12 United States Patent
Chiu

US011023374B2

US 11,023,374 B2
Jun. 1, 2021

(10) Patent No.:
45) Date of Patent:

(54) APPARATUS AND METHOD AND
COMPUTER PROGRAM PRODUCT FOR
CONTROLLING DATA ACCESS

(71) Applicant: SILICON MOTION, INC., Zhube1

(TW)
Inventor:

(72) Shen-Ting Chiu, Miaoli County (TW)

(73) SILICON MOTION, INC., Hsinchu

(I'W)

Assignee:

(*) Notice:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 283 days.

(21)
(22)

Appl. No.: 16/263,117

Filed: Jan. 31, 2019

Prior Publication Data

US 2020/0012599 Al Jan. 9, 2020
Related U.S. Application Data

(65)

(63) Continuation-in-part ol application No. 16/250,326,

filed on Jan. 17, 2019.

(30) Foreign Application Priority Data

201810746676.3
201811194779 X

Jul. 9, 2018
Oct. 15, 2018

(CN)

(0)

(51) Int. CL
GO6F 12/06
GO6F 12/02

(2006.01)
(2006.01)

(Continued)

(52) U.S. CL

CPC GO6F 12/0607 (2013.01); GOo6F 12/0246

(2013.01); GO6F 12/1009 (2013.01);

(Continued)

Field of Classification Search
CPC GO6F 12/0246; GO6F 12/1009; GO6F
11/3034; GO6F 12/0646; GO6F 12/0607;
G11C 16/08; G11B 27/329

See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

5,924,098 A
0,007,547 A

7/1999 Kluge
5/2000 Douceur

(Continued)

FOREIGN PATENT DOCUMENTS

4/2004
5/2016
12/2017

CN
TW
TW

1145881 C
201617885 A
201741883 A

OTHER PUBLICATIONS

Taiwanese Search Report, dated Sep. 6, 2019, for Taiwanese Appli-
cation No. 107136225.

(Continued)

Primary Examiner — Etienne P Leroux

(74) Attorney, Agent, or Firm — Birch, Stewart, Kolasch
& Birch, LLP

(57) ABSTRACT

The mvention introduces an apparatus for controlling data
access that includes a memory, an access interface and a
processing unit. The processing unit 1s arranged to operably
receive logical-to-physical (L2P) mapping information cor-
responding to a programming operation through the access
interface and store the L2P mapping information in the
memory; searching the L2P mapping information to obtain
a first logical address associated with user data stored in
space ol each physical address and a second logical address
associated with user data stored in space of each next
physical address; generating content of a plurality of entries
of a link-based L2P mapping sub-table 1n the order of logical
addresses, wherein each entry of the link-based L2P map-
ping sub-table stores iformation about a physical address
and a second logical address associated with a correspond-
ing first logical address; and store the link-based L2P
mapping sub-table.

20 Claims, 14 Drawing Sheets

£ 190
Storage Unit
i 1
Ve 0
-~ 130
| 180 Memory
Access ¢ 131-p
Interface | Link-based L2P
mapping sub-table
I ~ 110 ~133
Processing ;
| Unit * * L2P mapping table
¥ ~ 1335
| L2P mapping
linked-list
'—L ~ 170
Linked-hist Allocation
Sem:ch i Register
Engine
~~ 150 I

US 11,023,374 B2

Page 2
(51) Imt. CL 2005/0066111 Al* 3/2005 Mantani G11B 27/329
GOoI" 16/901 (2019.01) 2010/0191897 A1 7/2010 Zh t al T
H ang et al.
GOoF 12/1009 (2016'0;) 2011/0087829 Al* 4/2011 Lin .ooooveovviiiinn, GO6F 12/0646
Go6l 12/12 (2016.01) 711/103
(52) U.S. CL. 2014/0129760 Al* 52014 Lee wvvvveeevvvin. GO6F 12/0246
CPC ... GO6F 12/12 (2013.01); GO6F 16/9024 10190761 AL $h014 K CocE ’I é /16“ égg
(2019.01); GOGF 2212/7201 (2013.01); GO6F WOIL e 21103
2212/7205 (2013.01) 2015/0261444 Al 9/2015 Yoshii et al.
2016/0140048 Al 5/2016 Mukherjee et al.
(56) References Cited 2017/0286313 Al 10/2017 Jiang et al.
2019/0057041 A1* 2/2019 Ha woovvovvveiiiii, GO6F 11/3034
U.S. PATENT DOCUMENTS
0.043.675 B2 52015 Kato et al. O1THER PUBLICAITONS
9,942,169 Bl 4/2018 Detwiler | | | |
2003/0101327 Al* 5/2003 Beck ... GO6F 12/1009 English translation of the Taiwanese Search Report for Taiwanese
711/206 Application No. 107123751, dated Feb. 4, 2019.
2004/0109376 Al* 6/2004 Lin oovveveveeoeeoiniinn, G11C 16/08

365/230.03 * cited by examiner

U.S. Patent Jun. 1, 2021 Sheet 1 of 14 US 11,023,374 B2

190
— 10
130

Memory

Access 131-p
Interface Link-based L2P
mappin sub table
110 pping
Processing

sz " O
Unit

1335

L2P mapping
I linked-hist

170
ng__l‘_(fflim __ Allocation
SCAI U1 - \
R t
| Engine | te DT
150

FIG. 1

U.S. Patent Jun. 1, 2021 Sheet 2 of 14 US 11,023,374 B2

~ 230-0

190-0-0

Storage Sub-unit

190-0-1

Storage Sub-unit

180-0
Access Sub- o
interface 210 :
230-1 | 230-(i-1) (B
190-0-(i-1)
©

190-0-1

Storage Sub-unit

l |/— 230-1

FIG. 2

US 11,023,374 B2

Sheet 3 of 14

Jun. 1, 2021

U.S. Patent

U.S. Patent Jun. 1, 2021 Sheet 4 of 14 US 11,023,374 B2

|

|

|

|

|

|

|

™

|b—k
\&

| &

|

|

|

|

\

- S

410

7’
/

,

131-0
Link-based L2P
Mapping Sub-table

131-1
Link-based L2P

Start Host | Physical Address
Page of Link-based

A}
~— ————
\

Mapping Sub-table

’

Number L2P Mapp’ihgﬁ’
Sub-table -
(Z0) ! 1
4096 (Z,1) ' /
8192 72) |

131-2
| Link-based L2P |
] ‘ Mapping Sub-table \

_—— e — — —

57344 (Z,14) =~

131-15
Link-based L2P

Mapping Sub-table

|

|

|

|

|

|

|

|

|

|

|

T!** Link-based L2ZFP
| | Mapping Sub-table |
|

|

|

)

|

|

|

U.S. Patent

131-0a

5+
Ni-d
S+8
S+12
8416
8§+20
S+24
5+28
§+32
5436
5+4{)
N+44
S+48
S+52
5+30
S+00
§+64
S54+68
§+72
5+76
5+84
S+84
S+38
S§+92
S+96
S+100
N+184
S+108
S+112
S+116
S+120

S+124

Jun. 1, 2021

. 1
-

(A11)
(A7)
(A7)

(Ay3)
(A,3)
(A,1)

el
LA

—y
o

oot | et
=3

NULL

St

NULL

S
o

Sheet 5 of 14

131-0b

[

FIG. 5

S+

S5+4

5+8

S+12
54+16
S+20
S5+24
S+28
S+32
S$+36
S+40
S+44
S+48
S+52
5+56
N0
~5+64

S+68
>+72
5+76
S+80
S5+84
S+88
N9
$+96
S$+100
S5+104
S+108
5+112

S5+116

120

N+124

US 11,023,374 B2

(A,0)

Joort

(A,2)

et

(AA)

(A,8)

-y
—y

(A,10)

i

)

(A,12)

(A,14)

NULL

NULL
(A,15)
NULL
(A.13)

(A,11)

(A,9)

(A7)

(A,3)

st
k3

(Ad)

(A1)

U.S. Patent Jun. 1, 2021 Sheet 6 of 14 US 11,023,374 B2

Store L2P mapping information

: . S610
corresponding to one or more programming

operations

Search L2P information according to the

order of physical addresses to obtain, for

each physical address, information indicating

which logicali address (hereinafter referred

to as a current logical address) user data [5630
stored 1n the corresponding space 1s
associated with, and which logical address
(hereinafter referred to as a next-chained
logical address) user data stored 1n space of

the next physical address i1s associated with

Generate the content of entries of the link-
based L2P mapping table in the order of
logical addresses

S650

FIG. 6

U.S. Patent Jun. 1, 2021 Sheet 7 of 14 US 11,023,374 B2

Generate 2P mapping table 5710

S731

Obtain entry including start physical address

Obtain which logical address user data stored in start | - S733
physical address i1s associated with from obtained entry

Determine one entry of link-based L2P mapping sub-table S751
according to the logical address information

Store this physical address in physical address field of Q753
determined entry

~ S770 .

If further physical address XES

needs to be processed?

