880 (Continued)
Primary Examiner — Umut Onat
(22) Filed: Oct. 24, 2018 (74) Attorney, Agent, or Firm — Enise 1P, P.A.
(57) ABSTRACT
(65) Prior Publication Data Systems, method, and computer programmable products are

described herein for generating application extension frame-
works for operating systems. A host application receives
data encapsulating a modification to an extension configu-
(51) TInt. CL ration file that defines one or more extensions for use by the
host application. The host application includes a plurality of

US 2020/0133687 Al Apr. 30, 2020

GO6F 9/445 2018.01 . S0 . .
GOGF 16/17 52019 0“% binary files. The host application provides the modified
CO6F 16/11 P extension configuration file to an extension framework for
(2019.01) . . .
COGF 9/54 2006.0° instantiation of a {irst extension of the one or more exten-
( 01) sions. The extension framework generates an interface for
(52) U.S. Cl. the first extension for communication with the extension
CPC ...... GO6F 9/44505 (2013.01); GOGF 9/44526 framework. A new application encompassing the extension

(2013.01); GO6F 9/541 (2013.01); GO6F framework, the first extension, and the host application 1s
16/122 (2019.01); GO6F 16/1734 (2019.01) generated without modification to the plurality of binary

(58) Field of Classification Search files of the host application. The first extension communi-

None cates with the extension framework via the intertace.

See application file for complete search history. 20 Claims, 5 Drawing Sheets

400

RECEIVE, BY HOST APPLICATION, DATA ENCAPSULATING

MODIFICATION TO EXTENSION CONFIGURATION FiLE DEFINING ONE
OR MORE EXTENSIONS |

420

PROVIDE, BY HOST APPLICATION, EXTENSION CONFIGURATION

FILE TO EXTENSION FRAMEWORK FOR INSTANTIATION OF
EXTENSION OF ONE OR MORE EXTENSIONS

430

GENERATE, BY EXTENSION FRAMEWORK, INTERFACE FOR
EXTENSION COMMUNICATION WITH EXTENSION FRAMEWORK

1440

GENERATE NEW APPLICATION ENCOMPASSING EXTENSION
FRAMEWORK, EXTENSION, AND HOST APPLICATION WITHOUT
MODIFICATION TO PLURALITY OF BINARY FILES OF HOST
APPLICATION



US 11,029,970 B2
Page 2

(56)

2010/0122313 AlL*
2012/0159423 Al*

2012/0331488 Al* 12/2012 Marathe ....................

2015/0095590 Al*

2017/0302458 Al* 10/2017 Berger ................
2020/0019410 AlL*

References Cited

U.S. PATENT DOCUM

* cited by examiner

5/2010 IVGI wovovverererne.

6/2012 Becker ................

4/2015 LU covviiiiiinn,

1/2020 Dima ........c.ccoeeeeen

GOO6F 21/6218

726/1

GOO6F 9/44526

717/102
GO6F 9/54

719/331

GO6F 9/4552

711/146

HO4L 63/0428
GOOF 9/448



US 11,029,970 B2

Sheet 1 of 5

Jun. 8, 2021

U.S. Patent

0cl

1 Ol

NOISNILXT
TYNYILXS m

111111111111111111111111111111111111111111111111111111111111

0ct
NHOMINV S
NOWWNOD

fffffffffffffffffffffffffffff R

......................................................................................... | S e
— " oct m S
OP L m m oLl

