12 United States Patent

Raman et al.

US011018970B2

(10) Patent No.: US 11,018,970 B2
45) Date of Patent: May 25, 2021

(54) MONITORING RESOURCE CONSUMPTION

(71)
(72)

(73)

(%)

(21)
(22)

(65)

(60)

(1)

(52)

FOR DISTRIBUTED SERVICES

Applicant: Nicira, Inc., Palo Alto, CA (US)

Inventors: Chidambareswaran Raman,

Sunnyvale, CA (US); Subrahmanyam
Manuguri, San Jose, CA (US); Raju
Koganty, San Jose, CA (US); Anirban

Sengupta, Saratoga, CA (US)

Assignee: NICIRA, INC., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 405 days.
Appl. No.: 15/366,793
Filed: Dec. 1, 2016

Prior Publication Data

US 2018/0123939 Al May 3, 2018

Related U.S. Application Data

Provisional application No. 62/415,438, filed on Oct.

31, 2016.

Int. CI.

HO4L 12/24 (2006.01)

HO4L 12/26 (2006.01)

HO4L 12911 (2013.01)

U.S. CL

CPC HO4L 43716 (2013.01), HO4L 41/5016

(2013.01); HO4L 43/045 (2013.01); HO4L
43/0811 (2013.01); HO4L 43/0876 (2013.01);
HO4L 43/50 (2013.01); HO4L 47/745
(2013.01); HO4L 47/822 (2013.01); HO4L
47/828 (2013.01); HO4L 41/0893 (2013.01)

100

R}

(38) Field of Classification Search
CPC ... HO4L 43/16; HO4L 41/5016; HO4L 43/045;
HO4L 43/0811; HO4L 43/0876; HO4L
43/50; HO4L 47/745; HO4L 47/822; HO4L

4'7/828; HO4L 41/0893
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,605,655 Bl 12/2013 Sahai et al.
9,215,213 B2 12/2015 Bansal et al.
9,438,560 B2 9/2016 Mohanty et al.
9,438,634 Bl 9/2016 Ross et al.
9,467,476 Bl 10/2016 Shieh et al.
9,787,641 B2 10/2017 Bansal et al.
10,298,619 B2 5/2019 Nimmagadda et al.
10,419,321 B2 9/2019 Raman et al.
(Continued)

OTHER PUBLICATIONS

El-Atawy, Adel, et al., “Policy Segmentation for Intelligent Firewall
Testing,” 1st IEEE ICNP Workshop on Secure Network Protocols,

Nov. 6, 2005, 6 pages, IEEE, Boston, MA, USA.
(Continued)

Primary Examiner — Philip] Chea

Assistant Examiner — Hassan A Khan
(74) Attorney, Agent, or Firm — Adeli LLP

(57) ABSTRACT

A method for monitoring several data compute nodes
(DCNs) on a group of managed host machines 1s provided.
The method recerves service usage data from a group of
managed hosts. The service usage data i1dentifies service
usage for each of a plurality of entities associated with each
managed host. The method aggregates the received service
usage data. The method displays the aggregated service
usage data.

22 Claims, 9 Drawing Sheets

Services Manager 105

Virtualization Layer

240

Resources 115

Services Engine 125

SVMI

Vivi Ad

VM AZ

VM B1

Host 110

US 11,018,970 B2

Page 2
(56) References Cited 2017/0374106 Al 12/2017 Hamou et al.
2018/0007127 Al1* 1/2018 Salapura GO6F 21/105
U.S. PATENT DOCUMENTS 2018/0027080 Al 1/2018 Yang et al.
2018/0032399 Al 2/2018 Johnson et al.
10,567,440 B2 2/2020 Bansal et al. 2018/0034856 Al 2/2018 Mallya
10,608,993 B2 3/2020 Bansal et al. 2018/0041578 Al 2/2018 Lee et al.
2003/0120955 Al 6/2003 Bartal et al. 2018/0048623 Al 2/2018 Bansal et al,
2005/0262554 Al 11/2005 Brooks et al. 2018/0077119 Al 3/2018 Tields et al.
2007/0011734 Al 1/2007 Balakrishnan et al. 2018/0077189 Al 3/2018 Doppke et al.
2008/0037423 Al 2/2008 Singh et al. 2018/0084034 Al1* 3/2018 Stelmar Netto GO6F 9/46
2008/0059596 Al 3/2008 Ogawa 2018/0088964 Al* 3/2018 Hussain GOG6F 9/4405
7008/0196102 Al /2008 Roesch 2018/0101371 Al 4/2018 Flanakin et al.
2008/0267186 Al 10/2008 Boukis et al. 2018/0123907 AL 52018 Raman et al.
2008/0282335 Al 11/2008 Abzarian et al. 2018/0145999 Al 52018 Ertugrul et al.
2009/0300341 A1 12/2009 Buehler et al. 2018/0167405 Al 6/2018 Comay et al.
2010/0106764 Al 4/2010 Chadwick et al. 2018/0176102° AL 6/2018 Bansal et al.
2010/0107085 Al 4/2010 Chadwick et al. 2018/0176252 Al 6/2018 Nimmagadda et al.
2010/0293544 Al* 11/2010 Wilson GOGF 9/45558 2018/0176261 Al 6/2018 Bansal et al.
718/1 2019/0180141 Al 6/2019 Tiag et al.
2019/0182276 Al 6/2019 Tiagl et al.
2010/0325199 Al1* 12/2010 Parkcooeenn, GO6F 16/10 5
“ 700/203 2019/0230064 Al 7/2019 Soman
2010/0332262 Al1™* 12/2010 Horvitz G06Q 30/06
705/4 OTHER PUBLICATTONS
2012/0131591 Al1* 5/2012 Moorthi HO04L 67/10
718/104 Anwar, Mahwish, “Virtual Firewalling for Migrating Virtual Machines
2012/0226808 Al* 9/2012 Morgan G06Q 30/04 in Cloud Computing,” 2013 5th International Conference on Infor-
. 709/226 mation and Communication Technologies, Dec. 14-15, 2013, 11
2013/0067090 Al 3/2013 Batrount HO4L ggg/ggg pages, IEEE, Karachi, Pakistan.
Blei, David M., “Probabilistic Topic Models,” Communications of
3
2015/0185413 Al 72013 Beaty ..ooooveivviinn HO4L jggggj the ACM, Apr. 2012, 8 pages, vol. 55, No. 4, ACM, New York, New
| | | York, USA.
38285;2822 i gggg gz:;f;obles et al. Maheshwari, Ritu, et al., “Private Virtual Cloud Infrastructure
2015/0358288 Al 12/2015 Jain et al Modelling using ‘VCPHCF-RTT’ Security Agent,” 2018 4th Inter-
7015/0358391 Al 12/2015 Moon et al. n_ational Conference on Computing Communication and Autm_na-
2016/0112443 Al 4/2016 Grossman et al. tion (ICCCA), Dec. 14-15, 2018, 5 pages, IEEE, Greater Noida,
2016/0156591 Al 6/2016 Zhou et al. India.
2016/0191463 Al 6/2016 Mohanty et al. Mimno, David, et al., “Bayesian Checking for Topic Models,”
2016/0294987 Al 10/2016 Tian et al. Proceedings of the Conference on Empirical Methods in Natural
2016/0323318 Al 1172016 Ternll et al. Language Processing, Jul. 27-31, 2011, 11 pages, ACL, Edinburgh,
2016/0350683 Al 12/2016 Bester et al. Scotland, UK.
2Oi‘7/0005986 Al L/ 2017 Bansal et al. Steyvers, Mark, et al., “Probabilistic Topic Models,” Handbook of
%8;;88%3?2; i éggg ﬁ[aiaﬁf;l;?zfl et al. Latent Semantic Analysis, Month Unknown 2007, 15 pages, Lau-
2017/0207968 Al 7/2017 Ficken et al. rence Erlbaum Associates. . .
2017/0222977 Al 2/7017 Newell et al. Ghafir, Ibrahim, et al., “A Survey on Network Security Monitoring
2017/0293994 A1l 10/2017 1. et al. Systems,” 2016 IEEE 4th International Conference on Future Inter-
2017/0324632 A1 11/2017 Arora net of Things and C_loud Workshops, Aug. 22-24, 2016, 6 pages,
2017/0324765 Al 11/2017 McLaughlin et al. IEEE, Vienna, Austria.
2017/0359217 Al 12/2017 Ahuja et al.
2017/0374102 A1 12/2017 Woolward * cited by examiner

TR

Ol 1SOH

GEL
E Ld NA ¢V NA LV INA

US 11,018,970 B2

- ‘.

h ”

= INAS

o “

>

W

7 Col mc_@cm_ SOOIAISS
o

=\ 0T JeAe uonezienuia
gl

7e) CL | S02.nosoYy

gl

>,

o~

>

COT Jebeue Se2IMS

001

U.S. Patent

US 11,018,970 B2

Sheet 2 of 9

May 25, 2021

U.S. Patent

Oc L J9ABT uolezifenia

HB

GG * -

O
Q!

