12 United States Patent
Hood

US011018977B2

(10) Patent No.: US 11,018,977 B2

(54) PRE-BUILT MATCH-ACTION TABLES

(71) Applicant: Telefonaktiebolaget L. M Ericsson
(publ), Stockholm (SE)

(72) Inventor: David Hood, Palo Alto, CA (US)

(73) Assignee: Telefonaktiebolaget LM Ericsson
(publ), Stockholm (SE)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 722 days.

(21) Appl. No.: 14/519,007
(22) Filed: Oct. 20, 2014

(65) Prior Publication Data
US 2016/0112317 Al Apr. 21, 2016

(51) Int. CL

HO4L 12/741 (2013.01)
HO4L 12/947 (2013.01)
HO4L 12/717 (2013.01)
HO4L 12/24 (2006.01)
GO6F 9/455 (2018.01)
(52) U.S. CL
CPC ... HO4L 45/745 (2013.01); HO4L 41/0893

(2013.01); HO4L 45/42 (2013.01); HO4L 49/25
(2013.01); GO6F 2009/45595 (2013.01); HO4L
41/5096 (2013.01)

(58) Field of Classification Search
CPC e, HO4L 12/2613; HO4L 41/44

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

45) Date of Patent: May 25, 2021

2013/0044764 Al 2/2013 Casado et al.
2013/0058350 Al* 3/2013 Fulton HO4L. 41/0896
370/400

OTHER PUBLICATTIONS

All, Z. , et al., “Node-IDS Based Resource Reservation Protocol
(RSVP) Hello: A Clarification Statement”, Network Working Group,

REC 45548; Jun. 2006. 7 pages.

Andersson, L. , et al., “LDP Specification”, Network Working
Group, REFC 5036, Oct. 2007; 135 pages.

Awduche, D. | et al., ““RSVP-TE: Extensions to RSVP for LSP
Tunnels,””, Network Working Group, RFC 3209, Dec. 2001, 61
pages.

Babiarz, I. , et al., “Configuration Guidelines for DiffServ Service
Classes”, Network Working Group, RFC 4594, Aug. 2006, 57

pages.

(Continued)

Primary Examiner — Elton Williams
(74) Attorney, Agent, or Firm — Sage Patent Group

(57) ABSTRACT

A method 1s implemented by a processor of a computing
device for generating an output match action table (MAT) or
output MAT template from an mput MAT template. The
mput MAT template 1s transformed through successive
updates of symbolic actions using policy rules into the
output MAT or output MAT template. The method 1includes
selecting a first MAT row from the mput MAT template and
selecting a first action field from the first MAT row. A check
1s made whether the first action field includes a first sym-
bolic action. The first symbolic action 1s looked up to
determine whether a first policy rule has been defined for the
first symbolic action. A first action specified by the first
policy rule 1s written 1nto a corresponding action field of a
corresponding MAT row 1n the output MAT template or the
output MAT to replace the first symbolic action.

8,830,835 B2* 9/2014 Casado HO4L 12/66
370/235 23 Claims, 8 Drawing Sheets
MAT GENERATION
INPUT MATCH PR?'_%ESS \
ACTION TABLE
TEMPLATES

103

[

105 REPEAT FOR EACH INPUT
"1 MATCH ACTION TABLE TEMPLATE

107

113

115

I

REPEAT FOR EACH INPUT
MATCH ACTION TABLE ROW

111

FOLICY RULE TO
REPLACE ONE OR MORE
ACTION FIELDS IN THE
CURRENT ROW WITH A
MORE SPECIFIC
ACTION?

NO

REPLACE THE SAID ACTION FIELDS
ACCORDING TO THE POLICY RULE

I :

ADD ROW TO QUTPUT MATCH ACTION
TABLE

ACTION TABLES

QUTPUT MATCH \t
117 /

US 11,018,977 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Baker, F. , et al., “A Differentiated Services Code Point (DSCP) for
Capacity-Admitted Traflic”, Internet Engineering lask Force (IETF),

REC 5865, May 2010, 14 pages.

Baker, F. , et al., “Management Information Base for the Differen-
tiated Services Architecture”, Network Working Group, RFC 3289,
May 2002; 107 pages.

Berger, L. , “Generalized Multi-Protocol Label Switching (GMPLS)
Signaling Resource ReserVation Protocol-Traflic Engineering (RSVP-
TE)”, Network Working Group, RFC 3473, Jan. 2003, 42 pages.
Bermnet, Y. , et al., “An Informal Management Model for Diflserv
Routers”, Network Working Group; RFC 3290, May 2002, 56
pages.

Black, D. , “Differentiated Services and Tunnels”, Network Working
Group, RFC 2983, Oct. 2000; 14 pages.

Black, D. , et al., “Per Hop Behavior Identification Codes”, Network
Working Group, Jun. 2001, Standards Track, RFC 3140, pp. 1-8.
Blake, S. , et al., “An Architecture for Differentiated Services”,
Network Working Group;, REFC 2475, Dec. 1998, 36 pages.
Borman, D. , et al., “IPv6 Jumbograms”, Network Working Group;
RFC 2675, Aug. 1999; 9 pages, Copyright the Internet Society
1999.

Braden, R. , et al., ““Resource ReSerVation Protocol (RSVP)—
Version 1 Functional Specification,””, Network Working Group,
REC 2205, Sep. 2007, 112 pages.

Chan, K. , et al., “Differentiated Services Quality of Service Policy
Information Base”, Network Working Group; RFC 3317, Mar. 2003;
96 pages.

Charny, A. , et al., “Supplemental Information for the New Defi-
nition of the EF PHB (Expedited Forwarding Per-Hop Behavior)”,
Network Working Group;, RFC 3247, Mar. 2002, 24 pages.
Coltun, R. , et al., “OSPF for IPv6”, Network Working Group, RFC
53340, Jul. 2008; 60 pages.

Davie, B. , et al., “An Expedited Forwarding PHB (Per-Hop
Behavior)”, The Internet Society, Mar. 2002, RFC 3246, pp. 1-15.
Deering, et al., “Internet Protocol”, IETF RFC 2460, version 6
(IPv6) Specification, Dec. 1998, 37 pages, http://www.1etf.org/ric/
rfc2460,txt.

Eggert, L. , et al., “Unicast UDP Usage guidelines for Application
Designers”, Network Working Group, RFC 5405, Nov. 2008; 27
pages.

Fenner, B. , et al., “Management Information Base for the User
Datagram Protocol (UDP)”, Network Working Group; REFC 4113,
Jun. 2005; 19 pages.

Grossman, D. , “New Terminology and Clarifications for Diffserv”,
Network Working Group; RFC 3260, Apr. 2002, 10 pages.
Hedrick, C. , “Routing Information Protocol”, Network Working
Group, RFC 1058; Jun. 1988, 33 pages.

Hemanen, J. , et al.,, “Assured Forwarding PHB Group”, The
Internet Society, RFC 2597, (Jun. 1999), 11 pages.

Housley, R. , et al., “Using Advanced Encryption Standard (AES)
CCM Mode with IPsec Encapsulating Security Payload (ESP)”,
Network Working Group;, REFC 4309, Dec. 2005; 13 pages.

Kent, S. , et al., “Security Architecture for the Internet Protocol”,
Network Working Group; RFC 4301, Dec. 2005; 101 pages.

Kompella, K. , et al., “Procedures for Modifying the Resource
reSerVation Protocol (RSVP)”, Network Working Group, RFC

3936, Oct. 2004, 7 pages.

Malkin, G. , et al., “RIP Version 27, Network Working Group; RFC
2453, Nov. 1998; 39 pages.

Malkin, G., et al., “RIPng for IPv6”, Network Working Group; RFFC
2080, Jan. 1997; 19 pages.

Moy, I, “OSPF Version 27, RFC 2328, Network Working Group,
Apr. 1998, 204 pages.

Nichols, K. , et al., “Definition of Differentiated Services Per

Domain Behaviors and Rules for their Specification”, Network
Working Group, RFC 3086, Apr. 2001, 24 pages.

Nichols, K. , et al., “Definition of the Differentiated Services Field
(DS Field) in the IPvd and IPv6 Headers”, The Internet Society.,
Dec. 1998, RFC 2474, pp. 1-19.

Oran, D. , “RFC 1142 OSI IS-IS Intra-Domain Routing Protocol”,
Digital Equipment Corp. Feb. 1990, http://www .faqs.org/rfcs/ric1142.
html., Oct. 19, 2011.

Polk, J. , et al., “A Resource Reservation Protocol (RSVP) Exten-
sion for the Reduction of Bandwidth of a Reservation Flow”,
Network Working Group, RFC 4495, May 2006, 21 pages.
Postel, J. , ““User Datagram Protocol”,”, Aug. 28, 1980, 3 pages,
RFC 768.

Postel, J. , “Transmission Control Protocol”, STD 7, RFC 793,
Internet Standard, Information Sciences Institute, USC, 4676 Admi-
ralty Wy, Marina del Rey, CA 90291., (Sep. 1981), 91 pages.
Rekhter, Y. , et al., “““A Border Gateway Protocol 4 (BGP-4)”,”,
RFC 4271, Jan. 2006.

Rosen, et al., Network Working Group; RFC 4364, ,.BGP/MPLS IP
Virtual Private Networks (VPNs), copyright the Internet Society
(2006), Feb. 2006, 47pgs.

Shenker, S. , et al., “Specification of Guaranteed Quality of Ser-
vices”, Network Working Group; RFC 2212, Sep. 1997, 20 pages.
Socolofsky, T. , et al., “A TCP/IP Tutonal”, Network Working
Group, RFC 1180, Jan. 1991, 28 pages.

Wroclawski, J. , “Specification of the Controlled-Load Network
Element Service”, Network Working Group; REFC 2211, Sep. 1997,
19 pages.

Wroclawski, J. , “The Use of RSVP with IETF Integrated Services”,
Network Working Group; RFC 2210, Sep. 1997, 33 pages.
Bosshart, et al., “Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN,” ACM, SIGCOMM’13,
Aug. 12-16, 2013, 12 pages.

IEEE 802-2014: “Overview and Architecture,” IEEE Standard for
Local and Metropolitan Area Networks, The Institute of Electrical
and Electronics Engineers, Inc. (IEEE), Jun. 30, 2014, 74 pages.
Open Networking Foundation, “OF-PI: A Protocol Independent
Layer,” version 1.1, ONF TR-505, Sep. 5, 2014, 23 pages.

Open Networking Foundation, “OpenFlow Switch Specification,”
version 1.3.3 (protocol version 0x04), ONF TS-015, Sep. 27, 2013,
165 pages.

Schlesinger, et al., “Concurrent NetCore: From Policies to Pipe-
lines,” ACM, ICFP ’14, Sep. 1-6, 2014, 14 pages.

Anonymous, “Control table—Wikipedia,” Feb. 20, 2014, retrieved

from the Internet: https://en.wikipedia.org/w/index.php?title=
Control table&oldid=596282221 on Jul. 10, 2019, 18 pages.

* cited by examiner

U.S. Patent May 25, 2021 Sheet 1 of 8 US 11,018,977 B2

MAT GENERATION
PROCESS
INPUT MATCH 10" \
ACTION TABLE
TEMPLATES
103

105 REPEAT FOR EACH INPUT
MATCH ACTION TABLE TEMPLATE
107
REPEAT FOR EACH INPUT
109 MATCH ACTION TABLE ROW

111

POLICY

IS THERE A
POLICY RULE TO
REPLACE ONE OR MORE
ACTION FIELDS IN THE
CURRENT ROW WITH A
MORE SPECIFIC
ACTION?

