(12)

United States Patent
Hallak et al.

US011023141B2

US 11,023,141 B2
Jun. 1, 2021

(10) Patent No.:
45) Date of Patent:

(54) RESILIENCY SCHEMES FOR DISTRIBUTED

(71)
(72)

(73)
(%)

(21)

(22)

(65)

(1)

(52)

(58)

(56)

STORAGE SYSTEMS

Applicant: Vast Data Ltd., Tel Aviv (IL)

Inventors: Renen Hallak, Tenatly, NJ (US); Yogev

Vaknin, Karkur (IL); Asaf Levy, Tel
Aviv (IL); Lior Klipper, Tel Aviv (IL);
Eli Malul, Tirat Hakarmel (IL)

9,448,887 B1* 9/2016 Ben Dayan GO6F 3/067
9,521,201 B2* 12/2016 Ohccceevninnn. GO6F 3/06353
2011/0219259 Al1* 9/2011 Frostcoooovvvvvvnnnnnnn, GOO6F 11/07
714/6.2
2014/0122795 Al* 5/2014 Chambliss GOO6F 11/2069
711/114
2015/0095554 Al* 4/2015 Asnaashan GOO6F 12/0246
711/103

2017/0149890 Al 5/2017 Shamis et al.
2017/0237560 Al* 8/2017 Mueller HO04L 9/30
713/168
2018/0107383 Al* 4/2018 Galbraith GO6F 3/0659
2019/0220213 AlL* 7/2019 Suncccevvvvnnnn, GO6F 3/0619
2019/0391877 Al* 12/2019 Stoicacc....... GO6F 3/0613

FOREIGN PATENT DOCUMENTS

Assignee: Vast Data Ltd., Tel Aviv (IL)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 16/295,610

Filed: Mar. 7, 2019

Prior Publication Data

US 2020/0285401 Al Sep. 10, 2020

Int. CI.

GO6F 3/06 (2006.01)

U.S. CL

CPC GO6Il’ 3/0619 (2013.01); GO6F 3/064

(2013.01); GO6F 3/067 (2013.01); GO6F
3/0655 (2013.01)

Field of Classification Search
CPC

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,138,126 A * 10/2000 Hitzccoovvvvnne. GO6F 3/061
8,560,772 B1* 10/2013 Piszczek GO6F 3/061
711/114

|

: DNods

| 134-1 ®

|

| F 3

|

|

|

|

| A i

| CNode

| 132-1

|

|

|

Client Node
120-1 @

GO6F 3/0619; GO6F 3/064; GO6F 3/0655;
GO6F 3/067

WO WO 2019239210 * 12/2018

* cited by examiner

Primary Examiner — Francisco A Grullon
(74) Attorney, Agent, or Firm — M&B 1P Analysts, LLC

(57) ABSTRACT

A distributed storage system and a method for providing
resiliency 1n distributed storage systems. The distributed
storage system includes a plurality of storage nodes includ-
ing a plurality of disks, wherein the plurality of disks
includes a plurality of blocks, wherein the plurality of disks
1s logically segmented into the plurality of stripes, wherein
cach of the plurality of stripes 1s dynamically allocated to a
portion of the plurality of blocks distributed across a subset
of the plurality of disks; and a plurality of compute nodes,
wherein each of the plurality of compute nodes 1s configured
to read data from each of the plurality of storage nodes,
wherein each of the plurality of compute nodes 1s assigned
at least one stripe of the plurality of stripes, wherein each of
the plurality of compute nodes 1s configured to write data to
cach stripe assigned to the compute node.

27 Claims, 5 Drawing Sheets
|
DNode |
® ® | 134nm |
|
A l
|
|
| 130
|
CNode
® @ | 132

100

Client Node
120-p

U.S. Patent Jun. 1, 2021 Sheet 1 of 5 US 11,023,141 B2

DNode DNode
134-1 ® 0O 134-m

—.
o
-

100

Network J

110

Client Node Client Node
120-1 120-p

FIG. 1

U.S. Patent Jun. 1, 2021 Sheet 2 of 5 US 11,023,141 B2

134

Network Intertace
210

FIG. 2

U.S. Patent

310-1

Jun. 1, 2021

Sheet 3 of 5

Disk 1

Disk 2

Disk 3

Disk 4

ik~ |W]|E

LA~ |IN|F-

LTI WIN|E-=

|| WIN

FIG.

3A

Disk 1

Disk 2

Disk 3

Disk 4

||| =

wi |k, |N|E-

U WIN |-

U= || W[N

310-17

FIG. 3B

310-20

/
—

VAVAN

US 11,023,141 B2

300A

310-4

~

310-16

300B

310-16

U.S. Patent Jun. 1, 2021 Sheet 4 of 5 US 11,023,141 B2

-

o410

Receive write request

S420
Write data

R R EEEEEEEEEEEEEEEEEEEEEEEEEEESS—————————————————.

)‘f o430

Accumulate writes

S440
Allocate stripes

End

FIG. 4

U.S. Patent Jun. 1, 2021 Sheet 5 of 5 US 11,023,141 B2

132
Processing -
Circuitry Storage
210 530

Memory >0 Network

520 Intertace

240
.,

FIG. 5

US 11,023,141 B2

1

RESILIENCY SCHEMES FOR DISTRIBUTED
STORAGE SYSTEMS

TECHNICAL FIELD

The present disclosure relates generally to resiliency in
storage systems, and more particularly to resiliency schemes
for distributed storage systems.

BACKGROUND 10

Redundant Array of Independent Disks (RAID) 1s a data
storage virtualization technology that treats multiple physi-
cal disks as one or more logical units. RAID schemes help
to provide data redundancy, improved storage performance,
or both.

Several variants of RAID schemes exist, and each variant
provides diflerent advantages. The different schemes
involve different distributions for data across multiple drives
such that, for example, data can be read from multiple drives
at once, redundant portions of drives may be used to restore
data of failed drives, and the like. For example, different raid
schemes may involve striping, mirroring, parity, or a com-
bination thereof. RAID schemes may further be nested (also
known as “hybrid RAID”) so as to have different levels of
RAID schemes. For example, RAID 0+1 includes creating
stripes and mirroring the stripes.