<> OHMOMINVEL >
SNOISNALXZE NOISNILXI NOILVOllddV LSOH

001 OIAS) 1M S.M3IdOT13A3A IHYMLAOS




US 11,029,970 B2

Sheet 2 of §

Jun. 8, 2021

U.S. Patent

¢ Ol

¥Gl * —
- é%mﬁ%._”_ 1 : (peoweiedy:bumg] Joip
2Gl 1 {Liswieie4:buing] Jop 18bb018108U0ND UimauadA L} edAybu
M._oamsﬁn_ MILEedA ] | adfyBu U ASateU)< | >uoisusixJieb+
AOLPHENRIAAD hgraweu)< >uoisuapiai+f| (1] :oBesseul)bo D+
* Ouur{] 1] [ JoBBoTajosuog || UOISUSIXZUE000TBI0SU0)
@mmm:mzm_mow LoIsUapGIabeUBWeIAD || | _ B .“
e . -~ HOMOUEL 1 (Doreweredrbung] 10|
- Jabboey amuradA] ‘| edfyBuig m
ovi 1 : ([ieeweiedybuug] 1oip (buigg Saleu )< § >uoisuax31eb+ | m
MOMBWeL yipiuredAL | adAyBuinglii: | | :ebessauw)fo O+ m
sabeuepjol BUBU)< | >UOISUBIXJIa0+ el Pbhojey | co_mcmﬁwkmmmcm_%_mwz m
B S [ - _
._mmm%%_mmzﬂ S_m%wmkm%%zm_mwz_ | T T 3 1 (epwesed;
” m ” | ﬁ Buyst 1oip Ui ‘edA g | redky
t _..Iul!.“...l..l.].ll.ll.llL O T oot tamnrrry o sosn e s AR 00 et £ Fe 8 R R et 6 8 PR r e e At _ ’
m ” “ m, v~ 1 m._mﬁmemaa_ 'Bug ‘eweu)< | >uosusxeb
m m W m UAS] oip (Bunguiedy
M T C (T 1 e edAL ) [df | ojuioisuapgfuoisuape-
e e . m oo s " adA) ‘UG etk | Lz T ——
................................................................................. : m “:1.._;:::.;::;:1:;::..;;:..:i:,.“ m VAHVCO_mCMmeu_mm.T | .um mcmﬁﬁgw:@ﬁnm L
= o | (nu+ 0E! + /
- ) S— ] OMOWIRI] ZEl
B - SlqIsue3 UOISUBIXT  +--=--==
: m.m..m .. + .. + , | | <<BOBLRMI>> ™\ o m
., 4« HOMBWELS | (Buing :abessew)fol+] | | — b m
Ot EEEOV ... S S
| - sid
sebeuepol | Jobbo | o
74 <<O0BLRI>> | 2 <<80BLBJUI> > T e < SUOISUGIXD
0L
\w NOILYOddY 1SOH
001 IR



ﬂ € Old

rwmmmm@&m__mmmmmmzmo_ e

i el SN Al W

jauleiuod o Jebbo el ppe'g?

US 11,029,970 B2

e, i vt vk duy dpdin s sbhat k. e gl pbhh ki

e ABBBOTBNA e e e e

e (GIUIRIE 4100007 <s0B60 7 > UOISUBIX 106G 7
| .

........._..................iiiii!iiiit_liiiiiiriit!i!ii!iii!iiii!iiiii!

i
m O} £
7 ; Jaureu09 0} Jabeueinsii4 ppe Y’
- “ ... [ puswoo osateuenan oz
- i , L Suieied
= | M Ol 1L'G'Z Jebeuepaii})<iebeueps)idi>uibnidied ¢z
2 ; _ | : T co.mcﬁxmhmmmmcmzm__ Jumay ==~
v Uoisus)xJebeusnaiid WUl ¥'7
s 186b079)14 m Jobeueia)i4 D‘AM ajqejieAe i ssbeueyel4 uines -
- M e m “ Jebeueisii-4 ANIGRIIBAR YIOUD €77
, } sanuspuadap yoeyd 7 _
= “ ] | SoPuepedep AR 2T <
~ LoIsUBIx3486007 Jabeuenoli4 - - diqejeae i 1obbooN4 UiMBs -~
- m 106507 ajiqeeAR I Y08Uo |7
= 0t 0Ee :
= “ -~ SUOISUBIX® UINJBI =~ =
m QuoIsusIxJesied 7’|
L[ 1esie4uoisuax3
m 0Ct
o e U] || e
&
- |
s \ JauIRIuON
o 006 _ Aouspuada(
- 0LE Zel

3519

iabeuepuoISUBIX

J8bbo8ji4 tinjal

(swesed
‘odA) 1aBB0 8 4) <8
660> u0IsU0IX3180
¢

VT — m_\ " - -

(yieohuy |

uoneoiddy 180
ol GOV JSOH



U.S. Patent Jun. 8, 2021 Sheet 4 of 5 US 11,029,970 B2

400

*J

; RECEIVE, BY HOST APPLICATION, DATA ENCAPSULATING
MODIFICATION TO EXTENSION CONFIGURATION FILE DEFINING ONE[
- OR MORE EXTENSIONS

-410

420
PROVIDE, BY HOST APPLICATION, EXTENSION CONFIGURATION {4
FILE TO EXTENSION FRAMEWORK FOR INSTANTIATION OF

EXTENSION OF ONE OR MORE EXTENSIONS

GENERATE, BY EXTENSION FRAMEWORK, INTERFACE FOR
EXTENSION COMMUNICATION WITH EXTENSION FRAMEWORK

GENERATE NEW APPLICATION ENCOMPASSING EXTENSION ] 140

FRAMEWORK, EXTENSION, AND HOST APPLICATION WITHOUT
MODIFICATION TO PLURALITY OF BINARY FILES OF HOST
APPLICATION




U.S. Patent Jun. 8, 2021 Sheet 5 of 5 US 11,029,970 B2

500

;

540

530

MICROPHONE |

DISPLAY

INPUT ST N
et | DISPLAY

INTERFACE LINTERFACE

COMMUNICATION |
PORTS |

CONTROLLER

516 520

FIG. 5



US 11,029,970 B2

1

OPERATING SYSTEM EXTENSION
FRAMEWORK

TECHNICAL FIELD

The subject matter described herein relates to extension
frameworks for operating systems.