113 YES
REPLACE THE SAID ACTION FIELDS
ACCORDING TO THE POLICY RULE

115

NO

ADD ROW TO OUTPUT MATCH ACTION
TABLE

OQUTPUT MATCH
ACTION TABLES
117

FIG. 1

US 11,018,977 B2

Sheet 2 of 8

May 25, 2021

U.S. Patent

VA

A Y4

72 NOILLYS3 L NOILVYOl'1ddY
/12 STLYIdNTL 318VL AOHLMN 504 AV 04
NOILOV HOLYIN 1NdLNO
Gl¢
9z NOILYY3Ll NOILYDITddY
9/1Z SILYTdWIL 319V QOHLIN 404 AJI10d
NOILOV HOLYIN 1NdLNO
¥
V.12 STLVIdNTL 318VL V¢ NOILYHA L NOILVOI lddY
NOILOY HOLYI LNd1NO AOHL3IN d03 A010a
V12
SILYIdNTL T1avL
NOILOY HOLYIN LNdNI l—
S3LVIdWIL 31gVL = £0¢
NOILOV HOLYIW LNd.LNO
| NOLLYN3LI ADIT0d
QOHLIN IVILINI
G0z
e0z
.)
3] = S3LVIdWAL
379¥1L NOILOY HOLY LNdNI

U.S. Patent May 25, 2021 Sheet 3 of 8 US 11,018,977 B2

____________________________________ 301

FIG. 3 | RECEIVE INPUT MATCHACTION TABLE TEMPLATE ¥/
R 302

! RECEIVE A POLICY i~
““““““““““““““““““ [~ mmm o=l 503

SELECT A MATCH ACTION TABLE ROW FROM THE INPUT
MATCH ACTION TABLE TEMPLATE

305

»| SELECT ACTION FIELD FROM THE MATCH ACTION TABLE
ROW

3006

CHECK WHETHER
THE ACTION FIELD OF THE
MATCH ACTION TABLE ROW
INCLUDES A SYMBOLIC

NO

OOK UP THE

SYMBOLIC ACTION TO
DETERMINE WHETHER A
POLICY RULE HAS BEEN DEFINED
FOR THE SYMBOLIC

FOUND

WRITE AN ACTION INTO A CORRESPONDING ACTION FIELD 309
OF A CORRESPONDING MATCH ACTION TABLE ROW IN AN
OUTPUT MATCH ACTION TABLE TO REPLACE THE SYMBOLIC

ACTION WHERE THE ACTION IS SPECIFIED BY A POLICY

RULE

311 I13

CHECK WHETHER
ADDITIONAL ACTION FIELDS IN

SELECTED MATCH ACTION TABLE
ROW REMAIN TO BE
PROCESSED

CHECK WHETHER
ADDITIONAL MATCH ACTION
TABLE ROWS REMAIN TO
BE PROCESSED

YES YES

NO

- 315
| ADVANCE THE OUTPUT MATCH ACTION TABLES TONEXT L/

! STAGE OF ITERATIVE IMPLEMENTATION PROCESS OR
i
i

INSTALL INTO NETWORK DEVICE

U.S. Patent May 25, 2021 Sheet 4 of 8 US 11,018,977 B2

401A 403

DESIGN PROCESS
COMPUTING
DEVICE

MATCH ACTION TABLE
TEMPLATE

MATCH CRITERIA | ACTION
CRITERIA A SYMA

CRITERIAB SYMB
CONFIGURATION

MODULE

CRITERIAC SYMC

MATCH ACTION TABLE

TEMPLATE
MATCH CRITERIA | ACTION INPUT 405
CRITERIA A SYM A1 SDN
CRITERIA B SYM B1 CONTROLLER
CRITERIAC EXEC 1 MATCH ACTION
TABLE
ONFIGURATION
401C OUTPUT MODULE
POLICY B
IATCH ACTION TABLE
TEMPLATE 07
MATCH CRITERIA | ACTION INPUT

CRITERIA A SYM A2 NETWORK
CRITERIAB EXEC 2 DEVICE

CRITERIAC EXEC 1

OUTPUT CONFIGURATION
101D MODULE

POLICY C
MATCH ACTION TABLE

TEMPLATE INSTALL FORWARDING
MATCH CRITERIA | ACTION ENGINE

CRITERIA A EXEC 3
CRITERIAB EXEC 2
CRITERIAC EXEC 1

FIG. 4

US 11,018,977 B2

Sheet 5 of 8

May 25, 2021

U.S. Patent

NHOMLAN

140d SS3493
d0 SSIHONI

dayvd3INIT

® & » ¢ 2 » @

NayvoaNIT

805G
J1NdON
NOILYENOIANOD
41dV.L NOILOV HOLVIA

G Ol

NQuvYOINIT

: 125
. MHOMLIN
118 GG X
D14 av4
HOLIMS STiavl | |
ONIAHYMYOA mommm.wo%
¥40SS300Nd | |
el | A=
INION3I _ 140d SSTHONI
INIAEYMHOA dld/dld L QYYD3aNIT 40 SSTHO
(34021171NN)
H0SSIAD0Hd 4904 LG

MHOMLIN c0c

3OIA40 YHOMLAN 108

U.S. Patent

May 25, 2021

MATCH ACTION TABLE
CONFIGURATION '

0397 SpECIALPURPOSE #
/ HARDWARE 7

/
/

SPECIAL NETWORK DEVICE

FORWARDING 602
ENGINE yIRTUAL NETWORK ELEMENT(S)

633A
030A ese 3R

CONTROL COMMUNICATION
.l AND CONFIG. MOD

i 632A .

FORWARDING TABLE(S)
634A

}

-
it
)]

‘u“““uﬂnd

NETWORKING
SOFTWARE
INSTANCE(S)
022

o> |
el

J

A !

—
l
l
I
l
l
l
L.
l
l
l
l

COMPUTE RESOURCE

A,

3)

FORWARDING RESOURCE
PHYSICAI. NIS
616

NON-TRANSITORY MACHINE
READABLE STORAGE MEDIA

NETWORKING SOFTWARE 620

NETWORKING
HARE%(ARE

CARDS 638

BACKPLANE 636

MODULE , ~2

Sheet 6 of 8 US 11,018,977 B2

PHYSICAL DEVICES AND
PHYSICAL CONNECTIVITY

ND
oU0E

NETWORK SERVICE DEVICE
NETWORK FUNCTION DEVICE

‘ill-.h.

— NETWORK FUNCTION
~~ oo T ~~ < YRTUALIZATION (NFY

GENERAL PURPOSE (COTS) NETWORK HYBRID
CORMARDING. - NETWORK
504
TN hgvies DEVICE
CONTROL] e VIRTUALNETWORK ELEMENTIS)|| 606
PLANE 660A eee BAOR
524
SOFTWARE
INSTANCE(S ATCH
i ACTION TABLE
CONFIGURATION
HYPERVISOR 654 MODULE
563A
PROCESSOR(S)
NIC(S)
ND PHYSICAL NIS 646
FORWARDINGH HARDWARE
PLANE 640 || NON-TRANSITORY MACHINE
626 READABLE STORAGE MEDIA

648

SOFTWARE
650

U.S. Patent May 25, 2021 Sheet 7 of 8 US 11,018,977 B2

NETWORK DEVICE ND 600n

t sk
670A. 6/0H.1

670A.2

COWNE L .
670A.3

)ISTRIBUTED APPROACH CENTRALIZED APPROACH
572 (SDN) 674

| | Lo A RATE DS APPLICATION &
APPLICATION(S) . LAYER |
i i

i

637

- T
"'1
——
-3
0 |
o
N
—
O
—
-
3 |
El
i
Lo
“r1]
=
T
< |
X
= |

1
]
1
]
1
1
1
1
1
]
1
]
1
]
]
L

| [CENTRALIZED REACHABILITY AND FORWARDING

]

]

|

|

: |

) INFORMATION MODULE E |
| |

E i

]

e]

I L=
mm

SINGLE VNE
6701

U.S. Patent May 25, 2021 Sheet 8 of 8 US 11,018,977 B2

GENERAL PURPOSE (COTS) CONTROL PLANE DEVICE 704

VIRTUAL MACHINE 762A VIRTUAL
CCP INSTANCE MACHINE
776A 762R

NETWORK CONTROLLER INSTANCE 778

CCP APPLICATION LAYER
180

CENTRALIZED REACHABILITY AND FORWARDING
INFORMATION MODULE INSTANCE

h““muﬂﬂ“H““HHHHH“““““““H““H““HHH““Hu““ﬂﬂﬂuﬂﬂﬂﬂﬂwﬂHﬂuﬂwﬂmﬂuﬂﬂmwﬂwﬂwﬂmﬂﬂuu

SOFTWARE 779
INSTANCE(S)
752
MATCH
ACTION TABLE
CONFIGURATION
MODULE
781
[OPERATINGSYSTEM 1A |
HYPERVSOR 756 f
PROCESSOR(S) 742
HAR?:{\;ARE NICS) 744 PHYSICALNIS 746

NON-TRANSITORY MACHINE READABLE STORAGE MEDIA 743 CCP SOFTWARE /9

US 11,018,977 B2

1
PRE-BUILT MATCH-ACTION TABLES

FIELD

Embodiments of the invention relate to creation of match
action tables for data packet forwarding. Specifically, the
embodiments relate to a system and process for an auto-
mated and 1terative process for refining match action tables
from general to network device specific implementations.

BACKGROUND

The concept and use of match action tables (MATS) 1s
common 1n network devices (NDs) that forward or process
data packet traflic. According to this model, fields in the data
packet header of arriving trathic are matched against match
action table rows (also referred to as match action table
entries). Information 1n addition to the packet header can
also be used as a match criterion. For example, Ethernet
flows with 1dentical virtual local area network identifiers
(VLAN IDs) may appear on distinct logical ports, where-
upon the logical port identity (which 1s not contained 1n the
packet header) becomes a criterion to distinguish the packet
data flows. When a match 1s found, the corresponding match
action table row contains one or more action fields that
specily the disposition of the packet. A disposition of a
packet may include packet discard, forwarding the packet to
the switch controller for software analysis, or modifying the
packet header 1n a number of possible ways, then forwarding
the packet to one or more output ports of the network device.

Match action table rows are typically prioritized, with the
first match in prionty order determiming the action. This
facilitates longest-prefix match semantics 1n recognizing
Internet Protocol (IP) addresses, but 1t also allows for a
lowest priority table entry to match anything that has not
been provisioned into the table. This lowest priority entry 1s
often referred to as a table miss entry, and frequently results
in the miss packet being forwarded to the switch controller.
After analysis, the controller may create a table entry
designed to match the miss packet header, so that subsequent
similar packets are treated according to the controller’s
decision.

Packets received at the network device can be nested,
such that higher-level protocol data units (PDUs) are encap-
sulated 1n lower-level transport PDUs, which may 1n turn be
turther encapsulated in even lower-level PDUs. Encapsula-
tion may occur in the same protocol, for example double-
tagged Ethernet frames or stacked multi-protocol label
switching (MPLS) labels, or may serve as the boundary
between protocols, for example transmission control proto-
col (TCP) in IP in Ethernet. An outer protocol typically
contains a field that identifies the next protocol header; for
example, an FtherType field in Ethernet packets, or a next
header field 1n IP version 6 (IPv6) packets.

Frequently, an outer header needs to be parsed, with tratlic
broken into streams based on the outer header fields, fol-
lowing which, each data stream 1s further parsed on the basis
of an inner header. Actual implementations vary, but the
model for this process 1s a tree: an outer header MAT
followed by a set of inner header MATs 1n parallel, each
inner header MAT being tailored to the approprate
Etherlype or next header encapsulation, and continuing
through as many headers as may be of interest to the
tunctions of the particular network device. The branches of
a tree need not all be the same length. For example, Ethernet
traflic may comprise mtermixed packets, some of which

have no VLAN tags, others of which are single-tagged,

10

15

20

25

30

35

40

45

50

55

60

65

2

others still being double-tagged, all carrying IP packets, with
yet other Ethernet packets whose Etherlype (e.g., address

resolution protocol (ARP)) directs the packets to the con-
troller.

Particular protocols often have constraints on the mean-
ings of particular header values or ranges of values. By way
of example, 48-bit Ethernet media access control (MAC)
addresses are partitioned by standards (IEEE 802 in this
case) into globally unique or locally administered subsets,
further ito unicast or multicast subsets, a single broadcast
address (which 1s valid only as a destination address), and a
range ol destination addresses referred to as bridge-filtered,
this latter range never forwarded by a network device such
as a bridge, but always detlected to local control for pro-
cessing.

