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(57) ABSTRACT

Parties communicate iput values to a central entity by first
decomposing them according to a chosen operation into
share values, which are sent either directly or, 1n a trans-
formed form such as being hashed and/or encrypted, via a
bulletin board data structure, to respective nodes, such that
no node receives the mput value itself. The nodes then
combine the share values using the operation and pass these
respective node values to the central entity for computation
of a global value. The operation of the parties and of the
nodes may be made verifiable by aggregating the share
values within a party or the received share values within a
node using a data and computational structure such as a hash
tree or skip list. Digital signing and timestamping may also
be applied.
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AUDITABLE SYSTEM AND METHODS FOR
SECRET SHARING

FIELD OF THE INVENTION

This mvention relates to the subfield of data security
known as secret sharing.

BACKGROUND

In various situations, contributors to some global result do
not wish or should not share their individual contributions to
the total with other contributors. This may be because the
contributors may be required to keep their respective data
secret from others, but may also simply be because they do
not want to. For example, participants in a survey of total
income levels in an area may not want to reveal their
incomes to their neighbors. Similarly, assume that a central
authority wants to compile information about the total
available stockpile of some item (such as some drug or
vaccine) among many competitors, but the individual com-
petitors do not wish to reveal their amounts to the others.

Even purely computational situations may arise in which
parties contribute input values to some function, but need to
keep their contributed mput values secret from other parties.
Some distributed decryption or data signature routines face
this problem, for example.

Modern solutions in the area of secret sharing were
proposed independently by Adi Shamir and George Blakley
in 1979, and research in the area has been active ever since.
As just one example, since about 1982, many researchers
have additionally proposed schemes for ensuring the secrecy
of individual contributions 1n one area of secret-sharing
known as “multi-party computation”.

Although existing secret-sharing schemes may give indi-
vidual contributing parties varying levels of assurance that
their inputs to the system are secret from other parties, what
1s also needed 1s a way to 1ncrease the integrity of the entire
process, for example, upon an audit.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1llustrates the relationship between multiple parties
and nodes to which the parties submit values.

FIG. 2 illustrates a hash tree used to create hash chains.

FIG. 3 illustrates an embodiment that uses hashing.

FI1G. 4 illustrates an embodiment that uses encryption and
decryption.

FIG. 5 illustrates and embodiment that uses both hashing
and encryption/decryption.

FIGS. 6 A-6C 1llustrate different roster configurations.

FIGS. 7A and 7B illustrate different concepts relating to
a skip list.

FIG. 8 illustrates the main hardware and software com-
ponents ol entities.

DETAILED DESCRIPTION

Different embodiments described below provide diflerent
solutions to different variations of the general problem of
how to determine an aggregate result from contributions
from a plurality of parties, without the parties having to
reveal their individual contributions and, preferably, in a
way that allows the result and even individual contributions
to be reliably audited. In what 1s assumed to be the most
common uses for embodiments, the aggregate result 1s the
sum, or some function of the sum, of the contributions of the
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parties. Consequently, this form of aggregation (summation)
1s used below to describe different embodiments. A modi-
fication of this assumption to include other operations 1s also
described below.
Basic Embodiment

See FIG. 1, which illustrates different systems (entities)
and their relationships 1n different embodiments. By way of
illustration, for this embodiment, assume that there are N

parties PARTY[1], PARTY[2], . . . , PARTY[N] (labeled

collectively as 100), each of which can communicate using
any known method, such as over a network, with K nodes
NODE]J1], NODE|2], . . . , NODEJ|K] (collectively num-
bered 200), each of which can communicate with a central
entity 300, which 1s the entity that 1s to aggregate the values
associated with each party. The parties, nodes, and the
central entity may be implemented by and 1n any known
computing system. The parties’ systems may, but need not
be, smaller systems such as laptop computers, fixed-terminal
systems such as desktop computers, or tablets or even smart
phones, whereas the nodes and central entity may be imple-
mented using servers. For example, 1n a scenario in which a
governmental authority wants to know about the total stock
of some vaccine or drug, the parties might be individual
pharmacies, which submit information from small comput-
ers or smart phones via a corresponding installed applica-
tion; the nodes might be regional authorities or distributors,
and the central entity might be a sever run by the govern-
mental authority. This 1s not a requirement, however: Any
computing system with suflicient computing power and
connectivity with the other systems may be used.

Now assume that each of the parties PARTY](1] has a
respective mput value Af1] that 1t wishes to keep secret from

all other entities (other parties, nodes, the central entity, any
other external system, etc.), but that the central entity wants
to be able to determine the sum S=A[1]+A[2]+ ... +A[N].

