12 United States Patent

Tiagi et al.

US011025514B2

US 11,025,514 B2
Jun. 1, 2021

(10) Patent No.:
45) Date of Patent:

(54) AUTOMATIC HEALTH CHECK AND
PERFORMANCE MONITORING FOR
APPLICATIONS AND PROTOCOLS USING
DEEP PACKET INSPECTION IN A

(71)
(72)

(73)

(%)

(21)
(22)

(65)

(60)

(1)

(52)

DATACENTER

Applicant: Nicira, Inc., Palo Alto, CA (US)

Inventors: Alok S. Tiagi, Sunnyvale, CA (US);
Jayant Jain, Cupertino, CA (US);
Anirban Sengupta, Saratoga, CA (US);
Srinivas Nimmagadda, San Jose, CA
(US); Rick Lund, Livermore, CA (US)

Assignee:

Notice:

NICIRA, INC., Palo Alto, CA (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1007 days.

Appl. No.:

Filed:

14/994,661

Jan. 13, 2016

Prior Publication Data

US 2017/0126516 Al

May 4, 2017

Related U.S. Application Data
Provisional application No. 62/248,540, filed on Oct.

30, 2015.

Int. CIL.

HO4L 12/26
HO4L 29/08
HO4L 29/06
HO4L 12/24

U.S. CL

(2006.01)
(2006.01)
(2006.01)
(2006.01)

CPC HO4L 43/04 (2013.01); HO4L 67/02
(2013.01); HO4L 67/1002 (2013.01); HO4L

69/22 (2013.01); HO4L 41/5009 (2013.01)

314

(38) Field of Classification Search
CPC HO4L 41/0896; HO4L 43/08; HO4L 47/10;
HO4L 47/20

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,995,459 Bl 3/2015 Bharghavan et al.

9,264,313 Bl 2/2016 Manugur et al.

9,686,192 B2 6/2017 Sengupta et al.
2006/0233101 Al* 10/2006 Luftcooevv. HO04L 41/0896
370/229
2011/0194563 Al* 8/2011 Shen GO6F 9/45558
370/395.52

(Continued)

OTHER PUBLICATTIONS

Author Unknown, “ManageEngine: NetFlow Analyzer,” Month

Unknown 2018, 3 pages, ZohoCorp, retrieved at https://www.
manageengine.com/products/netflow/.

(Continued)

Primary Examiner — Philip] Chea
Assistant Examiner — Mohammed Ahmed

(74) Attorney, Agent, or Firm — Adel1 LLP

(57) ABSTRACT

A method of collecting health check metrics for a network
1s provided. The method, at a deep packet inspector on a
physical host 1n a datacenter, receives a copy of a network

packet from a load balancer. The packet includes a plurality
of layers. Each layer corresponds to a communication pro-
tocol 1n a plurality of communication protocols. The method
identifies an application referenced i1n the packet. The
method analyzes the information in one or more layers of the
packet to determine metrics for the source application. The
method sends the determined metrics to the load balancer.

18 Claims, 15 Drawing Sheets

313 320

/308 /303 yd
ws | he >l as [k DS
' \\//
WS | \\‘ l/”/ AS X“v}l/
WS, Q‘GI" > A4S Q%(.Q‘ Al Ds
330 %‘)‘\“ /”}‘-%
:m 30 N
340 = ~ h;ﬂ;ﬁgfﬁﬁ%ﬁﬂiﬁ; O~ > T st
“J Application 330 Application

g

metnes

—

N

g S -

lrcs

US 11,025,514 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2012/0041965 Al1* 2/2012 Vasquez HO4L 43/028
707/758
2012/0155255 Al1* 6/2012 Gerber HO041. 41/0896
370/230
2013/0198319 Al 8/2013 Shen et al.
2013/0297802 Al* 11/2013 Laribi HO4L 12/6418
709/226
2014/0059544 Al 2/2014 Koganty et al.
2014/0226478 Al* 8/2014 Manuguri HO041. 47/12
370/235
2015/0085695 Al 3/2015 Ryckbosch et al.
2015/0089331 Al* 3/2015 Skerry GO6F 9/45533
714/799

OTHER PUBLICATIONS

Author Unknown, “NBAR Monitor: Analyze, Recognize and Clas-
sify Real Time Application Traffic using NBAR,” ManageEngine—
NetFlow Analyzer, Month Unknown 2018, 2 pages, Zoho Corp,
retrieved at https://www.manageengine.com/products/netflow/nbar-

monitor.html.

Hetland, Steve, “AppDynamics End User Experience,” AppDynam-
ics Pro 3.8 Documentation, Mar. 7, 2014, 2 pages, AppDynamics
LLC, retrieved at https://docs.appdynamics.com/display/PRO14S/
AppDynamics+End+User+Experience.

Ohlhorst, Frank, “Review: Deep Packet Inspection Comes to Solarwinds
NPM,” Sep. 16, 2014, 6 page, retrieved at http://www.
enterprisenetworkingplanet.com/netsysm/review-deep-packet-
inspection-comes-to-solarwinds-npm.html.

* cited by examiner

@\ |
as
M M V\ kQ.kaN
) .
v [‘oL
—1 CT1 Cll ¥01
Y
Y
w E -
CI1
B n
-~
=
y—
= ¢L1 oLgen
m SI0A)OU
Cl1
y—
S
3 ¢O1 101
— S
= \ s1enoed sjayoed A0 00¢ d11H
- asuodsay asuodsa
= < 181
| [6] I®l] 48\
308Y0 10] 19¥oed
Nd HIBYD Lijesy eauiuialasp J0UD Ules
m yileay auiuiielep 01 JUSS S}eXIB ke L o
O 0] 1U8S S}aYorR
~
111 081
Dnm CIT >) /
. 0ol
S. 001

Sheet 2 of 15 US 11,025,514 B2

Jun. 1, 2021

U.S. Patent

- TS A JO14
- N@Qmﬂrﬁ ~ N ww\ P AN
21 7 ‘ol

IDAIOG
_ v [t

101097]0))

F0102]]0) COT TO132{10)

F

LI SRS
YieeH

SELTLA AN
UHEH

SIB)S
UijevH

N LT
7S¢

Moeqpeo)
SNeIs yjeay
P8108)]00 Jusby

yorqpes|
sSNJe1s yleay
Pa108[j00 Jusby

yORgPes)
SNje}s yijesy

N Pa109|109 uaby

Sl oujen
SIOM]OU
S11
101

Sd HIE(PoY]
SNeIs yijeau

091098(100 Juaby

AVEQpPoY]
sNie1s yyeoay
PB109)]00 Uy

yoeqpes)
SNie1s yleey
P8109[|00 Usby

1L¢

S

CTT Y ~ ! IOATIG 11 %
¢l \“ - ./.... _., uonestjddy 07 N._,“
ome .,..zx......... x\x
) St T
L1C ¢1¢

U.S. Patent Jun. 1, 2021 Sheet 3 of 15 US 11,025,514 B2

\\ 9 '/
/P DARAY 45
// ‘/ K ~\\
/

£
N

AR ~
X ""'é“ \ Ul

)4”‘0,0’. \& !

Fig. 3

E
m

ol
==

-
x ol —
= S
C 5o«
@ O =

W

1SOH

US 11,025,514 B2

Sheet 4 of 15

Jun. 1, 2021

jaouel|eg peo
pue auibue |4 Ad

2|q1SS900k AIOWSIN

06t

U.S. Patent

¢t

dursuy (1)
uonoadsuy 1a50ed

- doo(q Sunuowodur |

JNA 901AISS

1aouereyqg
peo]

SOLIIOIN]

uoneorddy

0t
10

(A AW SUIpIeAI0] POSRURIA

St $C¥

| JINA

Ot 10V

Sev

00

US 11,025,514 B2

Sheet 5 of 15

Jun. 1, 2021

00¢

U.S. Patent

peojAed
d.LLH

JpPB
A 1apeH (ddn Ew mm
10dDL) +1
IIII
01¢ 0CS
0€S OtS 0SS

IdpeaH
(OVIN) 71

09¢

U.S. Patent Jun. 1, 2021 Sheet 6 of 15 US 11,025,514 B2

mmmn_““
"Ih‘m
.

"“_nn
s
T
o

> - P SRS S—S—————————— - - o b - \
7 605 L2 4o SSL connection status: N
i\ header Failed due to invalid certificate !