One of the principles of software defined networking
(SDN) 1s the decoupling of control and forwarding planes,
which 1s mtended to facilitate competition between switch
vendors by standardizing their forwarding control interfaces.
To this end, orgamizations such as Open Networking Foun-
dation (ONF), and protocols such as OpenFlow (OF) have
developed open models of network devices (e.g., switches),
based around the match-action table concept.

SUMMARY

A method 1s implemented by a processor of a computing
device for generating an output match action table or output
match action table template from an input match action table
template. The 1nput match action table template 1s trans-
formed through successive updates of symbolic actions
using policy rules into the output match action table or
output match action table template. The method includes
selecting a first match action table row from the mput match
action table template and selecting a first action field from
the first match action table row. A check 1s made whether the
first action field includes a first symbolic action. The first
symbolic action 1s looked up to determine whether a first
policy rule has been defined for the first symbolic action. A
first action 1s written nto a corresponding action field of a
corresponding match action table row in the output match
action table template or the output match action table to
replace the first symbolic action where the first action 1s
specified by the first policy rule.

In another embodiment, a network device implements a
method for generating an output match action table from an
input match action table template. The mput match action
table template 1s transformed through successive updates of
symbolic actions using policy rules into the output match
action table. The network device includes a non-transitory
computer-readable medium having stored therein a match
action table configuration module and a forwarding engine.
The network device also includes a network processor
coupled to the non-transitory computer-readable medium.
The network processor 1s configured to execute the match
action table configuration module and the forwarding
engine. The match action table configuration module 1is
configured to select a first match action table row from the
input match action table template, to select a first action field
from the first match action table row, and to check whether
the first action field includes a first symbolic action. The
match action table configuration module 1s further config-
ured to look up the first symbolic action to determine
whether a first policy rule has been defined for the first
symbolic action, and to write a first action into a corre-
sponding action field of a corresponding match action table
row 1n the output match action table to replace the first

US 11,018,977 B2

3

symbolic action where the first action 1s specified by the first
policy rule. The forwarding engine 1s configured to forward

protocol data units based on the output match action table
generated from the input match action template.

In another embodiment, a computing device implements
a plurality of virtual machines for implementing network
function virtualization (NFV), wherein a virtual machine
from the plurality of virtual machines 1s configured to
execute a method for generating an output match action
table or output match action table template from an input
match action table template. The mput match action table
template 1s transformed through successive updates of sym-
bolic actions using policy rules into the output match action
table or output match action table template. The computing
device includes a non-transitory computer-readable medium
having stored therein a match action table configuration
module and a processor coupled to the non-transitory com-
puter-readable medium. The processor 1s configured to
execute the virtual machine that implements the match
action table configuration module. The match action table
configuration module 1s configured to select a first match
action table row from the input match action table template,
to select a first action field from the first match action table
row, and to check whether the first action field includes a
first symbolic action. The match action table configuration
module 1s further configured to look up the first symbolic
action to determine whether a first policy rule has been
defined for the first symbolic action and to write a first action
into a corresponding action field of a corresponding match
action table row 1n the output match action table or output
match action table template to replace the first symbolic
action where the first action 1s specified by the first policy
rule.

In another embodiment, a control plane device 1s config-
ured to implement at least one centralized control plane for
a soltware defined network (SDN). The centralized control
plane 1s configured to execute a method for generating an
output match action table or output match action table
template from an mnput match action table template. The
input match action table template 1s transformed through
successive updates ol symbolic actions using policy rules
into the output match action table or output match action
table template. The control plane device includes a non-
transitory computer-readable medium having stored therein
a match action table configuration module and a processor
coupled to the non-transitory computer-readable medium.
The processor 1s configured to execute the match action
table configuration module. The match action table configu-
ration module 1s configured to select a first match action
table row from the input match action table template, and to
select a first action field from the first match action table row,
to check whether the first action field includes a first
symbolic action. The match action table configuration mod-
ule 1s further configured to look up the first symbolic action
to determine whether a first policy rule has been defined for
the first symbolic action, and to write a {irst action into a
corresponding action field of a corresponding match action
table row 1n the output match action table or output match
action table template to replace the first symbolic action
where the first action 1s specified by the first policy rule.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by referring to the
tollowing description and accompanying drawings that are
used to illustrate embodiments of the invention. In the

drawings:

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 1s a diagram of one embodiment of an example
process for iteratively refining match action tables from
templates using policy based rules.

FIG. 2 1s a diagram of one embodiment of an example
iterative hierarchical tree.

FIG. 3 1s a flowchart of one embodiment of a process for
iteratively generating match action tables using policy based
rules.

FIG. 4 1s a diagram of one embodiment of an example
iterative application of the process for refining match action
tables from templates using policy based rules.

FIG. § 1s a diagram of one embodiment of a network
device (ND) implementing an 1iterative process for generat-
ing match action tables from templates using policy based
rules.

FIG. 6A illustrates connectivity between network devices
(NDs) within an exemplary network, as well as three exem-
plary implementations of the NDs, according to some
embodiments of the mnvention.

FIG. 6B 1illustrates an exemplary way to implement the
special-purpose network device according to some embodi-
ments of the invention.

FIG. 6C 1illustrates various exemplary ways in which

virtual network elements (VINEs) may be coupled according
to some embodiments of the mvention.

FIG. 6D 1illustrates a network with a single network
clement (NE) on each of the NDs of FIG. 6A.

FIG. 6F illustrates an example where each of the NDs
implements a single NE (see FIG. 6D), but the centralized
control plane has abstracted multiple of the NEs 1n different
NDs 1nto a single NE 1n one of the virtual network(s) of FIG.
6D, according to some embodiments of the invention.

FIG. 6F illustrates a case where multiple VNEs are
implemented on different NDs and are coupled to each other,
and where the centralized control plane has abstracted these
multiple VNESs such that they appear as a single VNE within
one of the virtual networks of FIG. 6D, according to some
embodiments of the imnvention.

FIG. 7 1illustrates a general purpose control plane device
including hardware comprising a set of one or more pro-
cessor(s) (which are often Commercial ofl-the-shelf (COTS)
processors) and network interface controller(s) (NICs; also
known as network interface cards) (which include physical
NIs), as well as non-transitory machine readable storage
media having stored therein centralized control plane (CCP)
soltware), according to some embodiments of the invention.

DETAILED DESCRIPTION

The following description describes methods and appa-
ratus for generating match action tables using an iterative
process to ensure that accurate and complete match action
tables are generated for a given packet processing protocol.
The method and apparatus refine symbolic representation of
actions in the action fields of the match action table rows
through successive 1terations using policy-based rules

References in the specification to “one embodiment,” “an
embodiment,” “an example embodiment,” etc., indicate that
the embodiment described may include a particular feature,
structure, or characteristic, but not every embodiment may
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic 1s described in connection
with an embodiment, 1t 1s submitted that it 1s within the
knowledge of one skilled 1n the art to eflect such feature,

US 11,018,977 B2

S

structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

Bracketed text and blocks with dashed borders (e.g., large
dashes, small dashes, dot-dash, and dots) may be used herein
to 1llustrate optional operations that add additional features
to embodiments of the invention. However, such notation
should not be taken to mean that these are the only options
or optional operations, and/or that blocks with solid borders
are not optional 1n certain embodiments of the invention.

In the following description and claims, the terms
“coupled” and “connected,” along with their derivatives,
may be used. It should be understood that these terms are not
intended as synonyms for each other. “Coupled” 1s used to
indicate that two or more elements, which may or may not
be 1n direct physical or electrical contact with each other,
co-operate or interact with each other. “Connected” 1s used
to indicate the establishment of communication between two
or more elements that are coupled with each other.

The operations in the flow diagrams will be described
with reference to the exemplary embodiments of the other
figures. However, 1t should be understood that the operations
of the tlow diagrams can be performed by embodiments of
the mvention other than those discussed with reference to
the other figures, and the embodiments of the mvention
discussed with reference to these other figures can perform
operations different than those discussed with reference to
the flow diagrams.

Overview

Network devices (NDs) that utilize match action tables for
handling the forwarding of protocol data units (PDUs also
referred to as packets) must be configured with all of the
specialized match action table rows, which include matching
criteria and actions, for every data processing and network-
ing protocol that the network device 1s designed to process.
(Given that these data processing and networking protocols
are all defined 1n standards, 1t 1s mneflicient to comb through
the standards and encode the matching criteria and corre-
sponding actions in a form or implementation that 1s specific
to each network device.

The embodiments of the invention facilitate complete and
correct coverage of match action tables by starting with a set
of match action table templates, the set comprising for
example a separate match action table template for each
protocol of interest. By constructing the original match
action table template(s) to include all of the special field
values and ranges, designers are assisted 1n focusing and
making decisions on each case, thereby reducing the chance
of oversight and unintended behavior in what 1s often a
repetitive and uninteresting, but important, aspect of gener-
ating match action tables for the network devices being
developed.

The completely generic match action table template used
at the beginning of the process comprises a set of match
action table rows, each row containing match criteria that
identily specialized field values or ranges. It desired, the
designer may modily the match action table template, for
example to install table rows that further specity field values
or ranges for the designer’s particular purpose.

As well as a match criterion, each match action table row
in a match action table template also contains one or more
action fields, which contain actions that specily the treat-
ment to be accorded a matching packet. However, 1t 1s not
expected that the intended actions would be the same for
every target application of the ultimate match action table,
nor that identical itended actions, for example packet
discard, would be represented 1n the same executable form
on all target network devices.

10

15

20

25

30

35

40

45

50

55

60

65

6

Accordingly, the embodiments of the present invention
provide for successive stages of refinement, whereby sym-
bolic actions 1n an mput match action table template may be
replaced by more specific symbolic actions, or by executable
forms of the itended action. The replacement of a more
abstract symbolic action by a more specific action 1s directed
by the rules of a policy, which ensures uniform treatment of
templates across development environments and across
time.

Each 1iteration of this refinement process yields an output
match action table template or match action table, which
may become the input match action table template to a
further 1teration of the same process, but guided by a less
abstract policy, until ultimately all symbolic actions are
resolved 1nto forms that are executable by the intended target
network device. As used herein, the term match action table
template refers to table structure similar to a match action
table, except that the match action table template includes a
set of match action table rows where at least one of the
match action table rows contains at least one symbolic
action to be resolved, whereas a match action table refers to
a table structure with a set of match action table rows where
all of the match action table rows contain only executable
actions.

Although the list of matching criteria and the associated
actions 1s well-defined, different network devices, which
have diferent architectures and resources, have diflerent
action models for the handling of PDUs that match a given
set of criteria related to a data processing or networking
protocol. Further, different deployment environments may
require different treatment of packets. As such, the actions
corresponding to the standard set of matching criteria
require flexibility.

The embodiments provide a method and system for
ensuring accurate and complete implementation of data
processing and networking protocols that iteratively refine a
starting set of match action table templates mto a set of
match action tables that implement the data processing and
networking protocols 1n a manner that 1s specific to the
executing device. A family of match action tables 1s pro-
posed to be automatically generated (i.e., one match action
table for each protocol or sub-protocol, according to prag-
matic partitioning criteria), with the corresponding action
represented symbolically, such that resolution of each sym-
bol suflices to define the specific action desired for PDUs
with the matching packet header.

The match action tables that are generated using this
process are to be available at any stage of the life cycle. At
design time, the match action table templates are available
for inclusion into software executable or data modules.
Resolution of symbolic actions to executable actions may be
performed during the construction or building of software
distributions. At factory programming time, the match action
table templates can be istalled 1nto network device memory
devices, such that the network devices ship with the basic
match action tables already available. Resolution of sym-
bolic actions to executable actions may also be performed
during the factory load, or may be left for subsequent
resolution according to specific policies defined by custom-
ers, soltware vendors, system integrators or combinations
thereof.