No

Store dummy data in next-chained logical address field of | - 755
the determined entry

END

Obtain entry including next physical address marked as | _ S701
this physical address |

Obtain which logical address user data stored in this §793
physical address 1s associated with from obtained entry

Store obtained logical address in next-chained address Q787

field of determined entry

U.S. Patent Jun. 1, 2021 Sheet 8 of 14 US 11,023,374 B2

Generate L2P mapping linked-list

Obtain node including start physical address 5831

Obtain which logical address user data stored in start S833
physical address is associated with from obtained node

Determine one entry of link-based L.2P mapping sub-table S751
according to the logical address information

Store this physical address in physical address field of | . ¢753
determined entry

 S770 .
If further physical address 1ES
needs to be processed?
No
Store dummy data in next-chained logical address field of | ~ S755
the determined entry

END

Obtain node including next physical address marked as | - S891
this physical address

Obtain which logical address user data stored in this S893
physical address 1s associated with from obtained node

Store obtained logical address in next-chained address STS7
field of determined entry

U.S. Patent Jun. 1, 2021 Sheet 9 of 14 US 11,023,374 B2

1335

/

T+0x40 -0;00000030 0x00000050 H:4 P:(A,10) - 900-4

"'I-
h_“h
e

77
T+0xD0 > 0x00000070 | 0x00000090 P:(A.3) |~ 900-13
1+0xE0 > 0x00000080 | oxkrrrrrer | H:s | pia,y P 20014

X

FIG. 9

U.S. Patent Jun. 1, 2021 Sheet 10 of 14 US 11,023,374 B2

Obtain a memory address of a first node and a S1010
value to be searched from the configuration register

5S1030 No

If the obtained node
includes the value?

Yes

Store a searched result S1040

END

S1050

If the obtained node is No

the last one?

51060

Read the content of the next node from the memory S1070
according to the next address of this node

FI1G. 10

U.S. Patent Jun. 1, 2021 Sheet 11 of 14 US 11,023,374 B2

135
LZP Mapping
Linked-List 1100
1120 1160
ENI EN3
1130
170 .
e e 1140 1190

Configuration . .
, sTtat Comparator Result Register
Register

Em
" Writing Circuit

Writing Circuit
1180 1150

Linked-list Search Engine

FIG. 11

U.S. Patent Jun. 1, 2021 Sheet 12 of 14 US 11,023,374 B2

135

L2P Mapping
Linked-List 1200

SC Register

o r 1239
SE

1120 1160
ENI Reading Circuit Writing Circuit
g EN3
1130
170 1140 1190

Configuration ' ,
Reo 5 Result Register
egister
EN2
Writing Circuit

1180 1150
Linked-list Search Engine

FIG. 12

U.S. Patent Jun. 1, 2021 Sheet 13 of 14 US 11,023,374 B2

1310 131
Search Records 2P Mapping

Linked List / 1300
1320

Reading Circuit

1120 1330
o _ Writing Circuit
ENI1 ENJ
1130
170 1340
Registor
Register Comparator
1350
1360
N\
Writing Circuit A
Linked-list Search Engine EN4
1390

FIG. 13

U.S. Patent Jun. 1, 2021 Sheet 14 of 14

Read hink-based L2P mapping sub-table

Search source entry including start physical address from
link-based L2P mapping sub-table

Determine destination entry of ad-hoc P2L mapping table

Write logical address corresponding to source entry into
logical address field of destination entry

* * S1450
If all to-be-migrated physical

addresses have been
processed?

No
Obtain next-chained logical address of source entry

corresponding to next-chained logical address of source

entry

Write next-chained logical address into logical address
field of destination entry

Determine new source entry of link-based L2P mapping

sub-table, which corresponds to next-chained logical

address of current source entry

Perform data movements according to ad-hoc P2L
mapping table

Update link-based L2P mapping sub-table

US 11,023,374 B2

S1410

S1431

S1433

S1435

S1465

S1467

S1470

S1490

FIG. 14

US 11,023,374 B2

1

APPARATUS AND METHOD AND
COMPUTER PROGRAM PRODUCT FOR
CONTROLLING DATA ACCESS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a Continuation-In-Part of and claims

the benefit of priority to U.S. patent application Ser. No.
16/250,326, filed on Jan. 17, 2019, which claims the benefit

of priority to Patent Application No. 201810746676.3, filed
in China on Jul. 9, 2018; and this application also claims the

benefit of prnonty to Patent Application No.
201811194779.X, filed 1n China on Oct. 15, 2018; the

entirety of which 1s incorporated herein by reference for all
pPUrposes.

BACKGROUND

The disclosure generally relates to tlash memory and,
more particularly, to apparatus and method and computer
program product for controlling data access.

Flash memory devices typically include NOR flash
devices and NAND flash devices. NOR flash devices are
random access—a host accessing a NOR flash device can
provide the device any address on its address pins and
immediately retrieve data stored in that address on the
device’s data pins. NAND flash devices, on the other hand,
are not random access but serial access. It 1s not possible for
NOR to access any random address in the way described
above. Instead, the host has to write into the device a
sequence of bytes which identifies both the type of com-
mand requested (e.g. read, write, erase, etc.) and the address
to be used for that command. The address 1dentifies a page
(the smallest chunk of flash memory that can be written 1n
a single operation) or a block (the smallest chunk of flash
memory that can be erased 1n a single operation), and not a
single byte or word. Actually, NAND flash devices usually
read or program several pages of data from or into memory
cells. In reality, the NAND flash device always reads from
the memory cells and writes to the memory cells complete
pages. Alter a page of data 1s read from the array into a bufler
inside the device, the host can access the data bytes or words
one by one by senially clocking them out using a strobe
signal.

To improve data-write efliciency, the host may provide
continuous data longer than a predefined length, such as
128K bytes, such that the NAND flash memory device can
program the data into several storage sub-units thereof in
parallel. The NAND flash memory device typically main-
tains two sorts of mapping tables: Host-to-Flash (H2F); and
Flash-to-Host (F2H). The H2F table stores information
indicating which location in the NAND flash memory unit
user data of each host page 1s physically stored in. The F2H
table stores information indicating which host page assigned
by the host user data of each physical block 1s associated
with. The NAND flash memory device typically consumes
excessive time to search tables before data accesses to the
NAND flash memory units. Thus, 1t 1s desirable to have an
apparatus, a method and a computer program product for
improving data access of the flash memory device by
compacting the mapping tables and reducing search time to
the compacted mapping tables.

SUMMARY

In an aspect of the imnvention, an apparatus for controlling
data access 1s mtroduced to at least include: a memory; an

10

15

20

25

30

35

40

45

50

55

60

65

2

access 1nterface; and a processing unit. The processing unit
1s arranged to operably receive logical-to-physical (L2P)
mapping information corresponding to a programming
operation through the access interface and store the L2P
mapping information in the memory; searching the L2P
mapping mformation to obtain a first logical address asso-
ciated with user data stored in space of each physical address
and a second logical address associated with user data stored
in space of each next physical address; generating content of
a plurality of entries of a link-based L2P mapping sub-table
in the order of logical addresses; and store the link-based
L.2P mapping sub-table.

In another aspect of the mvention, a method for control-
ling data access 1s introduced to at least include: receiving
L.2P mapping information corresponding to a programming
operation through an access interface, and storing the L2P
mapping information in the memory; searching the L2P
mapping imformation to obtain a first logical address asso-
ciated with user data stored in space of each physical
address, and a second logical address associated with user
data stored 1n space of each next physical address; gener-
ating content of a plurality of entries of a link-based L2P
mapping sub-table 1n the order of logical addresses; and
storing the link-based L2P mapping sub-table.

In still another aspect of the invention, a computer pro-
gram conduct for controlling data access when executed by
a process umt, which at least include program code to:
receive L2P mapping information corresponding to a pro-
gramming operation through an access interface, and store
the L2P mapping information in the memory; search the L2P
mapping imformation to obtain a first logical address asso-
ciated with user data stored in space of each physical
address, and a second logical address associated with user
data stored 1n space of each next physical address; generate
content of a plurality of entries of a link-based L2P mapping
sub-table 1n the order of logical addresses; and storing the
link-based 2P mapping sub-table.

The L2P mapping information describes information indi-
cating which physical address of the storage unit user data
of each logical address 1s physically stored in. Each entry of
the link-based L2P mapping sub-table stores information
about a physical address and a second logical address
associated with a corresponding first logical address.

Both the foregoing general description and the following

detailed description are examples and explanatory only, and
are not restrictive of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an apparatus for controlling
data access according to an embodiment of the invention.

FIG. 2 1s a schematic diagram depicting connections
between one access sub-interface and multiple storage sub-
units according to an embodiment of the ivention.

FIG. 3 1s a schematic diagram {for storing user data
according to an embodiment of the invention.

FIG. 4 1s a schematic diagram illustrating a high-level
mapping table associated with link-based Logical-to-Physi-
cal (L2P) mapping sub-tables according to an embodiment
of the invention.

FIG. 5 15 a schematic diagram 1llustrating link-based L2P
mapping sub-tables stored 1n a memory according to an
embodiment of the invention.

FIG. 6 1s a flowchart 1llustrating a method for generating,
link-based L2P mapping sub-tables according to an embodi-
ment of the mvention.

US 11,023,374 B2

3

FIG. 7 1s a tlowchart illustrating a method for generating
link-based L2P mapping sub-tables using information of a

L2P mapping table according to an embodiment of the
invention.

FIG. 8 1s a flowchart illustrating a method for generating
link-based L2P mapping sub-tables with a utilization of a
linked-list search engine according to an embodiment of the
invention.

FIG. 9 1s a schematic diagram of a L2P mapping linked-
list according to an embodiment of the invention.

FIG. 10 1s a flowchart illustrating a method for searching,
a L2P mapping linked-list according to an embodiment of
the 1nvention.

FIGS. 11 to 13 are block diagrams 1llustrating linked-list
search engines according to embodiments of the invention.

FI1G. 14 1s a flowchart illustrating a method for performing
background operations according to an embodiment of the
invention.

DETAILED DESCRIPTION

Reference 1s made 1n detail to embodiments of the inven-
tion, which are illustrated 1n the accompanying drawings.
The same reference numbers may be used throughout the
drawings to refer to the same or like parts, components, or
operations.