- w

- T : h-q...‘:_‘h ““““““““““““““““““““ g _ fﬁﬂﬂﬂ;ﬁ# -
415 S -7 480
Response packet from 605
Server 1
' Deep Packet
Load Balancer Inspection (DPI)

Engine

SSL connection from
Application 1 to Server 1

failed due to invalid
certificate

620

485

625

Application

Metrics

640 ,,*f-’ . ~
635 L2 | 4o SSL. connection status: E.:l *\
' header Success /
~ — d

415 RN - 480

__________ _ 635
| Server 2
Deep Packet
Engine

SSL connection from
Application to Server 2
succeeded

650

Update application 1
and server 2 metrics

Mark server 1 as failed 485

Application
Metrics

U.S. Patent Jun. 1, 2021 Sheet 7 of 15 US 11,025,514 B2

700
- recr— . 705
n3

Record overflow 730

Decompression failure 735

Handshake failure 740)
No certificate
Bad certificate

Unsupported certificate

-]
A
o 3

Certificate revoked 760
Certificate expired 265
Certificate unknown 770
lllegal parameter 775
Unknown CA
780
Access deniea
_ . r— ——— . 785
790
Decrypt error
Export restriction
794
Protocol version
_ — - 704
Insufficient security -
796
| 798
User canceled

Unsupported extension

Fig. 7

1S0H 0ct

10

(LA 0w SUIPIEMIO,] POSBUBIA

US 11,025,514 B2

OLY OTH

CoT LY Cey
- QUIBUH (1D
ot uonoadsuy 19308
oM doo(q Sunpudwayduny
= INA 3JIAISS
e :
W
=
e 088
suoneosidde
sumruni) Jjo
SOURB)SUI [Tk JO suod SO
m (dAN/dDL) #1 uonesnddy
Q =
— STt
= ¢0%
=
-
CCv CCy
| JINA_ OINA_
e O ¢
cOy 101

003

U.S. Patent

U.S. Patent Jun. 1, 2021 Sheet 9 of 15 US 11,025,514 B2

900

Start

905

Receive a copy of a packet from a load balancer

910
Parse the packet to identify source, destination,

and the protocols used in different layers of the
packet

Analyze the information in different layers of the 915
packet to perform auto discovery and determing
metrics for applications and/or protocols
identified 1n the packet

920

Provide the metrics to the load balancer

End

Fio. 9

U.S. Patent Jun. 1, 2021 Sheet 10 of 15 US 11,025,514 B2

1000
1005
Receive a packet sent by a server or application to /
a port of the MFE
1010
Determine the tlow (or the session) to which the
packet belongs
1015
A predetermined number of Yes

packets for the current flow previously
sent to the DPI engine?

No 1025 1020

Forward the packet to a

Forward the packet to a destination based on a set AOb
destination based on a set of load

balancing rules

of load balancing rules

Forward a copy of the packet to the DPI engine

1030

1035

Update the number of packets sent to the DPI
engine tor the current flow

1040
Recelve metrics for the packet from the DPI
CNgine
1045
Take actions (af required) based on the metrcs
provided by the DPI engine
1050

Store or update network metrics

Fig. 10

End

U.S. Patent Jun. 1, 2021 Sheet 11 of 15 US 11,025,514 B2

Start 1100

1103 /

1110

Receive a copy of a packet from a load balancer

Parse the paCket to identify source, destination,
the protocols used, status codges, etc., 1n different
layers of the packet

115

Packet is received from Yes

an application 1 response to a previously
sent request?

1120

No

Calculate the response
time of the application

11235

res Packet 1s a read or write as the d]ffe%'ence
request for a database? between the time the
request was sent and the
time the response was
_________________________ 1130 received

Update the frequency
of access to the
particular database

No

1140

o Yes
Packet content indicates

a {ailed response?

Update the number of | 1135
database operations

performed by the No 1145 o
application that 1s . Updfllt@‘ the availability
accessing the database statistics for the
particular failed
application
__________________________ . - 1150
Provide the metrics to the load balancer
End

Fig, 11

U.S. Patent Jun. 1, 2021 Sheet 12 of 15 US 11,025,514 B2

A / ES
KNAXA]
AN i
""b :

AN

U.S. Patent Jun. 1, 2021 Sheet 13 of 15 US 11,025,514 B2

1300

4

13035

Start

Identify a set of one or more user traffic packets as packets that can be used

for different types of health check

1310

Store the 1dentified packets for load balancer 1nitiated health check

1315

The network or one or more portions No

of the network has been 1dle for a
predetermined amount of time?

Yes

1320

Identify one or more stored packets for performing health check on the
idle portions of the network

1325

Retrieve the packets from the packet storage

1330

Send the packets from the load balancer to destinations for load balancer

1mitiated health check

End

U.S. Patent Jun. 1, 2021 Sheet 14 of 15 US 11,025,514 B2

1300
1335
Recelve the response packets
1340
Forward the response packets to the DPI engine
1345
Receive metrics for the packets from the DPI engine
1350
Take actions (if required) based on the metrics provided by the DPI engine
1335

Store or update network metrics

End

Fig. 158

pI Sl

US 11,025,514 B2

044"
c7p| OL¥l oYL
S32IAS S)uu
1nduj Pbuissad0.d

nk

Qo

&

\f,

Y

2

e

9

—_ eloj 4

g

—

gl

1-..,.

= 4/
o

—_

S32INA8(] AOWBSIN
. abelo
1Nd1NO WS)SAS S 0oL
0ZPl
GeEPl

144’

U.S. Patent

US 11,025,514 B2

1

AUTOMATIC HEALTH CHECK AND
PERFORMANCE MONITORING FOR
APPLICATIONS AND PROTOCOLS USING

DEEP PACKET INSPECTION IN A
DATACENTER

CLAIM OF BENEFIT TO PRIOR
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application 62/248,540, filed Oct. 30, 2015. U.S.
Provisional Patent Application 62/248,540 1s incorporated
herein by reference.

BACKGROUND

In a datacenter an operator gets a view of how the
resources such as storage, network, and processors are
performing by the feedback recerved from network inira-
structure, compute nodes, and storage nodes. This feedback
1s helpiul for checking performance and detecting hot areas
in the datacenter and implementing ways to ensure a bal-
anced use of resources.

Similarly 1t 1s important to monitor metrics for applica-
tions that run 1n the datacenter. At the application level it 1s
not only the datacenter operator who 1s interested in the
metrics, but 1t can be people from program management,
analytics, or development fields. Thus an even richer set of
metrics 1s required which can be, for example, related to
application user experience, frequency of reads and writes to
the database, and application availability statistics.

To collect these metrics 1t may be required to query
different resources such as storage nodes, compute nodes,
edge servers, or the network infrastructure. Sometimes 1t
may be necessary to introduce additional changes to the
application code, or deploy or reserve compute resources to
collect these metrics. In the case of a distributed application
such as a clustered database, collecting metrics from these
individual resources may not give a complete picture as to
how the application 1s performing within different areas of
a datacenter or across the datacenters. Additionally the
metrics can be stale since they are queried at intervals and
may not provide a real time picture.

Typically the only scripted health checks that are done are
at the HT'TP level by the load balancers and the servers are
marked up or down based on the health check results. No
obvious 1nsight 1s available for the mnner tiered application
performance or outages, which could be making the outside
HTTP health check fail intermittently. ITf the inner tier
application level health checks are required, these actions for
performing the health check has to be specifically scripted
for each application at the application load balancer. Alter-
natively, specific agents need to be installed 1n each appli-
cation whose output 1s then fed out of band into the load
balancer for determining the availability and performance.

Some of the current solutions require code 1njection nto
the application to collect various application level health and
performance metrics. For instance 1n a solution for web
applications, code 1s mjected into the webpage source code.
Similarly the source code of mobile applications 1s modified
to start statistics collections. Controllers are required to
collect these statistics. In case of database metrics, addi-
tional resources have to be reserved and installed to run
agents that connect to different types of databases and collect
performance and health information from them. Again as the
number of databases required to be momitored increases
additional licenses are required for the agents.

10

15

20

25

30

35

40

45

50

55

60

65

2

Other solutions require code instrumentation, €.g., 1n a
Java application to monitor the application and collect
metrics. To monitor databases, an agent 1s required that can
connect to a database server. The agents are required for any
other specific applications that require monitoring. The
above approaches result in additional configurations and
maintenance.

BRIEF SUMMARY

Some embodiments utilize the network traflic to 1nspect
packets payload to collect application metrics. The traflic to
and from applications running on virtual machines 1s ana-
lyzed by using deep packet mnspection. Deep packet imnspec-
tion can go beyond different layer headers and detect the
application referenced in the packet and extract additional
metadata for the application. Network packets that carry
database operations such as reads and writes requested by an
application are detected and are used, for example, to
calculate the number of database operations done by the
application.