In the illustrated example, for K nodes, each party rep-
resents 1ts value A[1] 1n any chosen manner into K addends
All][1], A[1][2], . . . , A[1][K], that 1s, such that A[1]=A[i]
[T]+A[1][2]+ . . . +A[1][K]. For example, party PARTY]|[1]
may decompose its value A[l] mto K addends A[1][1],
All][2], . . . , A[1][K] such that A[1]=A[1][1]+A]l]
[2]+ . . . +A[1][K]. Note that there 1s no requirement for
values AJ1][j] to be integers or even positive numbers. Note
also that, in other embodiments described below, there need
not be a 1-to-1 relationship between the number of shares
and number of nodes, and the number of shares created by
cach party need not be same.

Each party 1 (1=1, . . . , N) then transmits its K addends

Al1l[1] G=1, ..., K) to the respective node 1 of the K nodes.
Node 7 then computes an mtermediate sum S[j]=SUM(A[1]
[1D), 1=1, . . ., N. For example, node NODE] 1] receives the

shares A[1][1], A[2][1], ..., A[N][]1], which 1t then sums to
form an intermediate sum S[1]. The K nodes then transmait
their respective intermediate sums to the central entity 300,
which then forms the global sum S=S[1]+S[2]+ . .. +S[K],
which 1s the sum of all shares of all the reporting parties. To
maintain secrecy N should be greater than 2. For N=1, the
sum S equals the only input and thus publishing the sum also
reveals the input. For N=2, the sum 1s A[1]+A[2] and either
party can recover the mput of the other party by subtracting
their own 1put from the sum S. In the absence of “con-
spiracy”’ between any of the parties (revealing their respec-
tive Af1] values to each other), N>2 will typically be
suflicient to maintain secrecy. As long as at least two nodes
are not conspiring with any other, secrecy may be main-
taimned for all non-conspiring nodes.
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In the general case, the number of nodes need not be the
same as the number of parties. In some 1mplementations,
however, each party may wish to maintain one of the nodes,
which 1t then can momtor and trust not to conspire with
others. In such a case, K=N. For example, each of several
different companies that are parties might prefer to use one
of 1ts own servers as at least one trusted node, which the
other parties are able to access for submission of addends.

A bulletin board 400 may be included to which parties and
nodes can post authenticated messages 1n such a way that all
other parties and nodes are guaranteed to see the same set of
messages. The bulletin board 400 may be implemented and
configured in many different ways. For example, 1t could be
a file, database, or other data structure stored 1n the central
server 300 1tsell, or some other server or site chosen for the
purpose, and to which all entities are given either open
access or access via credentials (such as user ID/password or
the like). The bulletin board 400 may also be implemented
using a blockchain, such as the system implemented using
Guardtime KSI technology (see below), or a process and
data structure that enforces a rule of allowing only one
commitment (data entry) per party per round (1f such a rule
1s desired), and preferably with no split view of the data
structure.

Observe that the arrangement shown in FIG. 1 also
protects each party’s contribution Al1] against hacking by a
malicious actor of the nodes 200, since no node will have
this value.

Hash Function Embodiment

This embodiment improves on the previous, basic
embodiment through the use of hashing. As 1s known a
collision-resistant hash function H has the property that it 1s
computationally infeasible to find two mputs X1 and X2
such that H(X1)=H(X2) if X1=X2.

It 1s then possible to aggregate M mputs 1nto a “hash tree”
so that, given the value 1n the root node of a tree, the
membership and position of a leal of the tree can be
proven/verified with a chain of log,(M) hash values. FIG. 2
illustrates these concepts, 1n particular, a hash tree 601, and
how a “hash chain” may be used to verify an input data set
given the root R of the hash tree.

The data set may be any kind of information that can be
represented digitally. First, assume that different data sets
are to form the lowest-level mput “leaves™ to the hash tree
601 during a given aggregation period, which may be fixed,
such as every second, or variable, for example, covering the
time 1t takes for all mnputs to an aggregation round to be
available. By way of simplified example, FIG. 2 shows eight
such input as the circles at the base of the hash tree, two of
which are labeled a and X.

In the hash tree representation, each “circle” represents
the hash value of the two values input into it from below.
Thus, A=hash(a, X), and so on, and the circle labeled R
represents the top-level hash computation for the tree, here,
R=hash(B, v). Any hash function may be used, although
known cryptographic hash functions such as the SHA-256,
SHA-512, etc., offer a well-studied, high level of security. It
the hash function at every level 1s known (for example, they
are all the same, which 1s the usual choice, without loss of
security) and o, p, and v are also known, one can compute
the root value R given X by iterative hashing, since R=hash
(hash(hash(c, X), (), v). The values «, 3, and v thus define
a “path” or “chain” or *“signature vector” (., p, v) through
the hash tree from the input X to the root R.

