12 United States Patent

US011023448B2

(10) Patent No.: US 11,023,448 B2

Li 45) Date of Patent: Jun. 1, 2021
(54) DATA SCRUBBING METHOD AND (56) References Cited
APPARATUS, AND COMPUTER READABLE
STORAGE MEDIUM U.S. PATENT DOCUMENTS
(71) Applicant: Tencent Technology (Shenzhen) 7,734,604 B1* 6/2010 Sinclair GOk ;3/72/%3
Company Limited, Shenzhen (CN) 2008/0120304 AL* 52008 Calio ooooccecc.... GOGF 16/2386
(72) Inventor: Yuesen Li, Shenzhen (CN) (Continued)
(73) Assignee: TENCENT TECHNOLOGY FOREIGN PATENT DOCUMENTS
(SHENZHEN) COMPANY N 1588350 A /2005
LIMITED, Shenzhen (CN) CN 101493842 A * 7/2009
CN 101493842 A 7/2009
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 134(b) by 171 days.
OTHER PUBLICATIONS
(21) Appl. No.: 16/435,001 Haas. “Vacuum Full doesn’t mean Vacuum, but better”. Mar. 4,
1 2014 [Retrieved on Jan. 16, 2021], Retrieved from the Internet:<
(22) Tiled: Jun. 7, 2019 URL: http://rhaas.blogspot.com/2014/03/vacuum-full-doesnt-mean-
- ‘ 3
(65) Prior Publication Data vacuum-but html>. (Year: 2014)*_
(Continued)
US 2019/0294602 Al Sep. 26, 2019
Y Primary Examiner — James E Richardson
Related U.5. Application Data (74) Attorney, Agent, or Firm — Morgan, Lewis &
(63) Continuation of application No. Bockius LLP
PCT/CN2018/071506, filed on Jan. 5, 2018.
(57) ABSTRACT
(30) Foreign Application Priority Data This application belongs to the field of database application
technologies, and discloses a data scrubbing method and
Jan. 9, 2017 (CN) ..., 201710013109.2 apparatus. In the method, a server adds a share update
exclusive lock to a target table, to prevent a system from
(1) Int. CL. H performing a data defimtion language (DDL) operation on
GO6F 16/23 (2019'();) the target table. The server then creates a temporary table
GO6E 16/22 (2019'();“) and a temporary index, copies data from the target table to
GOoF 16/215 (2019.01) the temporary table, and generates index information
(52) US. CL according to the data in the temporary table. Next, the server
CPC ... GO6F 16/2343 (2019.01); GO6F 16/215 adds an access exclusive lock to the target table to prevent
(2019.01); GO6F 16/2228 (2019.01); GOOF the system from performing a data mampulation language
16/2282 (2019.01); GO6F 16/2365 (2019.01) (DML) operation on the target table. Then data 1n the target
(58) Field of Classification Search table and the temporary table as well as corresponding index

CPC GO6F 16/215; GO6F 16/2228; GO6F
16/2282; GO6F 16/2343; GO6F 16/2365;
GO6F 16/2433; GO6F 16/284

See application file for complete search history.

information 1s exchanged, thereby completing cleaning and
reclaiming of disk space.

20 Claims, 8 Drawing Sheets

a1 1]
BPeternine A tareet inbes f

'

: _ w302
Add 4 share wpdate ceelusive lock w b targel bl to provent asysicm fom /7
perturfung o date deetiteon language oparailen on the tarect iable

Y

. _ N) _ - %303
Crepte 8 temperary tahle, a table definition of the temparary ible poing '/l
1he same a5 1 1able dettiton of tie target 1able !
‘ _ _ _ _ - B304
Credie d venpuran andex of the fereporary fuble, anoabeituee of the ¢
temiporary inder Being the same a5 o acvine o7 an ndew oF the tareet table

Copy date i ihe fargzt tahie to the femporary fable, ond zeperate /,f’ 8305
iles infermation w the temporary Snudex swconding S tne data In
the lerporary tabic
!
-~ T-TTsTTTTTTmTTTTEETEITIEETTT ! """"""""""""""""""" 1 .
z P
D Add an aucess suclusive ook 1o the terset bl to preveont e svstain from f/
i perfonning a dete manipulatian langrape ceertion on The trget tabie
i
|
. : : . . Pt ls
{ Lrchangs the data in the tenporary ravls wibiv daza inthe targer table and mdex
' datan the taimporary ndex with index datn i e targes Index
i
|
Y :
i : : o o L B3I8
v Reggae the share update exclusivg locy and the access exelusive leck onthe |
tavpet tahle

US 11,023,448 B2
Page 2

(56)

2008/0222209 Al

References Cited

U.S. PATENT DOCUM

2011/0282839 Al* 11/2011

2015/0106542 Al* 4/2015

CN
CN
CN
CN
CN
JP

Paksoy

Horikawa

LA

ttttttttttttt

EINTTS

9/2008 Nakano et al.

ttttttttttttttt

FOREIGN PATENT DOCUMENTS

102411569 A
103593449 A
103778064 A
104965879 A *
110287183 A *
2010015344 A %

4/201
2/201
5/201
10/201
9/201
1/201

BN SR, T LN LN N

GOOF 11/1458

707/640
GOOF 9/524

710/200

OTHER PUBLICATIONS

Parlov. “Postgres Locking Revealed”. Nordeus Engineering. Nov. 6,
2015 [Retrieved on Jan. 16, 2021], Retrieved from the Internet<

URL: https://engineering.nordeus.com/postgres-locking-

revealed/>. (Year: 2015).*
“PostgreSQL 9.0.22 Documentation”. The PostgreSQL Global Devel-

opment Group. 2015 [Retrieved on Jan. 15, 2021], Retrieved from
the Internet<< URL: https://www.postgresql.org/files/documentation/
pdf/9.0/postgresql-9.0-US.pdf>.) (Year: 2015).*

Tencent Technology, ISRWO, PCT/CN2018/071506, Mar. 30, 2018,

5 pgs.
Tencent Technology, IPRP, PCT/CN2018/071506, Jul. 9, 2019, 4

PES.

* cited by examiner

U.S. Patent Jun. 1, 2021 Sheet 1 of 8 US 11,023,448 B2

(Start >

Add an access exclusive lock

Create a temporary table

i S103
Copy data from a source table to the /7

temporary table

i

S104
Exchange content of the temporary table /—

and the source table
i f‘ S105
Re-create an index on the source table

i /’ 5106
Delete the temporary table

Release the access exclusive lock

:
(End >

FIG. 1 (Prior art)

U.S. Patent

Compuder

terminal 200 \‘

N

Jun. 1, 2021 Sheet 2 of 8

/

a

Display

User
interface

t-J
-
-

IEEL
302.11

network
intertace

lEEE

Processor ¢ 802.16

interface

O
0
0

3GPP

Coupler

US 11,023,448 B2

206
/

intertace

204
Memory /

FIG. 2

U.S. Patent Jun. 1, 2021 Sheet 3 of 8 US 11,023,448 B2

Deternuing a target table

e T T e T e e e e e e T T T e e e

. : 5302
Add a share update exclusive lock to the target table, to prevent a system from /
performing a data definition language operation on the target able

Y

the same as a table detimition of the target table

[e e e e e i o o e i i

_ | | S303
Create a temporary table, a table definition of the temporary table being /

Y

o __ S304
Create a temporary index of the temporary table, an ativibute of the /
temporary index being the same as an attribute of an (ndex of the target table

Copy data in the target table to the temporary table, and generate / 5303
index information m the temporary index according to the data 1n
the temporary table