SOT 1SOH

GEL _,m A
NAS _2> NA
INAS 0€t 34N
mwr

0c | 18Ae] uonezienJip

HH

g ‘b1

<
N

Gel K= AY A
WNAS ANA | | WA AN
_ _ _

0 I A8Ae uonezijeniin

HH

GOT 1soH

GEl v A
NAS ANA NA

U.S. Patent May 25, 2021 Sheet 3 of 9 US 11,018,970 B2

300

R\

305
Recelve aggregate service
resource configuration

310

ldentify affected host machines
315

Determine allocation of service

resources for a host

320

Send configuration to the host

325

< Woro ross?

End

Fig. 3

US 11,018,970 B2

Sheet 4 of 9

May 25, 2021

U.S. Patent

q jueus|

0Z T 18AeT uonezienuip

vV JUBUS|

Slke

q Jueus|

0c [18AeT uonezienuip

v JUBUS|

2 [

- _ G 'bi14 _
= €06 1Z0)8
™~

N _

m L9 A 27 NA | LY NA L9 A 2y A LY INA
— _ _

— / odl S

N GG

-

GG auibug jremali GG auibug |lemaird

Sheet 5 of 9

May 25, 2021
=
>
N
<
E IE
>
=
-

U.S. Patent

U.S. Patent May 25, 2021 Sheet 6 of 9 US 11,018,970 B2

600

R}

605
Recelve service usage data from
managed hosts

610

Compile received service usage

data to determine aggregated
usage data

615
Present aggregated metrics

US 11,018,970 B2

Sheet 7 of 9

May 25, 2021

U.S. Patent

0S¢
04c¢
004

SdO

05¢
067
004

WNAIN

Z ‘bi4

0G¢C
04¢
00S

NdO

¢

JUBUD|

| 1 UEUS|

ENT
¢N |
LN
N1

N o
= |2
e
I%i

aulyoe|n E

Oc/l

J8juseIE(]

L 1ISOH

GO/ Jebeuep

U.S. Patent May 25, 2021 Sheet 8 of 9 US 11,018,970 B2

800

R\

805
Exceed threshold?
Exceed tolerance count?
825

(Generate Alert

Reset tolerance count

830

End

Or6

G96

US 11,018,970 B2

B

0lL6

MIOMION _ SO2IAS(] INdu| 10SS920.d

Sheet 9 of 9

G06

__E

Y6

May 25, 2021

U.S. Patent

AJOWOBN
WB1SAS

G¢6

(NdD)
U buissadoud

solyde.n)

0c6

0t6

NOY

obrl0]1S

GE6

006

US 11,018,970 B2

1

MONITORING RESOURCE CONSUMPTION
FOR DISTRIBUTED SERVICES

CLAIM OF BENEFIT TO PRIOR
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application 62/415,458, filed Oct. 31, 2016. U.S.
Provisional Patent Application 62/415,458 1s incorporated
herein by reference.

BACKGROUND

In various multi-tenant environments (e.g., cloud envi-
ronments, datacenters, etc.), several host machines operate
to host virtual machines (VMs) for the different tenants of
the multi-tenant environment. In some cases, several work-
load (or guest) VMs of various different tenants can operate
on a single host, maintaining a logical separation so that
traflic for the workload VMs of the different tenants 1s
1solated from each other.

Increasingly, in such shared environments, security ser-
vices (as well as other services) must be applied within the
datacenter, not only against external threats, but as well as
from threats of other machines within the datacenter. In
some such cases, the services are distributed and enforced
throughout the network. For example, a distributed firewall
provides firewall services with multiple enforcement points
throughout the network (e.g., at hypervisors that operates on
cach host machine).

However, distributing the services comes with a cost, as
the services consume resources in the host to be used by the
VMs. This 1s an important factor to consider when deciding,
the number of workload VMs that can be effectively run on
the host. There 1s no way for the administrator to identify
how much resources are being consumed by different dis-
tributed services (e.g., firewall, load balancing, anti-virus,
etc.). As the services are distributed throughout the network,
they must also be scaled as new host machines (for new
workload machines) are added to the network.

While resources for the workload VM are often managed
by virtualization layers that operate on the hosts, services
provided for the workload VMs by each host are not
similarly managed. It 1s often possible for network traflic
from certain VMs to use a majority of the service resources
(e.g., processing and memory resources dedicated to pro-
viding the services), starving the other VMs that share the
service resources on the host. For example, VMs for a
particular tenant could create a huge number of connections
that fill up a heap for a distributed firewall (DF W), monopo-
lizing the service resources and preventing VMs of other
tenants from creating new connections. Similar problems
can also arise between different services, different providers
of the services, etc.

BRIEF SUMMARY

Some embodiments provide a method for managing ser-
vice resources of a plurality of host machines. Service
resources, as described 1n this application, include resources
(e.g., processor, memory, etc.) that are reserved for services
(e.g., security, load balancing, encryption, etc.) provided for
guest virtual machines (VMs) that operate on a particular
host machine. The services of some embodiments include
firewall, dynamic host configuration protocol (DHCP), han-
dling of address resolution protocol (ARP) requests, etc. In
some embodiments, the services of a host machine also

10

15

20

25

30

35

40

45

50

55

60

65

2

include third party services (e.g., anti-virus, etc.) that operate
as security VMs on the host machine.

The method of some embodiments receives a service
distribution configuration for several entities. The service
distribution configuration of some embodiments i1ncludes
configuration data for allocating service resources between
the diflerent entities operating on the host machine. In some
embodiments, allocating the service resources between the
different entities includes distributing the service resource
between diflerent tenants, diflerent services (e.g., firewall,
load balancing, encryption, third party security, etc.), or even
at the VM (or virtual network interface controller (VNIC))
level. In some embodiments, the service resources are
allocated between different providers of services, where a
single provider may provide more than one service. In some
embodiments, the service resources are allocated between a
set of host services and a set of third party services from
different providers.

In some embodiments, the method 1s performed by a
services manager, which manages a group of host machines.
The services manager then 1dentifies a set of host machines
on which a set of VMs for the diflerent entities operate, and
determines an amount of resources to be assigned to each
entity of the plurality of entities. In some embodiments, the
method proportionally determines the amount of resources
to be assigned to the different entities based on a number of
VMs for each entity operating on the host machine. Alter-
natively, or conjunctively, the method of some embodiments
determines the amount of resources to be assigned to the
different entities based on properties of the services (e.g., a
number of rules stored for each entity). The method of some
embodiments determines the amount of resources to assign
to diflerent entities based on a weight value assigned to each
entity. The weight value of some embodiments 1s used to
adjust the proportion of service resources that are made
available for use by the services of the different entities. In
some embodiments, the method assigns a minimum amount
of resources (or a minimum level of service) for preferred
entities (e.g., tenants that pay for higher levels of service),
and distributes the remaining resources for use by the
remaining entities.

The method then communicates with the 1dentified set of
host machines to modify a set of resource pools available on
cach host machine. The resource pools of some embodi-
ments control the allocation and availability of host
resources for the different services. For example, in some
embodiments, the host resources include processing
resources and memory resources of the host machine, which
have been allocated for the services.

Some embodiments provide a method for monitoring
service usage by virtual machines on host machines. Each
virtual machine of some embodiments 1s associated with one
of several entities. The method of some embodiments
receives service usage data from the managed host
machines. Service resources, as described in this applica-
tion, include resources (e.g., processor, memory, etc.) that
are reserved for services provided for guest virtual machines
(VM) that operate on a particular host machine. The service
usage data of some embodiments includes usage measure-
ments for host resources (e.g., processor, memory, etc.)
and/or a connections per second (CPS) measurement, which
measures a rate at which connections are handled or created
by a service (e.g., a distributed firewall) for an entity.

The service usage data identifies service usage for VMs
associated with each entity. The method then aggregates the
received service usage data and provides the aggregated
service usage data to a user (e.g., an administrator for a

US 11,018,970 B2

3

datacenter/cloud environment/tenant/etc.). The method of
some embodiments displays the aggregated service usage
data as a part of a user interface for a management appli-
cation. The displayed aggregated service data can then be
used to troubleshoot potential problems 1n the network or to
calculate charges for different tenants of the network based
on the service usage data.