The present invention will be described with respect to
particular embodiments and with reference to certain draw-
ings, but the ivention 1s not limited thereto and 1s only
limited by the claims. It will be further understood that the
terms “‘comprises,” “‘comprising,” “includes” and/or
“including,” when used herein, specity the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations,
clements, components, and/or groups thereof.

Use of ordinal terms such as “first”, “second”, “third”,

etc., 1n the claims to modily a claim element does not by
itself connote any priority, precedence, or order of one claim
clement over another or the temporal order 1n which acts of
a method are performed, but are used merely as labels to
distinguish one claim element having a certain name from
another element having the same name (but for use of the
ordinal term) to distinguish the claim elements.
It will be understood that when an element 1s referred to
as being “connected” or “coupled” to another element, 1t can
be directly connected or coupled to the other element or
intervening elements may be present. In contrast, when an
clement 1s referred to as being “directly connected” or
“directly coupled” to another element, there are no inter-
vening elements present. Other words used to describe the
relationship between elements should be interpreted 1n a like
fashion (e.g., “between” versus “directly between,” “adja-
cent” versus “directly adjacent.” etc.)

Refer to FIG. 1. An apparatus 10 for controlling data
access may include a processing unit 110, a memory 130 and
a linked-list search engine 150. The apparatus 10 may be
practiced 1n a controller of a NAND flash device or others
for accessing data more efliciently. The processing unit 110
may be implemented 1n numerous ways, such as with
general-purpose hardware (e.g., a single processor, multiple
processors or graphics processing units capable of parallel
computations, a lightweight general-purpose processor, or
others) that 1s programmed using firmware or soltware
instructions to perform the functions of logical-physical
location conversions. The memory 130 may be a Dynamic

Random Access Memory (DRAM), Static Rand©m Access

10

15

20

25

30

35

40

45

50

55

60

65

4

Memory (SRAM) or a volatile memory of another type. It 1s
understood that the following actions and operations are
performed when the processing unit 110 loads and executes
relevant firmware or software instruction and simply
referred to as that performed by the processing unit 110 for
brevity.

The apparatus 10 may further include an access interface
180 to thereby enable the processing umt 110 to communi-
cation with the storage unit 190, specifically, using a Double
Data Rate (DDR) protocol, such as Open NAND Flash
Interface (ONFI), DDR toggle, or others. The processing
unmit 110 writes user data and mapping tables into a desig-
nated address (a destination address) of the storage unit 190
and reads user data and mapping tables from a designated
address (a source address) thereof through the access inter-
face 180. The access interface 180 may use several elec-
tronic signals mcluding a data line, a clock signal line and
control signal lines for coordinating command and data
transier between the processing unit 110 and the storage unit
190. The data line may be used to transfer commands,
addresses, read data and data to be programmed; and the

control signal lines may be used to transier control signals,
such as Chip Enable (CE), Address Latch Enable (ALE),

Command Latch Enable (CLE), Write Enable (WE), eftc.

The storage unit 190 may contain multiple storage sub-
units and each storage sub-unit may use a respective access
sub-interface to communicate with the processing unit 110.
One or more storage sub-units may be packaged in a single
die. The access interface 180 may contain] access sub-
interfaces and each access sub-interface may connect to 1
storage sub-units. Each access sub-interface and the con-
nected storage sub-units behind may be referred to as a I/O
channel collectively and 1dentified by a Logical Unit Num-
ber (LUN). That 1s, 1 storage sub-units may share the same
access sub-interface. For example, assume that the apparatus
10 contains 4 I/O channels and each I/O channel connects to
4 storage sub-units: The apparatus 10 may access 16 storage
sub-units. The processing unit 110 may drive one of the
access sub-interfaces to read data from the designated stor-
age sub-unit. Each storage sub-unit has an independent CE
control signal. That 1s, it 1s required to enable a correspond-
ing CE control signal when attempting to perform data read
or programming from or into a designated storage sub-unit
via an associated access sub-interface. It 1s apparent that any
number of I/O channels may be provided in the apparatus
10, and each I/O channel may include any number of storage
sub-units, and the mvention should not be limited thereto.
Refer to FIG. 2. The processing unit 110, through the access
sub-interface 180-0, may use independent GE control sig-
nals 230-0-0 to 230-0-; to select one of the connected storage
sub-units 190-0-0 to 190-0-i, and then read data from or
program data into the designated location of the selected
storage sub-umit via the shared data line 210.

Retfer to FIG. 3. Storage sub-units 311, 313, 315 and 317
sharing one access sub-interface form a channel 310 and
storage sub-units 331, 333, 335 and 337 sharing the other
access sub-interface form a channel 330. The storage sub-
umt 311 stores data of two physical pages 371 and 372, the
storage sub-unit 313 stores data of two physical pages 373
and 374, and so on. Each physical page may store data of one
host page length, such as 2'n bytes, n 1s an integer being
equal to or greater than 3. Data stored in each physical page
may be represented by a host page number. For example, the
physical page 371 stores data of the 07 host page, the
physical page 372 stores data of the 157 host page, the
physical page 373 stores data of the 1°* host page, and so on.
Those artisans may use a Logical Block Address LBA or

US 11,023,374 B2

S

others to 1dentify data stored 1n each physical page instead,
and the ivention should not be limited thereto. For
example, the physical page 371 stores data of LBA Oto LBA
3, the physical page 372 stores data of LBA 56 to LBA 359,
the physical page 373 stores data of LBA 4 to LBA 7, and

so on. The physical page 377 denoted in backslashes does
not store data of any host page. The physical pages 371 to
378 and the physical pages 391 to 398 may form a super
physical-page 350 across storage sub-units. A physical
address of each physical page may be represented 1 a
notation (m,n) to indicate the n” physical page of the m”
super physical-page. Those artisans may use a similar but
different notation to represent a designated physical page of
a designated super physical-page, and the invention should
not be limited thereto. A host may carry a host page number
in a write command to inform the apparatus 10 of which host
page data to be written. The apparatus 10 may distribute data
ol a continuous host pages into the storage sub-units 311 to
337 for optimizing data access elliciency with the architec-
ture as shown 1n FIG. 2. The host may carry a host page
number in a read command to inform the apparatus 10 of
which host page data to be read.

In some 1mplementations, the apparatus 10 may maintain
two sorts of mapping tables: Host-to-Flash (H2F); and
Flash-to-Host (F2H), thereby enabling conversions between
logical addresses and physical addresses by searching the
mapping tables. The apparatus 10 may store L2P and P2L
mapping tables in the memory 130. The L2P table stores
information indicating which physical address (for example,
a designated physical page of a designated super physical-
page) user data of each logical address 1s physically stored
in, sorted by logical addresses (for example, from lowest to
highest host page numbers). The P2L table stores informa-
tion indicating which logical address (for example, a des-
ignated host page number) assigned by the host user data of
cach physical address 1s associated with, sorted by physical
addresses (for example, from lowest to highest physical
page numbers under a designated super physical-page num-
ber).

Reflecting the case as shown in FIG. 3, an exemplary L2P
mapping table 1s shown as follows:

TABLE 1

Logical Address
(Host Page Number)

Physical
Address

(A, 0)
(A, 2)
(A, 4)
(A, 8)
(A. 10)
(A, 12)
(A, 14)
NULL
(A, 15)
(A, 13)
(A, 11)
(A, 9)
(A, 7)
(A, 5)
(A, 3)
(A, 1)

R R — OO 00 O D W — O

In the physical address field, the letter “A” represents an
identifier of the super physical-page 330, the string “(A,0)”
indicates the 0” physical page of the super physical-page
350 (that 1s, the physical page 371 of the storage sub-unit
311), the string “(A,1)” indicates the 1°* physical page of the
super physical-page 350 (that 1s, the physical page 372 of the

5

10

15

20

25

30

35

40

45

50

55

60

65

6

storage sub-unit 311), the string “(A,2)” indicates the 2"¢
physical page of the super physical-page 350 (that 1s, the
physical page 373 of the storage sub-unit 313), and so on.
The string “NULL” indicates that user data of a designated
host page has not been stored in the storage unit 190.

Reflecting to the case as shown 1n FIG. 3, an exemplary
P2L mapping table 1s shown as follows:

TABLE 2
Physical Logical Address
Address (Host Page Number)
(A, O) 0
(A, 1) 15
(A, 2) 1
(A, 3) 14
(A. 4) 2
(A, 5) 13
(A, 6) NULL
(A, 7) 12
(A, 8) 3
(A, 9) 11
(A, 10) 4
(A, 11) 10
(A, 12) 5
(A, 13) 9
(A, 14) 6
(A, 15) 8

In the logical address field, each number indicates a desig-
nated host page. The string “NULL” indicates that space of
a designated physical address does not store user data
associated with a host page.

However, since the NAND memory cells can be used or
reused only 1f they have been erased, the apparatus 10 finds
an available physical page to store user data of a designated
logical address 1n response to a write command for updating
that of the logical address received from a host, rather than
directly re-programming memory cells of a physical address
storing that of the logical address. Meanwhile, the corre-
sponding logical address imnformation of the P2L mapping
table becomes incorrect and the apparatus 10 spends extra
time to update the P2L mapping table. Or, the apparatus 10
spends extra time to search other P21 mapping tables so as
to check 11 logical address information of this P2L mapping
table 1s valid before an acquisition of the logical address
information thereof. It will be understood that accesses to
the P2L mapping tables not only consumes computation
resources ol the processing unit 110 but also occupies
certain space of the memory 130 and bandwidths of the
access 1nterface 180.