. - S306
Add an access exclusive lock {o the target table, o prevent the system from /
performing a data mantpulation language eperation on the target table

--

S307
[:xchange the data 1o the femporary table with data 1n the target table and index /
data in the temporary index with index data in the target index

i

. , S308
Release the share update exclusive lock and the access exclustve logk on the /
target table

o e e e e e i i e e e e e e e e e)

FIG. 3

U.S. Patent Jun. 1, 2021 Sheet 4 of 8 US 11,023,448 B2

L S401
- Count a quantity ot data blocks in a target table

Y

5402
Copy data in the target table (o a temporary table /

Y

Determine a quantity of data blocks newly added
to the target table in the data COPY G process ,/

5403

No _ - Determine whether the S404

quantity ot the newly
added data blocks 1s less
than a preset threshold

Yes

v
Set a status of @ temporary mndex to an
available state, and generate index 5405
nformation in the temporary mdex according

FIG. 4

U.S. Patent

Jun. 1, 2021

Sheet 5 of 8

US 11,023,448 B2

AcCcCess
Share

Lock

Row
Share

Lock

Row
Exclusive

Lock

Share
Update
Exclusive

Lock

Share
Lock

Share
Row

Exclusive
Lock

Exclusive
Lock

Access
Exclusive

Lock

ACCESS
Share

Lock

Row
Share

Lock

Kow

Exclusive
Lock

Share

Update

Exclusive
Lock

Share
Lock

Share
Row
Exclusive
Lock

E};;:lusive
Lock

Access

Exclusive
Lock

FIG. 5 (Prior Art)

U.S. Patent Jun. 1, 2021 Sheet 6 of 8 US 11,023,448 B2

Insert

e space mapping table

Appending mode

Insert

g g g g a a a a a aa a aaa aa a a a dr e a e a a a ay N g ey y s YRR RN
T T T e T e T e T T e e T o T T T T T T T e T e e T e e e e e e e e e e e e e e e e e T e e e T e T e e e e e e e e e T e T e e T EaE bt o o e e o e e o e e e e e e) X aox ¥ I:E 't 'E 'E
o N g . N g) o g el N)

N g g g N NNl e o g X ok kK X N o o g X ok Nk kK X kX ¥ rATAY Y N
N L N o o g EaaE a a al a aa a aal a aF a el e L e L]
g g g g aa a a a Ea I e e e a X o ¥

N N N N) g el g el e N o e e
L g ko N o N ke e N o N o kot e L ol k))
N g . N g g o e N e S g - e]
N g g e g g N o NN o g N N e AN
N N N o) kol el e L o ol ko e ok o a a aa
g g g g a a a a a aa a aaa aa a a a N N g g o S Ll]
N Nt o ¥ L M g g g N e N e L N ol o g e el g e,
L e g ko Nl o N ket e N N o o o e e e
o N g . N g) o g el e g g

N g g g N NNl e o g N N o e rATAY Y N
N L N o o g EaaE a a al a aa a aal a aF a el e L e o ke a E a a a a a L]
g g g g aa a a a N N g g Sy S e

N N N N) g el g el e N N e g Rt ol e g e
L g ko N o N ke N N A N a aE an a t aa a E aE al a a at laaa)
N g . N g g o e g - e]
N g g e g g N o NN o g N N e AN
N N N o) kol el e L o e a a a a ar a aa E aE aE F a ak E a a a a aa a E a a a a a
g g g g a a a a a aa a aaa aa a a a N N g g o S Ll]
N N N N g R g g el e N o e g g a a a ata aal a a aa a aa a aa e,
L e g ko Nl o N ket e N N o o o e e e
o N g . N g) o g el e g g

o T T T o T e T T T e T T T o T T T o T e e T e e o e e T e e e e e e e e e e e e e T T T T T T g T T e T e,

Table file Table file

U.S. Patent Jun. 1, 2021 Sheet 7 of 8 US 11,023,448 B2

.’f' ‘*-,_\
Read 7 \
H DatabaSe (data
"""""" | | scrubbimg)
N . .-J/:,

.

f_,f’“ \H .
- Database (data Ierte
definition language) |

\
L v

-
-

U.S. Patent

Jun. 1, 2021 Sheet 8 of 8

US 11,023,448 B2

Linlocking unit

/ 800
Data scrubbing apparatus
. . 801
Determining unit r
- - . 2
First locking unit /” 5
Temporary table creating unit b 803
Mapping relationship creating usut L - 804
Temporary mdex creatins umit L 303
_ 806
Temporary mdex management unit o
- _ 807
Maode switching unit ol
] - 808
Data processing untt
.. . 8081
Data copymg sub-unit wl
|
. T . | — 8082
Counting sub-unit T
. . l : 8083
Determining sub-unit sl
| oo
. . 8084
Generating sub-unit gl
|
Data processing sub-unit 3035
T - 309
second locking unit o
—,l,— 810
Data exchange unit ot
, . | 811
Deletion unit ol
L — 812

FIG. 8

US 11,023,448 B2

1

DATA SCRUBBING METHOD AND
APPARATUS, AND COMPUTER READABLE
STORAGE MEDIUM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation application of PCT/

CN2018/071506, entitled “DATA SCRUBBING METHOD
AND APPARATUS, AND COMPUTER READABLE
STORAGE MEDIUM” filed on Jan. 5, 2018, which claims
priority to China Patent Application No. 201710013109.2,
filed with the Chinese Patent Oflice on Jan. 9, 2017 and
entitled “DATA SCRUBBING METHOD AND APPARA-
TUS”, all of which are incorporated by reference 1n their
entireties.

FIELD OF THE TECHNOLOGY

This application relates to the field of database application
technologies, and 1n particular, to a data scrubbing method
and apparatus, and a computer readable storage medium.

BACKGROUND OF THE DISCLOSURE

A PostgreSQL database 1s a general open-source database
management system that 1s practical, eflicient, and widely
applied. After the PostgreSQL database 1s run for a long
time, index expansion and junk data are generated in a
system. The data occupies spare disk space and increases
service costs. Besides, data expansion also lowers the per-

formance of the system. Native VACUUM FULL of the
PostgreSQL can be used for scrubbing the disk space and
removing the index expansion.

SUMMARY

This application provides a data scrubbing method and
apparatus, and a computer readable storage medium, so as to
at least resolve the problem that table data cannot be
operated within a long time in a data scrubbing process,
thereby ensuring high availability of a system

According to a first aspect of this application, a data
scrubbing method 1s performed at a server having one or
more processors and memory storing a plurality of programs
to be executed by the one or more processors, the method
including;

adding, by the server, a share update exclusive lock to a
target table, to prevent a system from performing a data
definition language (DDL) operation on the target table;

creating, by the server, a temporary table, a table defini-
tion of the temporary table being the same as a table
definition of the target table;

creating, by the server, a temporary index of the tempo-
rary table, an attribute of the temporary index being the same
as an attribute of an index of the target table;

copying, by the server, data from the target table to the
temporary table, and generating index information in the
temporary index according to the data in the temporary
table:

adding, by the server, an access exclusive lock to the
target table, to prevent the system from performing a data
manipulation language (DML) operation on the target table;

exchanging, by the server, the data 1n the temporary table
with data 1n the target table and the index information 1n the
temporary mndex with index information in the index of the
target table; and

10

15

20

25

30

35

40

45

50

55

60

65

2

releasing, by the server, the share update exclusive lock
and the access exclusive lock on the target table.