Alternatively, or conjunctively, the method of some
embodiments uses the aggregated service usage data to

provide alerts to the user when the service usage exceeds
particular thresholds. The thresholds of some embodiments
are 1dentified by an administrator of a network (e.g., a
datacenter, a logical network within a datacenter, etc.) at a
services manager, which sets the thresholds for the services
at the various hosts. Some embodiments provide a method
for monitoring several virtual machines operating on a host
machine. The method monitors a service usage metric that
measures usage ol service resources by the plurality of VMs.
In some embodiments, the method calculates the service
usage metric periodically (e.g., once every 30 seconds)
and/or upon receiving input (e.g., from an administrator) to
calculate the service usage metric.

When the service usage metric exceeds a particular
threshold value a particular number of times, the method
generates an alert to notily a user of a potential unavailabil-
ity of available service resources. In some embodiments, the
method generates different types of alerts based on diflerent
threshold values or when the service usage metric continues
to exceed the particular threshold value for a greater number
of times. In some embodiments, the method, in addition to
generating the alert, acts to automatically alleviate the
situation by moditying the allocation of host resources,
redistributing VMs to different host machines, etc.

The preceding Summary 1s intended to serve as a brief
introduction to some embodiments of the mnvention. It 1s not
meant to be an introduction or overview of all of the
inventive subject matter disclosed in this document. The
Detailed Description that follows and the Drawings that are
referred to 1n the Detailed Description will further describe
the embodiments described in the Summary as well as other
embodiments. Accordingly, to understand all the embodi-
ments described by this document, a full review of the
Summary, Detailed Description and the Drawings 1s needed.
Moreover, the claimed subject matters are not to be limited
by the illustrative details 1n the Summary, Detailed Descrip-
tion and the Drawing, but rather are to be defined by the
appended claims, because the claimed subject matters can be
embodied in other specific forms without departing from the
spirit of the subject matters.

BRIEF DESCRIPTION OF TH.

(Ll

DRAWINGS

The novel features of the ivention are set forth in the
appended claims. However, for purposes of explanation,
several embodiments of the invention are set forth in the
following figures.

FIG. 1 illustrates an example of a system for managing
resources for services at host machines 1n a network.

FI1G. 2 1llustrates an example of allocating resource pools
for services at a host machine.

FIG. 3 conceptually illustrates a process for configuring
service resources for hosts managed by a services manager.

FI1G. 4 illustrates an example of allocating resource sub-
pools for granular resource assignments for services.

FIG. § illustrates an example of resource usage by a
service operating on a host machine.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 6 conceptually 1llustrates a process for gathering and
presenting aggregated service usage data.

FIG. 7 1llustrates an example of gathering and presenting
aggregated service usage data.

FIG. 8 conceptually illustrates a process for generating
alerts for service usage.

FIG. 9 conceptually 1llustrates an electronic system with
which some embodiments of the invention are implemented.

DETAILED DESCRIPTION OF TH.
INVENTION

(Ll

In the following detailed description of the invention,
numerous details, examples, and embodiments of the inven-
tion are set forth and described. However, it should be
understood that the mvention 1s not limited to the embodi-
ments set forth and that the mvention may be practiced
without some of the specific details and examples discussed.

Some embodiments provide a method for managing ser-
vice resources of a plurality of host machines. Service
resources, as described 1n this application, include resources
(e.g., processor, memory, etc.) that are reserved for services
(e.g., security, load balancing, encryption, etc.) provided for
guest virtual machines (VMSs) that operate on a particular
host machine. The services of some embodiments include
firewall, dynamic host configuration protocol (DHCP), han-
dling of address resolution protocol (ARP) requests, etc. In
some embodiments, the services of a host machine also
include third party services (e.g., anti-virus, etc.) that operate
as security VMs on the host machine.

The method of some embodiments receives a service
distribution configuration for several entities. The service
distribution configuration of some embodiments i1ncludes
configuration data for allocating service resources between
the diflerent entities operating on the host machine. In some
embodiments, allocating the service resources between the
different entities includes distributing the service resource
between diflerent tenants, different services (e.g., firewall,
third party security, etc.), or even at the VM (or virtual
network interface controller (VNIC)) level. In some embodi-
ments, the service resources are allocated between diflerent
providers of services, where a single provider may provide
more than one service. In some embodiments, the service
resources are allocated between a set of host services and a
set of third party services from different providers.

In some embodiments, the method 1s performed by a
services manager, which manages a group of host machines.
The services manager then i1dentifies a set of host machines
on which a set of VMs for the diflerent entities operate, and
determines an amount of resources to be assigned to each
entity of the plurality of entities. In some embodiments, the
method proportionally determines the amount of resources
to be assigned to the diflerent entities based on a number of
VMs for each entity operating on the host machine. Alter-
natively, or conjunctively, the method of some embodiments
determines the amount of resources to be assigned to the
different entities based on properties of the services (e.g., a
number of rules stored for each entity). The method of some
embodiments determines the amount of resources to assign
to different entities based on a weight value assigned to each
entity. The weight value of some embodiments 1s used to
adjust the proportion of service resources that are made
available for use by the diflerent entities. In some embodi-
ments, the method assigns a minimum amount of resources
(or a mmimum level of service) for preferred entities (e.g.,
tenants that pay for higher levels of service), and distributes
the remaining resources for use by the remaiming entities.

US 11,018,970 B2

S

The method then communicates with the 1dentified set of
host machines to modify a set of resource pools available on
cach host machine. The resource pools of some embodi-
ments control the allocation and availability of host
resources for the different services. For example, in some
embodiments, the host resources i1nclude processing
resources and memory resources of the host machine, which
have been allocated for the services.

Some embodiments provide a method for monitoring
service usage by virtual machines on host machines. Each
virtual machine of some embodiments 1s associated with one
of several entities. The method of some embodiments
receives service usage data from the managed host
machines. Service resources, as described in this applica-
tion, include resources (e.g., processor, memory, etc.) that
are reserved for services provided for guest virtual machines
(VMs) that operate on a particular host machine. The service
usage data of some embodiments includes usage measure-
ments for host resources (e.g., processor, memory, etc.)
and/or a connections per second (CPS) measurement, which
measures a rate at which connections are handled or created
by a service (e.g., a distributed firewall) for an entity.

The service usage data identifies service usage for VMs
associated with each entity. The method then aggregates the
received service usage data and provides the aggregated
service usage data to a user (e.g., an administrator for a
datacenter/cloud environment/tenant/etc.). The method of
some embodiments displays the aggregated service usage
data as a part of a user interface for a management appli-
cation. The displayed aggregated service data can then be
used to troubleshoot potential problems 1n the network or to
calculate charges for different tenants of the network based
on the service usage data.

Alternatively, or conjunctively, the method of some
embodiments uses the aggregated service usage data to
provide alerts to the user when the service usage exceeds
particular thresholds. The thresholds of some embodiments
are 1dentified by an administrator of a network (e.g., a
datacenter, a logical network within a datacenter, etc.) at a
services manager, which sets the thresholds for the services
at the various hosts. Some embodiments provide a method
for monitoring several virtual machines operating on a host
machine. The method monitors a service usage metric that
measures usage of service resources by the plurality of VMs.
In some embodiments, the method calculates the service
usage metric periodically (e.g., once every 30 seconds)
and/or upon receiving input (e.g., from an administrator) to
calculate the service usage metric.

When the service usage metric exceeds a particular
threshold value a particular number of times, the method
generates an alert to notily a user of a potential unavailabil-
ity of available service resources. In some embodiments, the
method generates different types of alerts based on diflerent
threshold values or when the service usage metric continues
to exceed the particular threshold value for a greater number
of times. In some embodiments, the method, 1n addition to
generating the alert, acts to automatically alleviate the
situation by modifying the allocation of host resources,
redistributing VMSs to different host machines, eftc.

An overview of the process for managing and monitoring
the resource usage of distributed services has been described
above. Further details and examples are described below.
Specifically, Section I describes a distributed service system
for managing and monitoring the resource usage of distrib-
uted services. Section II describes examples for allocating,
service resources at hosts 1 a system. Section III then
describes examples of monitoring service usage at the hosts

10

15

20

25

30

35

40

45

50

55

60

65

6

in the system. Finally, section IV describes an electronic
system with which some embodiments of the invention are
implemented.

I. Distributed Services System

FIG. 1 illustrates an example of a distributed services
system for managing resources for services (e.g., security,
firewall, load balancing, etc.) at host machines in a network.
The distributed services system 100 of some embodiments
provides distributed services at many points 1n the system.
The system 100 shows a services manager 105 that manages
a series of host machines 110. In some embodiments, the
services manager 105 operates on a set of controllers that
manage virtualization layers and/or software forwarding
clements of the host machines.

Each host machine 110 includes resources 115, which
represent the central processing unit(s) (CPU), memory, eftc.
ol the host machine 110. The host machine 110 also includes
a virtualization layer 120, which virtualizes the resources
115 for use by the various workload VMs (A1, A2, and B1)
operating on the host machine 110.