In band auto discovery of applications and protocols and
automatic health checks for these applications and protocols
are performed by detecting the protocol being transacted. In
some embodiments, a deep packet inspection engine runs 1n
cach host of the datacenter. The deep packet engine receives
a set of packets from a load balancer and provides an
automatic application discovery and health monitoring ser-
vice. The deep packet engine analyzes the received packet
traflic and collects application metrics. The application
metrics 1s then provided to the load balancer to act upon. In
order to provide automatic application health and perfor-
mance, there 1s no need to connect to any resource and does
not require additional configurations for monitoring. Instead
the required information 1s taken from the user tratlic in the
network. In addition, the deep packet inspection mechanism
1s provided in the hosts within a datacenter and there 1s no
need for an external application to connect to the virtual
machines or databases.

The preceding Summary 1s mtended to serve as a brief
introduction to some embodiments of the invention. It 1s not
meant to be an infroduction or overview of all of the
inventive subject matter disclosed in this document. The
Detailed Description that follows and the Drawings that are
referred to 1n the Detailed Description will further describe
the embodiments described in the Summary as well as other
embodiments. Accordingly, to understand all the embodi-
ments described by this document, a full review of the
Summary, Detailed Description and the Drawings 1s needed.
Moreover, the claimed subject matters are not to be limited
by the 1llustrative details in the Summary, Detailed Descrip-
tion and the Drawing, but rather are to be defined by the
appended claims, because the claimed subject matters can be
embodied in other specific forms without departing from the
spirit of the subject matters.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the
appended claims. However, for purposes of explanation,
several embodiments of the mvention are set forth in the
following figures.

FIG. 1 illustrates a load balancer health check deployment
according to prior art.

FI1G. 2 illustrates an alternative load balancer health check
deployment according to prior art.

US 11,025,514 B2

3

FIG. 3 conceptually illustrates a DPI based load balancer
system with in-band auto discovery and health check 1n

some embodiments.

FI1G. 4 conceptually 1llustrates a host that implements auto
discovery and health check using DPI 1n some embodi-
ments.

FIG. 5 conceptually illustrates the structure of a packet in
some embodiments.

FIGS. 6 A and 6B conceptually 1llustrate an example of the
metrics provided by the DPI engine to the load balancer and
the load balancer actions on the metrics 1n some embodi-
ments.

FIG. 7 conceptually illustrates metrics and/or alerts that a
DPI engine provides to a load balancer for the SSL protocol.

FIG. 8 conceptually 1llustrates a host that implements auto
discovery and health check by using DPI 1n some embodi-
ments.

FIG. 9 conceptually 1illustrates a process for performing
DPI on packets received from a load balancer in some
embodiments.

FIG. 10 conceptually 1llustrates a process for forwarding,
packets to the DPI engine and receiving metrics from the
DPI engine in some embodiments.

FIG. 11 conceptually 1llustrates examples of metrics that
a DPI engine generates for different protocols or applica-
tions 1n some embodiments.

FI1G. 12 conceptually illustrates a DPI based load balancer
system with in-band auto discovery and health check 1in
some embodiments.

FIGS. 13A and 13B conceptually 1illustrate a process for
performing load balancer mnitiated health check in some
embodiments.

FI1G. 14 conceptually illustrates an electronic system with
which some embodiments of the invention are implemented.

DETAILED DESCRIPTION OF TH.
INVENTION

(Ll

In the following detailed description of the invention,
numerous details, examples, and embodiments of the inven-
tion are set forth and described. However, it should be
understood that the imvention 1s not limited to the embodi-
ments set forth and that the invention may be practiced
without some of the specific details and examples discussed.

Load balancers are commonly used in datacenters to
spread the traflic load to a number of available computing
resources that can handle a particular type of traflic. FIG. 1
illustrates a load balancer health check deployment accord-
ing to prior art. As shown, the load balancers 101-103 are
topologically deployed at the edge of the network 100 and
between different types of virtual machines (VMs). For
example, load balancers 101 are deployed at the edge of the
network, load balancers 102 are deployed between webserv-
ers 105 and application servers 111-112, and load balancers
103 are deployed between application servers 111-112 and
the database servers 115. The load balancers 101-103 are in
some deployments standalone machines that perform load
balancing functions. Also, 1n some deployments, the load
balancers are service VMs that execute on the same host
computing devices that execute the different layers of serv-
ers that have their traflic balanced by the load balancers.

The load balancers 101-103 include application-aware
scripts that are written with functional knowledge of the
servers that are load balanced by the load balancers. The
scripts send packets to generate similar connections and
responses as the expected workload. For instance, the set of
load balancers 101 are configured to include health check

10

15

20

25

30

35

40

45

50

55

60

65

4

scripts for webservers. The scripts send packets 180 to
webservers 105. The webservers reply with a health status

181 such as an HI'TP 200 OK message that indicates the

webserver has received and successiully performed the
request. For instance, a packet 180 can include a TRACE
request and the response 181 from the webserver can include
(1) the request packet as received by the webserver and (2)
the HIT'TP 200 OK status indicating that the request i1s
successiully performed. The load balancers 101 determine
the health of the webserver based on the content of the
response (or the lack of any response).

Similarly, the load balancers 102 are configured to include
health check scripts for application servers. The scripts send
packets 170 that request a predetermined set of actions from
an application server and the load balancers 102 determine
the health of the corresponding application servers based on
the responses 171. In the example of FIG. 1, there are two
types ol application servers: application server type 1 111
and application server type 2 112. The load balancers
include scripts that generate requests that are appropnate for
cach type of application server.

The load balancers 103 are also configured to include
health check scripts for database servers 115. The scripts
send packets 190 that request a predetermined set of actions
from a database server and the load balancers 103 determine
the health of the corresponding database servers based on
the responses 191. For instance, the script 1s written to send
a packet to request that a particular table 1n the database
server to be accessed. The script also compares the response
received from the database server with an expected result to
determine the health status of the database server.

FIG. 2 1llustrates an alternative load balancer health check
deployment according to prior art. In this type of deploy-
ment, each server includes code in the form of an agent for
collecting health status. As shown in the expanded view 205,
cach webserver 105 includes an agent 210 that collects
information from the webserver 105 and sends (either
directly or through the load balancers 101) the collected
health status feedback 251 to a set of health status collectors
241.

Similarly, as shown by expanded views 215-217, appli-
cation servers 111, application servers 112, and database
servers 115 include agents 220, 225, and 230, respectively.
Each agent includes customized code that has knowledge of
different functionalities of the corresponding server. Each
agent collects health check data and sends to the health
status collectors 242-243.

The difference between the health check mechanisms of
FIGS. 1 and 2 1s the followings. In the system of FIG. 1, the
health check status 1s collected 1n the form of a series of
request and responses. The requests are mitiated by the load
balancers (e.g., by using scripts written for collecting health
check status) and the responses (or the lack of responses) are
used to determine the servers’ health status. In contrast, the
system 1n FIG. 2 uses agents that are included 1n the servers.
The agents collect health check status (without a request
from the load balancers) and send the collected status to the
health status collectors.

I. Auto Discovery and Health Check using Deep Packet
Inspection

Some embodiments provide an auto discovery and health
check by using deep packet mspection (DPI). The packets
communicated 1n the network are inspected to perform auto
discovery and health check. Some embodiments also store a
selected number of packets and reuse them to perform health
check when the network 1s 1dle.

US 11,025,514 B2

S

A. Performing DPI for Load Balancers

FIG. 3 conceptually illustrates a DPI based load balancer
system with in-band auto discovery and health check 1n
some embodiments. Auto discovery includes detecting the
presence of different applications, the applications locations,
the use of different protocols, etc., by mspecting the network
traflic. The architecture shown in the figure employs an
inline load-balancing method that deploys a load balancer
305 1n the egress data path of each of several compute nodes.
The compute nodes 1n this example fall into three groups of
servers, which are webservers 310, application servers 315,
and database servers 320. In some embodiments, the three
groups of servers are three-tiers of servers that are com-
monly found in a datacenter.

As shown, a load balancer 305 1s placed at the output of
cach web or application server 1n this example such that
webserver data traflic to the application servers 1s load
balanced, and the application server data traflic to the
database servers 1s load balanced. Fach load balancer
enforces the load balancing rules needed to spread the data
traflic that 1s sent from the load balancer’s corresponding
source compute node (e.g., source servers) to multiple
destination compute nodes (e.g., destination servers) that are
part of one destination compute node group. In some
embodiments, a set of load balancers 330 1s also placed at
the edge of the network to load balance the incoming
network traflic.