Existing RAID schemes are typically implemented
locally by a central processing unit (CPU) connected to
storage drives. Such RAID schemes may be implemented
using specialized hardware or using operating system driv-
ers.

It would therefore be advantageous to provide a solution
that would overcome the challenges noted above.

15

20

25

30

35
SUMMARY

A summary of several example embodiments of the
disclosure follows. This summary 1s provided for the con-
venience ol the reader to provide a basic understanding of
such embodiments and does not wholly define the breadth of
the disclosure. This summary 1s not an extensive overview
of all contemplated embodiments, and 1s intended to neither
identify key or critical elements of all embodiments nor to
delineate the scope of any or all aspects. Its sole purpose 1s
to present some concepts of one or more embodiments 1n a
simplified form as a prelude to the more detailed description
that 1s presented later. For convenience, the term “some
embodiments” or “certain embodiments” may be used 50
herein to refer to a single embodiment or multiple embodi-
ments of the disclosure.

Certain embodiments disclosed herein include a distrib-
uted storage system. The distributed storage system com-
prises: a plurality of storage nodes including a plurality of 55
disks, wherein the plurality of disks includes a plurality of
blocks, wherein the plurality of disks 1s logically segmented
into the plurality of stripes, wherein each of the plurality of
stripes 1s dynamically allocated to a portion of the plurality
of blocks distributed across a subset of the plurality of disks;
and a plurality of compute nodes, wherein each of the
plurality of compute nodes 1s configured to read data from
cach of the plurality of storage nodes, wherein each of the
plurality of compute nodes 1s assigned at least one stripe of
the plurality of stripes, wherein each of the plurality of 65
compute nodes 1s configured to write data to each stripe
assigned to the compute node.

40

45

60

2

Certain embodiments disclosed herein also include a
method for providing resiliency in distributed storage sys-
tems. The method comprises: allocating, by a first compute
node of a plurality of compute nodes, at least one {irst stripe
of a plurality of stripes, wherein the plurality of stripes 1s
distributed among a plurality of storage nodes including a
plurality of disks, wherein the plurality of disks includes a
plurality of blocks, wherein the plurality of disks 1s logically
segmented 1nto the plurality of stripes, wherein each of the
plurality of stripes 1s dynamically allocated to a portion of
the plurality of blocks distributed across a subset of the
plurality of disks, wherein each of the plurality of compute
nodes 1s configured to read data from each of the plurality of
storage nodes, wherein the first compute node 1s assigned to
the at least one first stripe, wherein the first compute node 1s
configured to write data to the at least one first stripe.

Certain embodiments disclosed herein also include a
non-transitory computer readable medium having stored
thereon 1instructions for causing a processing circuitry to
execute a process, the process comprising: allocating at least
one first stripe of a plurality of stripes, wherein the plurality
of stripes 1s distributed among a plurality of storage nodes
including a plurality of disks, wherein the plurality of disks
includes a plurality of blocks, wherein the plurality of disks
1s logically segmented into the plurality of stripes, wherein
cach of the plurality of stripes 1s dynamically allocated to a
portion of the plurality of blocks distributed across a subset
of the plurality of disks, wherein each of a plurality of
compute nodes 1s configured to read data from each of the
plurality of storage nodes, wherein each of the plurality of
compute nodes 1s assigned at least one stripe of the plurality
of stripes, wherein each of the plurality of compute nodes 1s
configured to write data to each stripe assigned to the
compute node.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter disclosed herein 1s particularly pointed
out and distinctly claimed in the claims at the conclusion of
the specification. The foregoing and other objects, features,
and advantages of the disclosed embodiments will be appar-
ent from the following detailed description taken in con-
junction with the accompanying drawings.

FIG. 1 1s a network diagram illustrating a distributed
storage system utilized according to various disclosed
embodiments.

FIG. 2 1s a schematic diagram of a storage node according,
to an embodiment.

FIGS. 3A-3B are example tables 1llustrating disk alloca-
tion before and after a failure of a disk.

FIG. 4 1s an example tlowchart illustrating a method for
dynamic stripe allocation according to an embodiment.

FIG. 5 1s a schematic diagram of a compute node accord-
ing to an embodiment.

DETAILED DESCRIPTION

It 1s 1mportant to note that the embodiments disclosed
herein are only examples of the many advantageous uses of
the innovative teachings herein. In general, statements made
in the specification of the present application do not neces-
sarily limit any of the various claimed embodiments. More-
over, some statements may apply to some 1nventive features
but not to others. In general, unless otherwise indicated,
singular elements may be 1n plural and vice versa with no
loss of generality. In the drawings, like numerals refer to like
parts through several views.

US 11,023,141 B2

3

The disclosed embodiments provide resiliency schemes
for use 1n distributed storage systems. The disclosed
embodiments may be applied to a distributed storage system
for use with, for example, Redundant Array of Independent
Disk (RAID) schemes. Thus, the disclosed embodiments
allow for RAID operations with respect to drives that are
remote from a CPU. The disclosed embodiments may be
applied to distributed storage systems in which multiple
compute nodes may each have access to multiple storage
nodes. The compute nodes may be remote from each other,
from the storage nodes, or both. Likewise, the storage nodes
may be remote from each other. Further, the disclosed
embodiments provide techniques for improving perior-
mance of such resiliency schemes.

In an embodiment, stripes are distributed across a distrib-
uted storage system. The distributed storage system includes
multiple storage nodes, with each storage node including
one or more disks. Fach stripe 1s distributed among a
respective subset of the storage nodes and includes erase
blocks distributed among its respective subset of storage
nodes. More specifically, each stripe 1s distributed among,
disks 1n the storage nodes. Compute nodes of the distributed
storage system may be configured to access the storage
nodes such that each compute node may access data in each
of the storage nodes and each compute node may modily
data 1 an assigned portion of the storage nodes.