In some embodiments, the distributed services are pro-
vided by one or more service modules (or service engines)
that operate within the virtualization software 120 (e.g., a
hypervisor) of the host machine 110 to provide various
services (e.g., load balancing, encryption, firewall, security,
etc.) for workload machines on the host. Alternatively, or
conjunctively, the distributed services of some embodiments
are provided by security virtual machines (SVMs) (or secu-
rity data compute nodes (SDCNs) that provide specialized
services (e.g., firewall, anti-virus, etc.) for the workload
VMs operating on the host machine. The SVMs of some
embodiments are third-party VMs from third-party vendors
(e.g., Palo Alto Networks, McAfee, Symantec, etc.) to
provide the services. The SVMs are not directly connected
to the workload VMs of the host machine 110, but rather
through a SVM interface (SVMI) to provide secured ser-
vices for the workload VMs.

In some embodiments, the host machines 110 use a
combination of both system modules (e.g., service engine
125) and third-party SVMs (e.g., SVM 135) to provide
services for the workload machines. In some embodiments,
the service engine (SE) 125 intercepts network traflic to
perform a service (e.g., firewall rule checks) based on locally
stored 1information (e.g., firewall rules). In other embodi-
ments, the SE 125 captures the network traflic, but commu-
nicates with an SVM 135 (e.g., a firewall SVM) that
performs the service. In some embodiments, the SE 1235
functions, not only as a system module for communicating
with an SVM 135, but also as a service engine that performs
its own set of services.

In some embodiments, the SE 125 intercepts (or filters)
incoming and/or outgoing network tratlic for each service of
the workload VMs Al, A2, and B1. The packets of some
embodiments are captured at a port of a software forwarding
clement (MFE 130) that operates on the host machine 110.
The ports of the software forwarding element 130 in some
embodiments include one or more function calls to one or
more system modules that implement system operations
(e.g., firewall, ARP broadcast suppression, DHCP broadcast
suppression, etc.) on mcoming and outgoing packets that are
received at the ports.

Other security and I/O system operations can also be
implemented in some embodiments of the invention. By
implementing a stack of such function calls, the ports can
implement a chain of operations on incoming and/or out-
going packets in some embodiments. Also, 1n some embodi-
ments, other modules 1n the data path (such as the VINICs,

US 11,018,970 B2

7

etc.) implement the security and I/O function call operations
(such as the firewall function calls), instead of the ports.

In some embodiments, when a service 1s applied to a
group ol workload VMSs at a host machine 110, a service
instance filter 1s created on each of the virtual network
interface controllers (VNICs) associated with the workload
VMs. The filter channels various network communications
(e.g., network connection requests) to a service module
and/or a SVM {or inspection. In some embodiments, each
filter 1s used to store the network connections for the various
network services and have rules configured there.

For example, in some embodiments, the service engine 1s
a firewall engine for implementing a distributed firewall.
The firewall engine can be called for incoming or outgoing
packets to check whether such packets should be delivered
to a VM or sent from a VM. When the distributed firewall
service 1S enforced at a host machine, a firewall filter 1s
configured on each VNIC on the host machine (unless the
VM 1s placed in an exclusion list). The firewall rules for the
distributed firewall are configured to check the packets on a
per filter basis.

To perform this check, the filter of some embodiments
supplies a set of attributes of a filtered packet to the service
engine. In some embodiments, the set of packet attributes
are packet 1dentifiers, such as traditional five tuple i1dentifi-
ers, which include the packet’s source identifier, destination
identifier, source port, destination port, and protocol (ser-
vice). Belore supplying these identifiers to the service
engine, the filter extracts these 1dentifiers from a packet that
1t rece1ves.

In some embodiments, one or more of the packet attri-
butes, or packet identifiers, are logical values that are
defined for a logical network (e.g., can be IP addresses
defined 1n a logical address space). In other embodiments,
all of the identifier values are defined in the physical
domains. In still other embodiments, some of the i1dentifier
values are defined 1n logical domain, while other 1dentifier
values are defined 1n the physical domain. A logical network,
in some embodiments, defines how data 1s passed between
machines of the logical network, which may differ from the
actual physical domain to which the machines are con-
nected.

The firewall engine stores the firewall rules that 1t
enforces 1n a firewall rules data storage. To enforce these
rules, the firewall engine tries to match the received packets
attribute set with corresponding attribute sets that are stored
for the firewall rules. In some embodiments, each firewall
rule 1n the data storage 1s specified in terms of (1) the same
set of packet 1dentifiers (e.g., five-tuple 1dentifiers) that the
firewall engine recetves from the port, and (2) an action that
1s typically specified as an “allow” to allow a packet through
or a “deny” to drop the packet. An identifier 1n a firewall rule
can be specified 1n terms of an individual value or a wildcard
value 1n some embodiments. In other embodiments, the
identifier can further be defined in terms of a set of indi-
vidual values or an abstract container, such as a security
group, a compute construct, a network construct, etc.

In order to provide these services at the host machines
110, various host system resources are required. As
described above, the resources 115 represent the various
computing and memory resources of the host machine 110.

These resources 115 need to be used, not only by the
workload VMs, but by the host services (e.g., SE 125 and

SVM 135) at the host machine 110.

For example, when SE 125 1s a distributed firewall
engine, when network trathic 1s tlowing 1n the host machine
110, the SE 125 uses memory resources (e.g., stack and heap

10

15

20

25

30

35

40

45

50

55

60

65

8

memory) to store the firewall rules, as well as computing
resources to classify packets, apply firewall rules, and make
decisions on what to do with a particular packet tlow. In
some embodiments, SE 125 also stores state information for
network connections managed by the firewall engine in
order to provide stateful firewall services. In some embodi-
ments, the network connection state information 1s stored 1n
the heap memory by the stateful firewall engine i the
virtualization layer.

The distributed services are designed to scale-out. As
more hosts with more workload VMs are added to the
network, the distributed services are able to scale accord-
ingly, as each host machine 1s able to provide the requisite
services. However, as more workload VMs (with VNICs)
are added to the host machines, there will be more filter
instances and hence potentially more of the resources will be
utilized by the corresponding services. As more distributed
services are provided at the host machines, the resources
consumed by the services will become an important factor 1n
determining the number of VMs that can be run on each
host. Scaling the expansion of workload VMs and host
machines 1s a very important problem 1n large scale cloud
environments.

However, the expansion of workload VMs and host
machines 1 a cloud with several diflerent entities (e.g.,
tenants, service providers, etc.) can lead to situations in
which one entity monopolizes the connections heap and
starves machines for other entities from access to the ser-
vices. This does not benefit the end to end packet delivery.

II. Allocating Resource Pools for Host Services

In order to prevent such resource starvation, some
embodiments provide a way for the provider administrator
to specily and allocate an amount of resources that can be
consumed by the services for the workload VMSs. This
teature also helps 1n preventing denial of service attacks on
the host machines. By allocating service resources at a more
granular level, no one VM can overwhelm the resources of
the service (e.g., by creating an excessive number of net-
work connections) and deny the service to others. Even 1f an
outside attacker manages to infect a machine within the
datacenter and keeps targeting 1it, they will only be able to
consume the resources for that particular tenant.

In some embodiments, the host resources are split into
resource pools to partition the available CPU and memory
resources. The host machines of some embodiments provide
a separate resource pool for the workload VMs of each
tenant operating on the host machine to ensure certain
service levels for different tenants. In some embodiments,
the host machine allocates a set of workload resource pools
for workload VMs and a separate set of service resource
pools for the various services (e.g., service engine module,
SVMs, etc.). In some embodiments, the service resource
pools are further divided into sub-pools based on different
divisions or entities, such as tenants, services, service pro-
viders, etc. The allocation of resources 1nto various resource
pools 1s described below with reference to FIGS. 2-4.

FIG. 2 1llustrates an example of allocating resource pools
for services at a host machine 1n four stages 201-204. Each
stage shows a host 110 similar to those described above with
reference to FIG. 1. In this example, the resources 2135
represent the resources allocated to the services to be pro-
vided for the workload VMs of the host machine 110. For
example, in some embodiments the services engine (SE) 125
1s a firewall engine that uses the allocated resources of the
service resource pool 215 to store network connection tlows
of the workload VMs to provide a stateful service.

US 11,018,970 B2

9

The first stage 201 shows that VMs Al and A2 for tenant
A operate on host 105. Host 110 also includes a SVM 135
and SE 125 for providing other services for the workload
VMs operating on host 110. In the first stage 201, the service
resource pool 215 1s shared between all of the host services
(1.e., SE 125 and SVM 135).

Some embodiments of the mvention provide a services
manager (not shown) for managing the allocation of the
service resource pools of the host machines in a network
system. In some embodiments, the services manager pro-
vides a user mterface (Ul) and/or application programming,
interface (API) to configure and monitor the resource pools
on a per entity basis. The allocation of some embodiments
1s configured as a percentage of the total available resource
pool (1.e., from the pool of resources already allocated to the
services) ol the host machines.