Embodiments of the invention mtroduce a link-based L2P
mapping table storing information indicating which physical
address (for example, a designated physical page of a
designated super physical-page) user data of each logical
address 1s physically stored in, and which logical address
(for example, a host page number) of user data stored 1n the
next physical address, sorted by logical addresses (for
example, from lowest to highest host page numbers). Spe-
cifically, the link-based L2P mapping table contains entries
and each entry stores a physical address associated with a
designated logical address, and a logical address (hereinafter
referred to as the next-chained logical address) associated
with a physical address next to this physical address (that 1s,
the next physical address). Refer to FIG. 4. Since the
memory 130 cannot provide suflicient space to store the
whole link-based L2P mapping table that can be searched by
the processing unit 110, the whole link-based L2P mapping
table may be divided into sub-tables 130-0 to 130-15 and the

US 11,023,374 B2

7

sub-tables 130-0 to 130-15 are stored 1n the storage unit 190.
Each time a L2P or P2L address conversion 1s performed, the
processing unit 110 reads a link-based L2P mapping sub-
table corresponding to one or more logical or physical
addresses from the storage unit 190 through the access
interface 180 and stores the link-based L2P mapping sub-

table 1n the memory 130, for example, the link-based L2P
mapping sub-table 131-p as shown i FIG. 1, where p ranges
from O to 15. Although embodiments of the invention
describe sixteen link-based L2P mapping sub-table as an
example, those artisans may provide more or less link-based
L.2P mapping sub-tables according to capacity of the storage
unit 190, and the invention should not be limited thereto. To
make the processing unit 110 read a proper link-based L2P
mapping sub-table 131-p from the storage unit 190, embodi-
ments of the invention may provide a high-level mapping
table 410 for storing information about a physical address of
a link-based L2P mapping sub-table associated with each
logical address range. For example, the link-based L2P
mapping sub-table 131-0 associated with the 07 to 4095
host pages is stored in the 0” physical page of a designated
super physical-page (being identified by the letter “Z”), the
link-based L2P mapping sub-table 131-1 associated with the
4096™ to 81917 host pages is stored in the 1** physical page
of the super physical-page, and so on.

Reflecting the case as shown in FIG. 3, an exemplary

link-based L2P mapping sub-table 131-0 1s shown as fol-
lows:

TABLE 3
Logical Address Physical Next-chammed
(Host Page Number) Address Logical Address
0 (A, O) 15
1 (A, 2) 14
2 (A. 4) 13
3 (A, 8) 11
4 (A, 10) 10
5 (A, 12) 9
6 (A, 14) 8
7 NULL NULL
8 (A, 15) NULL
9 (A, 13) 6
10 (A, 11) 5
11 (A, 9) 4
12 (A, 7) 3
13 (A, 5) 12
14 (A, 3) 2
15 (A, 1) 1

To make audience comprehend easier, a host page number
field 1s provided 1n Table 3. However, 1n actual storage, the
link-based L2P mapping sub-table may exclude the field
storing host page numbers. The content of the physical
address field may refer to relevant descriptions of Table 1.
Each physical address may be represented 1in four bytes, 1n
which two bytes store information about a super physical-
page and the other two bytes store information about a
physical page. A next-chained logical address field stores
information indicating which entry (hereinafter referred to
as the next-chained logical address) the next physical
address associated with each logical address stores. For
example, the 1 entry indicates that user data of the 0” host
page 1s stored in the physical address “(A,0)” and the next
physical address “(A,1)” 1s stored in the entry associated
with the 157 host page. Each next-chained logical address
may be represented 1n four bytes. In addition to the content
of the L2P mapping sub-table, the link-based L2P mapping
sub-table includes linkage information between physical

10

15

20

25

30

35

40

45

50

55

60

65

8

addresses for generating an ad-hoc P2L mapping table to
overcome the limitations that the content of an P21 mapping
table becomes incorrect after user data of the storage umit
190 has been updated.

The content of the link-based L2P mapping sub-table
130-0 may be stored 1n the memory 130 1n different manners
to facilitate look-ups by the processing umt 110. Refer to
FIG. 5. A link-based L2P mapping sub-table 131-0a may
store physical address information associated with the 07 to
15” host pages in memory addresses “S+0” to “S+63”
sequentially and next-chained logical address information
associated with the 0” to 15” host pages in memory
addresses “S+64” to “S+127” sequentially to form two
groups, where the letter “S” indicates a start address of the
memory 130 storing the link-based L2P mapping sub-table
131-0. A link-based L2P mapping sub-table 131-06 may
store pairs of physical address information and next-chained
logical address information associated with the 07 to 157
host pages 1n predefined memory space sequentially. For
example, the physical address information and the next-
chained logical address information associated with the 0%
host page are stored in the memory addresses “S+0” to
“S+3” and “S+4” to “S+77, respectively, and so on.

A method for controlling data access introduced 1n
embodiments of the invention may at least include steps for
generating a link-based L2P mapping sub-table, determining
which user data to be moved by using a link-based L2P
mapping sub-table 1n background operations and updating a
link-based L2P mapping sub-table 1n an erase process.

Each time after user data of a predefined number of host
pages has been written, embodiments of the mnvention gen-
crates a link-based L2P mapping sub-table 131-p corre-
sponding to the write operations. After a programming
operation has been performed completely, the storage unit
190 may reply to the processing unit 110 with L2P mapping
information indicating which physical address user data
associated with each host page 1s physically stored in
through the access mtertace 180. Refer to FIG. 6. Respond-
ing to execution results of programming operations by the
storage unit 190, the processing unit 110 performs a method
for generating a link-based 2P mapping sub-table 131-p
when loading and executing relevant firmware and/or soft-
ware structions. First, the processing unit 110 may receive
and store L2P mapping information corresponding to one or
more programming operations, which 1s replied by the
storage unit 190 through the access interface 180, 1n the
memory 130 (step S610). The L2P mapping information
describes information indicating which physical address of
the storage unit 190 user data of each logical address (e.g.
cach host page number) 1s physically stored in. The infor-
mation may be realized 1n a L2P mapping table 133 or a L2P
mapping linked-list 135. The L2P information may be
searched according to the order of physical addresses, for
example, from the physical addresses “(A,0)” to “(A,15)”, to
obtain, for each physical address, information indicating
which logical address (hereinafter referred to as the current
logical address) user data stored in the corresponding space
1s associated with, and which logical address (hereinafter
referred to as the next-chained logical address) user data
stored 1n space of the next physical address 1s associated
with (step S630). The content of entries of the link-based
L.2P mapping table 131-p may be generated in the order of
logical addresses and each entry stores a physical address
and a next-chained logical address associated with the
corresponding logical address (step S6350). For example, the
0”7 entry stores a physical address corresponding to the 0%
host page, and a host page number associated with a physical

US 11,023,374 B2

9

address next to the corresponding physical address. Specifi-
cally, an entry of the link-based L2P mapping sub-table
131-p that 1s to be written 1s determined according to the
current logical address corresponding to each physical
address, this physical address i1s stored in the physical
address field of the determined entry and the next-chained
logical address corresponding to this physical address 1is
stored 1n the next-chained logical address field of the deter-
mined entry, so as to complete the link-based L2P mapping,
sub-table 131-p as shown in Table 3. At a proper moment,
the link-based L2P mapping sub-table 131-p may be flushed
into one or more designated physical addresses of the
storage unit 190 for a future look-up.

FIG. 7 describes a detailed process for generating the
link-based L2P mapping sub-table. The processing unit 110
performs a method for generating a link-based L2P mapping
sub-table 131-p by traversing the L2P mapping table 133
when loading and executing relevant firmware and/or soft-
ware 1nstructions. The processing umt 110 may {ill all fields
with dummy values “NULL” when the link-based L2P
mapping sub-table 131-p 1s mitiated. First, the processing,
unit 110 may generate and store the L2P mapping table 133
in the memory 130 1n response to execution results of
programming operations by the storage unit 190 (step S710).
It 1s to be understood that the L2P mapping 133 may be used
to accelerate a generation of the link-based L2P mapping
sub-table 131-p and 1s temporarily stored in the memory
130. After the link-based L2P mapping sub-table 1s gener-
ated, the L2P mapping table 133 may be removed from the
memory 130. Use cases are introduced with references made
to Table 1 to explain process tlows as shown in FIG. 7.
Assume that a start physical address 1s “(A,0)”: The L2P
mapping table 133 1s searched by the processing unit 110 to
obtain an entry including the start physical address marked
as this physical address (for example, the 07 entry of Table
1), where the start physical address (step S731); information
about which logical address (for example, the host page
number “0”) user data stored in space of this physical
address 1s associated with 1s obtained from the searched
entry (step S733); one of the entries of the link-based L2P
mapping sub-table 131-p (for example, the 0” entry of Table
3) 1s determined according to the logical address information
(step S751); the start physical address “(A,0)” 1s stored 1n
the physical address field of the determined entry (step
S753); the L2P mapping table 133 1s searched to obtain an
entry including the next physical address “(A,1)” marked as
this physical address (for example, the 157 entry of Table 1)
(step S791); information about which logical address (for
example, the host page number “15”) user data stored 1n
space of the next physical address “(A,1)” from the obtained
entry (step S793); and the obtained next host page number
“15” 1s stored 1n the next-chained logical address field of the
determined entry (for example, the 07 entry of Table 3) (step
S757).