The disclosed embodiments also provide techniques for
assigning stripes dynamically. This dynamic allocation of
stripes allows for faster reads and writes as well as reduced
lock contention. In particular, distributing stripes among a
subset of disks allows for mimmizing hotspots where many
operations are being performed on the same portion of the
distributed storage system around the same time. The subset
of disks for each stripe may be allocated using various
constraints that further improve overall performance of the
distributed storage system. Further, the disclosed embodi-
ments allow for asymmetrical distribution of data among
stripes to allow for use of disks of different storage sizes.
The dynamic assignment of stripes as well as specific
constraints on assignment of stripes both contribute to
ensuring high availability of the distributed storage system
in the event of disk failures.

FIG. 1 1s an example network diagram 100 illustrating a
distributed storage system utilized according to various
disclosed embodiments. The network diagram 100 includes
a distributed storage system 130, a network 110, and client
nodes 120-1 through 120-p (referred to as a client node 120
or as client nodes 120 for simplicity).

The distributed storage system 130 includes compute
nodes (CNodes) 132-1 through 132-n (referred to as a
CNode 132 or as CNodes 132 for simplicity) and storage
nodes (DNodes) 134-1 through 134-m (referred to as a
DNode 134 or as DNodes 134 for stmplicity). In an example
implementation, the distributed storage system 130 may be
configured as described further in U.S. patent application
Ser. No. 16/002,676, assigned to the common assignee, the
contents of which are hereby incorporated by reference.

The network 110 may be, but 1s not limited to, a wireless,
cellular or wired network, a local area network (LAN), a
wide area network (WAN), a metro area network (MAN),
the Internet, the worldwide web (WWW), similar networks,
and any combination thereof. The client node 120 may be,
but 1s not limited to, a server, a personal computer, a laptop,
a tablet computer, a smartphone, or any other device con-
figured to store data, access data, or both.

The DNodes 134 may be realized as combinations of

volatile (e.g., RAM) and non-volatile (e.g., Flash, 3D

10

15

20

25

30

35

40

45

50

55

60

65

4

Xpoint) memories. The non-volatile memories may be
included 1n, for example, hard-disk drives (HDDs), solid
state drives (SSDs), or a combination thereof. Each DNode
134 includes one or more drives containing disks such that
cach DNode 134 includes one or more disks (drives and
disks not shown 1n FIG. 1). Further, 2 drives on the same
DNode 134 may be considered one quad for organizational
PUrposes.

In an embodiment, each DNode 134 includes two drives,
where each drive includes a disk. FIG. 2 1s an example
schematic diagram showing a DNode 134 according to this
embodiment. In the schematic diagram shown 1n FIG. 2, the
DNode 134 includes a network interface 210 and two drives
220-1 and 220-2. The network interface 210 allows the
DNode 134 to communicate with, for example, the CNodes
132, for the purposes of storing data, retrieving stored data,
and the like.

Each drive 220 1s a data storage unit including a memory
component. In the example schematic diagram shown 1n
FIG. 2, the memory component 1n each drive 220 1s a disk
225-1 or 225-2. Each drive 220 at least includes electrical
components used to write data to and read data from 1ts
respective disk 225. Each disk 225 includes data blocks 227.
The data blocks 227 include data stored by the CNodes 132
and metadata (e.g., the element store as described herein).

It should be noted that the particular configuration shown
in FIG. 2 1s merely an example and does not necessarily limait
any of the disclosed embodiments. Diflerent numbers of
drives and disks may be included in each DNode 134
without departing from the scope of the disclosure. Further,
the disks may be any discrete physical or logical memory
components to which data can be stored and from which data
can be read. At least some of the disclosed embodiments
may be equally applicable to non-disk memory components
such as, but not limited to, solid state drives.

The CNodes 132 are configured to translate access com-
mands into formats supported by the DNodes 134. Example
protocols supported via translation by the CNodes 132 may
include, but are not limited to, Block protocols, Network
Attached System protocols [e.g., Network File System
(NEFS) protocol, Server Message Block (SMB) protocol,
etc.], Object Store protocols [e.g., Simple Storage Service
(S3) protocol], Key Value Store protocol, and the like.
Because the CNodes 132 are configured to translate access
commands into a format that 1s supported by the protocol of
the DNodes 134, support for new protocols may be added by
configuring the CNodes 132 with translation rules for the
new protocols. The translation rules may include rules for
converting access commands 1n a received format into a
format that 1s compatible with the protocol supported by the
DNodes 134.

The CNodes 132 collectively act as a distributed trans-
action manager for accessing data in the DNodes 134. As the
CNodes 132 do not store the data to be accessed by client
nodes or the metadata used for navigating to locations 1n the
DNodes 134, such data and metadata do not need to be
recovered when one or more of the CNodes 132 {fails.
Additionally, CNodes 132 may be added or removed without
disrupting data stored 1n the storage system 130. An example
schematic diagram of a CNode 132 1s described below with
respect to FIG. S.

The client node 120 1s configured to send access com-
mands to the distributed storage system 130 via the network
110. The CNodes 132 are configured to receive access
commands from the client nodes 120 and to access the
DNodes 134 based on the recetved commands. The access
may include translating the received commands into a

US 11,023,141 B2

S

format supported by the DNodes 134. As shown in FIG. 1,
cach CNode 132 may access all DNodes 134. As a non-
limiting example, NVM Express (NVMe) over Fabrics may
be utilized to enable such access.

The access may 1include navigating metadata stored 1n the
DNodes 134 to access data in data blocks stored in the
DNodes 134. The CNodes 132 are configured to navigate the
clement trees to read the data blocks and to modily the
clement trees by, for example, splitting blocks, merging
blocks, and the like. To this end, the CNodes 132 may be
configured to allocate new blocks, write data to blocks, read
data from blocks, add and remove pointers in blocks, and the
like.

In an embodiment, data 1n the DNodes 134 1s organized
into stripes (not shown in FIG. 1) of segmented sequential
data such that data in each stripe 1s distributed across two or
more drives of the DNodes 134. To this end, each stripe
includes data segments such as sub-stripes. In a further
embodiment, each stripe 1s distributed across a subset of the
disks of the DNodes 134. The distributions of stripes may be
random or non-random (e.g., based on a predetermined
distribution).