The second stage 202 shows that host machine 110
receives a configuration 250 from a services manager. The
configuration 250 1s used to instantiate a new VM Bl for a
new tenant B on host 105. The second stage 202 also shows
that the service resource pool 2135 of host 110 has been
redistributed to accommodate services for machines (1.e.,
VM B1) of the new tenant B. In particular, resource pool 215
allocated for the services of host 105 has been divided
between the tenants A and B.

The configuration 250 1s used to assign some amount of
the service resources for each tenant and for each service
(e.g., based on the numbers of rules and number of VMs (2
MB for 10VMs, 100 k rules)) In some embodiments, the
allocation of the host service resource pool 215 for the
different tenants are automatically allocated based on one or
more of a number of VMs to be instantiated, the types of
VMs to be instantiated, service levels for the different
tenants, etc.

In the third stage 203, host 110 receives another configu-
ration 255 to adjust the allocation of the host service
resource pool 215. The allocations may be adjusted for
various reasons. For example, a new configuration may be
received when the priorities for different tenants change,
when a tenant requests additional service resources, in
response to alerts triggered by potential resource shortages,
etc.

In some embodiments, the configuration 255 also includes
other configuration information that can be used to monitor
the service usage at the host machine 110. For example, in
some embodiments, the configuration 255 includes thresh-
old information for a metric (e.g., an amount of {free
memory, consumed processor usage, etc.) of the consumed
service resources. The host machine 110 of some such
embodiments provides alerts and performs various actions
based on various threshold values provided in the configu-
ration 255. Alerts are described 1n further detail below in
Section 111.B.

The fourth stage 204 shows that the allocation of host
service resource pool 215 has been modified to increase the
resources available for the services of tenant B, based on the
new configuration 235. In this example, the new allocation
1s not proportional to the number of VMSs for each tenant, but
rather 1s based on a service level required for workload VMs
of tenant B. A cloud provider can make resources available
tor the various services to be used by the workload VMs for
cach tenant based on service level agreements (SLA) that a
cloud provider has for diflerent tenants.

FIG. 3 conceptually illustrates a process for configuring
service resources for hosts managed by a services manager.
The process 300 receives (at 3035) an aggregate service
resource configuration. In some embodiments, the aggregate

10

15

20

25

30

35

40

45

50

55

60

65

10

service resource configuration determines a proportional
distribution or priority for diflerent tenants in the system.
The aggregate service resource configuration of some
embodiments 1dentifies a minimum service level for certain
tenants.

The process 300 then identifies (at 310) hosts that are
allected by the aggregate service resource configuration. In
some embodiments, the aflfected hosts are hosts at which the
current resource allocation does not comply with require-
ments of the aggregate configuration. The process 300 then
determines (at 315) a new allocation of service resources for
one of the aflected hosts.

The process 300 then sends (at 320) the new configuration
to the aflected host to redistribute the allocated resources for
the host. In some embodiments, the process 300 sends (at
320) the new configuration through a set of API calls to a
virtualization layer of the host machines, which uses the new
configuration to generate and configure resource pools (or
sub-resource pools) for the different tenants.

The process 300 determines (at 325) whether any addi-
tional hosts are aflected by the aggregate service configu-
ration recerved at 305. When the process 300 determines (at
325) that additional hosts are affected, the process 300
returns to step 310. Otherwise, the process 300 ends.

In the example of FIG. 2, the service resources are
distributed between different tenants A and B. However, the
services manager of some embodiments allocates the host’s
service resources based on other groups as well. FIG. 4
illustrates an example of allocating resource sub-pools for

granular resource assignments for services 1 two stages

401-402. The first stage 401 shows host 1035 as described 1n
the example of FIG. 2. Host 105 provides SVM 135 and a
services engine (SE) 125, The services engine may provide
any of several different security and I/O services such as
firewall, anti-virus, ARP suppression, etc.

In this example, 1n addition to dividing the host service
resources between the different tenants, the resources for
tenant A are further divided between the different services
(1.e., services engine 125 and SVM 135), ensuring that one
service does not starve the other service for resources. In this
example, the network resources allocated for tenant B are
not subdivided between the different network services. In
some embodiments, the network resource allocations for
network services can be different between the different
tenants. In some embodiments, the allocations can be
divided into multiple different levels. For example, in some
embodiments, the SVM resources can be further divided
between individual SVMs or mto groups of SVM based on
a provider (e.g., a third party developer), so that all of the
SVMs developed by a particular provider share a single pool
ol resources.

Although many of the examples are described with a first
level division of the securlty resources between different
tenants, the allocation of service resources may not be based
on tenants at all. For example, in some embodiments, service
resources are allocated between the different services (or
third-party (or partner) service providers that provide ser-
vices) for any of the workload VMs operating on the host
machine. This ensures that a particular service (or those of
a particular partner) do not aflect the provision of the other
services for the workload VMs. In some embodiments, the
services manager allocates the resources between the dif-
terent partner SVMs and their service istances 1n the kernel
of the host machines. The service resources can be allocated
as a percentage of the total available service resource pool.

In some embodiments, the services manager allocates

resource pools at a per VNIC level or per filter level as well.

US 11,018,970 B2

11

When the host service resources are allocated at a per VNIC
level, the service resources (e.g., the memory heap) are used
for all of the services (e.g., firewall network connections,
network connections for a partner service, etc.). When the
host service resources are allocated at a filter level, the
network connections for that particular filter (either host
service or partner SVM service) 1s stored 1 the heap,
providing granular control of the heap size required for each
VNIC.

FIG. § illustrates an example of resource usage by a
distributed service operating on a host machine 1n four
stages 501-504. The first stage 501 shows that VM A1l for
tenant A sends a packet 550 to a destination Internet protocol
(IP) address IP1. The packet 550 i1s intercepted by the
firewall engine 525 (e.g., through filters of a software switch
(not shown)). Firewall engine 525 maintains a connection
table 530 to store state information for various connections
made by the different VM machines. In this example,
connection table 330 stores connections for tenant A 1n the
connection table and represents the amount of memory (or
other resources) available for the firewall engine 3525 of
tenant.

In the second stage 502, the state information for the
connection between VM A1l and the machine at IP1 1s stored
in the connection table 530. In this example, as the available
resources ol the connection table 530 are approaching a limit
(e.g., when the available resources are almost depleted (e.g.,
90% 1tull)), an alert 555 1s triggered. The alert of some
embodiments 1s sent to alert a user (e.g., administrators of
the datacenter and/or tenant) regarding potential network
service outages. Various methods for alerting are described
in further detail below 1n section I11.B. The second stage 502
also shows that VM A2 sends another packet 560 that is
intercepted by firewall engine 525.

As an enhancement, the service manager of some embodi-
ments configures automatic actions that can be taken at
varying threshold values (e.g., 1n response to diflerent alerts)
tor the service resources. For 1nstance, there can be multiple
increasing threshold levels with corresponding vyellow,
orange and red alerts. When the system hits the vellow alert,
only a notification could be generated. When 1t gets to
orange, an email could be generated to the admin. When 1t
gets to red, corrective actions (e.g., shutting down the errant
VM, dropping all new/existing connections from the errant
VM, etc.) could be taken, either automatically (1.e., upon
detection of the red alert) or upon instructions from an
admuinistrator.

The third stage 503 shows that the state information for
packet 560 (1.e., between VM A2 and the machine at 1P2)
has been added to the connection table 520. In some
embodiments, another alert 1s sent when the resources are
full. In some embodiments, different levels of alerts are
provided for managing the distributed services 1n a network.

The third stage 503 also shows that VM Al wants to
establish another connection with a new machine at IP6.
However, as shown 1n the fourth stage 504, because the
connection table 530 1s full (1.e., the available host resources
tor the firewall engine 525 are all consumed), the connection
request 565 1s dropped. In some embodiments, all new
connection requests are dropped until more resources
become available for firewall engine 525 (e.g., based on new
resource allocations, releasing old network connections,
etc.).

III. Monitoring Host Service Usage

As resources are spread out over many host machines 1n
a network system (e.g., datacenters, cloud environments,
etc.), 1t becomes increasingly diflicult to monitor the aggre-

10

15

20

25

30

35

40

45

50

55

60

65

12

gate resources used by the various entities (e.g., tenants,
partner service providers, etc.). Some embodiments provide
methods for calculating service usage and presenting the
aggregated service usage data to a user (e.g., an adminis-
trator for a tenant/datacenter/service, etc.).