BACKGROUND

Software applications, such as mobile phone applications,
are categorized into consumer applications and enterprise
applications. Consumer applications are directly connected
to the general public such as applications used to book a taxi,
tlight, and/or hotel. Enterprise applications are used to assist
organizations in solving the enterprise problems. Enterprise
applications developed by the enterprise software compa-
nies can be used by the corporate customers. Enterprise
application users may tailor enterprise applications in accor-
dance with varying features needed from a business per-
spective such as adding customized security features to the
application or customizing branding within the application.
Such customization, however, may not be compatible with
some operating systems which can prevent binary code
modification to developed applications.

SUMMARY

In one vanation a method generating a new application
includes receiving, by a host application, data encapsulating
a modification to an extension configuration file that defines
one or more extensions for use by the host application. The
host application 1includes a plurality of binary files. The host

application provides the modified extension configuration
file to an extension framework for instantiation of a first
extension ol the one or more extensions. The extension
framework generates an interface for the first extension for
communication with the extension framework. A new appli-
cation encompassing the extension framework, the first
extension, and the host application 1s generated without
modification to the plurality of binary files of the host
application. The first extension communicates with the
extension framework via the interface.

In some variations, executing the new application can
incorporate the first extension. The new application can
interface with an operating system and the first extension
can remain transparent to or undetectable by the operating
system.

In other varnations, the modification to the extension
configuration file can include adding of an external exten-
sion not previously defined by the extension configuration
file. The external extension can be the first extension.

In some variations, the external extension can include a
file manager or a file logger. The software developers kit can
include the host application and the extension framework.
The extension framework can be a middleware layer
between the host application and the first extension. The one
or more extensions can include a second extension and
instantiation of the second extension i1s dependent upon
instantiation of the first extension. The interface can be
stored within the first extension and can be generated to
comply with an interface protocol defined by the extension
framework.

Non-transitory computer program products (i.e., physi-
cally embodied computer program products) are also
described that store instructions, which when executed by
one or more data processors of one or more computing

10

15

20

25

30

35

40

45

50

55

60

65

2

systems, cause at least one data processor to perform opera-
tions heremn. Similarly, computer systems are also described
that may include one or more data processors and memory
coupled to the one or more data processors. The memory
may temporarily or permanently store mstructions that cause
at least one processor to perform one or more of the
operations described herein. In addition, methods can be
implemented by one or more data processors either within a
single computing system or distributed among two or more
computing systems. Such computing systems can be con-
nected and can exchange data and/or commands or other
istructions or the like via one or more connections, includ-
ing but not limited to a connection over a network (e.g., the
Internet, a wireless wide area network, a local area network,
a wide area network, a wired network, or the like), via a
direct connection between one or more of the multiple
computing systems, etc.

The subject matter described herein provides many tech-
nical advantages. For example, using the subject matter
described herein, a developer can rebuild an application to
add, delete, and/or modily features of an existing host
application without modifying binary files of that existing
host application. The rebuilt application can remain unde-
tectable to an operating system which may not permit
modification to such binary files.

The details of one or more variations of the subject matter
described herein are set forth in the accompanying drawings
and the description below. Other features and advantages of
the subject matter described herein will be apparent from the
description and drawings, and {from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 1llustrates a block diagram of an example software
developer’s kit;

FIG. 2 illustrates a block diagram of an example software
architecture of an example SDK;

FIG. 3 illustrates a workflow diagram for incorporating an
external extension with a host application;

FIG. 4 1s a process flow diagram illustrating the genera-
tion of a new application which incorporates an external
extension; and

FIG. 5 1s a diagram 1illustrating a sample computing
device architecture for 1mplementing various aspects
described herein.

Like reference symbols 1n the various drawings indicate
like elements.

DETAILED DESCRIPTION

Enterprise applications can incorporate a built-in set of
extensions. Some operating systems may prohibit the modi-
fication of binary files of these enterprise applications. Use
ol an extension framework can facilitate enhancement and/
or modification an application without modifying the binary
files of the application 1itself. The extension framework can
be used to interface between an external extension and the
host application. The external extension can be, for example,
an extension that 1s not within the built-in extensions of an
enterprise application, such that the external extension sub-
stitutes 1n for one or more built-in extensions of the enter-
prise application. The external extension can provide cus-
tomizable features such as branding or analysis not offered
by the bwlt-in extensions.