According to a second aspect of this application, a server
includes one or more processors, memory, and a plurality of
machine readable instructions stored in the memory. The
plurality of machine readable instructions, when executed
by the one or more processors, cause the server to perform
the aforementioned data scrubbing method.

According to a third aspect of this application, a non-
transitory computer readable storage medium stores a plu-
rality of machine readable instructions 1n connection with a
server having one or more processors. The plurality of
machine readable instructions, when executed by the one or
more processors, cause the server to perform the aforemen-
tioned data scrubbing method.

This application provides a data scrubbing method and
apparatus, and an associated non-transitory computer read-
able storage medium. A share update exclusive lock 1s added
to a target table, to prevent a system from performing a DDL
operation on the target table; then, a temporary table and a
temporary index are created, data 1n the target table 1s copied
to the temporary table, and index information 1s generated
according to the data in the temporary table; after that, an
access exclusive lock 1s added to the target table to prevent
the system from performing a DML operation on the target
table, and then data in the target table and the temporary
table as well as corresponding index information 1s
exchanged, thereby completing cleaning and reclaiming of
disk space.

The share update exclusive lock 1s used in most of the
time during the data scrubbing process, and the DML
operation performed by the system on the target table 1s not
aflected. Therefore, in most of the time during data scrub-
bing, DML operations on the database can be performed
normally, thereby ensuring high availability of the system.
In this solution, the access exclusive lock 1s added to the
target table only during the period of exchanging the data in
the target table and the temporary table as well as the
corresponding index information, to prevent DML opera-
tions on the target table. Because the time spent on data
exchange 1s only several seconds, a service interruption time
can be 1gnored. Therelore, user experience can be greatly
improved.

BRIEF DESCRIPTION OF THE DRAWINGS

To describe the technical solutions of the embodiments of
the present disclosure or the prior art more clearly, the
accompanying drawings for i1llustrating the embodiments or
the prior art will be introduced brietfly in the following.
Apparently, the drawings in the following description are
only some embodiments of the present disclosure, and a
person of ordinary skill 1n the art may obtain other drawings
based on these accompanying drawings without creative
cllorts.

FIG. 1 1s a flowchart of a method for data scrubbing by
using native VACUUM FULL of a PostgreSQL.

FIG. 2 1s a structural block diagram of hardware of a
computer terminal for a data scrubbing method according to
an embodiment of this application.

FIG. 3 1s a flowchart of a data scrubbing method accord-
ing to an embodiment of this application.

FIG. 4 1s a flowchart of a method of copying data in a
target table to a temporary table and generating index
information according to the data in the temporary table
according to an embodiment of this application.

FIG. 5 1s a lock conflict table 1n a PostgreSQL.

US 11,023,448 B2

3

FIG. 6 1s a schematic diagram of a scenario of switching
a data write mode according to an embodiment of this

application.

FIG. 7 1s a schematic diagram of a synchromization
framework of a DML process and a data scrubbing process 3
according to an embodiment of this application.

FIG. 8 1s a structural block diagram of a data scrubbing
apparatus according to another embodiment of this applica-
tion.

10
DESCRIPTION OF EMBODIMENTS

FIG. 1 1s a flowchart of a method for data scrubbing by
using native VACUUM FULL of a PostgreSQL. As shown
in FIG. 1, the method may include the following steps: 15

S101: Add an access exclusive lock to a source table 1n a
PostgreSQL database.

S102: Create a temporary table.

S103: Copy data 1n the source table to a temporary table.

S104: Exchange content in the source table and the 20
temporary table.

S105: Re-create an index on the source table.

S106: Delete the temporary table.

S107: Release the access exclusive lock.

Because the VACUUM FULL adds the access exclusive 25
lock to the source table at the beginning to prevent a system
from moditying the table, this operation blocks all opera-
tions performed by the system on the source table in the
whole process, including DML (which 1s short for data
manipulation language, where data manipulations are clas- 30
sified 1nto data query and data update, and data update 1s
turther divided into three types manipulations: insertion,
deletion, and modification) and DDL (which 1s short for data
definition language, and 1s used for defining creation and
cancellation operations of database modes, basic tables, 35
views, and mdexes) operations, causing a Severe Service
interruption and aflecting the quality of service. For
example, 1t takes approximately three hours to perform
VACUUM FULL on a table with a size of 100 G, and 1n this
process, services cannot be operated normally. In other 40
words, the services need to be iterrupted for three hours to
clean and reclaim disk space once.

To resolve the foregoing problem, 1n the embodiments of
this application, 1t 1s considered to add a share update
exclusive lock to a target table to prevent a system from 45
performing a DDL operation on the target table; then create
a temporary table and a temporary index, copy data from the
target table to the temporary table, and generate index
information according to the data in the temporary table; add
an access exclusive lock to the target table to prevent the 50
system from performing a DML operation on the target
table; and further exchange data 1n the target table and the
temporary table as well as corresponding index information.

In this way, the access exclusive lock 1s added to the target
table only during the period of exchanging the data in the 55
target table and the temporary table as well as the corre-
sponding index information, to prevent DML operations on
the target table, thereby greatly reducing the time spent on
cleaning and reclaiming of disk space.

To help a person skilled in the art better understand the so
solutions of this application, the following clearly and
completely describes the technical solutions 1n the embodi-
ments of this application with reference to the accompany-
ing drawings 1n the embodiments of this application. Appar-
ently, the described embodiments are merely some of the 65
embodiments of this application rather than all of the
embodiments. All other embodiments obtained by a person

4

of ordinary skill in the art based on the embodiments of this
application without creative efiorts shall fall within the
protection scope of thus application.

It should be noted that the terms such as “first” and
“second” are used only to differentiate similar objects, and
are not necessarily used for describing a particular sequence
or order. It should be understood that data used as such may
be mterchanged 1n suitable cases, so that the embodiments
of this application described herein can be implemented 1n
a sequence other than those depicted or described herein. In
addition, the terms “include”, “have”, and any variants
thereol are intended to cover a non-exclusive inclusion. For
example, a process, method, system, product or device that
includes a series of steps or units 1s not limited to the steps
or units listed clearly, but can also include other steps or
units not specified expressly or inherent to the process,
method, product or device.

According to an embodiment of this application, an
embodiment of a data scrubbing method 1s provided, which
can be used for a PostgreSQL. It should be noted that, the
steps shown 1n the flowchart 1n the accompanying drawings
may be executed 1n a computer system such as a group of
computer executable instructions. Moreover, although a
logic sequence 1s shown 1n the flowchart, in some cases, the
shown or described steps may be performed 1n a sequence
different from the sequence herein.

The method embodiment provided 1n an embodiment of
this application may be performed in a mobile terminal, a
computer terminal or a similar operational apparatus. Using
running on a computer terminal as an example, FIG. 2 1s a
structural block diagram of a computer terminal for a data
scrubbing method according to an embodiment of this
application. As shown 1n FIG. 2, a computer terminal 200
may 1nclude one or more (only one 1s shown 1n the figure)
processors 202 (the processor 202 may include, but is not
limited to, a microcontroller unit (MCU), a field-program-
mable gate array (FPGA), or other processing apparatuses),
a memory 204 configured to store data, and a transmission
apparatus 206 configured for a communication function. A
person of ordinary skill in the art can understand that the
structure shown 1n FIG. 2 1s merely an example, and does
not limit the structure of the foregoing electronic apparatus.
For example, the computer terminal 200 may also include
more or fewer components than those shown i FIG. 2, or
have a configuration different from that shown in FIG. 2.