A. Calculating Service Usage

Some embodiments provide methods to calculate metrics
to measure the usage of different host resources by services
operating on the host machines. Usage metrics can be useful
in capacity planning and server consolidation ratio while
using distributed services 1n a network system. For example,
in some embodiments, the usage metrics are momtored for
a test implementation (e.g., on an emulated network deploy-
ment, on a subset of machines 1n the deployment, etc.), prior
to the tull deployment of machines and services 1n a data-
center. Based on the calculated metrics for host machine
resource usage 1n the test implementation, an administrator
can extrapolate to determine an optimal allocation of work-
load and service resources for host machines 1 a full
deployment of machines 1n the network.

In addition, calculating such metrics can be used to
identify attack scenarios by malicious attackers within the
datacenter. For example, when the calculated metrics deter-
mine that a particular VM 1s suddenly consuming more
resources than usual, the services engine of some embodi-
ments generates appropriate notifications to the administra-
tors. The sections below describe algorithms used to calcu-
late resource usage (e.g., memory and processor resources)
by services 1n a network.

1. Memory Utilization

In order to monitor memory utilization by services oper-
ating at the host machines, some embodiments provide a
monitoring module that operates on each host machine. The
monitoring module of some embodiments 1s used to manage
heap memory allocations/deallocations at the host machine.
In some embodiments, the monitoring module monitors
memory usage by tracking the consumed memory and the
total available memory for each memory allocation/deallo-
cation. For every memory allocation from any of the
memory heaps, the monitoring module increments the con-
sumed memory and decrements the total available memory
by that amount. For every free memory call from any of the
memory heaps, the monitoring module increments the total
available memory and decrements the consumed memory by
that amount.

In some embodiments, when the total available memory
(1.e., the total memory available for a particular service,
VNIC, tenant, etc.) sinks below a particular threshold (or
when the consumed memory exceeds a threshold), the
monitoring module sends an alert to the services manager. In
other embodiments, the monitoring module sends all of the
calculated and monitored data to the services manager, and
the services manager calculates the metrics to determine
whether to generate new alerts based on the consumed
resources. Generation of the alerts 1s discussed in further
detail below.

2. CPU Utilization

The monitoring module of some embodiments 1s used to
monitor processor usage at the host machine for the services.
The processing resources can be consumed for various
functions of the services, such as processing packets, tlow
management, reporting, analyzing {files, as well as creating
and purging connection states. In some embodiments, the
time spent performing the service functions are calculated
using a timer, which tracks the time used for each function
path. The time used 1s then tracked for each entity (e.g.,
tenant, service, VNIC, etc.).

US 11,018,970 B2

13

In some embodiments, the metric measures the amount of
the processing resources utilized by each entity. In some
embodiments, the monitoring module periodically polls the
CPU usage and calculates utilized processing resources as:

CPU utilized =

rotalCurrentCpuTime — totalPreviousCpuTime
x (numCPUs used)

time at polling— prevPollTime

3. Connections Per Second (CPS)

In some embodiments, rather than directly calculating the
resources consumed by the services, the monitoring module
calculates a number of connections per second (CPS) that
are handled by a service (e.g., a firewall). CPS 1s a metric
that 1s commonly used by hardware vendors for firewalls to
monetize the firewall services and to provide diflerent
grades ol service for different clients.

However, as the services are distributed through the
system, rather than at an edge of the network, CPS becomes
difficult to calculate 1n a distributed system. The calculated
CPS for a distributed service can be calculated by a moni-
toring module operating on the host 1tself and presented to
an administrator, either as a combined (or aggregate) level
value or independently at the host level.

In some embodiments, the monmitoring module schedules
a thread to collect all the new tlows (new connections)
across all of the filters of the host machine for a constant
time interval. The monitoring module of some embodiments
tracks the count of new flows for each filter and sums 1t up
to determine the total number of new tlows for the time
period. The monitoring module divides the number of new
connections over the time interval to calculate the CPS
handled by the service.

In some embodiments, these metrics are measured at
various 1ntervals (e.g., every 10 seconds) to allow adminis-
trators monitor resource usage by the services. The algo-
rithms of some embodiments are performed periodically in
a separate thread to measure these metrics. In some embodi-
ments, the intervals at which the metrics are captures are
configured by the administrator as well.

In addition to calculating them periodically, the services
manager ol some embodiments triggers (e.g., through a Ul
and/or API calls) an on-demand calculation of these metrics

at the monitoring modules of the host machines. The on-
demand calculation of these metrics allows an administrator
of the network to proactively monitor resource usage by the
services of the network. In some embodiments, the metrics
are continuously calculated, using a separate thread that
continuously monitors the usage of the various metrics and
presents this data to a user (e.g., 1n the services manager Ul),
allowing the administrator to identity and resolve 1ssues 1n
real-time.

B. Presenting Distributed Service Usage

The services manager of some embodiments calculates
the various metrics and presents them to an admimstrator,
allowing the administrator to monitor performance and
resolve potential 1ssues in the network. In some embodi-
ments, the service usage 1s presented at multiple levels of
aggregation. The services manager of some embodiments
aggregates the measured performance metrics (like those
described above) from the distributed services at the host
machines and presents the combined metrics for an admin-
1strator services manager layer.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 6 conceptually 1llustrates a process for gathering and
presenting aggregated service usage data. The process 600 1s
described with reference to the example of FIG. 7. FIG. 7
illustrates an example of gathering and presenting aggre-
gated service usage data. The example of this figure shows
service data as 1t 1s collected and analyzed 1n a network.
Specifically, this example shows a manager 703 that collects
service usage data from hosts 1 and 2.

The process 600 receives (at 603) service usage data from
the managed host machines. The managed host machines of
some embodiments are host machines of a network (e.g., a
datacenter, etc.) that operate VMs for multiple clients. The
example of FIG. 7 shows data 720 and 725, which are
collected at each of the host machines 1 and 2 respectively.
The service usage data of some embodiments includes
various metrics for measuring the usage of host service
resources (e.g., processor usage (CPU), memory usage
(MEM), connections per second (CPS), etc.).

-

The process 600 then compiles (at 610) the received
service usage data for multiple hosts managed by a particu-
lar services manager to present overall metrics at the man-
ager level. For example, in some embodiments, the process
600 provides a set of aggregate views of the collected
service usage data divided by tenant, so that a system
administrator can easily view the service resource usage of
cach tenant 1n the system. Similarly, the usage data can also
be divided based on the different services, service providers,
or even host machines. Displaying the gathered metrics at a
per-host level (how much CPU, memory, CPS on each host),
allows an administrator to identify potential issues at a
particular host based on service usage.

The process 600 then presents (at 615) the aggregated
metrics to a user (e.g., an administrator) of the system. In
some embodiments, different metrics are provided to differ-
ent administrators based on their roles 1n the network. For
example, an administrator for tenant A may view usage
metrics for the machines of tenant A, while an administrator
for a datacenter may view usage metrics for several tenants
throughout the datacenter. Alternatively, or conjunctively,
the per host metrics will be aggregated in the services
manager to present the metrics from the network service
level (e.g., CPS of the distributed firewall, combined CPU
usage of all SVMs of a third party vendor, combined
memory usage of a service engine across multiple hosts,
etc.).

In some embodiments, the services manager presents
alerts to the user based on threshold values that are deter-
mined for the different metrics. In some embodiments, an
administrator can configure resource thresholds for the dii-
ferent metrics (e.g., CPS, CPU/memory utilization, etc.)
through the services manager. The services manager of some
embodiments then updates the monitoring modules at the
host machines to trigger alerts based on the thresholds. In
some embodiments, the threshold configuration 1s per-
formed via a REST API (for Cloud Management Platforms)
or a Ul of the services manager.

For example, when the tenant starts to hit the limits on the
configured resource pool (e.g., when the connection heap 1s
filled with connections for the workload VMs of the tenant),
an alert (or a series of alerts) 1s generated to the provider
admin to review. Based on the total available resource pool
and/or a service level agreement for the tenant, the provider
can choose to allocate more resources from the available
resource pool. If not, any new connections will be dropped.
In some embodiments, the filters (which capture network
traflic before sending them to a destination and/or to a

US 11,018,970 B2

15

service) are updated based memory consumption and are
used to determine whether to initiate a new connection
request.

FIG. 8 conceptually illustrates a process for generating,
alerts for service resource usage. The process 800 of some
embodiments 1s performed by a distributed service engine
operating at a host machine, as described above. The process
800 captures (at 805) a metric measurement. The metric
measurements imnclude various measures of resource usage at
the host machine.

The process 800 then determines (at 810) whether the
resource usage metric exceeds a particular threshold. The
threshold of some embodiments 1s determined by an admin-
istrator or automatically by a services manager based on an
amount (or percentage) of available resources.

In some embodiments, the metric measurements are cap-
tured (at 805) during a testing phase of a deployment to
measure the service resource usage by workload VMs 1n a
test system (e.g., emulated workloads, a testing subset of the
tull system, etc.). The captured metric measurements are
then used to configure the thresholds at which the alerts are
triggered 1n the actual deployment.