At network device initialization time, the match action
table templates can be available as components that can be
downloaded into network devices. Resolution of symbolic
actions to executable actions would be performed by either
the network device, or by the controller (e.g., in a software
define network), according to specific policies defined by

US 11,018,977 B2

7

software. Thus, complete resolution (1.e., resolving symbolic
actions to executable actions) or partial resolution (i.e.,
resolving symbolic actions to more specific symbolic
actions) of all symbolic actions or a subset of symbolic
actions may be performed at one or more stages of the life 5
cycle.

The embodiments provide advantages over the prior art.
The embodiments avoid the unproductive and error-prone
task of developing standard match criteria and actions for
match action table rows for every network device that 1s 10
developed, both within a company and across the imndustry,
coding them, testing them and distributing them. However,
the embodiments retain the flexibility of assigning any
desired action to protocol data units that satisfy match
criteria. 15

FIG. 1 1s a diagram of one embodiment of an example
process 101 for iteratively refining match action tables from
templates using policy based rules. The process 1llustrated 1s
an overview of the overall refinement process starting with
a set ol input match action table templates 103. The mput 20
match action table templates 103 can be constructed on a per
data processing or network protocol basis, with a separate
template created for each process or protocol to be 1mple-
mented by an end network device. The mput match action
table templates 103 have a general structure of a match 25
action table including a set of match action table rows. A
‘set,” as used herein refers to any whole number of items
including one item. Each match action table row includes a
matching criteria field and at least one action field. The
matching criteria field identifies the protocol data umt 30
(PDU) header information and possibly metadata informa-
tion that are to be matched by the network device executing
the match action table. The action fields define an action to
be carried out for the PDU with the matching criteria; this
can include discarding the PDU, modifying any part of the 35
PDU, instructions for how to forward the PDU or similar
actions.

Each of the mput match action table templates 103 1s
processed either serially or in parallel with one another
(Block 105), such that each row of each input match action 40
table template 1s processed (Block 107). For each row of
cach match action table template, a check 1s made whether
there exists a policy 109 that defines a set of rules that are
specific to a match action table template, where the set of
rules may define conditions under which one or more action 45
fields 1n the selected match action table rows may be updated
with more specific actions (Block 111). In some embodi-
ments, as discussed further herein below, action fields in
cach match action table row can include symbols or ‘sym-
bolic actions’ that are abstractions or references to be 50
resolved by applicable policies 109. The policies define a set
of conditions such as network device configuration or archi-
tecture, network architecture, network topology and similar
conditions and a set of corresponding actions for replacing
grven symbolic actions 1n the match action table templates. 55
As used herein, a match action table template refers to the
initial mput match action table templates as well as inter-
mediate match action table templates where the 1initial
template has been modified or updated to replace any subset
of the symbols or symbolic actions 1n the action fields with 60
either more specific symbolic actions or with executable
actions until a complete match action table 1s derived
containing only match action table rows with action fields
containing executable actions. An executable action as used
herein refers to an action that can be implemented by a 65
torwarding engine of a network device to handle a matching

PDU.

8

If there exists a policy 109 that defines a set of rules that
are specific to a match action table template, the applicable
one or more action fields are replaced with one or more
specific actions according to the policy rule(s) (Block 113).
If no applicable policy rules are found, then the process 101
continues by writing the match action table row being
processed to an output match action table (Block 115). As
discussed further herein below, the process can iterate
through successive policy sets to refine (1.e., progressively
update toward an executable status) the match action table
template mto a match action table to be utilized by a
forwarding engine of a network device. Application of
different policies 1s discussed 1n relation to FIG. 2.

FIG. 2 1s a diagram of one embodiment of an example
iterative hierarchical tree for generating varying match
action tables given an initial set of match action table
templates. In this example, the application of varying poli-
cies 1s demonstrated over differing iterations. The process
begins with a set of match action table templates 201. These
match action table templates are then processed through a
first 1teration (Block 203) of the overall match action table
generation and refinement process. The first iteration applies
a first set of policies 203 and produces a set of output match
action table templates 207, which are not completely execut-
able match action tables. These output match action table
templates 207 serve as input templates to a set of additional
possible 1terations 213-217, which each have corresponding
sets of policies 211 A-C for diflering conditions or applica-
tions. Differing applications can be different types of archi-
tectures for a destination network device, differing network
topologies or similar differences 1n application of the match
action tables. The process can create multiple sets of output
match action tables 217A-C for each of the corresponding
applications in parallel, serial, on an as needed basis or via
a similar process. The details of one embodiment of a given
method of a single iteration are described herein below with
regard to FIG. 3.

FIG. 3 1s a flowchart of one embodiment of a process for
iteratively generating match action tables using policy based
rules. This process, referred to herein as a match action table
template symbolic action update process, describes a single
iteration 1 an overall iterative process for successively
refining a match action table template 1nto a match action
table. One skilled 1n the art would understand that this
process can be applied 1n each iterative stage of the overall
process described herein above to further refine a match
action table template with each successive stage of the
iterative process. This particular iterative stage can itself be
an 1terative process over the action fields of each of the rows
of a given match action table template.

This symbolic action update process begins with the
receipt of an mput match action table template (Block 301)
and receipt of a policy (Block 302). In some embodiments,
a copy of the mput match action table template 1s made as
a starting point for an output match action table or an output
match action table template, while 1n other embodiments the
output match action table or an output match action table
template can be generated by copying each match action
table row as 1t 1s processed. Any variant of an initial copy of
the match action table template and subsequent modification
thereol or an iterative construction of the output match
action table template 1s compatible with this process. This
symbolic action update process can be applied to multiple
input match action table templates (not shown in FIG. 3) 1n
parallel, serially or in any order. The symbolic action update
process 15 described as an iterative process over the rows and
action fields by way of example and not limitation. One

US 11,018,977 B2

9

skilled 1n the art would understand that alternative imple-
mentations of such a recursive or similar alternatives are
also applicable. The symbolic action update process selects
a match action table row from the mput match action table
template (Block 303). From the selected row, the symbolic
action update process selects an action field (Block 303).
A check 1s made of the selected action field to determine
whether the action field includes a symbolic action that can
be resolved with any of the rules in the received policy
(Block 306, 307). If there 1s no matching symbolic action
then no further processing of this action field 1s required and
the process checks whether additional action fields in the

selected match action table row remain to be processed
(Block 311). I additional action fields in the selected match
action table row remain to be processed then the next action
field 1s selected (Block 303). If no additional action fields 1n
the selected match action table row remain to be processed
then a check whether additional match action table rows
remain to be processed 1s made (Block 313). It the additional
match action table rows remain to be processed, then the
next match action table row 1s selected (Block 303). When
all action fields of all match action table rows have been
processed then the resulting output match action table or
output match action table template can be returned to the
overall refinement process, which may result 1n a further
refinement 1teration with additional policies (i.e., for an
output match action table template) or the mstalling of a
completed match action table onto the forwarding engine of
a network device. In embodiments where the match action
table template or the match action table 1s not initially
copied, as each unchanged match action table row 1is
checked for symbolic actions and no actions are found, the
unchanged match action table row can be written to the
output match action table or output match action table
template. In the embodiments where there 1s an 1nitial copy
or similar mitialization then this row by row copying 1s not
necessary and only the modified match action table rows or
specific action fields need to be modified.

Where a symbolic action was found i1n an action field
(Block 306), then a check 1s made whether there 1s a
matching policy rule that applies to the symbolic action
(Block 307). It there 1s no matching policy rule, then the
symbolic action update process continues on to other action
fields, continues on to other match action table rows, or
completes as described above with regard to not finding a
symbolic action 1n an action field (Block 306). If however,
an applicable policy 1s found, then an action 1s written 1nto
a corresponding action field of a corresponding match action
table row 1n an output match action table or output match
action table template (Block 309). As mentioned above, this
can be a write to a pre-existing copy of the mput match
action table template or can be an iterative construction of
the output match action table or output match action table
template. The written action can be an executable action or
a refining symbolic action. A refining symbolic action 1s
closer to an executable action 1n an overall hierarchy of
policies and 1iterations 1n the refinement process. By way of
example, 1t may be known at an intermediate stage of
refinement that a given matched packet should be forwarded
to the switch controller (1.e., a controller 1n a software
defined network (SDN)) for further processing, so the
replacement symbolic action might be “controller.” Difler-
ent network devices, however, would have diflerent ways to
express this mntention 1n executable form, so the “controller”
symbol would be further resolved into executable form at
some subsequent stage of refinement, 1n this case when the

10

15

20

25

30

35

40

45

50

55

60

65

10

target network device type was selected, possibly according
to one branch of the iteration illustrated 1n FIG. 2.

After a match action table row or action field 1s updated
(or created), the process can check whether additional action
fields or match action table rows remain to be processed

(Blocks 311 and 313). If additional action fields or match

action table rows remain, then the process continues on to
select the next action field and/or match action table row

(Blocks 303 and 3035). Once all action fields and match

action table rows have been processed, then the process, 1n
some embodiments, completes by writing the processed
table rows, as modified, to an output match action table or
match action table template, thereby advancing the resulting
match action table template to the next iteration of the
overall refinement process or by installing the match action
table to be utilized by the forwarding engine of a network
device. In other embodiments, the modification or construc-
tion of the output match action table or output match action
table template does not require a write of the table rows after
the completion process, because it has progressively updated
or generated the match action table rows as they are pro-
cessed.

FIG. 4 1s a diagram of one embodiment of an example
iterative application of the process for refining match action
tables from templates using policy based rules. This example
1s provided for the sake of 1llustration and 1s not provided by
way of limitation. In this example scenario, the overall
refinement process 1s carried out 1n a distributed manner
over a set of iterations and corresponding machines that each
implement one or more 1terations. In this example, an 1nitial
stage 15 a design stage implemented at a design process
computing device 403, whereas successive stages of the
iterative process are carried out by an SDN controller 405
and network device 407.

The example starts with an input of a match action table
template 401A. The example match action table template
401 A contains a set of match action table rows with each
row having a respective match criterion A-C and corre-
sponding symbolic actions A-C. In a first 1teration the match
action table template 1s an input to the refinement process
carried out by a match action table configuration module on
a design process computing device 403 that applies a first
policy A. The design process computing device can execute
a single 1teration and set of policies or any number of
iterations and sets of policies; the example executes one
iteration for one policy for the sake of clarity.

The result of this first iteration 1s a match action table
template 4018, where a subset of the symbolic actions have
been updated. In the example, symbolic action A and sym-
bolic action B are updated to symbolic actions Al and B2
respectively. In contrast, symbolic action C 1s updated to an
executable action 1. This configuration 1s provided by way
of example. Depending on the policies and corresponding
applications, any number and extent of updates to symbolic
actions can be carried out at any given iterative stage of the
refinement process.

In this example, a next iterative stage of the refinement
process takes place at a controller of an SDN 405, which
includes a match action table configuration module and a
policy B. The match action table template 401B 1s an input
into this SDN controller 405, which further processes the
match action table template 401B according to 1ts policy B.
A resulting output match action table template 401C 1s
generated. In the example, symbolic action Al 1s updated to
symbolic action A2 and symbolic action B2 i1s updated to
executable action 2.

US 11,018,977 B2

11

This output match action table temple 401C 1s then loaded
into the network device 407 to have a final 1terative pro-
cessing step to transform the mmput match action table
template 401C 1nto a match action table 401D to be utilized
by the forwarding engine. The network device 407 applies a
policy C to convert the remaining symbolic action A2 to
executable action 3, 1n this example. One skilled in the art
would understand that any number of iterations can be
omitted at any of these devices and that other devices can be

included in the refinement process. The example 1s provided
to 1llustrate the distributed nature of some embodiments of
the refinement process.

FIG. 5 1s a diagram of one embodiment of a network
device implementing the match action table refinement
process. A network device (ND) 1s an electronic device that
communicatively interconnects other electronic devices on
the network (e.g., other network devices, end-user devices).
Some network devices are “multiple services network
devices” that provide support for multiple networking tunc-
tions (e.g., routing, bridging, switching, Layer 2 aggrega-
tion, session border control, Quality of Service, and/or
subscriber management), and/or provide support for mul-
tiple application services (e.g., data, voice, and video).