In some embodiments, some or all of the source and
destination compute nodes are VMs that executes on one or
more hosts, and some or all of the load balancers are other
software modules that execute on the same hosts as their
source compute nodes. A VM 1s a software implementation
of a machine such as a computer. A host 1s a physical
machine that hosts VMs or other data compute nodes for one
or more tenants. A host in some embodiments includes
virtualization soitware (e.g., a hypervisor, virtual machine
monitor, etc.), which 1s a software abstraction layer that
operates on top of the hardware and below any operating
system.

As described further below, the host of each webserver
310, application server 315, or database server 320 includes
a DPI engine. Each host may host more than one server or
more than one type of server. Each load balancer 305 sends
a selected number of packets to the DPI engine on the host.
The DPI engine inspects the packets, collects health status
and statistics, and provides the data to the load balancer.
Each load balancer 305 stores the collected health status 1n
an application metrics data structure 340 (e.g., a table or a
database).

FI1G. 4 conceptually 1llustrates a host 400 that implements
auto discovery and health check using DPI 1n some embodi-
ments. As shown, the host 400 1s hosting several VMs
401-402. Each VM can implement a server such as any of
the webservers 310, application servers 315, or database
servers 320 shown in FIG. 3. The host also includes a
managed forwarding element (MFE) 410, a set of one or
more load balancers 415, and a deep packet inspection (DPI)
engine (or deep packet inspector) 480.

The MFE executes on the host to communicatively couple
the VMs of the host to each other and to other devices
outside of the host (e.g., other VMs on other hosts) through
one or more lorwarding elements (e.g., switches and/or
routers) that operate outside of the host. As shown, MFE 410
includes a port 430 to connect to a physical network inter-
tace card (not shown) of the host, and one or more ports 4335
to connect to the virtual network intertface card (VNIC) 425
of each VM. In some embodiments, the VNICs are software

10

15

20

25

30

35

40

45

50

55

60

65

6

abstractions of the physical network interface card (PNIC)
that are implemented by the virtualization software of the
host. Each VNIC 1s responsible for exchanging data mes-
sages between 1its VM and the MFE 410 through its corre-
sponding MFE port. As shown, a VM’s egress data path for
its data messages includes (1) the VM’s VNIC 425, (2) the
MFE port 435 that connects to this VNIC, (3) the MFE 410,
and (4) the MFE port 430 that connects to the host’s PNIC.

Through 1ts port 430 and a NIC driver (not shown), the
MFE 410 connects to the host’s PNIC to send outgoing
packets and to receive incoming packets. The MFE 410
forwards messages that 1t receives on one of its ports to
another one of 1ts ports. In some embodiments, the MFE 410
1s a software switch, while 1n other embodiments 1t 1s a
software router or a combined software switch/router.

The MFE ports 435 1n some embodiments include one or
more function calls to one or more modules that implement
special input/output (I/0) operations on incoming and out-
going packets that are received at the ports. One of these
function calls for a port 1s to a load balancer 1n the load
balancer set 415. In some embodiments, the load balancer
performs the load balancing operations on outgoing data
messages that are addressed to destination compute node
groups whose 1mput traflic 1s being spread among the com-
pute nodes 1n the group 1n order to reduce the load on any
one compute node. For the embodiments 1llustrated by FIG.
4, each port 435 has its own load balancer 415. In other
embodiments, some or all of the ports 4335 share the same
load balancer 415 (e.g., all the ports share one load balancer,
or all ports that are part of the same logical network share
one load balancer).

Each load balancer 415 sends a copy of a subset of the
packets the load balancer receives to the DPI engine 480.
For instance, the load balancer may send a copy the first n
packets of a stream (or session) to the DPI engine for further
processing and inspection. The DPI engine inspects the
packets, extracts metrics, and provides the metrics to the
load balancer. In some embodiments, each load balancer 1n
a host has a corresponding DPI engine. In other embodi-
ments, some or all load balancers 1n a host utilize the same
DPI engine.

The DPI engine 480 1n the embodiment shown 1n FIG. 4
1s 1mplemented on a service VM running in the host.
Different embodiments forward the packets from a load
balancer to the service VM and receive metrics at the load
balancer from the service VM diflerently. For instance, in
some embodiments, the service VM 480 and the correspond-
ing load balancer(s) have access to a common memory. As
shown, load balancer 415 and service VM 480 have access
to memory 490. In these embodiments, the load balancer
places the packets that are copied to the service VM in
memory 490 and the service VM accesses the packets from
memory 490. Similarly, the service VM places the collected
metrics 1n memory 490 and the load balancer accesses the
metrics from memory 490.

In other embodiments, the load balancer encapsulates the
packets with an overlay network header and sends the
encapsulated packet through the MFE 410 to the service
VM’s VNIC 470 through an overlay network. Since the
service VM 1s on the same host as the load balancer, the
packets do not leave the host and are delivered to the service
VM by the MFE through an overlay tunnel in the host. An
overlay network 1s a network virtualization technology that
achieves multi-tenancy 1 a computing environment.
Examples of overlay networks include Virtual eXtensible
LAN (VXLAN), Generic Network Virtualization Encapsu-
lation (GENEVE), and Network Virtualization using

US 11,025,514 B2

7

Generic Routing Encapsulation (NVGRE). For instance,
VXLAN 1s a Layer 2 (L2) overlay scheme over a Layer 3
(L3) network. VXL AN encapsulates an Ethernet L2 frame 1n
IP (MAC-1n-UDP encapsulation) and allows VMSs to be a
part of virtualized L.2 subnets operating in separate physical
.3 networks. Similarly, NVGRE uses Generic Routing
Encapsulation (GRE) to tunnel L2 packets over L3 net-
works.

In alternative embodiments, the DPI engine 1s imple-
mented as a process that runs on the host operating system.
These embodiments remove the overhead of using a service
VM, as the DPI engine process can interact with other
processes 1n the host, e.g., through the control plane. In these
embodiments, the DPI engine process also communicates
with the load balancer through the MFE or a common
memory that 1s accessible by both the load balancer and the
DPI engine.

B. Examples of the Metrics and Alerts Provided by DPI
Engine for a Particular Protocol

FIG. 5 conceptually 1llustrates the structure of a packet in
some embodiments. The Example of FIG. 5 shows a packet
500 that 1s generated according to Open Systems Intercon-
nection (OSI) model. As shown, the packet includes data for
multiple abstraction layers. The OSI Layer 2 (or data link
layer) header 560 1n this example includes media access
control (MAC) addresses of the source and the next hop
destination for the packet. Layer 2 encapsulates Layer 3 (or
network layer) 550, which in this example uses Internet
protocol (IP). Layer 3 encapsulates Layer 4 (or transport
layer) 540, which 1n this example uses either the transmis-
sion control protocol (TCP) or user datagram protocol
(UDP).

The mner layers of the packet include data 530 that relates
to other OSI layers and protocols such as secure sockets
layer (SSL), structured query language (SQL), hypertext
markup language (HTML), etc. In this example, the mner-
most layer includes Layer 7 (or application layer) that
includes hypertext transter protocol (HTTP) header 520 and
the HI'TP payload 510. In the embodiments that implement
an overlay network, packet 500 1s further encapsulated by
outer layers for the overlay tunnel L2 and L3 addresses and
additional information such as VLAN type, Ether type, etc.,
which are not shown i FIG. 5 for simplicity.

The DPI engine 480 1in some embodiments parses and
analyzes diflerent layers of a packet (such as packet 500) and
prepares metrics related to different protocols 1n the packet
as well as metrics regarding the source and the destination
of the packet. It should be understood that OSI model 1s one
example of abstracting a network in different layers. Other
network models such as the four layer TCP/IP model can
readily be analyzed by the DPI engine of the disclosed
embodiments. For instance, in the TCP/IP model, the net-
work access layer provides the same functionality as the first
three layers of the OSI model. The Internet layer of the
TCP/IP model provides the same functionality as the net-
work layer of the OSI model. The transport layer of the
TCP/IP model provides the same functionality as the trans-
port layer of the OSI model and the application layer of the
TCP/IP model provides the same functionality as the OSI
layers (such as the OSI application layer) that are above
Layer 4.

FIGS. 6 A and 6B conceptually 1llustrate an example of the
metrics provided by the DPI engine to the load balancer and
the load balancer actions on the metrics 1n some embodi-
ments. As shown 1n FIG. 6A, the load balancer 415 sends a
copy of a packet 605 to the DPI engine 480. The packet 1n
this example 1s a response that server 1 has sent in response

10

15

20

25

30

35

40

45

50

55

60

65

8

to a request by application 1. For instance, server 1 1s a
backend server to which application 1 1s attempting to
connect. As shown 1n the expanded view 610, the packet 605
includes an SSL connection status code 615 that indicates
the connection has failed due to mvalid certificate.