The memory 204 may be configured to store a software
program and modules of application soitware, such as
program 1nstructions/modules corresponding to the data
scrubbing method in an embodiment of this application. The
processor 202 executes different functional applications and
data processing by running the software program and mod-
ules stored 1n the memory 204, thereby implementing the
foregoing data scrubbing method. The memory 204 may
include a high-speed random memory, and may also include
a non-volatile memory, for example, one or more magnetic
storage apparatuses, a flash memory or other non-volatile
solid-state memories. In some embodiments, the memory
204 may further include memories remotely disposed rela-
tive to the processor 202, and these remote memories may
be connected to the computer terminal 200 through a net-
work. Examples of the network include, but are not limited
to, the Internet, an intranet, a local area network, a mobile
communications network, or a combination thereof.

The transmission apparatus 206 1s configured to receive or
send data through a network. Specific examples of the
network may include a wireless network provided by a
communications provider of the computer terminal 200. In

US 11,023,448 B2

S

an example, the transmission apparatus 206 1includes a
network interface controller (NIC), which can be connected
to other network devices through a base station and therefore
can communicate with the Internet. In an example, the
transmission apparatus 206 may be a radio frequency (RF)
module, which 1s configured to communicate with the Inter-
net 1 a wireless manner.

In the foregoing running environment, this application
provides a data scrubbing method shown in FIG. 3. The
method may be applied 1n a computer terminal, or may be
applied 1n an 1ntelligent terminal device and performed by a
processor in the intelligent terminal device. The intelligent
terminal device may be a smartphone, a tablet computer, or
the like. At least one application program 1s installed in the
intelligent terminal device. The type of the application
program 1s not limited in the embodiments of this applica-
tion. The application program may be a system-type appli-
cation program or a software-type application program.

FIG. 3 1s a flowchart of a data scrubbing method accord-
ing to an embodiment of this application. As shown in FIG.
3, an optional solution of the data scrubbing method includes
the following steps:

Step S301: Determine a target table.

After a delete operation 1s performed 1n a database,
records 1n a table created by using a CREATE TABLE
statement 1n the database are merely marked as a deletion
state, and no space 1s released. The space cannot be reused
in a subsequent update or msert operation. Index expansion
and junk data are generated as operations such as deletion
and update are constantly performed in the database. The
space can be released only after data scrubbing. In this
embodiment, the target table may be a table designated by a
user in the database, or may be a table that meets a data
scrubbing condition. The data scrubbing condition may be
that the size of data in the table exceeds a specified data
volume threshold or a running time of the table in the
database exceeds a specified time threshold. That 1s, when
running duration of the table in the database exceeds the
time threshold or the size of the data in the table exceeds the
data volume threshold, the table can be used as the target
table of data scrubbing. The target table mentioned 1n this
embodiment may be a table on which data scrubbing needs
to be performed 1n the PostgreSQL.

Step S302: Add a share update exclusive lock to the target
table, to prevent a system from performing a DDL operation
on the target table.

Data scrubbing measures 1n the PostgreSQL are divided
into VACUUM and VACUUM FULL. In VACUUM, DML
operations on the table are not blocked, while DDL opera-
tions on the table are blocked; in VACUUM FULL, all
operations on the table are blocked, including DML and
DDL operations, which causes blocking of all subsequent
operations and results 1 a long-time service interruption.
However, n VACUUM, spaces of rows of dead data (dead
tuple) are merely switched to an available state, while the
spaces are not combined. In VACUUM FULL, spaces of
rows ol dead tuple are switched to the available state, and
moreover, data after the space fragments are moved upward,
so that the spaces are combined.

When data scrubbing i1s performed by using VACUUM
FULL, because the access exclusive lock 1s added to the
table at the beginning to prevent the system from modifying,
the table, all operations, including DML operations, on the
target table 1n the whole process are blocked, causing a
severe service interruption and aflecting the quality of
service. Therefore, 1n this embodiment, when data scrubbing
1s performed on the target table, a share update exclusive

10

15

20

25

30

35

40

45

50

55

60

65

6

lock 1s added to the target table first, and only DDL
operations performed by the system on the target table are
prevented. In this case, DML operations can still be per-
formed normally.

Step S303: Create a temporary table, a table definition of
the temporary table being the same as a table definition of
the target table.

A temporary table the same as the target table 1s created,

and the table definition of the target table 1s copied com-
pletely, including a constraint, a primary key, an external
key, and the like.

In the data scrubbing process, in order to apply modifi-
cations on the target table rapidly, corresponding locations
of records of the target table 1n the temporary table need to
be found quickly. When the data volume 1s large, for
example, when the data volume 1s hundreds of gigabats,
extremely high query efliciency 1s required, and an eflicient
query algorithm 1s needed. Therefore, 1n this embodiment,
alter the temporary table i1s created according to the target
table, a mapping relationship between each piece of data in
the target table and a location 1n the temporary table 1s
further established.

Specifically, the location mapping relationship of the
records from the temporary table to the target table may be
managed by using arrays. Each array unit describes data
mapping ol all records 1n one data page to the temporary
table, and a subscript of the array 1s a page number. A cache
map tuple of the array unit 1s defined as follows:

typedetf struct

1

Item Pointer Data old Item;
Item Pointer Data new Item;
Map Item;
typedef struct

{
Map Item items|[1];
FCache Map Tuple;

In map items, an old item stores a storage location of a
record in the target table, and a new item stores a storage
location of a record in the temporary table. Each cache map
tuple corresponds to one data page, and a quantity of array
units 1 the items 1s equal to a quantity of records 1n each
data page.

Through the foregoing data structure design, the mapping
relationship of any record can be found by using time
complexity of O(1).

Step S304: Create a temporary index of the temporary
table, an attribute of the temporary index being the same as
an attribute of an index of the target table.

The temporary mdex of the temporary table can be
created according to the index of the target table. The
temporary index inherits all attributes of the index of the
target table, but index information of the index of the target
table 1s not copied. After the temporary index 1s created, a
status of the temporary index 1s set to an unavailable state.
In this stage, data 1s copied from the target table to a table
file (heap) 1n the temporary table, and no mndex information
1s generated in the temporary index.

A default space management method 1n the PostgreSQL 1s
a Iree space management algorithm (free space map, FSM
for short). In the FSM, available space 1s searched for by
using a tree-based management algorithm. Because the
share update exclusive lock 1s added to the target table 1n
step S302, the system can perform DML operations on the
target table. I1 the free space management algorithm 1s still

US 11,023,448 B2

7

used, newly added data may be omitted in the process of
copying the data from the target table to the temporary table.
In order to overcome the foregoing defect, in the space
management method for the table file 1n this embodiment, a
new data write method 1s added: APPEND ONLY—append-
ing mode. In the appending mode, data 1s written at the end
of the table, without considering whether the previous
locations are 1dle. After 1t 1s switched to the appending
mode, there 1s always a blank data block at a tail of the target
table, for newly data to be written 1. The capacity of the
data block 1s fixed, and after the data block 1s full, a new
blank data block 1s appended automatically.

FIG. 6 1s a schematic diagram of a scenario of switching,
a data write mode according to an embodiment of this
application. Referring to FIG. 6, after the temporary index 1s
disabled, the data write mode of the data 1n the target table,
that 1s, the table file in FIG. 6, 1s switched from a free space
management mode to the appending mode. In the appending
mode, data 1s written into a data block at the tail of the target
table, so that newly added data of the target table can be
tracked specifically.

Step S305: Copy data from the target table to the tempo-
rary table, and generate index information in the temporary
index according to the data in the temporary table.

FIG. 4 1s a flowchart of a method of copying data 1n a
target table to a temporary table and generating index
information according to the data in the temporary table
according to an embodiment of this application. The method
includes the following steps:

S401: Count a quantity of data blocks in the target table.