Next, sequentially for the following physical addresses,
for example, “(A,1)”, “(A.2)”, “(A3)” “(A4)”, “(AS)”
“CUA7)” “(A.8)”, “(A9)” “(A,10)” “(A,11)” *“(A,12)”, “(A,
13)”, “(A,14)” and “(A,15)”, the content of other entries of
the link-based L2P mapping sub-table 131-p 1s generated.
For example, the L2P mapping table 133 1s searched by the
processing unit 110 to obtain an entry including the physical
address “(A,1)” marked as this physical address (for
example, the 157 entry of Table 1) (step S791); information
about which logical address (for example, the host page
number “157) user data stored in space of this physical
address 1s associated with 1s obtained from the searched

entry (step S793); one of the entries of the link-based L2P

5

10

15

20

25

30

35

40

45

50

55

60

65

10

mapping sub-table 131-p (for example, the 157 entry of
Table 3) 1s determined according to the logical address
information (step S751); the physical address “(A,1)” 1s
stored 1n the physical address field of the determined entry
(step S753); the L2P mapping table 133 is searched to obtain
an entry including the next physical address “(A,2)” marked
as this physical address (for example, the 1°° entry of Table
1) (step S791); information about which logical address (for
example, the host page number *“1”’) user data stored 1n space
of the next physical address “(A,2)” from the obtained entry
(step S793); and the obtained next host page number “1” 1s
stored 1n the next-chained logical address field of the deter-
mined entry (for example, the 1st entry of Table 3) (step
S757). The generation of other entries of the link-based L2P
mapping sub-table 131-p, which correspond to the physical
addresses “(A,2)” to “(A,14)”, may be deduced by analogy.

Finally, for the physical address “(A,15)”, the L2P map-
ping table 133 1s searched by the processing unit 110 to
obtain an entry including this physical address (for example,
the 8” entry of Table 1) (step S791); information about
which logical address (for example, the host page number
“8”) user data stored 1n space of this physical address is
associated with 1s obtained from the searched entry (step
S793); one of the entries of the link-based L2P mapping
sub-table 131-p (for example, the 8” entry of Table 3) is
determined according to the logical address information
(step S751); the physical address “(A,15)” 1s stored 1n the
physical address field of the determined entry (step S753);
and the dummy value “NULL” 1s stored in the next-chained
logical address field of the determined entry (for example,
the 8 entry of Table 3) to indicate that no user data has been
stored 1n a following physical address (step S755). It 1s to be
understood that a variable may be used and stored 1n the
memory 130 to indicate a physical address being marked as
this physical address.

Since the searches on the L2P mapping table consume
computation resources of the processing unit 110, embodi-
ments of the mvention itroduce another method for gener-
ating the link-based L2P mapping table 131-p, in which
obtains relevant information by using a dedicated linked-list
search engine 150 capable of searching the content of a L2P
mapping linked-list 135. FIG. 8 describes a detailed process
for generating the link-based L2P mapping sub-table. The
method for generating the link-based L2P mapping sub-table
131-p by the processing umt 110 when loading and execut-
ing relevant firmware and/or software instructions, together
with the linked-list search engine 150. It 1s to be understood
that the processing unit 110 may fill content of all fields with
dummy values “NULL” when the link-based L2P mapping
sub-table 131-p 1s imtiated. Most steps of FIG. 8 are similar
with that of FIG. 7. Some steps of FIG. 7 are modified to use
the linked-list search engine 150 for accelerating searches on
L.2P information. The modified steps are described 1n the
following passages and the similar steps are omitted for
brevity. First, in response to execution results of program-
ming operations by the storage unit 190, the processing unit
110 may generate and store the L2P mapping linked-list 135
in the memory 130 (step S810).

Refer to FIG. 9. The L2P mapping linked-list 135 may
include fifteen nodes 900-0 to 900-14 and each node may
store data in long words (1.e. sixteen bytes). Within each
node, bytes O to 3 store a memory address pointing to its
backward node (also referred to as the backward-node
address), bytes 4 to 7 store a memory address pointing to 1ts
torward node (also referred to as the forward-node address),
bytes 8 to 11 store information about a logical address (may
be denoted as “H:p”, where p indicates a host page number)

US 11,023,374 B2

11

and bytes 12 to 135 store information about the corresponding
physical address (may be denoted as “P(m,n)”, where m
indicates a super physical-page number and n indicates a
physical page number). The backward-node address may
store dummy data (NULL value, e.g. “OxFFFFFFFEF”) to
indicate that this node 1s the first node of the linked list. The
torward-node address may store dummy data to indicate that
this node 1s the last node of the linked list. For example, the
nodes 900-0 and 900-14 are the first and last nodes of the
linked list, respectively. The start address of the node 900-0
1s “T'+0x00”, the start address of the node 900-1 1is
“T+0x10”, and the rest can be deduced by analogy, where
the letter ““I” indicates a start address of the memory 130
storing the _J2P mapping linked-list 135. The forward-node
address of the node 900-0 points to the memory address
“Ox10” (1.e. the start address of the node 900-1), the for-
ward-node address of the node 900-1 points to the memory
address “0x20” (1.e. the start address of the node 900-2) and
the rest can be deduced by analogy. The host page number
and the corresponding physical address of the node 900-0
are “0” and “(A,0)” respectively, the host page number and
the corresponding physical address of the node 900-1 are
“1” and “(A,2)” respectively, and the rest can be deduced by
analogy. It 1s to be understood that the L2P mapping
linked-list 135 may be used to accelerate a generation of the
link-based L2P mapping sub-table 131-p and 1s temporarily
stored 1n the memory 130. After the link-based L2P mapping
sub-table 1s generated, the L2P mapping linked-list 135 may
be removed from the memory 130.

Refer to FIG. 1. The linked-list search engine 150 1s
dedicate hardware, coupled to the memory 130, for search-
ing the content of the L2P mapping linked-list 135 until a
success or fail, and accordingly generating a searched result.
The searched result may be stored 1 an allocated region of
the memory 130 or dedicate registers (not shown in FIG. 1).
Moreover, for searching of a wide range of linked lists, the
linked-list search engine 150 1s equipped with a configura-
tion register 170 for storing information about a data struc-
ture of each node of the L2P mapping linked-list 135, a
memory address of a start node thereof to be searched, a
search direction, and a value to be searched. The allocation
register 170 may be integrated into the linked-list search
engine 150 as part of circuitry, and the invention should not
be limited thereto. The processing unit 110 coupled to the
configuration register 170 may inform the linked-list search
engine 150 how to search the content of the L2P mapping
linked-list 135 by setting the conﬁguration register 170,
After the content of the L2P mapping linked-list 135 has
been prepared in the memory 130, the processing unit 110
drives the linked-list search engine 150 to start a search on
the L2P mapping linked-list 135 and obtains a searched
result from the linked-list search engine 130.

A method for searching linked lists as shown in FIG. 10
1s performed by the linked-list search engine 150. The
linked-list search engine 150 obtains a memory address of
the head node (also referred to as a start node) and a value
to be searched from the configuration register 170, and
obtains the content of the start node according to the
memory address (step S1010). Next, the linked-list search
engine 150 repeatedly executes a loop (steps S1030, S1050
and S1070) for obtaining and processing the nodes of the
L.2P mapping linked-list 135 from the start node sequentially
until a success (the “Yes” path of step S1030) or a fail (the
“Yes” path of step S1050). After obtaiming the first or the
next node from the memory 130 (step S1010 or S1070) in
cach 1teration, it 1s determined whether the obtained node
includes the value to be searched for the processing unit 110

10

15

20

25

30

35

40

45

50

55

60

65

12

(step S1030). If a search on a node 1s successiul (the “Yes”
path of step S1030), then the linked-list search engine 150
stores a searched result, for example, including a memory
address of the found node, corresponding outcomes, a
quantity of nodes have been searched, and so on, and

information about a search success, enabling the processing
unit 110 to obtain that (step S1040). If a search on a node 1s
falled (the “No” path of step S1030), it 1s determined
whether the node 1s the last one of the L2P mapping
linked-list 135 (step S10350). If the last node has been
reached (the “Yes” path of step S10350), then the linked-list
search engine 150 stores information about a search fail to
enable the processing unit 110 to obtain that (step S1060). If
the last node hasn’t been reached (the “No” path of step
S1050), then the linked-list search engine 150 reads the
content of the next node from the memory 130 according to
the next address of this node (step S1070). The content of
cach node and search details with different hardware circuits
will be described 1n the following passages. Those artisans
may modity FIG. 10 to make a search on the L2P mapping
linked-list 135 from the tail node (also referred to as a start
node) to the prior ones sequentially until a success or fail.

Refer to FIG. 11. The linked-list search engine 500 may
include a configuration register 170, a reading circuit 1120,
a First-In-First-Out (FIFO) bufter 1130, a comparator 1140,
writing circuits 1150 and 1160, and a result register 1190.
The processing unit 110 may set the configuration register
170 to store a start address of the first node, data-structure
information of each node (such as ofisets of the backward-
node address, the forward-node address, comparison data, a
corresponding result, etc.), a search value and a search
direction. Once the processing unit 110 enables the linked-
list search engine 1100, the reading circuit 1120 may read
the forward- or backward-node address, the comparison data
and the corresponding result of the first node from the L2P
mapping linked-list 135 according to the content of the
configuration register 170 and output the comparison data
and the corresponding result to the FIFO buffer 1130. In
addition, the reading circuit 1120 may output the start
address of the first node to the FIFO buffer 1130. The
comparator 1140 compares the search value of the configu-
ration register 170 with the comparison data of the FIFO
buffer 1130. When they are different, the comparator 1140
may output an enabling signal EN1 to the reading circuit
1120 for driving the reading circuit 1120 to read the content
of the next node from the linked list 131. The reading circuit
520 may determine whether any node has not been pro-
cessed, for example, whether the forward- or backward-node
address 1s not dummy data. If so, then the reading circuit 520
may read the atorementioned values from the forward- or
backward node of the L2P mapping linked-list 1335 accord-
ing to the forward- or backward-node address as well as the
mentioned content and output all or a part of the values to
the FIFO bufler 1130. If not, then the reading circuit 1120
may output an enabling signal EN3 to the writing circuit
1160 for driving the writing circuit 1160 to store information
about a search fail 1in the result register 1190. When the
search value of the configuration reglster 170 1s the same as
the comparison data of the FIFO bufler 1130, the comparator
1140 may output an enabling signal EN2 to the writing
circuit 1150 for driving the writing circuit 1150 to store the
corresponding result and the start address of the currently
searched node (i.e. the matched node) that are stored 1n the
FIFO bufler 1130, and information about a search success in
the result register 1190. For example, bytes 0 to 3 of the
result register 1190 store the corresponding result, bytes 4 to
7 thereol store the start address of the currently searched

US 11,023,374 B2

13

node and a byte 8 stores information about a search success
or fail. When a search 1s successtul, the byte 8 1s set to “17;
otherwise, set to “0”.