The DPI engine 480 parses packets sent to 1t by the load
balancer and automatically discovers different protocols
used 1n different layers of the packet. The DPI engine also
identifies the source and destination of the packet and
provides different metrics for the source, destination, and the
protocols used in the packet.

In this example, the DPI engine may provide additional
metrics based on different parts of the packet other than the
SSL connection code. For simplicity, the example of FIGS.
6A and 6B only shows the metrics provided by the DPI
engine for the SSL connection. DPI engine 480 provides a
feedback 620 to load balancer 415 that indicates (among
others provided metrics) that the connection to server 1 has
failed to establish due to an invalid certificate.

Load balancer 415 receives the feedback 620 and per-
forms different actions based on the provided metric. For
instance, the load balancer updates (as shown by 623) the
metrics for application 1 and server 1 in the application
metrics storage 485. In addition, i1 server 1 1s part of a pool
of redundant servers that provide the same service, the load
balancer may mark server 1 as failed and forward future
requests directed to server 1 to another server 1n the pool. In
this example, however, the load balancer does not mark
server 1 as failed and waits for further metrics from the DPI
engine.

In the example of FIG. 6A, the DPI mnspection provides
the feedback for invalid certificate of server 1 to the load
balancer by examining the information included in the
packet beyond Layer 4. In contrast, if the packet 1s using,
e.g., TCP protocol for Layer 4, the status of the TCP session
might not have indicated any failures. For instance, the TCP
handshake might have succeeded despite the failure of the
server to establish the SSL connection. The failure of server
1 to establish the SSL connection would not have been
detected without inspecting the information in the packet
beyond Layer 4 (or transport layer) information.

As shown 1n FIG. 6B, the load balancer 415 sends a copy
ol a packet 635 to the DPI engine 480. The packet in this
example 1s a response that server 2 has sent 1n response to
a request by application 1. For istance, server 2 1s another
backend server to which application 1 1s attempting to
connect. As shown 1n the expanded view 640, the packet 635
includes an SSL connection status code 645 that indicates
the connection has succeeded.

DPI engine 480 provides a feedback 630 to load balancer
415 that indicates (among others provided metrics) that the
connection to server 2 has succeeded. Load balancer 415
receives the feedback 650 and performs different actions
based on the provided metric. For istance, the load balancer
updates (as shown by 655) the metrics for application 1 and
server 2 1n the application metrics storage 485. In addition,
since the SSL connection between application 1 and server
2 has succeeded (e.g., using the same certificate that failed
for server 1), the load balancer 1n this example concludes
that the connection failure between server 1 and server 2 1s
indeed due to a failure of server 1. The load balancer,
therefore, marks (as shown by 635) server 1 as failed.

FIGS. 6A and 6B describe one example of the inline
health check that DPI engine performs to aid the load
balancer. FIG. 7 conceptually illustrates further metrics
and/or alerts that a DPI engine provides to a load balancer
for the SSL protocol. As shown, the metrics and/or alerts 700

US 11,025,514 B2

9

include close notity 705 (which indicates that the SSL
connection 1s being closed), unexpected message 710, bad
record 715, decryption failed 720, record overtlow 725,
decompression failure 730, and handshake failure 735.

The metrics and alerts further include several failure
indications regarding the certificate including no certificate
740, bad certificate 745, unsupported certificate 750, certifi-
cate revoked 755, certificate expired 760, and certificate
unknown 765. For 1nstance, the failure status 1in the example
of FIG. 6 A may be related to one of the alerts 740-765 that
reports different 1ssues regarding a certificate.

The metrics and alerts also include 1llegal parameter 770,
unknown certificate of authority (CA) 775, access denied
780, decode error 785, decrypt error 790, export restriction
792, protocol version 794, insuilicient security 793, internal
error 796, user canceled 78, unsupported extension 799, etc.
In addition to individual metrics or alerts, the load balancer
may maintain a count of different failures, number of times
a certain connection 1s requested by diflerent applications,
etc.

A similar scenario can be made for doing a SQL call to a
database server or a GE'T/PUT/Login operation from a file
transier protocol (F'TP) server that 1s failing. Similarly, the
DPI engine can look into other datacenter protocols such as
virtual desktop infrastructure (VDI), PC over IP (PColP),
etc., as well as SQL queries and provide automatic health
and performance check. With this automatic discovery and
health check of tiered applications, only the specific server
that 1s misbehaving 1n an 1nner tier would get marked down,
rather than the full pipeline.

Measuring the number of failed attempts to connect to an
application can give statistics related to the application
downtime. These failed attempts are discovered from the
user traflic and do not require additional debug packets (e.g.
a debug packet to check for a HI'TP 200 OK response from
the Application) to check application health. Similarly appli-
cation response time can be measured by calculating the
difference between a user request and an acknowledgement
from the network trathic. This can give a measure of user
experience. Thus the DPI gives a generic way to monitor
application health and to collect application performance
metrics and provide the collected metrics to a load balancer.

The DPI engine in some embodiments identifies authen-
tication and version failures for protocols such as secure file
transier protocol (SFTP) and SQL. The health check per-
formed by load balancers that utilize a DPI engine determine
whether or not a full transaction has succeeded. In contrast,
health check performed by prior art load balancers only
determines application/server availability (e.g., by determin-
ing whether the server has responded or not based on actions
such as a server response to a client hello, or a server request
for authentication parameters).

Furthermore, automatic health checks in some embodi-
ments 1s instantiated for certain protocols such as HTTP/
HTTPS/FTP, which do not require a login on behalf of the
client, by using the DPI engine to identily the protocol used.
Additional metrics that identify the health status of an
application such as the round trip response time of the
application, the packet rate, the error rate, etc., are provided
by the DPI engine to the load balancers.

The load balancers for a Hadoop system in some embodi-
ments utilize a DPI engine to perform health check. A
Hadoop system in some embodiments 1s used to implement
distributed storage (Hadoop distributed file system) and
distributed processing (Hadoop Map and Reduce) for very
large data sets by using a cluster of servers. The servers can,
¢.g., be implemented on VMs running on one or more hosts

10

15

20

25

30

35

40

45

50

55

60

65

10

or implemented on separate physical machines. In these
embodiments, Hadoop error codes from the Map and
Reduce clusters are determined and the load balancers
remove nodes based on the error codes. The cluster man-
agement work, therefore, can be oflloaded to the load
balancers and DPI engine.

Additional applications of the load balancers that utilize a
DPI engine include i1dentifying errors on a distributed file
system (e.g., for read/writes for syslog files). These distrib-
uted file systems are implemented 1n some embodiments as
a load balanced cluster and the load balancers remove nodes
based on the errors 1dentified by the DPI engine. In general,
any system that utilizes load balancers for one or more
clusters of servers can utilize the disclosed DPI engine to
assist the load balancers 1n 1dentifying failed servers based
on the information included i1n user tratic packets (i.e.,
packets that are not preconfigured and sent for the purpose
of performing health check).

C. Performing Deep Packet Inspection to Generate Met-
rics without using Load Balancers

The embodiments described above utilize load balancers
to send copies of a subset of user traflic packets to the DPI
engine to generate metrics. In some alternative embodi-
ments, the DPI engine 1s utilized to collect network metrics
without the use of load balancers. FIG. 8 conceptually
illustrates a host 800 that implements auto discovery and
health check using DPI 1in some embodiments. As shown,
the host 800 1s hosting several VMs 401-402. Each VM can
implement a server such as any of the webservers 310,
application servers 315, and database servers 320 shown 1n
FIG. 3. The host also includes a managed forwarding
clement (MFE) 410 and a deep packet mnspection (DPI)
engine (or deep packet mspector) 880. The MFE 410 and
VMs 401-402 are similar to the MFE and VMSs described
above by reference to FIG. 4. Similar to the DPI engine
discussed above, the DPI engine in FIG. 8 can be either
implemented to run on a service VM (as shown) or to run as
a process that runs on the host operating system.

In the example of FIG. 8, all L4 ports (i.e., TCP or UDP
ports) of all instances of an application to be monitored are
identified and stored in storage 805. Any packet tratlic to and
from these ports are intercepted by the DPI engine 880 and
analyzed to provide metrics for the particular application
that 1s utilizing the ports. In this example, istead of deep
packet mspection beyond L4 layer, the DPI engine prepares
performance metrics for the L4 layer of the application. For
instance, the DPI engine collects metrics such the size of the
TCP recerve window, the round trip response time of the
application, the packet rate, the error rate, etc., and stores the
metrics 1n storage 415. One of the differences between the
embodiment of FIG. 8 and the prior art system shown 1n
FIGS. 1 and 2 1s that the embodiment of FIG. 8 utilizes a
generic DPI engine that performs health check for any
application without writing application-specific health check
scripts or adding agents or code to each application that 1s
going to be monitored.