In one embodiment, the process 1s 1mplemented by a
network device 501 or similar computing device. The net-
work device 501 can have any structure that enables it to
receive data trathic and forward it toward 1ts destination. The
network device 501 can include a network processor 503 or
set of network processors that execute the functions of the
network device 501. A ‘set,” as used herein, 1s any positive
whole number of 1tems including one i1tem. The network
device 501 can execute a match action table configuration
module 508 and a forwarding engine 507 as described herein
above via a network processor 503 or other components of
the network device 501. The network processor 503 can
implement the forwarding engine 307 and match action table
configuration module 508 as a discrete hardware, software
module or any combination thereof. The network processor
503 can also service the routing information base 505A and
similar functions related to data trafhic forwarding and
network topology maintenance. The routing information
base 505A can be implemented as match action tables that
are utilized for forwarding protocol data units PDUs (i.e.,
packets). The functions of the forwarding engine 507 and
match action table configuration module 508 can be 1mple-
mented as modules 1n any combination of software, includ-
ing firmware, and hardware within the network device. The
functions of the match action table configuration module
508 and forwarding engine 507 that are executed and
implemented by the network device 501 include those
described further herein above.

In one embodiment, the network device 501 can include
a set of line cards 517 that process and forward the incoming
data traflic toward the respective destination nodes by 1den-
tifying the destination and forwarding the data traflic to the
approprate line card 5317 having an egress port that leads to
or toward the destination via a next hop. These line cards
517 can also implement the forwarding information base
5058, or a relevant subset thereof. The forwarding infor-
mation base 505B can similarly be a set of match action
tables 515 that 1s utilized by the forwarding engine 507,
which can 1n turn be implemented at the line card 517. The
line cards 517 can also implement or facilitate the match
action table configuration module 508 and forwarding
engine 507 functions described herein above. The line cards
517 are 1n communication with one another via a switch

10

15

20

25

30

35

40

45

50

55

60

65

12

fabric 511 and communicate with other nodes over attached
networks 521 using Ethernet, fiber optic or similar commu-
nication links and media.

The operations of the flow diagrams have been described
with reference to the exemplary embodiment of the block
diagrams. However, 1t should be understood that the opera-
tions of the flowcharts can be performed by embodiments of
the invention other than those discussed, and the embodi-
ments discussed with reference to block diagrams can per-
form operations diflerent from those discussed with refer-
ence to the flowcharts. While the flowcharts show a
particular order of operations performed by certain embodi-
ments, 1t should be understood that such order 1s exemplary
(c.g., alternative embodiments may perform the operations
in a different order, combine certain operations, overlap
certain operations, etc.).

As described herein, operations performed by the network
device 501 may refer to specific configurations of hardware
such as application specific integrated circuits (ASICs)
configured to perform certain operations or having a prede-
termined functionality, or software instructions stored in
memory embodied 1n a non-transitory computer readable
storage medium. Thus, the techniques shown 1n the figures
can be implemented using code and data stored and executed
on one or more electronic devices (e.g., an end station, a
network element). Such electronic devices store and com-
municate (internally and/or with other electronic devices
over a network) code and data using computer-readable
media, such as non-transitory computer-readable storage
media (e.g., magnetic disks; optical disks; random access
memory; read only memory; flash memory devices; phase-
change memory) and transitory computer-readable commu-
nication media (e.g., electrical, optical, acoustical or other
form of propagated signals—such as carrier waves, inirared
signals, digital signals). In addition, such electronic devices
typically include a set of one or more processors coupled to
one or more other components, such as one or more storage
devices (non-transitory machine-readable storage media),
user mput/output devices (e.g., a keyboard, a touchscreen,
and/or a display), and network connections. The coupling of
the set of processors and other components i1s typically
through one or more busses and bridges (also termed as bus
controllers). Thus, the storage device of a given electronic
device typically stores code and/or data for execution on the
set of one or more processors of that electronic device. One
or more parts of an embodiment of the mvention may be
implemented using different combinations of soitware, firm-
ware, and/or hardware.

An electronic device stores and transmits (internally and/
or with other electronic devices over a network) code (which
1s composed ol software instructions and which 1s some-
times referred to as computer program code or a computer
program) and/or data using machine-readable media (also
called computer-readable media), such as machine-readable
storage media (e.g., magnetic disks, optical disks, read only
memory (ROM), flash memory devices, phase change
memory) and machine-readable transmission media (also
called a carner) (e.g., electrical, optical, radio, acoustical or
other form of propagated signals—such as carrier waves,
inirared signals). Thus, an electronic device (e.g., a com-
puter) icludes hardware and software, such as a set of one
or more processors coupled to one or more machine-read-
able storage media to store code for execution on the set of
processors and/or to store data. For instance, an electronic
device may include non-volatile memory containing the
code since the non-volatile memory can persist code/data
even when the electronic device 1s turned off (when power

US 11,018,977 B2

13

1s removed), and while the electronic device 1s turned on that
part of the code that 1s to be executed by the processor(s) of
that electronic device 1s typically copied from the slower
non-volatile memory 1nto volatile memory (e.g., dynamic
random access memory (DRAM), static random access
memory (SRAM)) of that electronic device. Typical elec-
tronic devices also include a set or one or more physical
network interface(s) to establish network connections (to
transmit and/or receive code and/or data using propagating,
signals) with other electronic devices. One or more parts of
an embodiment of the mnvention may be implemented using
different combinations of software, firmware, and/or hard-
ware.

FIG. 6A illustrates connectivity between network devices
(NDs) within an exemplary network, as well as three exem-
plary implementations of the NDs, according to some
embodiments of the invention. FIG. 6 A shows NDs 600A-H.,
and their connectivity by way of lines between A-B, B-C,
C-D, D-E, E-F, F-G, and A-G, as well as between H and each
of A, C, D, and G. These NDs are physical devices, and the
connectivity between these NDs can be wireless or wired
(often referred to as a link). An additional line extending
from NDs 600A, E, and F illustrates that these NDs act as
ingress and egress points for the network (and thus, these
NDs are sometimes referred to as edge NDs; while the other
NDs may be called core NDs).

Two of the exemplary ND implementations in FIG. 6A
are: 1) a special-purpose network device 602 that uses
custom application-specific integrated-circuits (ASICs) and
a proprietary operating system (OS); and 2) a general
purpose network device 704 that uses common ofl-the-shelf
(COTS) processors and a standard OS.

The special-purpose network device 602 includes net-
working hardware 610 comprising compute resource(s) 612
(which typically include a set of one or more processors),
torwarding resource(s) 614 (which typically include one or
more ASICs and/or network processors), and physical net-
work 1nterfaces (NIs) 616 (sometimes called physical ports),
as well as non-transitory machine readable storage media
618 having stored therein networking software 620. A
physical NI 1s hardware in a ND through which a network
connection (e.g., wirelessly through a wireless network
interface controller (WNIC) or through plugging in a cable
to a physical port connected to a network interface controller
(NIC)) 1s made, such as those shown by the connectivity
between NDs 600A-H. During operation, the networking
software 620 may be executed by the networking hardware
610 to instantiate a set of one or more networking software
instance(s) 622. Each of the networking soitware instance(s)
622, and that part of the networking hardware 610 that
executes that network software instance (be it hardware
dedicated to that networking software instance and/or time
slices of hardware temporally shared by that networking
software instance with others of the networking software
instance(s) 622), form a separate virtual network element
630A-R. Each of the virtual network element(s) (VINEs)
630A-R 1includes a control communication and configura-
tion module 632A-R (sometimes referred to as a local
control module or control communication module) and
forwarding table(s) 634A-R (i.e., implemented as match
action tables), such that a given virtual network element
(e.g., 630A) includes the control commumication and con-
figuration module (e.g., 632A), a set of one or more for-
warding table(s) (e.g., 634A), and that portion of the net-
working hardware 610 that executes the virtual network
clement (e.g., 630A). In some embodiments, the control
communication and configuration module 632A encom-

10

15

20

25

30

35

40

45

50

55

60

65

14

passes the match action table configuration module 635A
and forwarding engine 633 A as described herein above.

A network interface (NI) may be physical or virtual; and
in the context of IP, an interface address 1s an IP address
assigned to a NI, be 1t a physical NI or virtual NI. A virtual
NI may be associated with a physical NI, with another
virtual interface, or stand on 1ts own (e.g., a loopback
interface, a point-to-point protocol mterface). A NI (physical
or virtual) may be numbered (a NI with an IP address) or
unnumbered (a NI without an IP address). A loopback
interface (and its loopback address) 1s a specific type of

virtual NI (and IP address) of a NE/VNE (physical or virtual)

often used for management purposes; where such an IP
address 1s referred to as the nodal loopback address. The IP
address(es) assigned to the NI(s) of a ND are referred to as
IP addresses of that ND; at a more granular level, the IP
address(es) assigned to NI(s) assigned to a NE/VNE 1mple-

mented on a ND can be referred to as IP addresses of that
NE/VNE.

The special-purpose network device 602 1s often physi-
cally and/or logically considered to include: 1) a ND control
plane 624 (sometimes referred to as a control plane) com-
prising the compute resource(s) 612 that execute the control
communication and configuration module(s) 632A-R; and
2) a ND forwarding plane 626 (sometimes referred to as a
torwarding plane, a data plane, or a media plane) comprising
the forwarding resource(s) 614 that utilize the forwarding
table(s) (1.e., implemented as match action tables) 634A-R
and the physical NIs 616. By way of example, where the ND
1s a router (or 1s implementing routing functionality), the ND
control plane 624 (the compute resource(s) 612 executing
the control communication and configuration module(s)
632A-R) 15 typically responsible for participating in con-
trolling how data (e.g., packets) are to be routed (e.g., the
next hop for the data and the outgoing physical NI for that
data) and storing that routing information in the forwarding
table(s) 634A-R, and the ND forwarding plane 626 1s
responsible for receiving that data on the physical Nls 616
and forwarding that data out the appropriate ones of the
physical NIs 616 based on the forwarding table(s) 634A-R.

FIG. 6B 1illustrates an exemplary way to implement the
special-purpose network device 602 according to some
embodiments of the mvention. FIG. 6B shows a special-
purpose network device including cards 638 (typically hot
pluggable). While 1n some embodiments the cards 638 are of
two types (one or more that operate as the ND forwarding
plane 626 (sometimes called line cards), and one or more
that operate to implement the ND control plane 624 (some-
times called control cards)), alternative embodiments may
combine functionality onto a single card and/or include
additional card types (e.g., one additional type of card 1is
called a service card, resource card, or multi-application
card). A service card can provide specialized processing
(e.g., Layer 4 to Layer 7 services (e.g., firewall, Internet
Protocol Security (IPsec) (RFC 4301 and 4309), Secure
Sockets Layer (SSL)/Transport Layer Security (TLS), Intru-
sion Detection System (IDS), peer-to-peer (P2P), Voice over
IP (VoIP) Session Border Controller, Mobile Wireless Gate-
ways (Gateway General Packet Radio Service (GPRS) Sup-
port Node (GGSN), Evolved Packet Core (EPC) Gateway)).
By way of example, a service card may be used to terminate
IPsec tunnels and execute the attendant authentication and
encryption algorithms. These cards are coupled together
through one or more mterconnect mechanisms illustrated as
backplane 636 (e.g., a first full mesh coupling the line cards
and a second full mesh coupling all of the cards).