Random distributions of stripes may be between failure
domains or within a failure domain. In an embodiment, each
stripe may be distributed such that 1t does not include too
much data from the same failure domain. To this end, 1n such
an embodiment, each stripe may be distributed across a
subset of disks that includes at most an allowed number of
disks from the same failure domain. The allowed number of
disks may be preconfigured (1.e., a predetermined number
that each CNode 132 1s configured with) or may be dynami-
cally determined by the CNodes 132 as the distributed
storage system 130 changes. To this end, the number of disks
in the subset of disks for each stripe 1s distributed (i.e., the
width of each stripe) may be changed based on the number
of drives 1n the distributed storage system 130, the amount
of free space available 1n the DNodes 134, the number of
fallure domains that are currently available, or a combina-
tion thereof. Each failure domain includes one or more disks
and represents a portion of the distributed storage system
130 that 1s negatively affected by failure of one or more of
its disks. In example implementations, a failure domain may
be, but 1s not limited to, a carrier (not shown) including one
or more drives, a storage box (not shown) including one or
more of the DNodes 134, and the like. Limiting each stripe
to an allowed number of disks within the same failure
domain mimmizes aflects of failures on performance with
respect to the stripes.

In an example implementation, the distributions of stripes
across disks may be based on a weighted round robin block
selection. The values for the weights may be set based on
remaining lifespan (e.g., based on number of write cycles
remaining), based on amount of free space on each DNode
134, based on amount of space needed for recovery (e.g., 1%
ol total storage space), based on total sizes of the stripes, or
a combination thereof. For example, blocks in disks that
have a higher number of write cycles remaining, that have
more Iree space, that have the largest size, or a combination
thereol, may be prioritized when selecting blocks to which
stripes should be allocated.

The values used for determining weights based on free
space may lurther be based on proportional free space of
cach disk, 1.e., a proportion of the disk that is free rather than
simply the total amount of free space. This provides more
optimal selection when disks of different sizes are used.

Additional constraints may be placed on the weighted
round robin block selection. One constraint may be that

10

15

20

25

30

35

40

45

50

55

60

65

6

stripes are allocated such that blocks of the same disk are not
used for different portions of a stripe. Another constraint
may be that the stripe size 1s limited based on the total
number of disks and a desired number of failed disks or
DNodes 134 that are allowed to occur at a time before data
cannot be recovered. In an example implementation, blocks
that meet the highest number of constraints may be selected
so as to minimize problems during recovery (e.g., being
unable to write recovered data from the same stripe to
different disks when multiple disks have failed. The weights
may further be assigned such that the number of disks 1n the
same failure domain storing blocks of a stripe does not
exceed a threshold.

As a non-limiting example for constraints, it there are 25
DNodes and each DNode includes two disks, the stripe size
cannot exceed 50 blocks (1.e., one block for each of the 50
disks included in the DNodes 134). As another non-limiting
example, 11 4 failed DNodes are to be supported in the
previous example, the stripe size must be at least 42 blocks
(1.e., 2 disks per DNode times 4 failed DNodes).

FIGS. 3A-B illustrate example tables 300A and 300B,
respectively, showing the eflects of placing a constraint such
that blocks of the same disk are not used for the same stripe
betore and after failure of a disk. In the example table 300A,
entries 310-1 through 310-16 in the table represent blocks 1n
the respective disks shown. Each entry 310 includes a
number between 1 and 6, with the number representing
which stripe that block 1s assigned to. For example, as shown
in FIG. 3A, entry 310-1 represents a block i disk 1 assigned
to stripe 1, entry 310-4 represents a block 1n disk 4 assigned
to stripe 2, and entry 310-16 represents a block 1n disk 4
assigned to stripe 6.

As shown 1 FIGS. 3A-B, each stripe 1s assigned blocks
among the disks such that no stripe 1s assigned to two or
more blocks 1n the same disk. In the event of a failure of disk
1, the portions of the stripes assigned to blocks 1n disk 1
must be reallocated when rebuilding. As shown 1 FIG. 3B,
in an example implementation, the stripes may be reallo-
cated to the blocks represented by entries 310-17 through
310-20. The resulting allocation still meets the constraint
that no stripe 1s assigned to two or more blocks on the same
disk.

In an example implementation, 150 disks included 1n 75
DNodes may be used. This number of disks provides large
stripes that minimizes the overhead for parity while also
minimizing penalties during degraded read. In such an
example, 4 of the 150 disks may be used for parity. This
configuration has been identified as providing around 2.7%
overhead with at most 30% degradation.

In an embodiment, at least a portion of the data 1n each
stripe may 1nclude parity. Data in different disks may be used
for parity such that the same disk 1s not always used for
parity. To this end, role allocation for disks (e.g., whether a
disk 1s used for parity or other roles) may be assigned using
a pseudo-random function, for example based on a pseudo-
random hash and the number of disks among the DNodes
134.

In an embodiment, rebuilding can occur at every storage
location 1 the DNodes 134. Thus, instead of requiring
rewriting parity, data 1in the DNodes 134 may return to the
same redundancy level after a rebuild operation since the
parity data 1s recovered during such rebuild. Additionally,
because stripes may change during runtime of the CNodes
132, stripes may be rebuilt to make use of free space. To this
end, each CNodes 132 may be configured to determine an
unallocated portion of data 1n one of the DNodes 134 that 1s
not part of the stripe and to rebuild the stripe in the

US 11,023,141 B2

7

determined unallocated portion (1.e., such that a portion of
the rebuild stripe includes the determined unallocated por-
tion) when one or more blocks to which the stripe 1s
allocated 1s unavailable.