FIG. 1 1llustrates a block diagram of an example software
developer’s kit (SDK) 100. SDK 100 includes a host appli-

cation 110, a common framework 120, an extension frame-




US 11,029,970 B2

3

work 130, and one or more extensions 140. Host application
110 can define an extension configuration file of one or more
extensions 140 with which 1t can interface. Host application
110 can communicate with extension framework 130 to
instantiate one or more extensions 140. Common framework
120 can define various interfaces used by host application
110. Extension framework 130 can facilitate fetching of one
or more extensions 140 for use with host application 110.
There may be some circumstances under which an enterprise
or developer may want to customize the features of one or
more extensions 140 such as providing diflerent capabilities
or branding options. Such customization may not be able to
be performed on the one or more extensions 140 due to
operating system restrictions (€.g., an operating system may
prevent modification of binary files associated with one or
more extensions 140 or the host application 110). In this
case, an external extension 150 can be incorporated such that
the extensions framework 130 can route traflic to the exter-
nal extension 150 rather than to the one or more extensions
140, as described 1n more detail 1n FIG. 2. Such routing can
be transparent to the operating system running host appli-
cation 110. Using the extension framework 130, external
extension 150 can be incorporated to operate with host
application 110, and a new application can be generated
which encompasses the external extension 150 and the host
application 110. This new application facilitates the bypass
of one or more built-in extensions 140 without having to
modily any binary files associated with such extensions 140
or host application 110.

FI1G. 2 1llustrates a block diagram of an example software
architecture of SDK 100. Host application 110 can include
an extension configuration file 115 (e.g., “extension.plist™).
Extension configuration file 115 can include a listing of the
one or more built-in extensions 140 which can be used with
host application 110. Each extension listed within extension
configuration file 1135 can include, for example, a name, a
protocol name, and/or a default implementation name. Host
application 110 can call an extension (e.g., one of the
extensions 140 or external extension 150) by providing 1ts
name. The protocol name 1s a protocol or interface name
which can be implemented by other frameworks such as
common framework 120 or extension framework 130. Each
extension 140 may have one or more implementations. An
implementation element can contain the details of the frame-
works which has the implementation of the protocol or
interface name. The implementation element can contain the
framework name and/or a class name from a framework
which contains the implementation of a defined protocol
interface 134 (e.g., Extensible) from the extension frame-
work 130. When the extension framework 130 has an
implementation of a defined protocol interface 134, then, 1t
1s considered to be the compliant for an extension 130. Each
implementation framework may require some mput (e.g., a
passed argument element). Each passed argument element
can contain the name of the argument and an argument type.

Extension framework 130 can include an extension man-
ager 132 and a defined protocol interface 134 (e.g., Exten-
sible). Using the argument element and the argument type,
extension manager 132 can check the type of argument
passed from the host application 130. Defined protocol
interface 134 can be conformed and/or implemented by each
extension 140. Host application 100 can invoke an extension
manager 132 of extension framework 130. Host application
110 can provide the extension configuration file 115 to
extension manager 132. Whenever host application 110
needs any extension 140, 1t can mmvoke that extension
through extension manager 132. Host application 110 can

10

15

20

25

30

35

40

45

50

55

60

65

4

provide details about the protocols and their implementa-
tions through extension configuration file. Extension man-
ager 132 can invoke the extension 140 and provide an object
of implementation to the host application 110. Extension
manager 132 can also validate types of the implementations
and/or maintain a listing of dependencies between exten-
sions 140. If an extension 1s dependent one or more other
extensions 140 or external extension 150, extension man-
ager 132 can validate i depended upon extensions are
already placed in a dependency container, as discussed 1n
more detail in FIG. 3.

Common framework 120 stores defined interfaces for
cach of the extensions 140. These interfaces can be utilized
for a number of different host applications 110. FIG. 2
illustrates two example interfaces 1Logger protocol 122 and
iF1leManager protocol 124. In this example, 1L.ogger proto-
col 122 1s a defined protocol for a logger functionality used
by host application 110. IFileManager protocol 124 1s used
for various mput and/or output related functionalities asso-
ciated with host application 110. ILogger protocol 122 and
iF1leManager protocol 124 are example interfaces that can
defined and/or created by a developer of host application
110. Extension framework 130 1s mndependent of the inter-
faces within common framework 120.