US 11,018,977 B2

15

Returning to FIG. 6 A, the general purpose network device
604 includes hardware 640 comprising a set of one or more
processor(s) 642 (which are often COTS processors) and
network interface controller(s) 644 (INICs; also known as
network interface cards) (which include physical Nls 646),
as well as non-transitory machine readable storage media
648 having stored therein software 650. During operation,
the processor(s) 642 execute the software 6350 to 1nstantiate
a hypervisor 654 (sometimes referred to as a virtual machine
monitor (VMM)) and one or more virtual machines 662A-R
that are run by the hypervisor 654, which are collectively
referred to as software istance(s) 652. A virtual machine 1s
a software implementation of a physical machine that runs
programs as 1 they were executing on a physical, non-
virtualized machine; and applications generally do not know
they are running on a virtual machine as opposed to running
on a “bare metal” host electronic device, though some
systems provide para-virtualization which allows an oper-
ating system or application to be aware of the presence of
virtualization for optimization purposes. Each of the virtual
machines 662A-R, and that part of the hardware 640 that
executes that virtual machine (be i1t hardware dedicated to
that virtual machine and/or time slices of hardware tempo-
rally shared by that virtual machine with others of the virtual
machine(s) 662A-R), forms a separate virtual network ele-
ment(s) 660A-R. In some embodiments, the virtual machine
module 662A encompasses match action table configuration
module 663A and forwarding engine 664A as described
herein above.

The virtual network element(s) 660A-R perform similar
functionality to the virtual network element(s) 630A-R. For
instance, the hypervisor 654 may present a virtual operating
plattorm that appears like networking hardware 610 to
virtual machine 662A, and the virtual machine 662A may be
used to implement functionality similar to the control com-
munication and configuration module(s) 632A and forward-
ing table(s) 634 A (this virtualization of the hardware 640 1s
sometimes referred to as network function virtualization
(NFV)). Thus, NFV may be used to consolidate many
network equipment types onto mndustry standard high vol-
ume server hardware, physical switches, and physical stor-
age, which could be located in Data centers, NDs, and
customer premises equipment (CPE). However, different
embodiments of the invention may implement one or more
of the virtual machine(s) 662A-R differently. For example,
while embodiments of the invention are illustrated with each
virtual machine 662A-R corresponding to one VINE 660A -
R, alternative embodiments may implement this correspon-
dence at a finer level of granularity (e.g., line card virtual
machines virtualize line cards, control card virtual machine
virtualize control cards, etc.); 1t should be understood that
the techniques described herein with reference to a corre-
spondence of virtual machines to VNEs also apply to
embodiments where such a finer level of granularity 1s used.

In certain embodiments, the hypervisor 654 includes a
virtual switch that provides similar forwarding services as a
physical Ethernet switch. Specifically, this virtual switch
forwards traflic between virtual machines and the NIC(s)
644, as well as optionally between the virtual machines
662A-R; 1n addition, this virtual switch may enforce net-
work 1solation between the VNEs 660A-R that by policy are
not permitted to communicate with each other (e.g., by
honoring virtual local area networks (VLANSs)).

The third exemplary ND implementation 1n FIG. 6A 1s a
hybrid network device 606, which includes both custom
ASICs/proprietary OS and COTS processors/standard OS in
a single ND or a single card within an ND. In certain

10

15

20

25

30

35

40

45

50

55

60

65

16

embodiments of such a hybrid network device, a platiorm
VM (1.e., a VM that that implements the functionality of the
special-purpose network device 602) could provide for
para-virtualization to the networking hardware present in the
hybrid network device 606.

Regardless of the above exemplary implementations of an
ND, when a single one of multiple VNEs implemented by an
ND 1s being considered (e.g., only one of the VNEs 1s part
of a given virtual network) or where only a single VNE 1s
currently being implemented by an ND, the shortened term
network element (NE) 1s sometimes used to refer to that
VNE. Also 1n all of the above exemplary implementations,
cach of the VNEs (e.g., VNE(s) 630A-R, VNEs 660A-R,
and those 1n the hybrid network device 606) recerves data on
the physical NIs (e.g., 616, 646) and forwards that data out
the appropriate ones of the physwal NIs (e.g., 616, 646). For
example, a VNE implementing IP router functionality for-
wards IP packets on the basis of some of the IP header
information in the IP packet; where IP header information
includes source IP address, destination IP address, source
port, destination port (where “source port” and “destination
port” refer herein to protocol ports, as opposed to physical
ports of a ND), transport protocol (e.g., user datagram

protocol (UDP) (RFC 768, 2460, 2675, 4113, and 5405),
Transmission Control Protocol (TCP) (R HC 793 and 1180),
and differentiated services (DSCP) values (RFC 2474, 2475,
2597, 2983, 3086, 3140, 3246, 3247, 3260, 4594, 5863,
3289, 3290, and 3317).

FIG. 6C 1illustrates various exemplary ways in which
VNEs may be coupled according to some embodiments of

the invention. FIG. 6C shows VNEs 670A.1-670A.P (and
optionally VNEs 670A.Q-670A.R) implemented in ND
600A and VNE 670H.1 mm ND 600H. In FIG. 6C, VNEs
670A.1-P are separate from each other 1n the sense that they
can receive packets from outside ND 600A and forward
packets outside of ND 600A; VNE 670A.1 1s coupled with
VNE 670H.1, and thus they communicate packets between
their respective NDs; VNE 670A.2-670A.3 may optionally
forward packets between themselves without forwarding
them outside of the ND 600A; and VNE 670A.P may
optionally be the first in a chain of VINEs that includes VNE
670A.Q followed by VNE 670A.R (this 1s sometimes
referred to as dynamlc service chaining, where each of the
VNEs 1n the series of VNEs provides a different service—
¢.g., one or more layer 4-7 network services). While FIG. 6C
illustrates various exemplary relationships between the
VNEs, alternative embodiments may support other relation-
ships (e.g., more/fewer VNEs, more/fewer dynamic service
chains, multiple different dynam1c service chains with some
common VNEs and some different VNESs).

The NDs of FIG. 6A, for example, may form part of the
Internet or a private network; and other electronic devices
(not shown; such as end user devices including worksta-
tions, laptops, netbooks, tablets, palm tops, mobile phones,
smartphones, multimedia phones, Voice Over Internet Pro-
tocol (VOIP) phones, terminals, portable media players,
GPS units, wearable devices, gaming systems, set-top boxes,
Internet enabled household appliances) may be coupled to
the network (directly or through other networks such as
access networks) to communicate over the network (e.g., the
Internet or virtual private networks (VPNs) overlaid on (e.g.,
tunneled through) the Internet) with each other (directly or
through servers) and/or access content and/or services. Such
content and/or services are typically provided by one or
more servers (not shown) belonging to a service/content
provider or one or more end user devices (not shown)
participating in a peer-to-peer (P2P) service, and may

US 11,018,977 B2

17

include, for example, public webpages (e.g., iree content,
store fronts, search services), private webpages (e.g., user-
name/password accessed webpages providing email ser-
vices), and/or corporate networks over VPNs. For instance,
end user devices may be coupled (e.g., through customer
premise equipment coupled to an access network (wired or
wirelessly)) to edge NDs, which are coupled (e.g., through
one or more core NDs) to other edge NDs, which are
coupled to electronic devices acting as servers. However,
through compute and storage virtualization, one or more of
the electronic devices operating as the NDs in FIG. 6 A may
also host one or more such servers (e.g., in the case of the
general purpose network device 604, one or more of the
virtual machines 662A-R may operate as servers; the same
would be true for the hybrid network device 606; in the case
ol the special-purpose network device 602, one or more such
servers could also be run on a hypervisor executed by the
compute resource(s) 612); 1n which case the servers are said
to be co-located with the VNEs of that ND.

A virtual network 1s a logical abstraction of a physical
network (such as that in FIG. 6A) that provides network
services (e.g., L2 and/or L3 services). A virtual network can
be implemented as an overlay network (sometimes referred
to as a network virtualization overlay) that provides network
services (e.g., layer 2 (L2, data link layer) and/or layer 3 (L3,
network layer) services) over an underlay network (e.g., an
L3 network, such as an Internet Protocol (IP) network that
uses tunnels (e.g., generic routing encapsulation (GRE),
layer 2 tunneling protocol (L2TP), IPSec) to create the
overlay network).

A network virtualization edge (NVE) sits at the edge of
the underlay network and participates in implementing the
network virtualization; the network-facing side of the NVE
uses the underlay network to tunnel frames to and from other
NVEs; the outward-facing side of the NVE sends and
receives data to and from systems outside the network. A

virtual network instance (VNI) 1s a specific instance of a
virtual network on a NVE (e.g., a NE/VNE on an ND, a part
of a NE/VNE on a ND where that NE/VNE 1s divided into
multiple VNEs through emulation); one or more VNIs can
be instantiated on an NVE (e.g., as different VNEs on an
ND). A virtual access point (VAP) 1s a logical connection
point on the NVE {for connecting external systems to a
virtual network; a VAP can be physical or virtual ports
identified through logical interface 1dentifiers (e.g., a VLAN
ID).

Examples of network services include: 1) an FEthernet
LAN emulation service (an Ethernet-based multipoint ser-
vice similar to an Internet Engineering Task Force (IETF)
Multiprotocol Label Switching (MPLS) or Ethernet VPN
(EVPN) service) in which external systems are intercon-
nected across the network by a LAN environment over the
underlay network (e.g., an NVE provides separate L2 VINIs
(virtual switching instances) for different such virtual net-
works, and L3 (e.g., IP’/MPLS) tunneling encapsulation
across the underlay network); and 2) a virtualized IP for-
warding service (similar to IETF IP VPN (e.g., Border
Gateway Protocol (BGP)/MPLS IPVPN RFC 4364) from a
service definition perspective) in which external systems are
interconnected across the network by an L3 environment
over the underlay network (e.g., an NVE provides separate
.3 VNIs ({forwarding and routing instances) for different
such virtual networks, and L3 (e.g., IPPMPLS) tunneling
encapsulation across the underlay network)). Network ser-
vices may also include quality of service capabilities (e.g.,
traflic classification marking, traflic conditioning and sched-
uling), security capabilities (e.g., filters to protect customer

10

15

20

25

30

35

40

45

50

55

60

65

18

premises from network-originated attacks, to avoid mal-
formed route announcements), and management capabilities
(e.g., Tull detection and processing).

FIG. 6D illustrates a network with a single network
element on each of the NDs of FIG. 6A, and within this
straight forward approach contrasts a traditional distributed
approach (commonly used by traditional routers) with a
centralized approach for maintaining reachability and for-
warding mformation (also called network control), accord-
ing to some embodiments of the invention. Specifically, FIG.
6D illustrates network elements (NEs) 670A-H with the
same connectivity as the NDs 600A-H of FIG. 6A.

FIG. 6D illustrates that the distributed approach 672
distributes responsibility for generating the reachability and
forwarding information across the NEs 670A-H; in other
words, the process of neighbor discovery and topology
discovery 1s distributed.

For example, where the special-purpose network device
602 15 used, the control communication and configuration
module(s) 632A-R of the ND control plane 624 typically
include a reachability and forwarding information module to
implement one or more routing protocols (e.g., an exterior
gateway protocol such as Border Gateway Protocol (BGP)

(RFC 4271), Interior Gateway Protocol(s) (IGP) (e.g., Open
Shortest Path First (OSPF) (RFC 2328 and 5340), Interme-
diate System to Intermediate System (IS-IS) (RFC 1142),
Routing Information Protocol (RIP) (version 1 RFC 1038,
version 2 RFC 2453, and next generation RFC 2080)), Label
Distribution Protocol (LDP) (RFC 5036), Resource Reser-
vation Protocol (RSVP) (RFC 2205, 2210, 2211, 2212, as
well as RSVP-Traflic Engineering (TE): Extensions to
RSVP for LSP Tunnels RFC 3209, Generalized Multi-
Protocol Label Switching (GMPLS) Signaling RSVP-TE
RFC 3473, RFC 3936, 4495, and 4558)) that commumnicate
with other NEs to exchange routes, and then selects those
routes based on one or more routing metrics. Thus, the NEs
670A-H (e.g., the compute resource(s) 612 executing the
control communication and configuration module(s) 632A-
R) perform their responsibility for participating in control-
ling how data (e.g., packets) i1s to be routed (e.g., the next
hop for the data and the outgoing physical NI for that data)
by distributively determining the reachability within the
network and calculating their respective forwarding infor-
mation. Routes and adjacencies are stored in one or more
routing structures (e.g., Routing Information Base (RIB),
Label Information Base (LIB), one or more adjacency
structures) on the ND control plane 624. The ND control
plane 624 programs the ND forwarding plane 626 with
information (e.g., adjacency and route information) based on
the routing structure(s). For example, the ND control plane
624 programs the adjacency and route information into one
or more forwarding table(s) 634A-R that are implementa-
tions of match action tables (e.g., Forwarding Information
Base (FIB), Label Forwarding Information Base (LFIB), and
one or more adjacency structures) on the ND forwarding
plane 626. For layer 2 forwarding, the ND can store one or
more bridging tables that are used to forward data based on
the layer 2 information in that data. While the above
example uses the special-purpose network device 602, the
same distributed approach 672 can be implemented on the
general purpose network device 604 and the hybrid network
device 606.