S402: Copy data from the target table to the temporary
table.

S403: Determine a quantity of data blocks newly added to
the target table 1n the data copying process.

S404: Determine whether the quantity of the newly added
data blocks 1s less than a preset threshold.

S405: If the quantity of the newly added data blocks is
less than the preset threshold, set a status of the temporary
index to an available state, and generate the index informa-
tion in the temporary index according to the data i the
temporary table; and 1f the quantity of the newly added data
blocks 1s not less than the preset threshold, return to step
S401.

The data block 1s a group of or several groups of records
arranged together successively, and 1s a data unit for trans-
mission between a main memory and an mput/output device
or an external memory. The data block 1n the target table 1s
used for storing data, and each data block has a fixed size.
Before the data 1n the target table 1s copied to the temporary
table, a total quantity of current data blocks 1n the target
table 1s counted first. Because the system can perform DML
operations on the target table, data of the data blocks in the
target table may be increased during the data copying
process, and the total quantity of data blocks in the target
table changes before and after data copying. If the quantity
changes greatly, 1t indicates that DML operations are per-
formed on the target table frequently, and 1t the quantity
changes slightly, 1t indicates that few DML operations are
performed on the target table. Because 1t takes a long time
to generate the index information, it 1s proposed in this
embodiment that the index information in the case where the
system performs few DML operations on the target table.
During implementation of this method, a data block incre-
ment threshold 1s preset, and the quantity of data blocks
newly added to the target table 1n the copying process can be
determined by comparing the quantities of data blocks 1n the
target table before and after the data copying process. It the

10

15

20

25

30

35

40

45

50

55

60

65

8

quantity of the newly added data blocks 1s less than the
preset data block icrement threshold, i1t indicates that the
system performs few DML operations on the target table,
and the step of generating the index information can be
started. The status of the temporary index {irst needs to be set
to the available state before the mndex information 1s gener-
ated.

The data block threshold may be set manually or calcu-
lated by a computer. The data block threshold may be
determined according to monitoring over the amount of
written newly added data For example, a time interval 1s
defined, and the quantity of newly added data blocks cor-
responding to each unit time (that 1s, a specified period, for
example, the unit time may be 1 s) 1n the time interval 1s
monitored, and the smallest quantity of data blocks 1s used
as the threshold. The quantity of newly added data blocks
corresponding to each unit time in multiple time intervals
may also be counted, the smallest quantity of data blocks
corresponding to the unit time in each time interval is
selected, and then an average value 1s calculated as the
threshold. There are many methods for determining the data
block threshold. Described above are merely examples,
which should not be construed as a limitation on the method
in this application.

In this embodiment, the process ol generating index
information 1n the temporary index may include the follow-
Ing steps:

S40351: Read the data in the temporary table.

S40352: Perform calculation on the data in the temporary
table, to obtain the index information.

S4053: Write the index mformation into a location of a
corresponding pointer on the temporary index.

S40354:; Set an 1index status of each piece of index infor-
mation in the temporary index, the index status being used
for 1dentitying whether the index information 1s available.

In the process of generating the index information, the
system may perform DML operations on the target table, and
newly added data 1s generated 1n the target table. Therefore,
after the index information 1s generated, data newly added to
the target table in the process of generating the index
information further needs to be processed. The processing
data newly added to the target table in the process of
generating the index information includes the following
steps:

1) copying, to the temporary table, the data newly added
to the target table in the process of generating the index
information;

2) reading the newly added data copied to the temporary
table;

3) performing calculation on the newly added data copied
to the temporary table, to obtain mndex information of the
newly added data;

4) writing the index information of the newly added data
to a location of a corresponding pointer on the temporary
index; and

5) setting an mdex status of the index information.

In step S402, the data in the target table 1s copied to the
temporary table piece by piece using records as units. In the
copying process, invalid records in the target table are
climinated, and only valid records are copied. The copying
data from the target table to the temporary table may
include: determining whether each piece of data 1n the target
table 1s valid one by one; if the piece of data 1s valid, copying
the piece of data to the corresponding location 1n the
temporary table according to the correspondence between
the piece of data and the location 1n the temporary table, and
performing a step of determining whether a next piece of

US 11,023,448 B2

9

data 1s valid; and 1f the piece of data 1s invalid, 1ignoring the
piece of data, and performing the step determining whether
a next piece of data 1s valid.

In this embodiment, the overall conception of data scrub-
bing (VACUUM FULL CONCURRENTLY) 1s reliably syn-

chronizing modifications on the target table into the newly
created temporary table in an asynchronous manner without
aflecting service requests. In this embodiment, a synchro-
nization mechanism shown in FIG. 7 1s designed, that 1s,
modification operations on the target table are transierred by
using a circular queue between a Postgres process of the
DML and a VACUUM FULL CONCURRENTLY process.
The Postgres process writes data into the circular queue, and
the VACUUM FULL CONCURRENTLY process reads data

from the circular queue, thereby transierring data. Due to a
characteristic Multi-Version Concurrency Control (MVCC)
mechanism of the PostgreSQL, only deletion operations on
data need to be transierred in the queue, and the transferred
data 1s as follows:

Item Pointer Data tid; a physical location of a deleted
record

Transaction Id xmin; a transaction for creating this record

Transaction Id xmax; a transaction for deleting this record

Through the data synchronization 1n FIG. 7, modifications
on Heap can be reliably copied to the process for forming a
VACUUM FULL CONCURRENTLY procedure. The
arrangement of the queue can ensure the consistency
between a synchronization sequence and a number sequence
ol operations.

Step S306: Add an access exclusive lock to the target
table, to prevent the system from performing a DML opera-
tion on the target table.

After the data newly added in the target table in the
process ol generating the index information 1s processed, the
data copying part in data scrubbing 1s also finished. Time-
consuming operations have been completed so far. To pre-
vent the system from continuing to generate new data, the
lock of the target table needs to be updated to an access
exclusive lock, so as to prevent DML operations of the
system.

FIG. 5 1s a lock contlict table 1n the PostgreSQL. Refer-
ring to FIG. 5, “X” 1n the figure represents a conflict item.
As can be seen, the access exclusive lock conflicts with the
share update exclusive lock. Although DML operations can
still be performed after the share update exclusive lock 1s
added to the target table, all operations, including DML and
DDL operations, on the table are blocked aifter the access
exclusive lock 1s added to the target table.

Step S307: Exchange the data 1n the temporary table with
data 1n the target table and the index information in the
temporary mndex with index information in the index of the
target table.

Table data in the target table and the temporary table as
well as the corresponding index information 1s exchanged.
After the exchange 1s completed, the table data in the
temporary table 1s written into the target table, the index
information of the temporary index 1s written into the index
of the target table, the table data in the target table 1s written
into the temporary table, and the index information of the
target table 1s written into the temporary index.

After that, the temporary table and the temporary index
are deleted. Because the table data of the temporary table
and the target table as well as the index information has been
exchanged, when the created temporary table and the cor-
responding temporary index are deleted, the actually deleted
physical file 1s the original table data and index information.

10

15

20

25

30

35

40

45

50

55

60

65

10

Step S308: Release the share update exclusive lock and
the access exclusive lock on the target table.

The share update exclusive lock and the access exclusive
lock added on the target table are released, to recover
operation authorization of the system over the target table.