As 1illustrated 1 FIG. 2, host application 110 can com-
municate with one or more extensions 140 (e.g., FileLogger
Framework 142, FileManager Framework 146). In some
cases, there can be a one to one correlation between a
protocol of the common framework 120 and an implemen-
tation of an extension 130. For example, implementation of
the FileManager Framework 146 can utilize the iFileMan-
ager protocol 124. In other cases, a single protocol can have
multiple implementations of an extension 140. For example,
FileLogger Framework 142 and ConsoleLogger Framework
144 can be implemented using a single protocol, 1Logger
protocol 122. In order to have the one or more extensions
140 communicate with 110 via extension framework 130,
the one or more extensions 140 must conform to the defined
protocol interface 134 of extension framework 130.

When host application 110 requires a particular type of
extension 130 (e.g., a file manager or a file logger), host
application 110 communicates with extension framework
130. The extension framework 130 checks to see which file
manager 1s registered with 1t as articulated within extension
configuration file 115. For a file manager that 1s within
extension configuration file 115, extension manager 132
creates an 1nstance of that particular file manager and
provides 1t to the host application 110.

Extension configuration file 115 can be a forward facing
file, editable, for example, by a developer. When a host
application 110 1s developed, the listing of extensions within
extension configuration file 115 can be a specific set of
extensions (e.g., extensions 140) permitted to interface with
host application 110.

Using the extension configuration file 115, a developer
can customize host application by defining an external
extension 1350 the host application should use 1n lieu of 1ts
built-in extensions 140. For example, a developer may want
to incorporate a diflerent file manager solution (e.g., an
external extension 150) such as a Good Dynamics (GD)
FileManager Framework 152. In order to incorporate
GDFileManager Framework 132, the libranies can be
wrapped to conform with the iFileManager protocol 124 and
defined protocol interface 134 (e.g., GDFileManagerExten-
sion 154). The extension configuration file 115 can be
modified to create an entry for GDFileManagerExtension
154. In this example, a new application can be generated




US 11,029,970 B2

S

which incorporates the GDFileManager Framework 152
(c.g., an external extension 150) in place of FileManager-
Framework 146 (e.g., a built-in extension 140) without
modifying any binary files of the host application 110 or
extensions 140. As the binary files are not modified, use the
external extension 150 can be transparent to or undetectable
by an operating system.

FIG. 3 illustrates a workflow diagram 300 for incorpo-
rating an external extension 150 in an host application 110
build. Host application 110 instantiates, at 1, the extension
manager 132. Host application 110 passes the file path of
extension configuration file 115 as a nput parameter to
extension manager 132. Extension manager 132 instantiates,
at 1.1, a dependency container 310. Dependency container
310 contains the extension and/or services which are
invoked by the extension manager 132. Extension manager
132 parses, at 1.2, the information of the extension configu-
ration file 115. After parsing the extension configuration {file
115, extension manager 132 1s ready to mnvoke one or more
extensions 140 or an external extension 150. An object of
these extensions 140, 150 1s returned, at 1.3, by extension
manager 132 to the host application 110. In this example,
host application 110 needs to create an extension of FileL-
ogger 360. It invokes, at 2, a function (e.g., “getExtension™)
via extension manager 132. Extension manager 132 passes,
at 2.1, the extension name as an input parameter to depen-
dency container 310. Host application may request either a
default implementation of FileLogger 360 (e.g., a built-in
extension 140 such as FileLogger Framework 142) or it can
ask for a specific implementation of FileLogger 360 (e.g., an
external extension 150) from extension manager 132. Exten-
sion manager 132 checks, at 2.1, 11 the requested FileLogger
360 extension 1s available 1n the dependency container 310.
If the requested FileLogger 360 1s already available 1n
dependency container 310, then extension manger 132 sends
back the FileLogger 360 to the host application 110. If the
FileLogger 360 extension 1s not available 1n dependency
container 310, then extension manger 132 creates a instan-
tiation of the FileLogger 360.

An 1nstantiation of the FileLogger 360 can be created, by
extension manager 132 checking, at 2.2, for the dependen-
cies to create the extension. In this example, FileLogger 360
1s dependent on FileManager 340. Extension manager 132
checks availability, at 2.3, of FileManager 340 in depen-
dency container 310. If FileManager 340 1s available, then
dependency container 310 returns the FileManager 340
extension to extension manager 132. If FileManager 340 1s
not available 1n the dependency container 310, then exten-
sion manager 132 has to instantiate new FileManager 340.
A new FileManager 340 can be instantiated by extension
manager 132 checking 11 host application 110 uses the
default file manager (e.g., built-in extension 140 such as
FileManager Framework 146) or an external file manager
(c.g., external extension 1350 such as GDFileManager
Framework 152) as defined by the extension configuration
file 115. Extension manager 132 invokes the file manager
extension by sending, at 2.4, an instantiate FileManagerEx-
tension request to FileManagerExtension 330 using the class
name of file manager extension defined within the extension
configuration file 115. Extension manager 132 creates an
object of file manager extension using a reflection method
(e.g., by instantiating the object from class name) conform-
ing to the defined protocol interface 134. Once a file
manager extension object 1s created, extension manager 132
invokes, at 2.5, a getExtension method to create object of
FileManager 340. This method can require a dictionary for
input parameters where the parameter name 1s a key and