FIG. 6D 1illustrates that a centralized approach 674 (also
known as software defined networking (SDN)) that
decouples the system that makes decisions about where
traflic 1s sent from the underlying systems that forwards
tratlic to the selected destination. The 1llustrated centralized

US 11,018,977 B2

19

approach 674 has the responsibility for the generation of
reachability and forwarding information in a centralized
control plane 676 (sometimes referred to as a SDN control
module, controller, network controller, OpenFlow control-
ler, SDN controller, control plane node, network virtualiza-
tion authority, or management control entity), and thus the
process ol neighbor discovery and topology discovery is
centralized. The centralized control plane 676 has a south
bound interface 682 with a data plane 680 (sometime
referred to the infrastructure layer, network forwarding
plane, or forwarding plane (which should not be confused
with a ND forwarding plane)) that includes the NEs 670A-H
(sometimes referred to as switches, forwarding elements,
data plane elements, or nodes). The centralized control plane
676 includes a network controller 678, which includes a
centralized reachability and forwarding information module
679 that determines the reachability within the network and
distributes the forwarding information to the NEs 670A-H of
the data plane 680 over the south bound 1nterface 682 (which
may use the OpenFlow protocol). Thus, the network 1ntel-
ligence 1s centralized in the centralized control plane 676
executing on electronic devices that are typically separate
from the NDs.

For example, where the special-purpose network device
602 i1s used in the data plane 680, each of the control
communication and configuration module(s) 632A-R of the
ND control plane 624 typically include a control agent that
provides the VNE side of the south bound interface 682. In
this case, the ND control plane 624 (the compute resource(s)
612 executing the control communication and configuration
module(s) 632A-R) performs its responsibility for partici-
pating in controlling how data (e.g., packets) 1s to be routed
(e.g., the next hop for the data and the outgoing physical NI
tor that data) through the control agent communicating with
the centralized control plane 676 to receive the forwarding
information (and in some cases, the reachability informa-
tion) from the centralized reachability and forwarding infor-
mation module 679 (1t should be understood that in some
embodiments of the invention, the control communication
and configuration module(s) 632A-R, 1n addition to com-
municating with the centralized control plane 676, may also
play some role in determining reachability and/or calculat-
ing forwarding information—albeit less so than in the case
of a distributed approach; such embodiments are generally
considered to fall under the centralized approach 674, but
may also be considered a hybrid approach). In some embodi-
ments, the centralized reachability and forwarding module
679 encompasses match action table configuration module
functions 1n corresponding match action table configuration
module 681 that implement match action table configuration
functionality as described herein above including support for
regular expressions.

While the above example uses the special-purpose net-
work device 602, the same centralized approach 674 can be
implemented with the general purpose network device 604
(e.g., each of the VNE 660A-R performs its responsibility
for controlling how data (e.g., packets) 1s to be routed (e.g.,
the next hop for the data and the outgoing physical NI for
that data) by communicating with the centralized control
plane 676 to receive the forwarding information (and in
some cases, the reachability information) from the central-
1zed reachability and forwarding information module 679; 1t
should be understood that in some embodiments of the
invention, the VNEs 660A-R, in addition to communicating
with the centralized control plane 676, may also play some
role 1n determining reachability and/or calculating forward-
ing information—albeit less so than 1n the case of a distrib-

10

15

20

25

30

35

40

45

50

55

60

65

20

uted approach) and the hybrid network device 606. In fact,
the use of SDN techniques can enhance the NFV techniques
typically used in the general purpose network device 404 or
hybrid network device 606 implementations as NFV 1s able
to support SDN by providing an infrastructure upon which
the SDN software can be run, and NFV and SDN both aim
to make use of commodity server hardware and physical
switches.

FIG. 6D also shows that the centralized control plane 676
has a north bound interface 684 to an application layer 686,
in which resides application(s) 688. The centralized control
plane 676 has the ability to form wvirtual networks 692
(sometimes referred to as a logical forwarding plane, net-
work services, or overlay networks (with the NEs 670A-H
of the data plane 680 being the underlay network)) for the
application(s) 688. Thus, the centralized control plane 676
maintains a global view of all NDs and configured NEs/
VNEs, and 1t maps the virtual networks to the underlying
NDs efliciently (including maintaining these mappings as
the physical network changes either through hardware (ND,
link, or ND component) failure, addition, or removal).

While FIG. 6D shows the distributed approach 672 sepa-
rate from the centralized approach 674, the effort of network
control may be distributed differently or the two combined
in certain embodiments of the invention. For example: 1)
embodiments may generally use the centralized approach
(SDN) 674, but have certain functions delegated to the NEs
(e.g., the distributed approach may be used to implement one
or more of fault momtoring, performance monitoring, pro-
tection switching, and primitives for neighbor and/or topol-
ogy discovery); or 2) embodiments of the invention may
perform neighbor discovery and topology discovery via both
the centralized control plane and the distributed protocols,
and the results compared to raise exceptions where they do
not agree. Such embodiments are generally considered to
fall under the centralized approach 674, but may also be
considered a hybrnid approach.

While FIG. 6D illustrates the simple case where each of
the NDs 600A-H implements a single NE 670A-H, 1t should
be understood that the network control approaches described
with reference to FIG. 6D also work for networks where one
or more of the NDs 600A-H implement multiple VNEs (e.g.,
VNEs 630A-R, VNEs 660A-R, those 1n the hybnid network
device 606). Alternatively or 1in addition, the network con-
troller 678 may also emulate the implementation of multiple
VNESs 1 a single ND. Specifically, instead of (or in addition
to) implementing multiple VNEs 1n a single ND, the net-
work controller 678 may present the implementation of a
VNE/NE 1n a single ND as multiple VNEs 1n the virtual
networks 692 (all 1n the same one of the virtual network(s)
692, cach 1n different ones of the virtual network(s) 692, or
some combination). For example, the network controller 678
may cause an ND to implement a single VNE (a NE) 1n the
underlay network, and then logically divide up the resources
of that NE within the centralized control plane 676 to present
different VNEs 1n the virtual network(s) 692 (where these
different VNEs 1n the overlay networks are sharing the
resources of the single VNE/NE 1implementation on the ND
in the underlay network).

On the other hand, FIGS. 6F and 6F respectively 1llustrate
exemplary abstractions of NEs and VNEs that the network
controller 678 may present as part of different ones of the
virtual networks 692. FIG. 6F illustrates the simple case of
where each of the NDs 600A-H implements a single NE
670A-H (see FIG. 6D), but the centralized control plane 676
has abstracted multiple of the NEs in different NDs (the NEs
670A-C and G-H) 1nto (to represent) a single NE 6701 1n

US 11,018,977 B2

21

one of the virtual network(s) 692 of FIG. 6D, according to
some embodiments of the invention. FIG. 6FE shows that 1n
this virtual network, the NE 6701 1s coupled to NE 670D and
670F, which are both still coupled to NE 670E.

FIG. 6F illustrates a case where multiple VNEs (VNE
670A.1 and VNE 670H.1) are implemented on different
NDs (ND 600A and ND 600H) and are coupled to each
other, and where the centralized control plane 676 has
abstracted these multiple VNEs such that they appear as a
single VNE 67071 within one of the virtual networks 692 of
FIG. 6D, according to some embodiments of the mnvention.
Thus, the abstraction of a NE or VNE can span multiple
NDs.

While some embodiments of the invention implement the
centralized control plane 676 as a single entity (e.g., a single
instance of software running on a single electronic device),
alternative embodiments may spread the functionality across
multiple entities for redundancy and/or scalability purposes
(e.g., multiple instances of solftware running on different
clectronic devices).

Similar to the network device implementations, the elec-
tronic device(s) running the centralized control plane 676,
and thus the network controller 678 including the centralized
reachability and forwarding information module 679, may
be implemented a variety of ways (e.g., a special purpose
device, a general-purpose (e.g., COTS) device, or hybnd
device). These electronic device(s) would similarly include
compute resource(s), a set or one or more physical NICs, and
a non-transitory machine-readable storage medium having
stored thereon the centralized control plane software. For
instance, FIG. 7 1llustrates, a general purpose control plane
device 704 including hardware 740 comprising a set of one
or more processor(s) 742 (which are often COTS proces-
sors) and network interface controller(s) 744 (NICs; also
known as network interface cards) (which include physical
NIs 846), as well as non-transitory machine readable storage
media 848 having stored therein centralized control plane
(CCP) software 750.

In embodiments that use compute virtualization, the pro-
cessor(s) 742 typically execute software to instantiate a
hypervisor 754 (sometimes referred to as a virtual machine
monitor (VMM)) and one or more virtual machines 762A-R
that are run by the hypervisor 754; which are collectively
referred to as software mstance(s) 752. A virtual machine 1s
a soltware implementation of a physical machine that runs
programs as 1if they were executing on a physical, non-
virtualized machine; and applications generally are not
aware they are running on a virtual machine as opposed to
running on a “bare metal” host electronic device, though
some systems provide para-virtualization which allows an
operating system or application to be aware of the presence
of wvirtualization for optimization purposes. Again, 1n
embodiments where compute virtualization 1s used, during
operation an 1nstance of the CCP software 750 (illustrated as
CCP instance 776 A) on top of an operating system 864 A are
typically executed within the virtual machine 762A. In
embodiments where compute virtualization 1s not used, the
CCP mstance 776A on top of operating system 864A 1is
executed on the “bare metal” general purpose control plane
device 704.

The operating system 764A provides basic processing,
iput/output (I/0), and networking capabilities. In some
embodiments, the CCP 1nstance 776 A includes a network
controller instance 778. The network controller instance 778
includes a centralized reachability and forwarding informa-
tion module instance 779 (which 1s a middleware layer
providing the context of the network controller 778 to the

10

15

20

25

30

35

40

45

50

55

60

65

22

operating system 764A and communicating with the various
NEs), and an CCP application layer 780 (sometimes referred
to as an application layer) over the middleware layer (pro-
viding the itelligence required for various network opera-
tions such as protocols, network situational awareness, and
user-interfaces). At a more abstract level, this CCP applica-
tion layer 780 within the centralized control plane 676 works
with virtual network view(s) (logical view(s) of the network)
and the middleware layer provides the conversion from the
virtual networks to the physical view. The CCP application
can encompass the functionality of the match action table
configuration module 781 described herein above.

The centralized control plane 676 transmits relevant mes-
sages to the data plane 680 based on CCP application layer
780 calculations and middleware layer mapping for each
flow. A tlow may be defined as a set of packets whose
headers match a given pattern of bits; in this sense, tradi-
tional IP forwarding 1s also flow-based forwarding where the
flows are defined by the destination IP address for example;
however, in other implementations, the given pattern of bits
used for a flow definition may include more fields (e.g., 10
or more) in the packet headers. Diflerent NDs/NEs/VNEs of
the data plane 680 may receive diflerent messages, and thus
different forwarding information. The data plane 680 pro-
cesses these messages and programs the appropriate tlow
information and corresponding actions in the forwarding
tables (sometime referred to as flow tables) of the appropri-
ate NE/VNESs, and then the NEs/VNEs map incoming pack-
ets to tlows represented 1n the forwarding tables and forward
packets based on the matches 1n the forwarding tables.