When the process 800 determines (at 810) that the cap-
tured metric does not exceed the determined threshold, the
process 800 continues to monitor the system and returns to
step 805. When the process 800 determines (at 810) that the
captured metric does exceed the determined threshold, the
process 800 determines (at 815) whether a tolerance count
has been exceeded. When the tolerance count has not been
exceeded, the process 800 imncrements (at 820) the tolerance
count and continues to monitor the system by returning to
step 805.

When the tolerance count has been exceeded, the process
800 generates (at 825) an alert for the captured metric
measurement for a user (e.g., a datacenter/tenant adminis-
trator). The alerts of some embodiments are sent to the user
through various means (e.g., email, UI alerts, text message,
etc.). In some embodiments, the alerts simply inform the
user of a potential 1ssue, while 1 other embodiments, the
alerts are provided along with options to deal with the
potential 1ssue (e.g., option to purchase more security
resources, to add new hosts, etc.).

In some embodiments, alerts are not sent each time the
threshold 1s exceeded. Rather, a tolerance count 1s used to
determine whether the threshold count has been exceeded a
particular number of times before sending out an alert. In
some embodiments, the process only sends an alert 11 the
threshold 1s exceeded the particular number (e.g., 3) of times
within a particular time terval (e.g., 10 minutes). In some
embodiments, the tolerance count 1s 0, and the process 800
generates (at 8235) an alert each time the captured metric
exceeds the determined threshold. The threshold count
allows system to handle periodic spikes 1 activity without
unnecessarily generating an excessive number of alerts.

Once an alert has been generated (at 825), the process 800
ol some embodiments resets (at 830) the tolerance count and
the process 800 ends. Although this example describes
providing a single alert for a single metric measurement, the
process 800 can be used to provide various diflerent levels
ol alerts with various threshold levels and tolerance counts.

In some embodiments, 1n addition to providing the alerts
to a user, various corrective actions are taken (e.g., by the
services manager and/or monitoring modules) based on the
alerts. For example, 1n some embodiments, when a critical
alert 1s detected, the services manager of some embodiments
shuts down a problem VM, or moves VMSs from a problem
host to a new host machine. In some embodiments, the

10

15

20

25

30

35

40

45

50

55

60

65

16

service manager will perform various actions to increase the
available resources, such as adding new hosts, re-allocating
the service resources at various hosts, consolidating VMs for
different tenants on separate machines, etc. The actions of
some embodiments are performed automatically (e.g., upon
detection of the critical alert) or manually (e.g., upon receiv-
ing additional instructions from an administrator). In other
embodiments, the services manager will continue to provide
the services, but any new connections or attempts to use the
service will fail, until the resources become available again.

IV. Electronic System

Many of the above-described features and applications are
implemented as soltware processes that are specified as a set
of instructions recorded on a computer readable storage
medium (also referred to as computer readable medium).
When these instructions are executed by one or more
computational or processing unit(s) (e.g., one or more pro-
cessors, cores of processors, or other processing units), they
cause the processing unit(s) to perform the actions indicated
in the instructions. Examples of computer readable media
include, but are not limited to, CD-ROMs, flash drives,
random access memory (RAM) chips, hard drives, erasable
programmable read-only memories (EPROMs), electrically
erasable programmable read-only memories (EEPROMs),
etc. The computer readable media does not include carrier
waves and electronic signals passing wirelessly or over
wired connections.

In this specification, the term “software” 1s meant to
include firmware residing in read-only memory or applica-
tions stored in magnetic storage, which can be read into
memory for processing by a processor. Also, 1 some
embodiments, multiple software immventions can be 1mple-
mented as sub-parts of a larger program while remaiming,
distinct software inventions. In some embodiments, multiple
soltware inventions can also be implemented as separate
programs. Finally, any combination ol separate programs
that together implement a software mnvention described here
1s within the scope of the mvention. In some embodiments,
the software programs, when installed to operate on one or
more electronic systems, define one or more specific
machine implementations that execute and perform the
operations of the solftware programs.

FIG. 9 conceptually illustrates an electronic system 900
with which some embodiments of the invention are imple-
mented. The electronic system 900 may be a computer (e.g.,
a desktop computer, personal computer, tablet computer,
etc.), server, dedicated switch, phone, PDA, or any other sort
ol electronic or computing device. Such an electronic sys-
tem 1ncludes various types of computer readable media and
interfaces for various other types of computer readable
media. Electronic system 900 includes a bus 903, processing
unit(s) 910, a system memory 925, a read-only memory 930,
a permanent storage device 935, mput devices 940, and
output devices 945.

The bus 905 collectively represents all system, peripheral,
and chipset buses that communicatively connect the numer-
ous internal devices of the electronic system 900. For
instance, the bus 905 communicatively connects the pro-
cessing unit(s) 910 with the read-only memory 930, the
system memory 925, and the permanent storage device 935.

From these various memory units, the processing unit(s)
910 retrieves nstructions to execute and data to process 1n
order to execute the processes of the invention. The pro-
cessing unit(s) may be a single processor or a multi-core
processor i different embodiments.

The read-only-memory (ROM) 930 stores static data and
instructions that are needed by the processing unit(s) 910

US 11,018,970 B2

17

and other modules of the electronic system. The permanent
storage device 935, on the other hand, 1s a read-and-write
memory device. This device 1s a non-volatile memory unit
that stores instructions and data even when the electronic
system 900 1s ofl. Some embodiments of the mvention use
a mass-storage device (such as a magnetic or optical disk

and 1ts corresponding disk drive) as the permanent storage
device 933.

Other embodiments use a removable storage device (such
as a tloppy disk, tlash memory device, etc., and 1ts corre-
sponding drive) as the permanent storage device. Like the
permanent storage device 935, the system memory 925 1s a
read-and-write memory device. However, unlike storage
device 935, the system memory 925 1s a volatile read-and-
write memory, such a random access memory. The system
memory 925 stores some of the instructions and data that the
processor needs at runtime. In some embodiments, the
ivention’s processes are stored in the system memory 925,
the permanent storage device 935, and/or the read-only
memory 930. From these various memory units, the pro-
cessing unit(s) 910 retrieves 1structions to execute and data
to process 1n order to execute the processes of some embodi-
ments.

The bus 905 also connects to the input and output devices
940 and 945. The input devices 940 enable the user to
communicate imformation and select commands to the elec-
tronic system. The mput devices 940 include alphanumeric
keyboards and pointing devices (also called “cursor control
devices™), cameras (€.g., webcams), microphones or similar
devices for receiving voice commands, etc. The output
devices 945 display images generated by the electronic
system or otherwise output data. The output devices 945
include printers and display devices, such as cathode ray
tubes (CRT) or liquid crystal displays (LCD), as well as
speakers or similar audio output devices. Some embodi-
ments include devices such as a touchscreen that function as
both mmput and output devices.

Finally, as shown in FIG. 9, bus 9035 also couples elec-
tronic system 900 to a network 965 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN™), a wide area network (“WAN”), or an Intranet, or
a network of networks, such as the Internet. Any or all
components of electronic system 900 may be used 1n con-
junction with the invention.

Some embodiments 1include electronic components, such
as microprocessors, storage and memory that store computer
program 1nstructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-
readable storage media, machine-readable media, or
machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD-
R), rewritable compact discs (CD-RW), read-only digital
versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a
variety of recordable/rewritable DVDs (e.g., DVD-RAM,
DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards,
minm-SD cards, micro-SD cards, etc.), magnetic and/or solid
state hard drives, read-only and recordable Blu-Ray® discs,
ultra density optical discs, any other optical or magnetic
media, and tloppy disks. The computer-readable media may
store a computer program that 1s executable by at least one
processing unit and includes sets of instructions for per-
forming various operations. Examples of computer pro-
grams or computer code include machine code, such as i1s
produced by a compiler, and files including higher-level

10

15

20

25

30

35

40

45

50

55

60

65

18

code that are executed by a computer, an electronic com-
ponent, or a miCroprocessor using an interpreter.

While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute software, some
embodiments are performed by one or more integrated
circuits, such as application specific integrated circuits
(ASICs) or field programmable gate arrays (FPGAs). In
some embodiments, such integrated circuits execute instruc-
tions that are stored on the circuit itself. In addition, some
embodiments execute soltware stored in programmable
logic devices (PLDs), ROM, or RAM devices.

As used in this specification and any claims of this
application, the terms “computer”, “server’, “processor’,
and “memory” all refer to electronic or other technological
devices. These terms exclude people or groups of people.
For the purposes of the specification, the terms display or
displaying means displaying on an electronic device. As
used 1n this specification and any claims of this application,
the terms “computer readable medium,” “computer readable
media,” and “machine readable medium” are entirely
restricted to tangible, physical objects that store information
in a form that 1s readable by a computer. These terms
exclude any wireless signals, wired download signals, and
any other ephemeral signals.