In the data scrubbing method for the PostgreSQL accord-
ing to this embodiment, a share update exclusive lock 1is
added to a target table, to prevent a system from performing
a DDL operation on the target table; then, a temporary table
and a temporary 1index are created, data 1n the target table 1s
copied to the temporary table, and index information 1is
generated according to the data 1n the temporary table; after
that, an access exclusive lock 1s added to the target table to
prevent the system from performing a DML operation on the
target table, and then data in the target table and the
temporary table as well as corresponding index information
1s exchanged, thereby completing cleaning and reclaiming
of disk space. The share update exclusive lock 1s used 1n
most of the time during the data scrubbing process, and the
DML operation performed by the system on the target table
1s not aflected. Therefore, in most of the time during data
scrubbing, DML operations on the database can be per-
formed normally, thereby ensuring high availability of the
system. In this solution, the access exclusive lock 1s added
to the target table only during the period of exchanging the
data 1n the target table and the temporary table as well as the
corresponding index information, to prevent DML opera-
tions on the target table. Because the time spent on data
exchange 1s only several seconds, a service mterruption time
can be 1gnored. Therelore, user experience can be greatly
improved.

It should be noted that, for ease of description, the
foregoing method embodiments are described as a series of
action combinations. However, a person skilled in the art
should understand that this application 1s not limited to the
described sequence of the actions, because some steps may
be performed 1n another sequence or performed at the same
time according to the embodiments of this application. In
addition, a person skilled 1n the art should also understand
that the embodiments described in this specification all
belong to exemplary embodiments, and the involved actions
and modules are not necessarily mandatory to this applica-
tion.

Based on the foregoing descriptions of the implementa-
tions, a person skilled in the art may clearly understand that
method according to the foregoing embodiments may be
implemented by software in addition to a necessary general
hardware platform or by hardware. In many cases, the
former 1s the better implementation. Based on such an
understanding, the techmical solutions according to the
embodiments of this application essentially or the part
contributing to the prior art may be implemented 1n a form
of a software product. The computer software product 1is
stored 1n a storage medium (such as a ROM/RAM, a
magnetic disk, or an optical disc), and includes several
instructions for instructing a computer device (which may be
a mobile phone, a computer, a server, a network device, or
the like) to perform the methods described 1n the embodi-
ments of this application.

According to another embodiment of this application, an
apparatus for implementing the foregoing data scrubbing
method 1s provided. FIG. 8 15 a structural block diagram of
a data scrubbing apparatus according to another embodiment
of this application. As shown 1n FIG. 8, the data scrubbing
apparatus 800 includes a determining unmit 801, a {irst
locking unit 802, a temporary table creating unit 803, a
temporary index creating unit 8035, a data processing unit

US 11,023,448 B2

11

808, a second locking unit 809, a data exchange unmit 810, a
deletion unit 811, and an unlocking umt 812.

The determining unit 801 1s configured to determine a
target table.

The first locking unit 802 i1s configured to add a share
update exclusive lock to the target table, to prevent a system
from performing a DDL operation on the target table

The temporary table creating unit 803 1s configured to
create a temporary table, a table definition of the temporary
table being the same as a table definition of the target table.

The temporary index creating unit 805 1s configured to
create a temporary index of the temporary table, an attribute
of the temporary index being the same as an attribute of an
index of the target table.

The data processing unit 808 1s configured to copy data
from the target table to the temporary table, and generate
index information in the temporary index according to the
data 1n the temporary table.

The second locking unmit 809 1s configured to add an
access exclusive lock to the target table, to prevent the
system from performing a DML operation on the target
table.

The data exchange unit 810 1s configured to exchange the
data 1n the temporary table with data 1n the target table and
the index information in the temporary index with index
information 1n the index of the target table.

The deletion unit 811 1s configured to delete the tempo-
rary table and the temporary index.

The unlocking unit 812 1s configured to release the share
update exclusive lock and the access exclusive lock on the
target table.

In an optional embodiment, the data scrubbing apparatus
800 further includes: a temporary index management unit
806 and a mode switching unit 807.

The temporary index management unit 806 1s configured
to set a status of the temporary index, the status of the
temporary index including an unavailable state and an
available state.

The mode switching unit 807 1s configured to switch a
data write mode of the target table to an appending mode, the
appending mode being used for adding one data block after
a tail of the target table after a data block at the tail of the
target table 1s full, and writing newly added data into the data
block after the tail of the target table.

In an optional embodiment, the data processing umit
includes a data copying sub-unit 8081, a counting sub-unit
8082, a determining sub-unit 8083, a generating sub-unit
8084, and a data generating sub-umt 8085.

The data copying sub-unit 8081 1s configured to copy the
data from the target table to the temporary table.

The counting sub-unit 8082 1s configured to count a
quantity of data blocks newly added to the target table 1n the
data copying process.

The determining sub-unit 8083 1s configured to determine
whether the quantity of the newly added data blocks 1s less
than a preset threshold.

The generating sub-unit 8084 1s configured to generate the
index information in the temporary index according to the
data 1 the temporary table if the determining module
determines that the quantity of the newly added data blocks
1s less than the preset threshold.

The data processing sub-unit 8085 1s configured to pro-
cess data newly added to the target table 1n the process of
generating the mdex information.

In an optional embodiment, the generating sub-unit 8084
includes:

10

15

20

25

30

35

40

45

50

55

60

65

12

a first reading module, configured to read the data in the
temporary table;

a first calculation module, configured to perform calcu-
lation on the data in the temporary table, to obtain the index
information;

a first write module, configured to write the mndex infor-
mation into a location of a corresponding pointer on the
temporary index; and

a first status setting module, configured to set an mndex
status of each piece of mdex mformation in the temporary
index, the mdex status being used for 1dentifying whether
the index information 1s available.

In an optional embodiment, the data processing sub-unit
8085 includes:

a table data copying module, configured to copy, to the
temporary table, the data newly added to the target table in
the process of generating the index information;

a second reading module, configured to read the newly
added data copied to the temporary table;

a second calculation module, configured to perform cal-
culation on the newly added data, to obtain index informa-
tion of the newly added data;

a second calculation module, configured to write the
index information of the newly added data to a location of
a corresponding pointer on the temporary index; and

a second status setting module, configured to set an index
status of the index information.

In an optional embodiment, the data scrubbing apparatus

800 further includes:

a mapping relationship creating umt 804, configured to
create a mapping relationship between each piece of data 1n
the target table and a location 1n the temporary table; and

the data copying sub-unit 8081 includes:

a determining module, configured to determine whether
cach piece of data in the target table 1s valid one by one; and

a copying module, configured to: when the determining
module determines that the piece of data 1s valid, copy the
piece of data to the corresponding location in the temporary
table according to the correspondence between the piece of
data and the location 1n the temporary table.

In the data scrubbing apparatus according to this embodi-
ment, a share update exclusive lock 1s added to a target table,
to prevent a system from performing a DDL operation on the
target table; then, a temporary table and a temporary index
are created, data in the target table 1s copied to the temporary
table, and 1ndex information 1s generated according to the
data in the temporary table; after that, an access exclusive
lock 1s added to the target table to prevent the system from
performing a DML operation on the target table, and then
data in the target table and the temporary table as well as
corresponding index information 1s exchanged, thereby
completing cleaning and reclaiming of disk space. Because
the share update exclusive lock 1s used 1n most of the time
during the data scrubbing process, junk data in the database
can be scrubbed without affecting the DML at all, thereby
releasing disk space occupied by the table, ensuring high
availability of the system, and improving user experience.

An embodiment of this application further provides a
storage medium. Optionally, 1n this embodiment, the fore-
going storage medium may be configured to store program
code executed by the data scrubbing method 1n the foregoing
embodiment.