For optimizing the arrangement for the nodes of the L2P
mapping linked-list 135, 1n some embodiments, the linked-
list search engine 500 may include a counter 1180 coupled
to the comparator 1140 and the writing circuit 1150, that 1s
initiated to zero each time a new search starts. Fach time a
comparison of the search value of the configuration register
170 with the comparison data of the FIFO bufler 1130 1s
performed, the comparator 1140 forces the counter 1180 to
increment by one. When determining that the search value of
the configuration register 170 1s the same as the comparison
data of the FIFO bufler 1130, the comparator 1140 drives the
writing circuit 1150 to store the value of the counter 1180 1n
the result register 1190. For example, a byte 9 of the result
register 1190 stores the counter value.

The comparison data of each node may be compound
data, for example, including at least two sorts of data. In
some embodiments, the processing unit 110 may set the
configuration register 170 to indicate that four bytes are used
for storing a mask. The comparator 1140 may perform a
logic AND operation on the comparison data of the FIFO
butler 1130 with the mask of the configuration register 170
to generate masked comparison data and subsequently deter-
mine whether the search value of the configuration register
170 1s the same as the masked comparison data. If so, then
the comparator 1140 may drive the writing circuit 1150 to
store the corresponding result and the start address of the
currently searched node, that are stored 1n the FIFO bufler
1130, and information about a search success in the result
register 1190. For example, the former two bytes of the host
page number indicates a specific number of a T1 table and
the latter two bytes thereof indicates a specific number of a
17 table. When the search value of the configuration register
170 1s a specific number of the T1 table, the processing unit
110 may store a mask “OxFFFF0000” 1n the configuration
register 170, whereby enabling the comparator 540 to ignore
the latter two bytes of the host page number (1.e. a specific
number of the T7 table). When the search value of the
configuration register 170 1s a specific number of the T7
table, the processing unmit 110 may store a mask
“Ox0000FFFF” 1n the configuration register 170, whereby
enabling the comparator 1140 to 1gnore the former two bytes
of the host page number (1.e. a specific number of the T1
table).

The comparison data of each node may include a bit that
1s not required to compare, for example, the most significant
bit. In some embodiments, the processing unit 110 may set
the configuration register 170 to use one byte for storing
information about an ignore bit, for example, “Ox1F” rep-
resents that the bit 31 of the comparison data can be 1gnored.
The comparator 1140 may generate a mask according to
information of the 1gnored bit, perform a logic AND opera-
tion on the comparison data of the FIFO butier 1130 with
this mask and determine whether the search value of the
configuration register 170 1s the same as the masked com-
parison data. If so, then the comparator 1140 drives the
writing circuit 1150 to store the corresponding result and the
start address of the currently searched node, that are stored
in the FIFO bufler 1130, and information about a search
success 1n the result register 1190. For example, the 1gnore
bit 1s bit 31, the mask 1s “Ox7FFFFFFF”.

Refer to FIG. 12. Since firmware may have two sets of
configuration settings or more, that are frequently used, the
linked-list search engine 600 may include shortcut (SC)
registers 1210_1 and 1210_2, making the processing unit

5

10

15

20

25

30

35

40

45

50

55

60

65

14

110 to store two sets of configuration settings 1n the SC
registers 1210_1 and 1210_2 1n advance, respectively. Each
set may include information about a memory address of a
start node of the L2P mapping linked-list 135, a search
direction, a search value, and data structure for each node.
Each set may additionally include information about the
alorementioned mask and/or ignore bit. The linked list
search engine 1200 may further include a multiplexer 1230
having inputs coupled to outputs of the SC registers 1210_1
and 1210_2, and an output coupled to an mput of the
configuration register 170. The processing unit 110 may
output a select signal SE to the multiplexer 1230 to couple
one of the SC registers 1210_1 and 1210_2 to the configu-
ration register 170, making the configuration register 170 to
store the configuration settings of the coupled SC register.
Although the embodiments illustrated 1n FIG. 12 include
two SC registers, those artisans may modily the linked-list
search engine 1200 to incorporate with more SC registers
and the invention should not be limited thereto. The refer-
ences ol detailed structures, functionalities and operations
for the remaining elements of FIG. 12 may be made to the
relevant descriptions of FIG. 11 and are omitted for brevity.

Retfer to FIG. 13. To improve efliciency of parallelism, the
linked-l1st search engine 1300 may provide capabilities for
conducting multiple searches. The processing unit 110 1s
allowed to provide several search values at one time,
enabling the processing unit 110 to arrange searches on the
L.2P mapping linked-list 135 and other tasks more flexible to
improve the overall system performance. The processing
umt 110 may allocate a fixed region for storing multiple
search records 1310. The processing unit 110 may further
allocate a fixed region for storing multiple result records that
can be updated by the linked-list search engine 1300. Each
search record 1310 may include a search value and a start
flag used to inform the linked-list search engine 1300
whether a search on the L2P mapping linked-list 135 has
been triggered. Each result record 1390 1s associated with
one search record 1310 and may include a finish flag, a result
flag, searched times and a memory address of the searched
node. The finish flag 1s used to inform the processing unit
110 whether a search for the corresponding search value has
completed. The result flat 1s used to inform the processing
umt 110 whether the corresponding search value has been
found 1n the L2P mapping linked-list 135. The search
records 1310 and the result records 1390 may be integrated
with keys for easier access.

A reading circuit 1320 may inspect whether a record
including a start flag being “1” (indicating that a search has
been triggered) and a finish flag being “0” (indicating that
the search has not completed) 1s presented. Once detecting
that any record has met the criteria, the reading circuit 1320
stores the search value of this record 1n the configuration
register 170. The references of detailed operations of the
reading circuit 1120 may be made to the relevant descrip-
tions of FIG. 11 and are omitted for brevity. When deter-
mining that no node can be searched, the reading circuit
1120 may output an enabling signal EN3 to the wrting
circuit 1330 for driving the writing circuit 1330 to store the
search value and information about a search fail 1n a FIFO
buffer 1350. The writing circuit 1330 may further store a
quantity of nodes of the L2P mapping linked-list 135 in the
FIFO bufler 1350 as searched times. When determining that
the search value of the configuration register 170 is the same
as the comparison data of the FIFO bufler 1130, a compara-
tor 1340 may store the corresponding result and the start
address of the currently searched node, that are stored 1n the
FIFO bufler 1130, and information about a search success in

US 11,023,374 B2

15

a FIFO bufler 1350. The comparator 1340 may further
include a counter that 1s 1nitiated to zero before a new search.
The counter 1s increased by one each time the comparator
1340 conducts a comparison of the search value of the
configuration register 170 with the comparison data of the
FIFO bufler 1130. When determining that the search value
of the configuration register 170 1s the same as the com-
parison data of the FIFO bufler 1130, the comparator 1340
may further store the counter value 1n the FIFO bufler 1350
as searched times. When the data 1s entered in the FIFO
butler 1350, the writing circuit 1360 may write the content
of the FIFO butler 1350 into the corresponding result record
1390 and output an enabling signal EN4 to the reading
circuit 1320 to advise the reading circuit 1320 to read the
next search record 1310.

Refer to FIG. 8. After storing the L2P mapping linked-list
135 (step S810), the processing unit 110 enables the linked-
list search engine 150 to search the L2P mapping linked-list
135 and obtains a node including a start physical address
according to a searched result provided by the linked-list
search engine 150 (step S831), and next, obtains information
about which logical address user data stored in space of the
start physical address 1s associated with from the searched
node (step S833). Each time a further physical address needs
to be searched after a search for one physical address has
completed (the “Yes” path of step S770), the processing unit
110 enables the linked-list search engine 150 to search the
L.2P mapping linked-list 135 and obtains a node including
the next physical address according to a searched result
provided by the linked-list search engine 150 (step S891),
and next, obtains mmformation about which logical address
user data stored in space of the next physical address 1s
associated with from the searched node (step S893). Since
the rest steps of FIG. 8 are similar with that of FIG. 7,
detailed operations may refer to relevant descriptions of
FIG. 7 and are omitted for brevity.

In some embodiments, the processing unit 110 may pro-
cess tasks in parallel of a search on the L2P mapping
linked-list 135 by the linked-list search engine 150. After a
predefined time period, the processing unit 110 may attempt
to obtain a searched result by traversing the memory 130 or
dedicated registers. When no result has been stored 1n the
memory 130 or the dedicated registers, the processing unit
110 may continue to process unfinished tasks until the next
time period has elapsed. In alternative embodiments, after
completing a search, the linked-list search engine 150 may
1ssue a signal (e.g. an interrupt) to enable the processing unit
110 to obtain a searched result. In still alternative embodi-
ments, after completing a search, the linked-list search
engine 150 may set a status register (not shown i FIG. 1)
to mnform the processing unit 110 of information about a
searched result. The processing unit 110 may periodically
traverse the status register. Once the status register has been
set, the processing unit 110 obtains a searched result. With
the coordination of the processing unit 110 with the linked
list search engine 150, a search on the L2P mapping linked-
list 135 can be performed in parallel of other tasks to
improve the overall performance. That 1s, the processing
unit 110 can execute other tasks parallelly during the linked-
list search engine 150 searches the content of the L2P
mapping linked-list 135.