Each stripe has a height and a width. The height of the
stripe 1s the total amount of data stored in a disk including
the stripe (e.g., 100 megabytes) and the width 1s the number
ol disks over which the stripe 1s distributed (for example, for
a 220+10 scheme, the stripe would have a width of 230). In
an embodiment, each stripe includes a set of erase blocks
spread across a subset of the disks of the DNodes 134. Each
erase block 1s a portion of data that 1s the smallest unit of
data that can be erased 1n the DNodes 134. In a non-limiting
example implementation, each erase block 1s between 20
and 800 megabytes 1n size. The portions of the stripes used
for redundancy may be distributed evenly among disks to
avoid hotspots.

In an embodiment, each stripe may not be distributed

across disks of all of the DNodes 134 and, instead, 1s
distributed only across disks of a subset of the DNodes 134.
This allows at least for better performance during recoveries
due to fewer bottlenecks (e.g., when rebuild operations are
performed). Additionally, stripes being distributed across
subsets of the DNodes 134 allows for more flexible dynamic
arrangements ol stripes across the DNodes 134 over time as
DNodes 134 are added or removed. Further, this distribution
ol stripes accommodates disks of different storage sizes in
the DNodes 134 since the same amount of data does not
need to be stored 1n each disk. Specifically, disks that have
more free space may include portions of a higher number of
stripes than disks with less free space. Moreover, when one
of the disks 1n the DNodes 134 fails or 1s removed, new
stripes may be distributed such that they do not include data
in the disk of the failed or removed disk.

In an embodiment, the CNodes 132 are configured to
perform at least foreground operations and background
operations. The foreground operations include operations
such as reads and degraded reads. In a further embodiment,
cach of the CNodes 132 may be configured to perform
foreground operations on any of the DNodes 134 and, more
specifically, on all portions of the DNodes 134.

The degraded reads may occur 1n response to a read error.
In response to a read error, a CNode 132 may attempt to retry
the read, report the error, and re-read the data using other
disks (1.e., other than the disk that the CNode 132 is
attempting to read). The read may be retried, for example,
until a predetermined period of time has passed, at which
time the data 1s read from the other disks. In an optional
implementation, upon the first failure, the disk that the
CNode 132 attempted to read may be reset. Otherwise, the
disk may be marked as broken and all CNodes 132 may be
instructed to reallocate blocks accordingly.

The background operations include operations such as
writes and rebuilds. In a further embodiment, each of the
CNodes 132 may be configured to perform background
operations only on a specific subset of data stored in the
DNodes 134. Specifically, in an embodiment, each stripe 1s
assigned to one of the CNodes 132. Each CNode 132 1s
configured to perform background operations only on data
included 1n 1ts respective assigned stripes. The number of
stripes assigned to each of the CNodes 132 may change over
time such that the total number of stripes assigned to the
CNodes 132 is constant as the number of CNodes 132 1n the
distributed storage system 130 changes. In a further embodi-
ment, the stripes assigned to each CNode 132 do not overlap
with the stripes assigned to each other CNode 132.

10

15

20

25

30

35

40

45

50

55

60

65

8

In an embodiment, the stripes may be changed as the size
of the storage system 130 changes (for example, as disks and
DNodes 134 are added or removed). To this end, stripes may
be extended when drives are added and shrunk as drives are
removed. As a non-limiting example, when a new DNode
134 15 added to the storage system when one of the stripes
1s distributed according to a 442 scheme, the stripe may be
extended such that its distribution follows a 5+2 scheme. In
some 1implementations, removing a disk may further include
checking whether removing the disk will cause the distrib-
uted storage system 130 to lack high availability, to read the
data from the disk and write 1t to other disks in the
distributed storage system 130, or both.

In another embodiment, an indirection layer may be
implemented 1n non-volatile memory (e.g., in NVRAM) of
the DNodes 134. The indirection layer 1s a portion of such
non-volatile memory storing translations between addresses
in the metadata and addresses in the underlying data. The
indirection layer may be, for example, in the form of an
clement store as described herein and in the above-refer-
enced patent application Ser. No. 16/002,676, the contents of
which are incorporated by reference. The data stored in the
DNodes 134 may further include backpointers to locations
in the indirection layer. The backpointers may be changed to
reflect changes in the indirection layer.

In an embodiment, each CNode 132 is configured as a
resiliency module. To this end, each CNode 132 1s config-
ured to allocate blocks for 1ts assigned stripe and to store
data only 1n blocks of its allocated stripe.

Each CNode 132 may store, 1n the DNodes 134, metadata
used for storing data and dynamaically allocating stripes. The
metadata stored by the CNodes 132 may include stripe-
related metadata such as, but 1s not limited to, which stripes
it 1s assigned to, what are the locations (e.g., disk and offset)
of blocks allocated to 1ts assigned stripes, statuses of stripes
and portions thereof (e.g., open versus committed), stripe
sizes, and the like. In an example implementation, such
stripe-related metadata may be stored 1n a non-volatile
memory (e.g., NVRAM, not shown) of each CNode 132.

The metadata used for storing data and dynamically
allocating stripes may also include disk-related metadata
such as, but not limited to, a list of available sub-stripes 1n
each disk, disk statuses, fault domains for disks, disk sizes
(e.g., 1n total numbers of blocks), a number of available
blocks 1 each disk, statuses of available blocks (e.g.,
reserved, reduce over provisioning, expense of use), and the
like. In an example implementation, such disk-related meta-
data may be stored 1n a volatile memory (e.g., RAM) of each
DNode 134. When a new stripe 1s assigned to a CNode 132,
the disk-related metadata may be updated to add the sub-
stripes ol the new stripe to the respective lists of available
sub-stripes.

In an embodiment, each CNode 132 1s also configured to
allocate blocks such that, when one of the disks of the
DNodes 134 has failed, blocks in the failed disks are not
allocated to 1ts assigned stripe. When one of the disks has
failed, each CNode 132 may also be configured to recover
blocks allocated to its associated stripe that were stored in
the failed disk. Each CNode 132 1s configured to write the
recovered blocks to blocks in other disks that are allocated
to the stripe assigned to that CNode 132. Once the recovered
data has been written, each CNode 132 1s configured to
update the elements stored 1n the DNodes 134 based on the
new location of the recovered data.