Optionally, in this embodiment, the storage medium 1s
configured store program code for performing the following
steps:

US 11,023,448 B2

13

Step 1: Determine a target table.

Step 2: Add a share update exclusive lock to the target
table, to prevent a system from performing a DDL operation
on the target table.

Step 3: Create a temporary table, a table definition of the
temporary table being the same as a table definition of the
target table.

Step 4: Create a temporary index of the temporary table,
the temporary index being created according to an index of
the target table.

Step S Copy data from the target table to the temporary
table, and generate index information according to the data
in the temporary table.

Step 6: Add an access exclusive lock to the target table, to
prevent the system from performing a DML operation on the
target table.

Step 7: Exchange the data 1n the temporary table with data
in the target table and the index information in the temporary
index with index mnformation in the index of the target table.

Step 8: Delete the temporary table and the temporary
index.

Step 9: Release the share update exclusive lock and the
access exclusive lock on the target table.

Optionally, for specific examples 1n this embodiment,
reference may be made to the examples described in
Embodiment 1 and Embodiment 2 above. Details are not
described herein again in this embodiment.

Optionally, 1n this embodiment, the foregoing storage
medium may include, but 1s not limited to: various media
capable of storing program code, such as a USB flash disk,
a read-only memory (ROM), a random access memory
(RAM), a mobile hard disk, a magnetic disk, or an optical
disc.

Another aspect of this application provides a data scrub-
bing apparatus. The data processing apparatus includes a
memory storing computer 1structions executable by a pro-
cessor, and a processor connected to the memory.

A person of ordinary skill in the art may be aware that the
various exemplary units and algorithm steps described in
conjunction with the embodiments disclosed 1n the embodi-
ments of this application can be implemented by electronic
hardware, or a combination of computer software and elec-
tronic hardware. Whether the functions are executed by
hardware or software depends on particular applications and
design constraint conditions of the technical solutions. A
person skilled 1n the art can use different methods to
implement the described functions for every particular appli-
cation, but 1t should not be considered that the implemen-
tation goes beyond the scope of this application.

It may be clearly understood by a person skilled 1n the art
that, for the purpose of convement and brief description, for
a detailed working process of the foregoing system, appa-
ratus, and unit, reference may be made to a corresponding,
process 1n the foregoing method embodiments, and details
are not described herein again.

The sequence numbers of the foregoing embodiments of
this application are merely for the convenience of descrip-
tion, and do not imply the preference among the embodi-
ments.

When the integrated unit in the foregoing embodiments 1s
implemented in a form of a software functional unit and sold
or used as an independent product, the umit may be stored 1n
a computer-readable storage medium. Based on such an
understanding, the technical solution of this application
essentially, or the part contributing to the prior art, or all or
a part of the technical solution may be implemented 1n a
form of a software product. The soitware product 1s stored

10

15

20

25

30

35

40

45

50

55

60

65

14

in a storage medium, and includes several instructions for
instructing a computer device (which may be a personal
computer, a server, a network device, or the like) to perform
all or some of the steps of the methods described 1n the
embodiments of this application.

In the foregoing embodiments of this application, the
description of each embodiment has respective focuses. For
a part that 1s not described 1n detail in an embodiment,
reference may be made to related descriptions 1n other
embodiments.

In the several embodiments provided 1n this application,
it should be understood that the disclosed client may be
implemented in other manners. For example, the described
apparatus embodiment 1s merely exemplary. For example,
the unit division 1s merely logical function division, and
there may be other division manners 1n actual implementa-
tion. For example, a plurality of units or components may be
combined or integrated into another system, or some fea-
tures may be 1gnored or not performed. In addition, the
displayed or discussed mutual couplings or direct couplings
or communication connections may be 1mplemented
through some mterfaces. The indirect couplings or commu-
nication connections between the units or modules may be
implemented 1n electronic or other forms.

The units described as separate parts may or may not be
physically separate, and parts displayed as units may or may
not be physical units, may be located 1n one position, or may
be distributed on a plurality of network units. Some or all of
the units may be selected according to actual needs to

achieve the objective of the solution of this embodiment.
In addition, functional units 1n the embodiments of this
application may be integrated into one processing unit, or
cach of the units may exist alone physically, or two or more
units may be integrated into one unit. The integrated unit
may be implemented 1 a form of hardware, or may be
implemented 1n a form of a soiftware functional unait.

What 1s claimed 1s:

1. A data scrubbing method performed at a server having
one or more processors and memory storing a plurality of
programs to be executed by the one or more processors, the
method comprising:

adding, by the server, a share update exclusive lock to a

target table, to prevent a system from performing a data
definition language (DDL) operation on the target
table;

creating, by the server, a temporary table, a table defini-

tion of the temporary table being the same as a table
definition of the target table;
creating, by the server, a temporary index of the tempo-
rary table, an attribute of the temporary index being the
same as an attribute of an index of the target table;

copying, by the server, data from the target table to the
temporary table, and generating index information 1n
the temporary index according to the data in the tem-
porary table;

adding, by the server, an access exclusive lock to the

target table, to prevent the system from performing a
data manipulation language (DML) operation on the
target table;

exchanging, by the server, the data in the temporary table

with the data 1n the target table and the index informa-
tion 1n the temporary index with index information in
the index of the target table; and

releasing, by the server, the share update exclusive lock

and the access exclusive lock on the target table.

US 11,023,448 B2

15

2. The method according to claim 1, further comprising;:
after creating, by the server, the temporary index of the
temporary table:
setting, by the server, a status of the temporary 1ndex to
an unavailable state; and d
switching, by the server, a data write mode of the target
table to an appending mode, the appending mode
being used for appending one new data block to a tail
of the target table after a data block at the tail of the

target table 1s full, and writing newly added data into
the new data block.

3. The method according to claim 2, wherein the copying,
by the server, data from the target table to the temporary
table, and generating index information in the temporary
index according to the data in the temporary table com-
Prises:

copying, by the server, the data from the target table to the

temporary table;
counting, by the server, a quantity of data blocks newly 20
added to the target table 1in the data copying process;
determining, by the server, whether the quantity of the
newly added data blocks 1s less than a preset threshold;
setting, by the server, the status of the temporary index to
an available state, and generating the index information 25
in the temporary index according to the data in the
temporary table, if the quantity of the newly added data
blocks 1s less than the preset threshold; and
copying, by the server, data in the newly added data
blocks to the temporary table, and performing the step 30
of counting a quantity of data blocks newly added to the
target table 1n the data copying process, if the quantity
of the newly added data blocks 1s not less than the
preset threshold.
4. The method according to claim 1, wherein the gener- 35
ating index information in the temporary index according to
the data 1n the temporary table comprises:
reading, by the server, the data in the temporary table;
performing, by the server, calculation on the data in the
temporary table, to obtain the index information; 40

writing, by the server, the index information into a loca-
tion of a corresponding pointer on the temporary index;
and

setting, by the server, an index status of each piece of

index information in the temporary index, the index 45
status being used for i1dentifying whether the index
information 1s available.

5. The method according to claim 4, further comprising:

after generating index information in the temporary index

according to the data i1n the temporary table: 50

processing, by the server, data newly added to the target
table 1n the process of generating the index informa-
tion.

6. The method according to claim 5, wherein the process-
ing, by the server, data newly added to the target table in the 55
process ol generating the index information comprises:

copying, by the server to the temporary table, the data

newly added to the target table in the process of
generating the index information;

reading, by the server, the newly added data copied to the 60

temporary table;

performing, by the server, calculation on the newly added

data copied to the temporary table, to obtain i1ndex
information of the newly added data;

writing, by the server, the index information of the newly 65

added data to a location of a corresponding pointer on
the temporary index; and

10

15

16

setting, by the server, an idex status of the index infor-

mation.