The processing unit 110 may perform background opera-
tions that are not activated by a host (not shown i FIG. 1)
at arbitrary moments. The background operations of data
accesses, such as for a garbage collection (GC) process, a
wear leveling process, a read reclaim process or a read
reflash process, may be activated by the apparatus 10 for

10

15

20

25

30

35

40

45

50

55

60

65

16

actively improving the storage performance of the storage
umt 190. In other words, executions of the background
operations are wrrelevant from the host (not shown i FIG. 1).
In the background operations, the processing unit 110 may
move user data of physical pages, such as the physical
addresses “(A,0)” to “(A,15)” to new physical pages. Refer
to FIG. 14. The processing unit 110 performs a method for
executing background operations when loading and execut-
ing relevant firmware and/or soitware instructions. The
processing unit 110 reads a link-based L2P mapping sub-
table 131-p corresponding to the physical pages to be
migrated from the storage unit 190 and stores the sub-table
131-p 1n the memory 130 (step S1410), generates a P2L
mapping table describing which logical address user data
stored 1n space of each physical address 1s associated with
according to the content of the link-based L2P mapping
sub-table 131-p (steps S1431 to S1450), performs data
movements of the background operations with references
made to the content of the ad-hoc P2L mapping table (step
S1470), and updates the link-based L2P mapping sub-table
131-p according to results of the data movements and
programs the updated sub-table 131-p 1nto a designated
address of the storage unit 190 (step S1490). It 1s to be
understood that the P2L mapping table may accelerate the
executions of the background operations and 1s temporarily
stored 1n the memory 130. After the background operations
are performed completely, the P2L mapping table may be
removed from the memory 130.

Assume that user data of physical addresses “(A,0)” to
“(A,15)” 1s decided to be moved: Details for generating an
ad-hoc P2L. mapping table are described below together with
examples as shown in Table 3. It 1s to be understood that the
processing unit 110 may fill the content of all fields with
dummy values “NULL” when an ad-hoc P2L mapping table
1s 1itiated. For the start physical address “(A,0)”, the
processing unit 110 searches a source entry including the
start physical address from the link-based L2P mapping
sub-table (for example, the 07 entry of Table 3) (step
S1431); determines a destination entry of the ad-hoc P2L
mapping table (for example, the 07 entry of Table 2) that
corresponds to the start physical address (step S1433); and
writes a logical address (for example, the host page number
“0”) corresponding to the source entry into the logical
address field of the destination entry (step S1435).

Next, the content of the rest entries of the ad-hoc P2L
mapping table i1s generated for the subsequent physical
addresses 1n sequence, such as “(A,1)7, “(A,2)”, “(A,3)”,
“(A4)”, "(ALD)7, (A7), T(AL8)7, "(A9)7, (AL10)7, (A,
117, “(A,12)”, “(A,13)”, “(A,14)” and *“(A,15)”. For
example, for the physical address next to “(A,0)”, the
processing unit 110 obtains the next-chained logical address
of the source entry of the link-based L2P mapping sub-table
(for example, the host page number “15” of the 07 entry of
Table 3) (step S1461); determines a destination entry of the
ad-hoc P2L mapping table (for example, the 1% entry of
Table 2) that corresponds to the physical address (for
example, “(A,1)”) of the entry (for example, the 157 entry
of Table 3) corresponding to the next-chained logical
address (for example, the host page number “15”) of the
source entry (for example, the 07 entry of Table 3) (step
S1463); writes the next-chained logical address into the
logical address field of the destination entry of the ad-hoc
P2L. mapping table (step S14635); and determines a new
source entry of the link-based L2P mapping sub-table (for
example, the 27 entry of Table 3) for the next iteration,
which corresponds to the next-chained logical address of the
current source entry (for example, the 157 entry of Table 3)

US 11,023,374 B2

17

(step S1467). Details for generating the content of the other
entries corresponding to the physical addresses “(A,2)” to
“(A,15)” may be deduced by analogy. The final result of the

ad-hoc P2L. mapping table may refer to the content of Table
2.

In step S1470, the processing unit 110 may 1ssue multiple
read commands including physical addresses to the storage
unit 190 through the access interface 180 according to the
content of the ad-hoc P2L mapping table for reading user
data associated with logical addresses from the physical
addresses indicated 1n Table 2. The processing umit 110 may
1ssue multiple write commands 1ncluding logical addresses
(for example, host page numbers) to the storage unit 190
through the access interface 180 for programming the user
data associated with the logical addresses 1into new physical
addresses. It 1s to be understood that the storage unit 190
replies to the processing unit 110 through the access inter-
tace 180 with information indicating which physical address
the user data of each logical address 1s physically stored in
after the write commands are executed successiully.

In step S1490, the processing umt 110 may perform the
method as shown as any of FIGS. 6 to 8 for updating the
link-based L2P mapping sub-table according to execution
results of programming operations performed by the storage
unit 190. An exemplary link-based L2P mapping sub-table
131-0 after being updated 1s shown as follows:

TABLE 4
Logical Address Physical Next-chaimmed
(Host Page Number) Address Logical Address
0 (B, 0) 1
1 (B, 1) 2
2 (B, 2) 3
3 (B, 3) 4
4 (B. 4) 5
5 (B, 5) 6
6 (B, 6) 8
7 NULL NULL
8 (B, 7) 9
9 (B, 8) 10
10 (B, 9) 11
11 (B, 10) 12
12 (B, 11) 13
13 (B, 12) 14
14 (B, 13) 15
15 (B, 14) NULL

The host (no shown in FIG. 1) may 1ssue an erase
command to the processing unit 110 and the processing unit
110 accordingly instructs the apparatus 10 to erase user data
of particular host pages. After the storage unit 190 completes
the erase operations, the link-based L2P mapping sub-table
131-p 1s accordingly updated. In some embodiments, the
processing umt 110 may update the content of the next-
chained logical address field of the link-based L.2P mapping
sub-table 131-p for jumping the host pages that have been
crased. However, 1t may consume excessive computation
resources to traverse entries of the link-based L2P mapping
sub-table 131-p. Reflecting the erase operations, the link-
based L2P mapping sub-table 131-p included 1n the embodi-
ments of the mvention may be modified to append an erase
flag field to indicate whether user data corresponding to each
logical address (for example, a host page number) has been

erased. The link-based L2P mapping sub-table 131-0 of
Table 3 may be devised as follows:

10

15

20

25

30

35

40

45

50

60

65

18

TABLE 5

Logical Address Physical Next-chained Erase
(Host Page Number) Address Logical Address Flag

0 (A, 0) 15 I

1 (A, 2) 14 I

2 (A, 4) 13 I

3 (A, 8) 11 I

4 (A. 10) 10 I

5 (A, 12) 9 I

6 (A, 14) 8 I
7 NULL NULL NULL

8 (A, 15) NULL I

9 (A, 13) 6 I

10 (A, 11) 5 I

11 (A, 9) 4 I

12 (A, 7) 3 I

13 (A, 5) 12 I

14 (A, 3) 2 I

15 (A, 1) 1 I

An erase tlag may be represented by one bit. An erase flag
may be set to logical false “F” when user data of a corre-
sponding host page 1s valid. For example, the processing
unit 110 may update erase flags corresponding to the 1% to
5”7 host pages of the link-based L.2P mapping sub-table
131-0 with logical trues “1” when the storage unit 190
completes erase operations on user data of host page num-
bers “1” to “5”, such that the erased host pages can be
omitted from being considered in future loop-ups. The
updated results may be shown as follows:

TABLE 6

Logical Address Physical = Next-chamed Erase
(Host Page Number) Address Logical Address Flag
0 (A, 0) 15 I

1 (A, 2) 14 T
2 (A, 4) 13 T

3 (A, 8) 11 T
4 (A. 10) 10 T
5 (A, 12) 9 T
6 (A, 14) 8 I
7 NULL NULL NULL
8 (A, 15) NULL I
9 (A, 13) 6 I
10 (A, 11) 5 I
11 (A, 9) 4 I
12 (A, 7) 3 I
13 (A, 5) 12 I
14 (A, 3) 2 I
15 (A, 1) 1 I

Since the erase flags are appended to the link-based L2P
mapping sub-table 131-p, step S1435 of FIG. 14 may be
devised to write the logical address corresponding to the
source entry into the logical address field of the destination
entry when the erase flag of the source entry 1s the logical
false “F”. In addition, step S1465 of FIG. 14 may be devised
to write the obtained next-chained logical address into the
logical address field of the destination entry when the erase
flag of the source entry 1s the logical false “F”. Retlecting the
exemplary link-based L2P mapping sub-table 131-0 as
shown 1n Table 6, the generated ad-hos P2L mapping table
1s shown as follows:

US 11,023,374 B2

19

TABLE 7
Physical Logical Address
Address (Host Page Number)
(A, O) 0
(A, 1) 15
(A, 2) NULL
(A, 3) 14
(A. 4) NULL
(A, 5) 13
(A, 6) NULL
(A, 7) 12
(A, 8) NULL
(A, 9) 11
(A, 10) NULL
(A, 11) 10
(A, 12) NULL
(A, 13) 9
(A, 14) 6
(A, 15) 8

Some or all of the aforementioned embodiments of the

method of the invention may be implemented 1n a computer
program such as an operating system for a computer, a driver
for a dedicated hardware of a computer, or a solftware
application program. Other types of programs may also be
suitable, as previously explained. Since the implementation
of the various embodiments of the present invention into a
computer program can be achieved by the skilled person
using his routine skills, such an implementation will not be
discussed for reasons of brevity. The computer program
implementing some or more embodiments of the method of
the present mvention may be stored on a suitable computer-
readable data carrier such as a DVD, CD-ROM, USB stick,
a hard disk, which may be located 1n a network server
accessible via a network such as the Internet, or any other
suitable carrier.