10

15

20

25

30

35

40

45

50

55

60

65

6

parameter value 1s a value. The getExtension method of file
manager extension 330 can read a dictionary and create a file
manager object (e.g., FileManager 340) by passing all input
parameters, at 2.5.1. One the file manager object 1s created,
manager adds, at 2.6, the file manager object (e.g., FileMan-
ager 340) to the dependency container 310. The dependency
container 310 checks i1 this object 1s available. I the object
1s not available, the file manager object (e.g., FileManager
340) 1s stored inside the dependency container 310.

Once all dependencies are prepared to create a FileLogger
360, then extension manager 132 ivokes the file logger
extension, at 2.7. Once the LoggerExtension 350 1s created,
at 2.8, then extension manager invokes the getExtension
method of file logger extension to get the object of file
logger. Extension manager 132 passes the dictionary con-
taining the file manager object which 1s required to 1nstan-
tiate the file logger object (e.g. FileLogger 360). The file
logger object 1s stored, at 2.9, 1n the dependency container
310. The created file logger object 1s then returned by the
extension manager 132 to host application 110. Host appli-
cation can then use the file logger object (e.g., FileLogger
360) for logging purposes, at 3.

FIG. 4 1s a process tlow diagram 400 illustrating the
generation of a new application which incorporates an
external extension 150. Host application 110 receives, at
410, a modification to an extension configuration file 115
defining one or more extensions 140. Host application 110
includes a plurality of binary files. The modification includes
an addition of an external extension 130 not previously
incorporated within extensions 140. The extension configu-
ration {ile 115 1s provided, at 420, by the host application 110
to the extension framework 130 for instantiation of the
extension (e.g., external extension 150) within extension
configuration file 115. An mterface (e.g., GDFileManager-
Extension 154) for the external extension 150 can be gen-
erated which correlates to a defined protocol interface 134 of
the extension framework 130. A new application can be
generated, at 440, encompassing the extension framework
130, the external extension 150, and the host application 110
without modification to the plurality of binary files of the
host application 110.

One or more aspects or features of the subject matter
described herein can be realized in digital electronic cir-
cuitry, integrated circuitry, specially designed application
specific 1ntegrated circuits (ASICs), field programmable
gate arrays (FPGAs) computer hardware, firmware, sofit-
ware, and/or combinations thereof. These various aspects or
features can include implementation in one or more com-
puter programs that are executable and/or interpretable on a
programmable system including at least one programmable
processor, which can be special or general purpose, coupled
to receive data and instructions from, and to transmit data
and 1instructions to, a storage system, at least one 1nput
device, and at least one output device. The programmable
system or computing system can include clients and servers.
A client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

These computer programs, which can also be referred to
as programs, soltware, soltware applications, applications,
components, or code, include machine instructions for a
programmable processor, and can be implemented 1n a
high-level procedural language, an object-oriented program-
ming language, a functional programming language, a logi-
cal programming language, and/or in assembly/machine




US 11,029,970 B2

7

language. As used herein, the term “computer-readable
medium” refers to any computer program product, apparatus
and/or device, such as for example magnetic discs, optical
disks, memory, and Programmable Logic Devices (PLDs),
used to provide machine instructions and/or data to a pro-
grammable processor, including a computer-readable
medium that recerves machine instructions as a computer-
readable signal. The term “computer-readable signal” refers
to any signal used to provide machine instructions and/or
data to a programmable processor. The computer-readable
medium can store such machine imstructions non-transito-
rily, such as for example as would a non-transient solid-state
memory or a magnetic hard drive or any equivalent storage
medium. The computer-readable medium can alternatively
or additionally store such machine instructions in a transient
manner, for example as would a processor cache or other
random access memory associated with one or more physi-
cal processor cores.

FIG. § 1s a diagram 500 1llustrating a sample computing,
device architecture for implementing various aspects
described heremn. A bus 304 can serve as the information
highway interconnecting the other 1llustrated components of
the hardware. A processing system 308 labeled CPU (central
processing unit) (e€.g., one or more computer processors/data
processors at a given computer or at multiple computers),
can perform calculations and logic operations required to
execute a program. A non-transitory processor-readable stor-
age medium, such as read only memory (ROM) 512 and
random access memory (RAM) 516, can be 1n communica-
tion with the processing system 508 and can include one or
more programming instructions for the operations specified
here. Optionally, program instructions can be stored on a
non-transitory computer-readable storage medium such as a
magnetic disk, optical disk, recordable memory device, flash
memory, or other physical storage medium.