D. Processes Performed for Deep Packet Inspection

FIG. 9 conceptually illustrates a process 900 for perform-
ing DPI on packets recerved from a load balancer in some
embodiments. The process 1n some embodiments 15 per-
formed by a DPI engine such as DPI engine 480 1n FIG. 4.

As shown, the process receives (at 9035) a copy of a packet
from a load balancer. For instance, a load balancer (such as
load balancer 415 in FIGS. 4 and 6A-6B) receives a packet
(such as packets 605 or 635 1n FIGS. 6 A and 6B) at port 435
(shown 1n FIG. 4) and sends a copy of the packet to the DPI
engine for deep packet inspection.

US 11,025,514 B2

11

The process then parses (at 910) the packet to i1dentify
source, destination, and the protocols used 1n different layers
of the packet. For instance, the process may determine a
packet (such as packet 500 in FIG. 5) uses Ethernet protocol
in layer 2, IP protocol 1 later 3, UDP protocol 1n layer 4,
SSL protocol for providing security, and HT'TP 1n layer 7.
The DPI engine may also parse the headers at each layer to
identify the source and destination of the packet. The DPI
engine may also parse the packet to identily different status
codes embedded in different fields of the packet.

The process then analyzes (at 9135) the information
extracted from different layers of the packet to determine
application and/or protocol metrics. For instance, the pro-
cess may inspect a status code (such as status codes 615 or
645 in FIGS. 6 A-6B) to determine whether or not an attempt
to make an SSL connection has been successiul. The process
may 1nspect other fields 1n the packet to collect other alerts
or statistics for the packet. For instance, 1if one of the
protocols used i the packet 1s SSL, the process may
determine whether metrics or alerts such as layer 7 (L7)
transactions per second, number of reads/writes per second,
total number of sessions, or any of the metrics or alerts
shown 1n FIG. 7 can also be harvested.

The process then provides (at 920) the metrics that
include statistics and/or alerts harvested from the packet to
the load balancer. For instance, the process provides feed-
back 620 or 650 shown 1n FIGS. 6 A-6B to the load balancer.
The process then ends.

FIG. 10 conceptually illustrates a process 1000 for for-
warding packets to the DPI engine and receirving metrics
from the DPI engine in some embodiments. The process 1n
some embodiments 1s performed by a load balancer such as
load balancer 415 in FIG. 4. As shown, the process receives
(at 1005) a packet that 1s sent by a server or an application
to a port of the MFE. For instance, the packet may by sent
by a VM such as VM 401 1n FIG. 4 that 1s performing as an
application server. The process receives this packet at port
435 of MFE 410. The port software, e.g., makes a call to
load balancer 410 to provide the packet to the load balancer.
As another example, the packet may by sent from a server
or application outside the host 400 and received at port 430
of the MFE. Again, the load balancer receives a copy of the
packet form the port software.

The process then determines (at 1010) the stream (or
session) to which the packet belongs. In some embodiments,
cach load balancer saves the i1dentification of the ongoing
sessions and uses the 1dentifications to determine the session
to which each packet belongs. The process then determines
(at 1015) whether a predetermined number of packets for the
same stream have been previously provided to the DPI
engine. For instance, the process may only send copies of a
predetermined number of packets (e.g., the first n packets in
cach stream) for each stream to the DPI and once the
predetermine number of packets are sent to the DPI engine
no further packets for that stream are sent to the DPI engine
in order to save processing time and/or bandwidth.

If a predetermined number of packets for the current
stream are not sent to the DPI engine, the process proceeds
to 1025, which 1s described below. Otherwise, the process
foregoes sending a copy of the packet to the DPI engine and
only forwards (at 1020) the packet to a destination based on
a set of load balancing rules. Fach load balancer in some
embodiments utilizes a set of load balancing rules to forward
the workload to destinations. The process then ends.

When a predetermined number of packets for the current
stream are not sent to the DPI engine, the process forwards
a copy of the packet to the DPI engine in addition to

10

15

20

25

30

35

40

45

50

55

60

65

12

forwarding the packet to a destination. Specifically, the
process forwards (at 1025) the packet to a destination based
on a set of load balancing rules. The process also forwards
(at 1030) a copy of the packet to the DPI engine. For
instance, the process forwards a copy 605 or 635 of the
packet from the load balancer 415 to the DPI engine 480 as
shown 1 FIGS. 6A-6B.

The process then updates (at 10335) the number of packets
that are sent to the DPI engine for the current stream. The
process utilizes this number to determine whether copies of
tuture packets for the same stream have to be sent to the DPI
engine (as described above by reference to operation 1015).
The process then receives (at 1040) metrics for the packet
from the DPI engine. For instance, the process receives the
teedback packets 620 or 650 from the DPI engine 480 at the
load balancer 415 as shown in FIGS. 6A-6B.

The process then takes actions (at 1045) based on the
metrics provided by the DPI engine. For instance, the
process may mark a server as failed or reset the status of a
server as operational based on the statistics and alerts
included in the metrics. The process then stores or updates
(at 1050) the network metrics based on the metrics received
from the DPI engine. For instance, the process stores the
updated metrics 1n storage 4835 as shown in FIG. 4. The
process also optionally provides these metrics to a central-
1zed controller to make cluster management decisions such
as adding or consolidating the servers 1n the pool, etc. The
process then ends.

FIG. 11 conceptually illustrates examples of metrics that
a DPI engine generates for different protocols or applica-
tions 1n some embodiments. The process 1s performed by the
DPI engine in some embodiments. As shown, the process
receives (at 1105) a copy of a packet from a load balancer.

For instance, a load balancer (such as load balancer 415 1n
FIGS. 4 and 6 A-6B) receives a packet (such as packets 605

or 635 in FIGS. 6A and 6B) at port 435 (shown 1n FIG. 4)
and sends a copy of the packet to the DPI engine for deep
packet ispection.

The process then parses (at 1110) the packet to 1dentily
source, destination, the protocols used, status codes, etc., 1n
different layers of the packet. The process then determines
(at 1115) whether the packet 1s received from an application
in response to a previously sent request. For instance, the
process determines that the packet belongs to the same
stream (or session) as a previously sent request. If not, the
process proceeds to 1125, which 1s described below.

Otherwise, the process calculates (at 1120) the response
time of the application as the difference between the time the
request was sent and the time the response was received. The
process then proceeds to 1150, which 1s described below.
The process determines (at 11235) whether the packet 1s a
read or write request for a database. If not, the process
proceeds to 1140, which 1s described below.

Otherwise, the process updates (at 1130) the frequency of
access to the particular database. The process also updates
(at 1135) the number of database operations performed by
the application that 1s accessing the database. For instance,
the process performs DPI to identily the application that
requested the read or write operation. Alternatively, the
process ncludes i the metrics provided to the load balancer
the fact that a particular database 1s accessed by the appli-
cation and the load balancer updates the metrics stored 1n
metrics storage (e.g., storage 485 1 FIG. 4). The process
then proceeds to 1150, which 1s described below.

The process determines (at 1140) whether the packet
content indicates a failed response. For instance, the process
ispects status codes returned in different layers of the

US 11,025,514 B2

13

packet (e.g., the status codes 615 and 645 shown 1n FIG. 6).
If yes, the process updates (at 1145) the availability statistics
for the application. Or alternatively, the process includes 1n
the metrics provided to the load balancer the availability (of
lack thereot) of the application and the load balancer updates
the metrics stored 1n metrics storage (e.g., storage 485 in
FIG. 4).

The process then provides (at 1150) the collected metrics
to the load balancer. The process then ends. It should be
understood that the metrics described by reference to FIG.
11 are just examples of diflerent metrics that the DPI engine
collects 1n some embodiments. In addition, depending on the
specific protocols used 1n a packet and the specific applica-
tions or servers that are the source or destination of a packet,
some or all of the metrics shown 1n FIG. 11 may be collected
for a particular packet.

II. Performing Auto Discovery and Health Check for an
Idle Network using Deep Packet Inspection

The examples described above utilize the user traflic to
provide auto discovery and health check for different servers
and applications 1n a network. Some embodiments provide
additional functionality to perform auto discovery and health
check for an 1dle network or for an 1dle portion of a network.
An 1dle network (or network portion) 1s a network that has
no user traflic or has user traflic that 1s at or below a
threshold (e.g., the traflic 1s at or below a predetermined
packet rate). In these embodiments, the load balancer not
only sends copies of packets from the live user tratlic but
also stores a subset of these packets and reuses the packets
to perform specific auto discovery and health check func-
tions on an 1dle portion of the network.