In some implementations, each stripe may include only
data from a specific category. As a non-limiting example,
such categories may be cold data (1.e., data that i1s less

US 11,023,141 B2

9

frequently modified) and hot data (i1.e., data that 1s more
frequently modified). In an example implementation, the
category for data may be determined based on an expected
frequency of changes and a threshold frequency for hot data.
Example techmiques for determining expected frequencies
of changes of data 1s described further in U.S. patent
application Ser. No. 16/207,732 assigned to the common
assignee, the contents of which are hereby incorporated by
reference.

In an embodiment, allocation of stripes may further occur
with respect to sub-stripes. Each sub-stripe includes a por-
tion of a stripe and 1s the basic unit for disk recovery such
that an entire stripe does not need to be rebuilt when only a
portion of the stripe 1s allocated to one or more failed disks.

A sub-stripe may be allocated when an amount of data
equal to the size of the sub-stripe has been written. To this
end, 1n an embodiment, each CNode 132 1s configured to
accumulate and classily incoming writes. Once a suflicient
amount of data having the category of the sub-stripe has
been written, the blocks storing that data are allocated to that
sub-stripe. The size of each sub-stripe may be changed based
on the remaimming number of lifecycles for the disk. In a
turther embodiment, a stripe may be allocated only when
there 1s a suflicient number of sub-stripes to be allocated.
This avoids locking out stripes when there are already open
stripes for the same category of data.

The example distributed storage system shown in FIG. 1
1s described further in U.S. patent application Ser. No.
16/002,676, the contents of which are incorporated by
reference.

FIG. 4 1s an example flowchart 400 1llustrating a method
for dynamic stripe allocation according to an embodiment.
In an embodiment, the method 1s performed by one of the
CNodes 132, FIG. 1. Each CNode 132 may be configured to
perform the method.

At S410, a write request 1s received. The write request
includes data to be written.

At 5420, the data 1s written to a storage node (e.g., one of
the DNodes 134). In an embodiment, the data 1s written to
a storage node assigned to the compute node performing the
write as described above.

At optional S430, writes are accumulated. The accumu-
lation includes tracking completed writes and, more specifi-
cally, the amounts of data stored for each write. Accumu-
lating writes may allow for delaying stripe or sub-stripe
allocation until suflicient data to fill a sub-stripe has been
written.

In an embodiment, S430 may further include categorizing
the data that 1s written. For example, data may be catego-
rized as hot or cold based on an expected frequency of writes
for the data as compared to a hot data threshold. The
expected frequency of writes may be determined based on,
for example, a type of the data. The categories for the data
may be utilized during stripe allocation such that each stripe
1s allocated to blocks storing the same category of data.

At S440, one or more stripes 1s allocated to disks among
the DNodes. In an embodiment, to provide redundancy, each
stripe 1s allocated among a subset of disks such that no two
portions of the same stripe (e.g., two or more sub-stripes) 1s
stored on the same disk.

In an embodiment, S440 includes applying a weighted
round robin selection function with respect to blocks in the
storage system 1n order to determine which blocks each
stripe should be allocated to. The values of the weights used
for the weighted round robin selection are based on factors
such as, but not limited to, amount or proportion of free

10

15

20

25

30

35

40

45

50

55

60

65

10

space remaining on disks, remaining lifespan, amount of
space needed for recovery, total size of the stripe, combi-
nations thereot, and the like.

In another embodiment, stripes may be allocated via
allocation of sub-stripes. To this end, sub-stripes may be
allocated to blocks of written data, where each sub-stripe 1s
assigned to a larger stripe. In a further embodiment, alloca-
tion ol sub-stripes may be delayed until writes having a
suflicient total amount of data have been accumulated.

FIG. 5 1s an example schematic diagram of a CNode 132
according to an embodiment. The CNode 132 includes a
processing circuitry 510 coupled to a memory 520, a storage
530, and a network interface 540. In an embodiment, the
components of the CNode 132 may be communicatively
connected via a bus 350.

The processing circuitry 510 may be realized as one or
more hardware logic components and circuits. For example,
and without limitation, 1llustrative types of hardware logic
components that can be used include field programmable
gate arrays (FPGAs), application-specific integrated circuits
(ASICs), Application-specific standard products (ASSPs),
system-on-a-chip systems (SOCs), general-purpose micro-
processors, microcontrollers, digital signal processors
(DSPs), and the like, or any other hardware logic compo-
nents that can perform calculations or other manipulations of
information.

The memory 520 may be volatile (e.g., RAM, etc.),
non-volatile (e.g., ROM, flash memory, NVRAM, etc.), or a
combination thereof. In one configuration, computer read-
able instructions to implement one or more embodiments
disclosed herein may be stored in the storage 3530.

In another embodiment, the memory 520 1s configured to
store software. Software shall be construed broadly to mean
any type ol instructions, whether referred to as software,
firmware, middleware, microcode, hardware description
language, or otherwise. Instructions may include code (e.g.,
in source code format, binary code format, executable code
format, or any other suitable format of code). The struc-
tions, when executed by the processing circuitry 510, cause
the processing circuitry 310 to perform the various processes
described herein.

The storage 330 may be magnetic storage, optical storage,
and the like, and may be realized, for example, as flash
memory or other memory technology, CD-ROM, Digital
Versatile Disks (DVDs), or any other medium which can be
used to store the desired information.

The network mterface 540 allows the CNode 132 to
receive access commands and send data over the network
110, FIG. 1.

It should be understood that the embodiments described
herein are not limited to the specific architecture illustrated
in FIG. 5, and other architectures may be equally used
without departing from the scope of the disclosed embodi-
ments.

It should be noted that various embodiments are described
with respect to disk failures for simplicity purposes, but the
features of the disclosed embodiments related to disk fail-
ures may be equally applicable to any component failure that
renders a disk 1naccessible for storage purposes. For
example, failure of a drive containing a disk may also result
in failure of the disk, and failure of a storage node including

two drives will result in failure of the respective disks
contained 1n the two drives.