In one example, a disk controller 548 can 1nterface one or
more optional disk drives to the system bus 504. These disk
drives can be external or internal floppy disk drives such as
560, external or internal CD-ROM, CD-R, CD-RW or DVD,
or solid state drives such as 552, or external or internal hard
drives 556. As indicated previously, these various disk
drives 552, 356, 560 and disk controllers are optional
devices. The system bus 504 can also include at least one
communication port 520 to allow for communication with
external devices either physically connected to the comput-
ing system or available externally through a wired or wire-
less network. In some cases, the communication port 520
includes or otherwise comprises a network interface.

To provide for interaction with a user, the subject matter
described herein can be implemented on a computing device
having a display device 540 (e.g., a CRT (cathode ray tube)
or LCD (liqud crystal display) monitor) for displaying
information obtained from the bus 504 to the user and an
input device 532 such as keyboard and/or a pointing device
(e.g., a mouse or a trackball) and/or a touchscreen by which
the user can provide mput to the computer. Other kinds of
input devices 532 can be used to provide for interaction with
a user as well; for example, feedback provided to the user
can be any form of sensory feedback (e.g., visual feedback,
auditory feedback by way of a microphone 536, or tactile
teedback); and input from the user can be received 1n any
form, including acoustic, speech, or tactile input. In the mput
device 532 and the microphone 336 can be coupled to and
convey nformation via the bus 304 by way of an iput
device interface 3528. Other computing devices, such as
dedicated servers, can omit one or more of the display 540

10

15

20

25

30

35

40

45

50

55

60

65

8

and display interface 514, the mput device 532, the micro-
phone 536, and input device interface 528.

To provide for iteraction with a user, the subject matter
described herein can be implemented on a computer having
a display device (e.g., a CRT (cathode ray tube) or LCD
(liguid crystal display) monitor) for displaying information
to the user and a keyboard and a pointing device (e.g., a
mouse or a trackball) and/or a touchscreen by which the user
can provide input to the computer. Other kinds of devices
can be used to provide for interaction with a user as well; for
example, feedback provided to the user can be any form of
sensory feedback (e.g., visual feedback, auditory feedback,
or tactile feedback); and input from the user can be received
in any form, including acoustic, speech, or tactile mput.

In the descriptions above and 1n the claims, phrases such
as “at least one of” or “one or more of”” may occur followed
by a conjunctive list of elements or features. The term
“and/or” may also occur 1n a list of two or more elements or
features. Unless otherwise mmplicitly or explicitly contra-
dicted by the context in which it 1s used, such a phrase 1s
intended to mean any of the listed elements or features
individually or any of the recited elements or features in
combination with any of the other recited elements or
teatures. For example, the phrases “at least one of A and B;”
“one or more of A and B;” and “A and/or B” are each
intended to mean “A alone, B alone, or A and B together.”
A similar interpretation 1s also intended for lists including
three or more items. For example, the phrases “at least one
of A, B, and C;” “one or more of A, B, and C:;” and “A, B,
and/or C” are each intended to mean “A alone, B alone, C
alone, A and B together, A and C together, B and C together,
or A and B and C together.” In addition, use of the term
“based on,” above and 1n the claims 1s intended to mean,
“based at least 1n part on,” such that an unrecited feature or
clement 1s also permissible.

The subject matter described herein can be embodied 1n
systems, apparatus, methods, and/or articles depending on
the desired configuration. The implementations set forth in
the foregoing description do not represent all implementa-
tions consistent with the subject matter described herein.
Instead, they are merely some examples consistent with
aspects related to the described subject matter. Although a
few variations have been described 1n detail above, other
modifications or additions are possible. In particular, further
features and/or variations can be provided 1n addition to
those set forth herein. For example, the implementations
described above can be directed to various combinations and
subcombinations of the disclosed features and/or combina-
tions and subcombinations of several further features dis-
closed above. In addition, the logic flows depicted 1n the
accompanying figures and/or described herein do not nec-
essarily require the particular order shown, or sequential
order, to achieve desirable results. Other implementations
may be within the scope of the following claims.