FI1G. 12 conceptually illustrates a DPI based load balancer
system with in-band auto discovery and health check 1in
some embodiments. The architecture shown i the FIG. 12
1s similar to the architecture of FIG. 3. In the embodiment of
FIG. 12, the load balancers 305 save a copy of a selected
number of packets to perform health check operations. The
packets 1 some embodiments are identified by the DPI
engine as candidate packets for certain kind of health
checks. In other embodiments, the load balancer selects the
packets based on the metrics provided by the DPI engine.

As shown, the load balancers 305 save a set of packets 1n
storage 1203 to perform load balancer 1nitiated health check.
For instance, the packets may include packets that access
certain tables or data structures 1 a database to perform
health check on a database server. The packets may also
include different requests to be sent to webservers, applica-
tion servers, or database servers to trigger expected results.
The load balancers 305 send packets 1220 to certain servers
and recerve response 1225. The load balancer compares the
response with an expected response to determine the health
of the responding server. A lack of response may be deter-
mined as a failure of the server.

Any system that utilizes load balancers for one or more
clusters of servers can utilize the disclosed DPI engine to
assist the load balancers i 1dentitying failed servers in an
idle network based on the information included 1n packets
that were selected and stored from the user trathic (i.e.,
packets that are not preconfigured for the purpose of per-
forming health check).

FIGS. 13A and 13B conceptually illustrate a process 1300
for performing load balancer mnitiated health check i some
embodiments. The process 1 some embodiments 1s per-
tformed by a load balancer such as any of the load balancers
305 shown in FIG. 12. As shown, the process 1dentifies (at
1305) a set of one or more user tratlic packets as packets that
can be used for different types of health check. For instance,

5

10

15

20

25

30

35

40

45

50

55

60

65

14

the process identifies the packets based on the metrics
provided by the DPI engine to the load balancer. In some
embodiments, the packets are 1dentified by the load balancer
while 1n other embodiments the DPI engine identifies and
recommends the packets to the load balancer. Some embodi-
ments only utilize packets that do not update or change the
system. In these embodiments, process 1300 only selects
packets that fetch information from the system.

The process then stores (at 1310) the identified packets for
load balancer inmitiated health check. For instance, the pro-
cess stores the packets 1n storage 1205 shown i FIG. 12.
The process then determines (at 1315) whether the network
or one or more portions of the networks (e.g., one or more
servers 1n the network) has been idle for a predetermined
amount of time. The network (or a portion thereof) 1is
considered 1dle 11 no packets or fewer packets that a prede-
termined number of packets are received 1n a predetermined
amount of time.

When the network or no portion of the network 1s 1dle, the
process ends. Otherwise, the process 1dentifies (at 1320) one
or more stored packets for performing health check on the
idle network (or the 1dle portions of the network). For
instance, 1 a certain database server has been idle, the
process 1dentifies one or more packets to access certain
tables or data structures 1n a database provided by the server.
On the other hand, when a webserver has been idle, the
process may 1dentily one or more packets that request access
to a particular web page or request a particular file from the
webserver. Similarly, 11 an application server has been 1dle,
the process may 1dentify one or more packets that request a
service provided by the application.

The process then retrieves (at 1325) the 1dentified packets
from storage. For 1nstance the process retrieves the packets
form one of storages 1205 1n FIG. 12. The process then
sends (at 1330) the packets from the load balancer to
destinations indicated in the packets for load balancer ini-
tiated health check.

Next, the process receives (at 1335) the response packets.
A lack of response after a predetermined amount of time 1s
an indication of the failure of the server from which a
response 1s expected. The process then forwards (at 1340)
the response packets to the DPI engine. For instance, the
process sends the response packets from the load balancer
415 to DPI engine 480 1n FI1G. 4. The process then receives
(at 1345) metrics for the packets from the DPI engine.

The process then takes actions (at 1350) based on the
metrics provided by the DPI engine. For instance, the
process may mark a server as failed or reset the status of a
server as operational based on the statistics and alerts
included in the metrics. The process then stores or updates
(at 1355) the network metrics based on the metrics received
from the DPI engine. For instance, the process stores the
updated metrics in storage 4835 as shown in FIG. 4. The
process then ends.

II. Electronic System

Many of the above-described features and applications are
implemented as software processes that are specified as a set
of 1nstructions recorded on a computer readable storage
medium (also referred to as computer readable medium).
When these structions are executed by one or more
processing unit(s) (e.g., one or more processors, cores of
processors, or other processing units), they cause the pro-
cessing unit(s) to perform the actions indicated in the
instructions. Examples of computer readable media include,
but are not limited to, CD-ROMs, tlash drives, RAM chips,
hard drives, EPROMSs, etc. The computer readable media

US 11,025,514 B2

15

does not include carrier waves and electronic signals passing
wirelessly or over wired connections.

In this specification, the term “software” 1s meant to
include firmware residing in read-only memory or applica-
tions stored in magnetic storage, which can be read into
memory for processing by a processor. Also, 1 some
embodiments, multiple software imventions can be imple-
mented as sub-parts of a larger program while remaining
distinct software inventions. In some embodiments, multiple
soltware inventions can also be implemented as separate
programs. Finally, any combination ol separate programs
that together implement a software invention described here
1s within the scope of the mnvention. In some embodiments,
the soltware programs, when installed to operate on one or
more electronic systems, define one or more specific
machine implementations that execute and perform the
operations of the software programs.

FI1G. 14 conceptually illustrates an electronic system 1400
with which some embodiments of the invention are 1mple-
mented. The electronic system 1400 can be used to execute
any ol the control, virtualization, or operating system appli-
cations described above. The electronic system 1400 may be
a computer (e.g., a desktop computer, personal computer,
tablet computer, server computer, mainirame, a blade com-
puter etc.), phone, PDA, or any other sort of electronic
device. Such an electronic system includes various types of
computer readable media and interfaces for various other
types of computer readable media. Electronic system 1400
includes a bus 1405, processing unit(s) 1410, a system
memory 1420, a read-only memory (ROM) 1430, a perma-
nent storage device 1435, mput devices 1440, and output
devices 1445,

The bus 1405 collectively represents all system, periph-
eral, and chipset buses that communicatively connect the
numerous internal devices of the electronic system 1400.
For instance, the bus 1405 communicatively connects the
processing unit(s) 1410 with the read-only memory 1430,
the system memory 1420, and the permanent storage device
1435.

From these various memory units, the processing unit(s)

1410 retrieve 1nstructions to execute and data to process 1n
order to execute the processes of the invention. The pro-
cessing unit(s) may be a single processor or a multi-core
processor in different embodiments.

The read-only-memory 1430 stores static data and
instructions that are needed by the processing unit(s) 1410
and other modules of the electronic system. The permanent
storage device 1435, on the other hand, 1s a read-and-write
memory device. This device 1s a non-volatile memory unit
that stores instructions and data even when the electronic
system 1400 1s off. Some embodiments of the invention use
a mass-storage device (such as a magnetic or optical disk
and 1ts corresponding disk drive) as the permanent storage
device 1435.

Other embodiments use a removable storage device (such
as a floppy disk, flash drive, etc.) as the permanent storage
device. Like the permanent storage device 1435, the system
memory 1420 1s a read-and-write memory device. However,
unlike storage device 1435, the system memory 1s a volatile
read-and-write memory, such as random access memory.
The system memory stores some of the instructions and data
that the processor needs at runtime. In some embodiments,
the 1nvention’s processes are stored in the system memory
1420, the permanent storage device 14335, and/or the read-
only memory 1430. From these various memory units, the

10

15

20

25

30

35

40

45

50

55

60

65

16

processing unit(s) 1410 retrieve instructions to execute and
data to process 1 order to execute the processes of some
embodiments.

The bus 1405 also connects to the mput and output
devices 1440 and 1445. The input devices enable the user to
communicate mformation and select commands to the elec-
tronic system. The mput devices 1440 include alphanumeric
keyboards and pointing devices (also called “cursor control
devices”). The output devices 1445 display 1mages gener-
ated by the electronic system. The output devices include
printers and display devices, such as cathode ray tubes
(CRT) or liquid crystal displays (LCD). Some embodiments
include devices such as a touchscreen that function as both
input and output devices.

Finally, as shown in FIG. 14, bus 1405 also couples
clectronic system 1400 to a network 1425 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN”), a wide area network (“WAN™), or an Intranet, or
a network ol networks, such as the Internet. Any or all
components of electronic system 1400 may be used 1n
conjunction with the invention.