The computer program may be advantageously stored on
computation equipment, such as a computer, a notebook
computer, a tablet PC, a mobile phone, a digital camera, a
consumer electronic equipment, or others, such that the user
of the computation equipment benefits from the aforemen-
tioned embodiments of methods implemented by the com-
puter program when running on the computation equipment.
Such the computation equipment may be connected to
peripheral devices for registering user actions such as a
computer mouse, a keyboard, a touch-sensitive screen or pad
and so on.

Although the embodiment has been described as having
specific elements in FIGS. 1, 2 and 11-13, 1t should be noted
that additional elements may be included to achieve better
performance without departing from the spirit of the inven-
tion. Each element of FIGS. 1, 2 and 11-13 1s composed of
various circuits and arranged to operably perform the afore-
mentioned operations. While the process tlows described in
FIGS. 6-8, 10 and 14 include a number of operations that
appear to occur 1n a specific order, i1t should be apparent that
these processes can include more or fewer operations, which
can be executed sernally or in parallel (e.g., using parallel
processors or a multi-threading environment).

While the mvention has been described by way of
example and 1n terms of the preferred embodiments, 1t
should be understood that the invention is not limited to the
disclosed embodiments. On the contrary, 1t 1s 1mtended to
cover various modifications and similar arrangements (as
would be apparent to those skilled 1n the art). Therefore, the
scope of the appended claims should be accorded the
broadest interpretation so as to encompass all such modifi-
cations and similar arrangements.

10

15

20

25

30

35

40

45

50

55

60

65

20

What 1s claimed 1s:

1. An apparatus for controlling data access, comprising:

a memory;

an access interface coupled to a storage unit; and

a processing unit coupled to the memory and the access
interface, and arranged to operably receive logical-to-
physical (L2P) mapping information corresponding to

a programming operation through the access interface

and store the L2P mapping information in the memory,

wherein the L2P mapping information describes infor-
mation indicating which physical address of the storage
unit that user-data of each logical address 1s physically
stored 1n; search the L2P mapping information to obtain

a first logical address associated with user-data that 1s

stored 1n space of each first physical address, and a

second logical address associated with user-data that 1s

stored 1n space of a second physical address next to
cach first physical address; generate content of a plu-
rality of entries of a link-based L.2P mapping sub-table
in the order of logical addresses, wherein each entry of
the link-based L2P mapping sub-table stores informa-
tion about the corresponding first physical address and
the corresponding second logical address associated
with a one first logical address; and store the link-based
L.2P mapping sub-table.

2. The apparatus of claim 1, wherein the L2P mapping
information 1s organized 1n a L2P mapping table comprising
a plurality of entries sorted by logical addresses and each
entry of the L2P mapping table stores information indicating
which physical address that user-data of a corresponding
logical address 1s physically stored 1n.

3. The apparatus of claim 1, wherein the L2P mapping
information 1s organized 1n a L2P mapping linked-list com-
prising a plurality of nodes sorted by logical addresses, and
cach node of the L2P mapping linked-list stores information
indicating which physical address that user-data of a corre-
sponding logical address 1s physically stored in, and a
memory address pointing to the next node.

4. The apparatus of claim 3, comprising:

a linked-list search engine coupled to the processing unit,

wherein the processing unit 1s arranged to operably drive

the linked-list search engine to search the L2P mapping
linked-list for obtaining the first logical address and the

second logical address corresponding each physical
address.

5. The apparatus of claim 4, wherein the processing unit
1s arranged to operably process a task 1n parallel of a search
on the L2P mapping linked-list.

6. The apparatus of claim 1, wherein the processing unit
1s arranged to operably determine an entry of the link-based
L.2P mapping sub-table that 1s to be written according to the
first logical address corresponding to each physical address;
and write the physical address, and the second logical
address corresponding to the physical address into the
determined entry.

7. The apparatus of claim 1, wherein the processing unit
1s arranged to operably read the link-based LL2P mapping
sub-table; generate a Physical-to-Logical (P2L) mapping
table according to the link-based L2P mapping sub-table,
wherein the P2L mapping table describes which logical
address that user-data 1s stored in space of each physical
address 1s associated with; perform a data movement of a
background operation according to content of the P2L
mapping table; and update the link-based L2P mapping
sub-table according to a result of the data movement.

US 11,023,374 B2

21

8. The apparatus of claim 7, wherein an execution of the
background operation 1s 1rrelevant from a host and the data
movement 1s performed to move user data of a physical page
to a new physical page.

9. The apparatus of claim 7, wherein, during the data
movement, the processing unit 1s arranged to operably 1ssue
a read command including a physical address to the storage
unit through the access interface for reading user data
associated with a logical address from the physical address
indicated 1 the P2L mapping table; and 1ssue a write
command 1ncluding the logical address to the storage unit
through the access interface for programming the user data
associated with the logical address into a new physical
address.

10. The apparatus of claim 1, wherein each entry of the
link-based L2P mapping sub-table comprises an erase flag
indicating whether user data of a logical address has been
crased, and the processing unit 1s arranged to operably
update the erase flag of an entry to indicate that user data of
a corresponding logical address has been erased after com-
pleting an erase operation for the corresponding logical
address.

11. A method for controlling data access, performed by a
processing unit, comprising:

receiving logical-to-physical (L2P) mapping information

corresponding to a programming operation through an
access terface, and storing the L2P mapping infor-
mation 1n the memory, wherein the L2P mapping
information describes information indicating which
physical address of a storage unit that user-data of each
logical address 1s physically stored in;

searching the L2P mapping information to obtain a {first

logical address associated with user-data that 1s stored
in space of each first physical address, and a second
logical address associated with user-data that 1s stored
in space of a second physical address next to each first
physical address;

generating content of a plurality of entries of a link-based

L2P mapping sub-table in the order of logical
addresses, wherein each entry of the link-based L2P
mapping sub-table stores information about the corre-
sponding {irst physical address and the corresponding
second logical address associated with each first logical
address; and

storing the link-based L2P mapping sub-table.

12. A non-transitory computer program product for con-
trolling data access when executed by a processing unit, the
non-transitory computer program product comprising pro-
gram code to:

receive logical-to-physical (L2P) mapping information

corresponding to a programming operation through an
access interface and store the L2P mapping information
in the memory, wherein the L2P mapping information
describes 1nformation 1indicating which physical
address of a storage unit that user-data of each logical
address 1s physically stored 1in;

search the L2P mapping information to obtain a first

logical address associated with user-data that 1s stored
in space of each physical address, and a second logical
address associated with user-data that 1s stored in space
of a second physical address next to each first physical
address:

generate content ol a plurality of entries of a link-based

L2P mapping sub-table i the order of logical
addresses, wherein each entry of the link-based L2P
mapping sub-table stores information about the corre-

5

10

15

20

25

30

35

40

45

50

55

60

65

22

sponding first physical address and the corresponding
second logical address associated with one first logical
address; and

store the link-based L2P mapping sub-table.

13. The non-transitory computer program product of
claim 12, wherein the L2P mapping information 1s organized
in a L2P mapping table comprising a plurality of entries
sorted by logical addresses and each entry of the L2P
mapping table stores information indicating which physical
address that user-data of a corresponding logical address 1s
physically stored 1n.

14. The non-transitory computer program product of
claim 12, wherein the L2P mapping information 1s organized
in a L2P mapping linked-list comprising a plurality of nodes
sorted by logical addresses, and each node of the L2P
mapping linked-list stores information indicating which
physical address that user-data of a corresponding logical
address 1s physically stored i, and a memory address
pointing to the next node.

15. The non-transitory computer program product of
claim 14, comprising program code to:

drive a linked-list search engine to search the L2P map-

ping linked-list for obtaining the first logical address
and the second logical address corresponding each
physical address.
16. The non-transitory computer program product of
claim 12, comprising program code to:
determine an entry of the link-based L2P mapping sub-
table that 1s to be written according to the first logical
address corresponding to each physical address; and

write the physical address, and the second logical address
corresponding to the physical address into the deter-
mined entry.

17. The non-transitory computer program product of
claim 12, comprising program code to:

read the link-based L2P mapping sub-table;

generate a Physical-to-Logical (P2L) mapping table

according to the link-based L2P mapping sub-table,
wherein the P2L mapping table describes which logical

address that user-data 1s stored in space of each physi-
cal address 1s associated with;

perform a data movement of a background operation

according to content of the P2L mapping table; and
update the link-based L.2P mapping sub-table according to
a result of the data movement.

18. The non-transitory computer program product of
claim 17, wherein an execution of the background operation
1s 1irrelevant from a host and the data movement 1s performed
to move user data of a physical page to a new physical page.

19. The non-transitory computer program product of
claim 17, comprising program code to:

1ssue, during the data movement, a read command 1nclud-

ing a physical address to the storage unit through the
access interface for reading user data associated with a
logical address from the physical address indicated 1n
the P2L mapping table; and

1ssue, during the data movement, a write command

including the logical address to the storage unit through
the access interface for programming the user data
associated with the logical address into a new physical
address.

20. The non-transitory computer program product of
claim 17, wherein each entry of the link-based L2P mapping
sub-table comprises an erase flag indicating whether user
data of a logical address has been erased, the non-transitory
computer program product comprising program code to:

US 11,023,374 B2
23

update the erase flag of an entry to indicate that user data
ol a corresponding logical address has been erased after
completing an erase operation for the corresponding
logical address.

24

	Front Page
	Drawings
	Specification
	Claims