7. The method according to claim 1, further comprises:

alter creating, by the server, the temporary table, creating,

by the server, a correspondence between each piece of
data 1n the target table and a location in the temporary
table; and

the copying, by the server, data from the target table to the

temporary table comprises:

determining, by the server, whether each piece of data
in the target table 1s valid one by one;

copying, by the server 11 the piece of data 1s valid, the
piece ol data to the corresponding location in the
temporary table according to the correspondence
between the piece of data and the location in the
temporary table, and performing a step of determin-
ing whether a next piece of data 1s valid; and

ignoring, by the server i1 the piece of data 1s invalid, the
piece of data, and performing the step determining
whether a next piece of data 1s valid.

8. The method according to claim 1, further comprising:

deleting, by the server, the temporary table and the

temporary ndex.

9. A server comprising: one or more processors, memory,
and a plurality of machine readable instructions stored 1n the
memory, wherein the plurality of machine readable 1nstruc-
tions, when executed by the one or more processors, cause
the server to perform a plurality of operations comprising;:

adding, by the server, a share update exclusive lock to a

target table, to prevent a system from performing a data
definition language (DDL) operation on the target
table;

creating, by the server, a temporary table, a table defini-

tion of the temporary table being the same as a table
definition of the target table;
creating, by the server, a temporary index of the tempo-
rary table, an attribute of the temporary index being the
same as an attribute of an index of the target table;

copying, by the server, data from the target table to the
temporary table, and generating index information 1n
the temporary index according to the data in the tem-
porary table;

adding, by the server, an access exclusive lock to the

target table, to prevent the system from performing a
data manipulation language (DML) operation on the
target table;

exchanging, by the server, the data in the temporary table

with the data 1n the target table and the index informa-
tion 1n the temporary index with index information in
the index of the target table; and

releasing, by the server, the share update exclusive lock

and the access exclusive lock on the target table.

10. The server according to claim 9, wherein the plurality
ol operations further comprise:

alter creating, by the server, the temporary index of the

temporary table:

setting, by the server, a status of the temporary 1ndex to
an unavailable state; and

switching, by the server, a data write mode of the target
table to an appending mode, the appending mode
being used for appending one new data block to a tail
of the target table after a data block at the tail of the
target table 1s full, and writing newly added data into
the new data block.

11. The server according to claim 9, wherein the gener-
ating index information in the temporary index according to
the data 1n the temporary table comprises:

US 11,023,448 B2

17

reading, by the server, the data in the temporary table;
performing, by the server, calculation on the data 1n the
temporary table, to obtain the index information;

writing, by the server, the index information into a loca-
tion of a corresponding pointer on the temporary index;
and

setting, by the server, an index status of each piece of

index information in the temporary index, the index
status being used for identifying whether the index
information 1s available.

12. The server according to claim 11, wherein the plurality
ol operations further comprise:

after generating index information in the temporary index

according to the data in the temporary table:

processing, by the server, data newly added to the target
table 1n the process of generating the index informa-
tion.

13. The server according to claim 12, wherein the pro-
cessing, by the server, data newly added to the target table
in the process of generating the index information com-
Prises:

copying, by the server to the temporary table, the data

newly added to the target table in the process of
generating the index information;

reading, by the server, the newly added data copied to the

temporary table;

performing, by the server, calculation on the newly added

data copied to the temporary table, to obtain index
information of the newly added data;

writing, by the server, the index information of the newly

added data to a location of a corresponding pointer on
the temporary index; and

setting, by the server, an index status of the index infor-

mation.

14. The server according to claim 9, wherein the plurality
ol operations further comprise:

after creating, by the server, the temporary table, creating,

by the server, a correspondence between each piece of
data 1n the target table and a location 1n the temporary
table; and

the copying, by the server, data from the target table to the

temporary table comprises:

determining, by the server, whether each piece of data
in the target table 1s valid one by one;

copying, by the server 11 the piece of data 1s valid, the
piece of data to the corresponding location in the
temporary table according to the correspondence
between the piece of data and the location in the
temporary table, and performing a step of determin-
ing whether a next piece of data 1s valid; and

ignoring, by the server i1 the piece of data 1s invalid, the
piece ol data, and performing the step determining
whether a next piece of data 1s valid.

15. The server according to claim 9, wherein the plurality
ol operations further comprise:

deleting, by the server, the temporary table and the

temporary index.

16. A non-transitory computer readable storage medium
storing a plurality of machine readable instructions 1n con-
nection with a server having one or more processors,
wherein the plurality of machine readable 1nstructions, when
executed by the one or more processors, cause the server to
perform a plurality of operations including:

adding, by the server, a share update exclusive lock to a

target table, to prevent a system from performing a data
definition language (DDL) operation on the target
table;

10

15

20

25

30

35

40

45

50

55

60

65

18

creating, by the server, a temporary table, a table defini-
tion of the temporary table being the same as a table
definition of the target table;
creating, by the server, a temporary index of the tempo-
rary table, an attribute of the temporary index being the
same as an attribute of an index of the target table;

copying, by the server, data from the target table to the
temporary table, and generating index information in
the temporary index according to the data in the tem-
porary table;

adding, by the server, an access exclusive lock to the

target table, to prevent the system from performing a
data manipulation language (DML) operation on the
target table;

exchanging, by the server, the data in the temporary table

with the data in the target table and the index informa-
tion 1n the temporary mndex with index information in
the index of the target table; and

releasing, by the server, the share update exclusive lock

and the access exclusive lock on the target table.
17. The non-transitory computer readable storage medium
according to claim 16, wherein the plurality of operations
further comprise:
alter creating, by the server, the temporary index of the
temporary table:
setting, by the server, a status of the temporary 1index to
an unavailable state; and
switching, by the server, a data write mode of the target
table to an appending mode, the appending mode
being used for appending one new data block to a tail
of the target table after a data block at the tail of the
target table 1s full, and writing newly added data into
the new data block.
18. The non-transitory computer readable storage medium
according to claim 16, wherein the generating index infor-
mation in the temporary index according to the data in the
temporary table comprises:
reading, by the server, the data 1n the temporary table;
performing, by the server, calculation on the data in the
temporary table, to obtain the index information;

writing, by the server, the index imnformation into a loca-
tion of a corresponding pointer on the temporary index;
and

setting, by the server, an index status of each piece of

index information in the temporary index, the index
status being used for i1dentifying whether the index
information 1s available.

19. The non-transitory computer readable storage medium
according to claim 16, wherein the plurality of operations
further comprise:

alter creating, by the server, the temporary table, creating,

by the server, a correspondence between each piece of
data 1n the target table and a location in the temporary
table; and

the copying, by the server, data from the target table to the

temporary table comprises:

determining, by the server, whether each piece of data
in the target table 1s valid one by one;

copying, by the server 11 the piece of data 1s valid, the
piece of data to the corresponding location in the
temporary table according to the correspondence
between the piece of data and the location in the
temporary table, and performing a step of determin-
ing whether a next piece of data 1s valid; and

ignoring, by the server i1 the piece of data 1s invalid, the
piece of data, and performing the step determining
whether a next piece of data 1s valid.

US 11,023,448 B2
19

20. The non-transitory computer readable storage medium
according to claim 16, wherein the plurality of operations
turther comprise:

deleting, by the server, the temporary table and the

temporary index. 5

G e x Gx ex

20

	Front Page
	Drawings
	Specification
	Claims