Some embodiments include electronic components, such
as microprocessors, storage and memory that store computer
program instructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-
readable storage media, machine-readable media, or
machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD-
R), rewritable compact discs (CD-RW), read-only digital
versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a
variety ol recordable/rewritable DVDs (e.g., DVD-RAM,
DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards,
mini-SD cards, micro-SD cards, etc.), magnetic and/or solid
state hard drives, read-only and recordable Blu-Ray® discs,
ultra density optical discs, any other optical or magnetic
media, and tloppy disks. The computer-readable media may
store a computer program that 1s executable by at least one
processing unit and includes sets of instructions for per-
forming various operations. Examples of computer pro-
grams or computer code include machine code, such as 1s
produced by a compiler, and files including higher-level
code that are executed by a computer, an electronic com-
ponent, or a miCroprocessor using an interpreter.

While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute soltware, some
embodiments are performed by one or more integrated
circuits, such as application specific integrated circuits
(ASICs) or field programmable gate arrays (FPGAs). In
some embodiments, such integrated circuits execute instruc-
tions that are stored on the circuit itself.

As used in this specification, the terms “computer”,
“server”, “processor”’, and “memory’”’ all refer to electronic
or other technological devices. These terms exclude people
or groups ol people. For the purposes of the specification,
the terms display or displaying means displaying on an
clectronic device. As used 1n this specification, the terms
“computer readable medium,” “computer readable media,”
and “machine readable medium™ are entirely restricted to
tangible, physical objects that store information 1 a form
that 1s readable by a computer. These terms exclude any
wireless signals, wired download signals, and any other
ephemeral or transitory signals.

While the invention has been described with reference to
numerous specific details, one of ordinary skill 1n the art wall
recognize that the mnvention can be embodied in other

US 11,025,514 B2

17

specific forms without departing from the spirit of the
invention. In addition, a number of the figures (including
FIGS. 9-11 and 13A-13B) conceptually 1llustrate processes.
The specific operations of these processes may not be
performed 1n the exact order shown and described. The
specific operations may not be performed 1n one continuous
series of operations, and diflerent specific operations may be
performed 1n different embodiments. Furthermore, the pro-
cess could be implemented using several sub-processes, or
as part of a larger macro process.

This specification refers throughout to computational and
network environments that include virtual machines (VMs).
However, virtual machines are merely one example of data
compute nodes (DCNs) or data compute end nodes, also
referred to as addressable nodes. DCNs may include non-
virtualized physical hosts, virtual machines, containers that
run on top of a host operating system without the need for
a hypervisor or separate operating system, and hypervisor
kernel network interface modules.

VMs, in some embodiments, operate with their own guest
operating systems on a host using resources of the host
virtualized by virtualization software (e.g., a hypervisor,
virtual machine monaitor, etc.). The tenant (i.e., the owner of
the VM) can choose which applications to operate on top of
the guest operating system. Some containers, on the other
hand, are constructs that run on top of a host operating
system without the need for a hypervisor or separate guest
operating system. In some embodiments, the host operating
system uses name spaces to 1solate the containers from each
other and therefore provides operating-system level segre-
gation ol the different groups of applications that operate
within different containers. This segregation 1s akin to the
VM segregation that 1s oflered in hypervisor-virtualized
environments that virtualize system hardware, and thus can
be viewed as a form of virtualization that 1solates diflerent
groups of applications that operate 1n different containers.
Such containers are more lightweight than VMs.

Hypervisor kernel network interface module, 1n some
embodiments, 1s a non-VM DCN that includes a network
stack with a hypervisor kemel network interface and
receive/transmit threads. One example of a hypervisor ker-
nel network interface module 1s the vmknic module that 1s
part of the ESX1™ hypervisor of VMware, Inc.

One of ordinary skill in the art will recognize that while
the specification refers to VMs, the examples given could be
any type of DCNs, including physical hosts, VMs, non-VM
containers, and hypervisor kernel network interface mod-
ules. In fact, the example networks could include combina-
tions of different types of DCNs in some embodiments.

In view of the foregoing, one of ordinary skill in the art
would understand that the invention 1s not to be limited by
the foregoing illustrative details, but rather 1s to be defined
by the appended claims.

What 1s claimed 1s:
1. A method of adjusting load balancing 1n a network, the
method comprising:

at a deep packet mspector executing on a physical host in
a datacenter:

receiving from a load balancer executing on the physical
host a copy of a network packet copied at the load
balancer, the packet comprising a plurality of layers,
cach layer corresponding to a communication protocol
in a plurality of communication protocols;

identifying an application that was a source of the packet;

analyzing the information above a transport layer of the
packet to compute a response

5

10

15

20

25

30

35

40

45

50

55

60

65

18

time of the application that 1s longer than a first particular

threshold value; and

sending the calculated response time to the load balancer

to reduce future communications between the load
balancer and the identified application.

2. The method of claim 1, wherein the identified appli-
cation 1s provided by one of a webserver, an application
server, and a database server.

3. The method of claim 1, wherein analyzing the infor-
mation comprises computing one of a frequency of access to
a database and a number of database operations performed
by the 1dentified application that 1s below a second particular
threshold value.

4. The method of claim 1, wherein analyzing the infor-
mation comprises determining an indication that the identi-
fied application has failed based on a status code identified
in a packet layer over a transport layer of the packet.

5. The method of claim 1 further comprising:

identifying one or more protocols used 1n one or more

layers of the packet; and

analyzing the information 1 one or more layers of the

packet to determine metrics for the identified protocols.
6. A non-transitory machine readable medium storing a
program for adjusting load balancing 1n a network, the
program executable by a processing unit, the program com-
prising sets of mstructions for:
at a deep packet mspector executing on a physical host 1n
a datacenter:

recerving from a load balancer executing on the physical
host a copy of a network packet copied at the load
balancer, the packet comprising a plurality of layers,
cach layer corresponding to a communication protocol
in a plurality of communication protocols;

identifying an application that was a source of the packet;

analyzing the information above a transport layer of the

packet to compute a response

time of the application that 1s longer than a first particular

threshold value; and

sending the calculated response time determined health

check metrics to the load balancer to 1nitiate sending a
health-check message to the 1dentified application.

7. The non-transitory machine readable medium of claim
6, wherein the 1dentified application 1s provided by one of a
webserver, an application server, and a database server.

8. The non-transitory machine readable medium of claim
6, wherein analyzing the information comprises computing
one of a frequency of access to a database and a number of
database operations performed by the identified application
that 1s below a second particular threshold value.

9. The non-transitory machine readable medium of claim
6, the program further comprising sets of instructions for:

identifying one or more protocols used 1n one or more

layers of the packet; and

analyzing the information 1n one or more layers of the

packet to determine metrics for the identified protocols.

10. A system comprising:

a set of processing units; and

a non-transitory machine readable medium storing a pro-

gram for adjusting load balancing 1n a network, the
program executable by a processing unit 1n the set of
processing units, the program comprising sets of
instructions for:
at a deep packet inspector executing on a physical host
in a datacenter:
receiving from a load balancer executing on the
physical host a copy of a network packet copied at
the load balancer, the packet comprising a plural-

US 11,025,514 B2

19

ity of layers, each layer corresponding to a com-
munication protocol in a plurality of communica-
tion protocols;

identitying an application that was a source of the
packet;

analyzing the information above a transport layer of
the packet to compute a response time of the
application that 1s longer than a first particular
threshold value; and

sending the calculated response time to the load
balancer to reduce {future communications
between the load balancer and the 1dentified appli-
cation.

11. The system of claim 10, wherein the 1dentified appli-
cation 1s provided by one of a webserver, an application
server, and a database server.

12. The system of claim 10, wherein analyzing the infor-
mation comprises computing one of a frequency of access to
a database and a number of database operations performed
by the 1dentified application that 1s below a second particular
threshold value.

13. The system of claim 10, wherein analyzing the infor-
mation comprises determining an indication that the 1denti-
fied application has failed based on a status code i1dentified
in a packet layer over a transport layer of the packet.

5

10

15

20

20

14. The system of claim 10, the program further com-
prising sets of instructions for:

identifying one or more protocols used 1n one or more

layers of the packet; and

analyzing the information 1n one or more layers of the

packet to determine metrics for the identified protocols.

15. The method of claam 1, wherein reducing future
communications with the identified application comprises
one of marking the identified application as failed and
marking a server on which the application executes as failed.

16. The method of claim 1, wheremn the application
executes on a server that 1s part of a cluster of servers that
execute the same application, and wherein reducing future
communications with the identified application comprises
terminating communications with the identified application
and directing subsequent communications to another appli-
cation executing on another server.

17. The method of claim 1, wherein the response time of
the application that 1s longer than the first particular thresh-
old value 1s an indication that the application has failed.

18. The method of claim 1, wherein the response time
comprises an indication that a connection attempt with the
application has failed.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