What 1s claimed 1s:

1. A method for implementation by one or more data
processors forming one or more computing devices, the
method comprising:

recerving, by a host application, data encapsulating a

modification to an extension configuration file that
defines one or more extensions for use by the host
application, wherein the host application comprises a
plurality of binary files;

providing, by the host application, the modified extension

configuration file to an extension framework for instan-
tiation of a first extension of the one or more exten-
S10NS;




US 11,029,970 B2

9

generating, by the extension framework, an interface for
the first extension for communication with the exten-
sion framework; and

building and generating, by the extension framework, a
new application encompassing the extension frame-
work, the first extension, and the host application
without modification to the plurality of binary files of
the host application, wherein the {irst extension com-
municates with the extension framework via the inter-

face;

wherein the new application interfaces with an operating
system that prevent modification of binary files asso-
ciated with the one or more extensions and the first
extension remains undetectable by the operating sys-
tem.

2. The method of claim 1, further comprising executing,
the new application which incorporates the first extension.

3. The method of claim 1, wherein the modification to the
extension configuration file comprises adding of an external
extension not previously defined by the extension configu-
ration file, wherein the external extension is the first exten-
S101.

4. The method of claim 3, wherein the external extension
comprises a file manager or a file logger.

5. The method of claim 1, wherein a software developers
kit comprises the host application and the extension frame-
work.

6. The method of claim 1, wherein the extension frame-
work 1s a middleware layer between the host application and
the first extension.

7. The method of claim 1, further comprising determining,
by the extension framework, whether any one of the one or

more extensions are dependent upon another one of the one
or more extensions wherein the one or more extensions
includes a second extension and instantiation of the second
extension 1s dependent upon instantiation of the first exten-
S101.

8. The method of claim 1, wherein the interface 1s stored
within the first extension and 1s generated to comply with an
interface protocol defined by the extension framework.

9. A system comprising:

at least one data processor; and

memory storing instructions, which when executed by at

least one data processor, result 1n operations compris-

ng:

receiving, by a host application, data encapsulating a
modification to an extension configuration file that
defines one or more extensions for use by the host
application, wherein the host application comprises a
plurality of binary files;

providing, by the host application, the modified exten-
s1on configuration file to an extension framework for
instantiation of a first extension of the one or more
extensions;

generating, by the extension framework, an interface
for the first extension for communication with the
extension framework; and

building and generating, by the extension framework, a
new application encompassing the extension frame-
work, the first extension, and the host application
without modification to the plurality of binary files of
the host application, wherein the first extension
communicates with the extension framework via the
interface:

wherein the new application interfaces with an operating

system that prevent modification of binary files asso-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

ciated with the one or more extensions and the first
extension remains undetectable by the operating sys-
tem.
10. The system of claim 9, wherein the operations further
comprise executing the new application which incorporates
the first extension.
11. The system of claim 9, wherein the modification to the
extension configuration file comprises adding of an external
extension not previously defined by the extension configu-
ration file, wherein the external extension 1s the first exten-
S1011.
12. The system of claim 11, wherein the external exten-
sion comprises a file manager or a file logger.
13. The system of claim 9, wherein a soitware developers
kit comprises the host application and the extension frame-
work.
14. The system of claim 9, wherein the extension frame-
work 1s a middleware layer between the host application and
the first extension.
15. The system of claim 9, wherein the one or more
extensions includes a second extension and instantiation of
the second extension 1s dependent upon instantiation of the
first extension.
16. The system of claim 9, wherein the 1nterface 1s stored
within the first extension and 1s generated to comply with an
interface protocol defined by the extension framework.
17. A non-transitory computer programmable product
storing instructions which, when executed by at least one
data processor forming part of at least one computing
device, implement operations comprising:
receiving, by a host application, data encapsulating a
modification to an extension configuration file that
defines one or more extensions for use by the host
application, wherein the host application comprises a
plurality of binary files;
providing, by the host application, the modified extension
configuration file to an extension framework for instan-
tiation of a first extension of the one or more exten-
S10NS;

generating, by the extension framework, an interface for
the first extension for commumnication with the exten-
sion framework; and

building and generating, by the extension framework, a

new application encompassing the extension frame-
work, the first extension, and the host application
without modification to the plurality of binary files of
the host application, wherein the first extension com-
municates with the extension framework via the inter-
face;

wherein the new application interfaces with an operating

system that prevent modification of binary files asso-
ciated with the one or more extensions and the first
extension remains undetectable by the operating sys-
tem.

18. The non-transitory computer programmable product
of claam 17, wherein the operations further comprising
executing the new application which 1ncorporates the first
extension.

19. The non-transitory computer programmable product
of claim 17, wherein the external extension comprises a file

manager or a file logger.

20. The non-transitory computer programmable product
of claim 17, wherein a software developers kit comprises the
host application and the extension framework and the exten-




US 11,029,970 B2
11

sion framework 1s a middleware layer between the host
application and the first extension.

¥ H H ¥ ¥

12



	Front Page
	Drawings
	Specification
	Claims