This specification refers throughout to computational and
network environments that include virtual machines (VIMs).
However, virtual machines are merely one example of data
compute nodes (DCNs) or data compute end nodes, also
referred to as addressable nodes. DCNs may include non-
virtualized physical hosts, virtual machines, containers that
run on top ol a host operating system without the need for
a hypervisor or separate operating system, and hypervisor
kernel network interface modules.

VMs, 1n some embodiments, operate with their own guest
operating systems on a host using resources of the host
virtualized by virtualization software (e.g., a hypervisor,
virtual machine monaitor, etc.). The tenant (i.e., the owner of
the VM) can choose which applications to operate on top of
the guest operating system. Some containers, on the other
hand, are constructs that run on top of a host operating
system without the need for a hypervisor or separate guest
operating system. In some embodiments, the host operating
system uses name spaces to 1solate the containers from each
other and therefore provides operating-system level segre-
gation of the different groups of applications that operate
within different containers. This segregation 1s akin to the
VM segregation that 1s offered in hypervisor-virtualized
environments that virtualize system hardware, and thus can
be viewed as a form of virtualization that 1solates diflerent
groups of applications that operate 1n different containers.
Such containers are more lightweight than VMs.

Hypervisor kernel network interface modules, 1n some
embodiments, 1S a non-VM DCN that includes a network
stack with a hypervisor kemel network interface and
receive/transmit threads. One example of a hypervisor ker-
nel network interface module 1s the vmknic module that 1s
part of the ESX1™ hypervisor of VMware, Inc.

It should be understood that while the specification refers
to VMs, the examples given could be any type of DCNs,
including physical hosts, VMs, non-VM containers, and
hypervisor kernel network interface modules. In fact, the
example networks could include combinations of different
types of DCNs 1n some embodiments.

The term “packet” 1s used throughout this application to
refer to a collection of bits 1n a particular format sent across
a network. It should be understood that the term “packet”
may be used herein to refer to various formatted collections

US 11,018,970 B2

19

of bits that may be sent across a network. A few examples
of such formatted collections of bits are Ethernet frames,
TCP segments, UDP datagrams, IP packets, etc.

While the invention has been described with reference to
numerous specific details, one of ordinary skill 1n the art waill
recognize that the invention can be embodied i1n other
specific forms without departing from the spirit of the
invention. Thus, one of ordinary skill in the art would
understand that the invention 1s not to be limited by the
foregoing 1llustrative details, but rather 1s to be defined by
the appended claims.

We claim:
1. A method for allocating resources on host computers
executing workload data compute nodes (DCNs) and sets of
service machines performing at least one service for the
DCNs, the method comprising:
from each of a group of host computers, receiving service
usage data regarding at least one resource consumed by
at least one service machine executing on the host
computer that performs a service for data messages sent
to or from at least one DCN executing on the host
computer;
analyzing the received service usage data to 1dentily a set
of new resource allocations for a set ol service
machines executing on a set of host computers; and

to each host computer in the set of host computers,
providing a resource allocation instruction that relates
to at least one 1dentified new resource allocation and
that directs the host computer to modily an amount of
one resource allocated to one service machine execut-
ing on the host computer to perform the service on data
messages sent to or from one workload DCN executing
on the host computer.

2. The method of claim 1, wherein the service usage data
comprises at least one of a number of computations made
per second, a connections per second (CPS) measurement,
and an amount of memory used.

3. The method of claam 1, wherein the group of host
computers comprises the set of host computers.

4. The method of claim 1, wherein the group of host
computers 1s a test implementation of a full deployment and
the full deployment comprises the set of host computers.

5. The method of claim 1 further comprising:

displaying the 1dentified set of new resource allocations to

an administrator; and
receiving, from an administrator, istructions to provide
the 1dentified set of new resource allocations to the set
ol host computers,

wherein providing the identified new resource allocation
instruction to each host computer in the set of host
computers 1s based on the received instructions.

6. The method of claim 1 further comprising:

aggregating the received service usage data;

generating at least one alert based on the aggregated data;

and

displaying the at least one alert in a user interface.

7. For a host computer, a method for monitoring a
middlebox service machine executing on the host computer
to provide a middlebox service operation for a set of
workload data compute nodes (DCNs) executing on the host
computer, the method comprising:

monitoring a service usage metric that measures an

amount of resources consumed by the middlebox ser-
vice machine while performing the middlebox service
operation on data messages sent to or from the set of

workload DCNs:; and

10

15

20

25

30

35

40

45

50

55

60

65

20

based on the service usage metric exceeding a particular
threshold value a particular number of times, generat-
ing an alert to notify a user of an unavailability of
resources for performing the middlebox service opera-
tions on the data messages sent to or from the set of
workload DCNs, said particular number being greater
than one.
8. The method of claim 7, wherein monitoring the service
usage metric comprises periodically calculating the service
usage metric.
9. The method of claim 7, wherein the service usage
metric comprises at least one of processor usage, a connec-
tions per second (CPS) measurement, and memory usage.
10. The method of claim 7, wherein the alert 1s generated
only 1f the service usage metric exceeds the particular
threshold value the particular number of times within a
particular time 1nterval.
11. The method of claim 7, wherein the particular number
1s a first number and the alert 1s a first alert, wherein the
method further comprises, when the service usage metric
exceeds the particular threshold value a second number of
times that 1s greater than the first number, generating a
second alert that 1s different than the first alert.
12. The method of claim 11, wherein the method further
comprises automatically performing a corrective action
when the service usage metric exceeds the particular thresh-
old value the second number of times.
13. The method of claim 12, wherein the corrective action
comprises at least one of shutting down a DCN and moving
a DCN to a diflerent host computer.
14. The method of claim 7, wherein the particular thresh-
old value 1s specified by an administrator for the plurality of
DCNis.
15. The method of claim 7, wherein the particular thresh-
old value 1s specified as a percentage of the available
resources for performing the service.
16. The method of claim 7, wherein the monitoring 1s
performed during a testing phase, wherein an administrator
sets the particular threshold value for a deployment phase
based on the service usage metric monitored during the
testing phase.
17. A non-transitory machine readable medium storing a
program which when executed by a set of processing units
allocates resources on host computers executing workload
data compute nodes (DCNs) and sets of service machines
performing at least one service for the DCNs, the program
comprising sets of mstructions for:
from each of a group of host computers, receiving service
usage data regarding at least one resource consumed by
at least one service machine executing on the host
computer that performs a service for data messages sent
to or from at least one DCN executing on the host
computer;
analyzing the received service usage data to identity a set
of new resource allocations for a set of service
machines executing on a set of host computers; and

to each host computer in the set of host computers,
providing a resource allocation instruction that relates
to at least one identified new resource allocation and
that directs the host computer to modily an amount of
one resource allocated to one service machine execut-
ing on the host computer to perform the service on data
messages sent to or from one workload DCN executing
on the host computer.

18. The non-transitory machine readable medium of claim
17, wherein the program further comprises sets of instruc-
tions for:

US 11,018,970 B2

21

aggregating the received service usage data;

generating at least one alert based on the aggregated data;

and

displaying the at least one alert in a user interface.

19. The non-transitory machine readable medium of claim
17, wherein the group of host computers comprises a group
of one or more host computers.

20. A method for allocating resources on host computers
executing workload data compute nodes (DCNs) and sets of
service machines performing at least one service for the
DCNs, the method comprising:

from each of a group of host computers, receiving service

usage data regarding at least one resource consumed by
at least one service machine executing on the host
computer that performs a service for data messages sent
to or from at least one DCN executing on the host
computer;

analyzing the received service usage data to 1dentily a set

of new resource allocations for a set of workload DCNs
executing on a set of host computers; and

5

10

15

22

to each host computer in the set of host computers,
providing a resource allocation instruction that relates
to at least one 1dentified new resource allocation and
that directs the host computer to modify an amount of
at least one resource allocated to a group of one or more
workload DCNs executing on the host computer.

21. The method of claim 20, wherein a particular resource
allocation instruction directs a particular host computer 1n
the set of host computers to modily the amount of a resource
allocated to the group of one or more workload DCNs to
accommodate at least one additional workload DCN 1n the

group of one or more workload DCNs executing on the
particular host computer.

22. 'The method of claim 20, wherein a particular resource
allocation instruction directs a particular host computer 1n
the set ol host computers to reduce the amount of a resource
allocated to the group of one or more workload DCNs based
on the removal of at least one workload DCN from the group
of one or more workload DCNs executing on the particular
host computer.

	Front Page
	Drawings
	Specification
	Claims