While the flow diagrams 1n the figures show a particular
order of operations performed by certain embodiments of
the invention, 1t should be understood that such order 1s
exemplary (e.g., alternative embodiments may perform the
operations 1n a different order, combine certain operations,
overlap certain operations, etc.).

Those skilled 1n the art will appreciate that the use of the
term “exemplary” i1s used herein to mean “illustrative,” or
“serving as an example,” and is not intended to 1mply that
a particular embodiment 1s preferred over another or that a
particular feature 1s essential. Likewise, the terms “first” and
“second,” and similar terms, are used simply to distinguish
one particular instance of an i1tem or feature from another,
and do not indicate a particular order or arrangement, unless
the context clearly indicates otherwise. Further, the term
“step,” as used herein, 1s meant to be synonymous with
“operation” or “action.” Any description heremn of a
sequence of steps does not imply that these operations must
be carried out 1 a particular order, or even that these
operations are carried out 1n any order at all, unless the
context or the details of the described operation clearly
indicates otherwise.

Of course, the present mvention may be carried out 1n
other specific ways than those herein set forth without
departing from the scope and essential characteristics of the
invention. One or more of the specific processes discussed
above may be carried out using one or more appropriately
configured processing circuits. In some embodiments, these
processing circuits may comprise one or more microproces-
sors, microcontrollers, and/or digital signal processors pro-
grammed with appropriate software and/or firmware to carry
out one or more of the operations described above, or
variants thereof. In some embodiments, these processing
circuits may comprise customized hardware to carry out one
or more of the functions described above. The present
embodiments are, therefore, to be considered in all respects
as 1llustrative and not restrictive.

US 11,018,977 B2

23

While the invention has been described in terms of several
embodiments, those skilled 1n the art will recognize that the
invention 1s not limited to the embodiments described, can
be practiced with modification and alteration within the
spirit and scope of the appended claims. The description 1s
thus to be regarded as illustrative instead of limiting.

The 1nvention claimed 1s:

1. A method implemented by a processor of a networking
device for generating an output match action table or output
match action table template from an input match action table
template, where the mput match action table template and
the output match action template have a same format with a
match criteria field column and an action field column, the
match critenia field column formatted to hold packet match-
ing criteria and the action field column formatted to hold an
executable command to act on a packet that matches a
corresponding matching criteria from a same row, where the
input match action table template 1s transformed through
successive updates ol symbolic actions using policy rules
into the output match action table or output match action
table template, the method comprising:

selecting a first match action table row from the input

match action table template;

selecting a first action field from the first match action

table row;

checking whether the first action field includes a first

symbolic action, the first symbolic action being a
reference 1dentifying an abstraction of an action to be
resolved into an executable action by the network
device;

looking up the first symbolic action to determine whether

a first policy rule has been defined for the first symbolic
action;

writing, by the network device, a first action into the first

action field 1n the input match action table or a copy
thereof to form the output match action table template
or the output match action table to replace the first
symbolic action where the first action 1s specified by
the first policy rule; and

processing data tratlic at the network device according to

a final match action table derived from the output
match action table.

2. The method of claim 1, wherein the output match action
table template 1s further iteratively processed to further
update the symbolic actions by replacing the symbolic
actions using a second policy rule, the method comprising:

selecting a second match action table row from the output

match action table template;

selecting a second action field from the second match

action table row:

checking whether the second action field includes a

second symbolic action;
looking up the second symbolic action to determine
whether the second policy rule 1 a second policy has
been defined for the second symbolic action; and

writing a second action into a corresponding action field
of a corresponding match action table row 1n a further
output match action table template or further output
match action table to replace the second symbolic
action where the second action 1s specified by the
second policy rule.

3. The method of claim 1, the process further comprising
the step of:

installing the output match action table to be executed by

a forwarding engine.

10

15

20

25

30

35

40

45

50

55

60

65

24

4. The method of claim 1, wherein the 1nput match action
table template 1s selected to handle traflic for a correspond-
ing protocol.

5. The method of claim 1, wherein the first policy rule 1s
defined for the first symbolic action to generate the output
match action table template or output match action table for
a corresponding application, and wherein the first policy rule
1s a member of a policy that 1s one of a set of policies
forming a hierarchical tree for differentiating the output
match action table template or output match action table to
a set of different applications.

6. The method of claim 1, wherein the first action 1s a

symbolic action.
7. The method of claim 1, wherein the first action 1s

selected to be compatible with target network device type

where the target network device 1s to process the final match
action table.

8. A network device implementing a method for generat-
ing an output match action table from an input match action
table template, where the input match action table template
and the output match action template have a same format
with a match criteria field column and an action field
column, the match criteria field column formatted to hold
packet matching criteria and the action field column format-
ted to hold an executable command to act on a packet that
matches a corresponding matching criteria from a same row,
where the mput match action table template 1s transformed
through successive updates of symbolic actions using policy
rules into the output match action table, the network device
comprising;

a non-transitory computer-readable medium having
stored therein a match action table configuration mod-
ule and a forwarding engine; and

a network processor coupled to the non-transitory com-
puter-readable medium, the network processor config-
ured to execute the match action table configuration
module and the forwarding engine, the match action
table configuration module configured to select a first
match action table row from the input match action
table template, to select a first action field from the first
match action table row, to check whether the first action
field includes a first symbolic action, the first symbolic
action being a reference 1dentitying an abstraction of an
action to be resolved 1nto an executable action by the
network device to look up the first symbolic action to
determine whether a first policy rule has been defined
for the first symbolic action, and to write a first action
into the first action field 1n the mput match action table
or a copy thereotf to form the output match action table
to replace the first symbolic action where the first
action 1s specified by the first policy rule; and the
forwarding engine configured to forward protocol data
units based on the output match action table generated
from the input match action template.

9. The network device of claim 8, wherein the match
action table configuration module 1s configured to install the
output match action table to be utilized by the forwarding
engine.

10. The network device of claim 8, wherein the first action
1s selected to be compatible with target network device type
where the target network device 1s to process the final match
action table.

11. The network device of claim 8, wherein the first policy
rule 1s defined for the first symbolic action to generate the
output match action table for a corresponding application,
and wherein the first policy rule 1s a member of a policy that

US 11,018,977 B2

25

1s one of a set of policies forming a hierarchical tree for
differentiating the output match action table to a set of
different applications.

12. A computing device implementing a plurality of
virtual machines for implementing network function virtu-
alization (NFV), wherein a virtual machine from the plural-
ity of virtual machines 1s configured to execute a method for
generating an output match action table or output match
action table template from an input match action table
template, where the iput match action table template and
the output match action template have a same format with a
match criteria field column and an action field column, the
match criteria field column formatted to hold packet match-
ing criteria and the action field column formatted to hold an
executable command to act on a packet that matches a
corresponding matching criteria from a same row, where the
input match action table template 1s transformed through
successive updates of symbolic actions using policy rules
into the output match action table or output match action
table template, the computing device comprising;:

a non-transitory computer-readable medium having
stored therein a match action table configuration mod-
ule; and

a processor coupled to the non-transitory computer-read-
able medium, the processor configured to execute the
virtual machine that implements the match action table
configuration module, the match action table configu-
ration module configured to select a first match action
table row from the 1nput match action table template, to
select a first action field from the first match action
table row, to check whether the first action field
includes a first symbolic action, the first symbolic
action being a reference 1dentifying an abstraction of an
action to be resolved 1nto an executable action by the
network device, to look up the first symbolic action to
determine whether a first policy rule has been defined
for the first symbolic action, where the first policy rule
1s a member of a policy that 1s one of a set of policies
forming a hierarchical tree for differentiating the output
match action table template or output match action
table to a set of different applications, and to write a
first action 1nto the first action field in the mput match
action table or a copy thereof to form the output match
action table or output match action table template to
replace the first symbolic action where the first action
1s specified by the first policy rule, wheremn a final
match action table derived from the output match
action table 1s utilized by the forwarding engine to
forward protocol data units based on the output match
action table generated from the mput match action
template.

13. The computing device of claim 12, wherein the match
action table configuration module 1s further configured to
turther update the symbolic actions by replacing the sym-
bolic actions using a second policy rule, the match action
table configuration module configured to select a second
match action table row from the output match action table
template, to select a second action field from the second
match action table row, to check whether the second action
field includes a second symbolic action, to look up the
second symbolic action to determine whether the second
policy rule in a second policy has been defined for the
second symbolic action, and to write a second action 1nto a
corresponding action field of a corresponding match action
table row 1n a further output match action table template or

5

10

15

20

25

30

35

40

45

50

55

60

65

26

further output match action table to replace the second
symbolic action with the second action specified by the
second policy rule.

14. The computing device of claim 12, wherein the match
action table configuration module 1s configured to send the
output match action table template to a network device
implementing the data plane.

15. The computing device of claim 12, wherein the first
policy rule 1s defined for the first symbolic action to generate
the output match action table template or output match
action table for a corresponding application.

16. The computing device of claim 12, wherein the first
action 1s a symbolic action.

17. The computing device of claim 12, wherein the first
action 1s selected to be compatible with target network
device type where the target network device 1s to process the
final match action table.

18. A control plane device configured to implement at
least one centralized control plane for a software defined
network (SDN), the centralized control plane configured to
execute a method for generating an output match action
table or output match action table template from an input
match action table template, where the mput match action
table template and the output match action template have a
same format with a match criteria field column and an action
field column, the match criteria field column formatted to
hold packet matching criteria and the action field column
formatted to hold an executable command to act on a packet
that matches a corresponding matching criteria from a same
row, where the mput match action table template 1s trans-
formed through successive updates of symbolic actions
using policy rules into the output match action table or
output match action table template, the control plane device
comprising;

a non-transitory computer-readable medium having
stored therein a match action table configuration mod-
ule; and

a processor coupled to the non-transitory computer-read-
able medium, the processor configured to execute the
match action table configuration module, the match
action table configuration module configured to select
a first match action table row from the input match
action table template, to select a first action field from
the first match action table row, to check whether the
first action field includes a first symbolic action, the
first symbolic action being a reference i1dentifying an
abstraction of an action to be resolved into an execut-
able action by the network device, to look up the first
symbolic action to determine whether a first policy rule
has been defined for the first symbolic action, where the
first policy rule 1s a member of a policy that 1s one of
a set of policies forming a hierarchical tree for difler-
entiating the output match action table template or
output match action table to a set of different applica-
tions, and to write a first action into the first action field
in the input match action table or a copy thereof to form
the output match action table or output match action
table template to replace the first symbolic action where
the first action 1s specified by the first policy rule,
wherein a final match action table derived from the
output match action table 1s utilized by the forwarding
engine to forward protocol data units based on the
output match action table generated from the input
match action template.

19. The control plane device of claim 18, wherein the

match action table configuration module 1s further config-
ured to further update the symbolic actions by replacing the

US 11,018,977 B2

27

symbolic actions using a second policy rule, the match
action table configuration module configured to select a
second match action table row from the output match action
table template, to select a second action field from the
second match action table row, to check whether the second
action field includes a second symbolic action, to look up the
second symbolic action to determine whether the second
policy rule in a second policy has been defined for the
second symbolic action, and to write a second action 1nto a
corresponding action field of a corresponding match action
table row 1n the output match action table template or output
match action table to replace the second symbolic action
with the second action specified by the second policy rule.

20. The control plane device of claim 18, wherein the
match action table configuration module 1s configured to
send the output match action table template to a network
device implementing a data plane of the SDN.

21. The control plane device of claim 18, wherein the first
policy rule 1s defined for the first symbolic action to generate
the output match action table template or output match
action table for a corresponding application.

22. The control plane device of claim 18, wherein the first
action 1s a symbolic action.

23. The control plane device of claim 18, wherein the first
action 1s selected to be compatible with target network
device type where the target network device 1s to process the
final match action table.

¥ H H ¥ ¥

10

15

20

25

28

	Front Page
	Drawings
	Specification
	Claims