It should also be noted that various embodiments are
discussed with respect to disks, but that other non-volatile
memories capable of storing logically segmented stripes of
data may be used in accordance with various disclosed

US 11,023,141 B2

11

embodiments. In such embodiments, each non-volatile
memory may be used as a unit 1n place of a disk.

The various embodiments disclosed herein can be imple-
mented as hardware, firmware, software, or any combination
thereol. Moreover, the software 1s preferably implemented
as an application program tangibly embodied on a program
storage unit or computer readable medium consisting of
parts, or of certain devices and/or a combination of devices.
The application program may be uploaded to, and executed
by, a machine comprising any suitable architecture. Prefer-
ably, the machine 1s implemented on a computer platform
having hardware such as one or more central processing
units (“CPUs”), a memory, and input/output interfaces. The
computer platform may also include an operating system
and microinstruction code. The various processes and func-
tions described herein may be either part of the microin-
struction code or part of the application program, or any
combination thereof, which may be executed by a CPU,
whether or not such a computer or processor 1s explicitly
shown. In addition, various other peripheral units may be
connected to the computer platform such as an additional
data storage unit and a printing unit. Furthermore, a non-
transitory computer readable medium 1s any computer read-
able medium except for a transitory propagating signal.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in
understanding the principles of the disclosed embodiment
and the concepts contributed by the inventor to furthering
the art, and are to be construed as being without limitation
to such specifically recited examples and conditions. More-
over, all statements herein reciting principles, aspects, and
embodiments of the disclosed embodiments, as well as
specific examples thereotf, are mtended to encompass both
structural and functional equivalents thereof. Additionally, 1t
1s 1ntended that such equivalents include both currently
known equivalents as well as equivalents developed 1n the
future, 1.¢., any elements developed that perform the same
function, regardless of structure.

It should be understood that any reference to an element
herein using a designation such as “first,” “second,” and so
forth does not generally limit the quantity or order of those
clements. Rather, these designations are generally used
herein as a convenient method of distinguishing between
two or more elements or instances of an element. Thus, a
reference to first and second elements does not mean that
only two elements may be employed there or that the first
clement must precede the second element 1n some manner.
Also, unless stated otherwise, a set of elements comprises
one or more elements.

As used herein, the phrase “at least one of” followed by
a listing of items means that any of the listed items can be
utilized individually, or any combination of two or more of
the listed 1tems can be utilized. For example, 11 a system 1s
described as including “at least one of A, B, and C.” the
system can include A alone; B alone; C alone; 2A; 2B; 2C;
3A; A and B 1n combination; B and C 1n combination; A and
C 1n combination; A, B, and C 1n combination; 2A and C 1n
combination; A, 3B, and 2C 1n combination; and the like.

What 1s claimed 1s:

1. A distributed storage system, comprising:

a plurality of storage nodes including a plurality of disks,
wherein the plurality of disks includes a plurality of
blocks, wherein the plurality of disks 1s logically seg-
mented 1nto a plurality of stripes, wherein each of the
plurality of stripes 1s dynamically allocated to a portion
of the plurality of blocks distributed across a subset of
the plurality of disks, wherein the plurality of storage

10

15

20

25

30

35

40

45

50

55

60

65

12

nodes has a plurality of failure domains, each of the
plurality of failure domains including at least one of the
plurality of disks, wherein each stripe 1s distributed
across a subset of the plurality of disks that includes at
most an allowed number of disks within the same
failure domain of the plurality of failure domains; and
a plurality of compute nodes, wherein each of the plurality
of compute nodes 1s configured to read data from each
of the plurality of storage nodes, wherein each of the
plurality of compute nodes 1s assigned at least one
stripe of the plurality of stripes, wherein each of the
plurality of compute nodes 1s configured to write data
to each stripe assigned to the compute node, wherein
the plurality of compute nodes 1s further configured to
dynamically determine the allowed number of disks
within the same failure domain of the plurality of
fallure domains based on a number of the plurality of
fallure domains that are available at a time of the
determination.

2. The distributed storage system of claim 1, wherein the
plurality of storage nodes further includes a plurality of
drives, wherein the allowed number of disks for each stripe
1s changed based on a number of the plurality of drives, an
amount of free space in the storage nodes, and a number of
the plurality of failure domains that are currently available.

3. The distributed storage system of claim 1, wherein each
stripe 1s allocated using a weighted round robin block
selection, wherein the weighted round robin block selection
includes applying a weighted round robin function including
at least one weight, wherein a value of each of the at least
one weight 1s based on at least one of: a remaining lifespan
of each of the plurality of disks, an amount of space needed
for recovery, and a total size of each of the plurality of
stripes.

4. The distributed storage system of claim 1, wherein each
of the plurality of stripes 1s allocated based on a proportion
of free space available on each of the plurality of disks.

5. The distributed storage system of claim 1, wherein each
of the plurality of stripes 1s allocated dynamically when data
1s stored 1n the distributed storage system.

6. The distributed storage system of claim 1, wherein a
s1ze of each of the plurality of stripes 1s limited based on a
total number of the plurality of disks and an allowable
number of failed disks.

7. The distributed storage system of claim 1, wherein each
of the plurality of stripes includes a plurality of sub-stripes,
wherein each sub-stripe 1s allocated to at least one of the
plurality of blocks, wherein each sub-stripe 1s allocated
when at least a threshold amount of data has been written to
the distributed storage system.

8. The distributed storage system of claim 1, wherein each
of the plurality of compute nodes 1s configured to perform a
degraded read when a read error has occurred during an
attempt to read a failed disk of the plurality of disks, wherein
the degraded read includes rebuilding a portion of each
stripe that 1s allocated to data 1n the failed disk, wherein the
rebuilt data 1s stored in at least one functioning disk of the
plurality of disks.

9. The distributed storage system of claim 1, wherein each
of the plurality of compute nodes 1s configured to extend at
least one of the plurality of stripes when a new storage node
1s added to the plurality of storage nodes.

10. The distributed storage system of claim 1, wherein
cach of the plurality of compute nodes 1s configured to
shrink at least one of the plurality of stripes when one of the
plurality of storage nodes 1s at least one of: failed, and
removed.

US 11,023,141 B2

13

11. The distributed storage system of claam 1, wherein
cach of the plurality of stripes has a size, wherein at least
some of the plurality of stripes have diflerent sizes.

12. The distributed storage system of claim 1, wherein
cach storage node includes at least one drive, wherein each
drive 1ncludes one of the plurality of disks.

13. The distributed storage system of claim 1, wherein
cach of the plurality of compute nodes i1s configured to
rebuild a first stripe of the at least one stripe assigned to the
compute node when at least one of the portion of the
plurality of blocks to which the stripe 1s allocated 1s unavail-
able, wherein rebuilding the first stripe includes determining
a portion of one of the plurality of disks that 1s unallocated.,
wherein the rebuilt first stripe includes the determined
unallocated portion.

14. A method for providing resiliency in distributed
storage systems, comprising:

allocating, by a first compute node of a plurality of

compute nodes, at least one {irst stripe of a plurality of
stripes, wherein the plurality of stripes 1s distributed
among a plurality of storage nodes including a plurality
of disks, wheremn the plurality of disks includes a
plurality of blocks, wherein the plurality of disks 1s
logically segmented into the plurality of stripes,
wherein each of the plurality of stripes 1s dynamically
allocated to a portion of the plurality of blocks distrib-
uted across a subset of the plurality of disks, wherein
cach of the plurality of compute nodes 1s configured to
read data from each of the plurality of storage nodes,
wherein the first compute node 1s assigned to the at
least one first stripe, wherein the first compute node 1s
configured to write data to the at least one first stripe,
wherein the plurality of storage nodes has a plurality of
failure domains, each of the plurality of failure domains
including at least one of the plurality of disks, wherein
cach stripe 1s distributed across a subset of the plurality
of disks that includes at most an allowed number of
disks within the same failure domain of the plurality of
fallure domains, wherein the plurality of compute
nodes 1s further configured to dynamically determine
the allowed number of disks within the same failure
domain of the plurality of failure domains based on a
number of the plurality of failure domains that are
available at a time of the determination.

15. The method of claim 14, wherein the plurality of
storage nodes further includes a plurality of drives, wherein
the allowed number of disks for each stripe 1s changed based
on a number of the plurality of drives, an amount of free
space 1n the storage nodes, and a number of the plurality of
failure domains that are currently available.

16. The method of claim 14, wherein the first stripe 1s
allocated using a weighted round robin block selection,
wherein the weighted round robin block selection includes
applying a weighted round robin function including at least
one weight, wherein a value of each of the at least one
weight 1s based on at least one of: a remaining lifespan of
cach of the plurality of disks, an amount of space needed for
recovery, and a total size of each of the plurality of stripes.

17. The method of claim 14, wherein the first stripe 1s
allocated based on a proportion of free space available on
cach of the plurality of disks.

18. The method of claim 14, wherein the first stripe 1s
allocated dynamically when data 1s stored in the plurality of
storage nodes.

19. The method of claim 14, wherein a size of the first
stripe 1s limited based on a total number of the plurality of
disks and an allowable number of failed disks.

10

15

20

25

30

35

40

45

50

55

60

65

14

20. The method of claim 14, wherein the first stripe
includes a plurality of sub-stripes, wherein each sub-stripe 1s
allocated to at least one of the plurality of blocks, wherein
cach sub-stripe 1s allocated when at least a threshold amount
ol data has been written to the plurality of storage nodes.

21. The method of claim 14, wherein the first compute
node 1s configured to perform a degraded read when a read
error has occurred during an attempt to read a failed disk of
the plurality of disks, wherein the degraded read includes

rebuilding a portion of each of the at least one first stripe that
1s allocated to data i1n the failed disk, wherein the rebuilt data

1s stored 1n at least one functioning disk of the plurality of
disks.

22. The method of claim 14, wherein the first compute
node 1s configured to extend at least one of the at least one
first stripe when a new storage node 1s added to the plurality
ol storage nodes.

23. The method of claim 14, wherein the first compute
node 1s configured to shrink at least one of the at least one
first stripe when one of the plurality of storage nodes 1s at
least one of: failed, and removed.

24. The method of claim 14, wherein each of the plurality
ol stripes has a size, wherein at least some of the plurality
ol stripes have different sizes.

25. The method of claim 14, wherein each storage node
includes at least one drive, wherein each drive includes one
of the plurality of disks.

26. The method of claim 14, wherein the first compute
node 1s configured to rebuild a second stripe of the at least
one first stripe when at least one of the portion of the
plurality of blocks to which the second stripe 1s allocated 1s
unavailable, wherein rebuilding the second stripe includes
determining a portion of one of the plurality of disks that 1s
unallocated, wherein the rebuilt second stripe includes the
determined unallocated portion.

27. A non-transitory computer readable medium having
stored thereon instructions for causing a processing circuitry
to execute a process, the process comprising:

allocating at least one first stripe of a plurality of stripes,

wherein the plurality of stripes 1s distributed among a
plurality of storage nodes including a plurality of disks,
wherein the plurality of disks includes a plurality of
blocks, wherein the plurality of disks 1s logically seg-
mented into the plurality of stripes, wherein each of the
plurality of stripes 1s dynamically allocated to a portion
of the plurality of blocks distributed across a subset of
the plurality of disks, wherein each of a plurality of
compute nodes 1s configured to read data from each of
the plurality of storage nodes, wherein each of the
plurality of compute nodes 1s assigned at least one
stripe of the plurality of stripes, wherein each of the
plurality of compute nodes 1s configured to write data
to each stripe assigned to the compute node, wherein
the plurality of storage nodes has a plurality of failure
domains, each of the plurality of failure domains
including at least one of the plurality of disks, wherein
cach stripe 1s distributed across a subset of the plurality
of disks that includes at most an allowed number of
disks within the same failure domain of the plurality of
faillure domains, wherein the plurality of compute
nodes 1s further configured to dynamically determine
the allowed number of disks within the same failure
domain of the plurality of failure domains based on a
number of the plurality of failure domains that are
available at a time of the determination.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