Note that no values in the sub-trees below 3 or v are
needed to form the hash chain for X. In applications in which
not even the immediate “sibling” input should be known (for
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example, the user who 1nputs X should not be allowed to
know even the input @), 1t 1s also possible to mnput a hash of
the input value (for example, hash(X) and hash(a) instead,
thereby concealing the “raw” data. Moreover, other data
may be hashed along with the raw data to form an nput to
the hash tree. For example, X might include not only the
corresponding raw data, but also metadata such as a user 1D,
a serial or index number, etc., or even a completely random
number included just to increase the entropy of the input
(known as a “blinding mask”).

Now assume that a record X* 1s presented as being
identical to X. This can be proven or disproven by applying
the same signature vector to X*: X*=X 1il hash(hash(hash
(o, X¥), B), =R,

One particularly advantageous infrastructure for generat-
ing digital signatures for digital inputs, 1s the distributed the
hash tree infrastructure (the “Guardtime infrastructure™) that
has been developed by Guardtime As of Tallinn, Estonia.
This system 1s described 1n U.S. Pat. No. 8,719,576 (Buldas,
et al., “Document wverification with distributed calendar
inirastructure™) and 1s incorporated herein by reference, but
may also be summarized as follows.

FIG. 2 also serves to summarize the Guardtime signature
technique: for each of a sequence of calendar periods
(typically related one-to-one with physical time units, such
as one second), the Guardtime infrastructure takes digital
input records as inputs. These are then cryptographically
hashed together as described above 1n an iterative, prefer-
ably binary hash tree 601, ultimately yielding an uppermost
hash value (the “calendar value” CAL 620) that encodes
information in all the mput records.

As FIG. 2 1llustrates, the calendar value for each calendar
period may be the root value R of the “basic’ hash tree. The
infrastructure then returns a signature 1n the form of a vector,
including, among other data, the values of sibling nodes 1n
the hash tree that enable recomputation of the calendar value
if a purported copy of the corresponding original 1nput
record 1s 1n fact identical to the original input record.
Continuing with the example shown 1n FIG. 2, the signature
for X could be (c, 3, v, CAL). Note that, given this signature,
one can test whether X*=X simply by computing hash(hash
(hash(c,, X*), B), v) to see 1f this =CAL, without having to
rely on an external computation system, without having to
trust a certificate authority that issues PKI (public key
infrastructure) public/private keys, and without having to
store such key pairs.

For additional security, in one version of the Guardtime
inirastructure, each calendar value CAL 1s mathematically
combined with previous calendar values by means of a
growing Merkle hash tree, whereby a top-level hash value 1s
formed for the calendar values themselves. The Guardtime
signatures returned to entities can then be extended after a
number ol calendar periods up through a progressively
growing Merkle tree of calendar values, or a hash-chaining
of calendar values, to a top-level publication value that 1s
published in any widely witnessed manner, such as 1n a
printed publication, an online database, in a ledger, 1n a
blockchain, etc. It 1s also possible to forego the accumula-
tion of calendar values via a Merkle tree and instead enter
cach calendar value into some widely witnessed data struc-
ture such as a blockchain-backed ledger; indeed, the Guard-
time KSI calendar itself has a structure that may be char-
acterized as a blockchain, and may 1tself be suflicient even
without additional hashing using a Merkle tree and publi-
cation.

In the Guardtime infrastructure, each calendar value CAL
1s computed according to a known time relationship, such as
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once per second. One consequence of this 1s that each
signature will also be able to function as an irrefutable
timestamp. FIG. 2 thus shows a system 600, corresponding,
to the signature/timestamping Guardtime infrastructure, to
which any of the entities 100, 200, 300, 400 may submit
values to obtain corresponding signatures and timestamping.
Although the advantages of Guardtime signatures as hash
chains are clear, 1t would also be possible to use any other
known hash chain-generating infrastructure as well.

Now see FIG. 3, which illustrates an embodiment 1in
which hashing 1s employed. In FIG. 3, the operations only
of party PARTY][1] are illustrated, for the sake of ease of
visualization; the other parties will interact with the nodes
analogously.

In this embodiment, again, each party 1 represents 1ts input

All] mto a sum of K shares: A[1]=A[1][1]+A]1]
[2]+ ... +A[1][K]. The shares are then aggregated 1into a hash
tree, Wthh computes the root R[1]=TREE(A[1][1], A]1]
[2], . . ., A[1][K]). For each share, that 1s, each “leal” of the
hash tree, there will be a set/vector of values (typically, the
“sibling values™) that define the chain leading from this leaf
value to the respective root. This 1s described above—see
the chain/*“signature vector” (a, 3, v) for the mput X 1n FIG.
2. For each share Al1][j], let C[1][j] represent its chain.
In FIG. 3, a module 110 1s included within each party to
take the share values, hash them pairwise (or 1n groups of
three for ternary trees, or 1n larger groups for higher-degree
hash trees) and iteratively as hash tree “leaves”, compute a
corresponding root R[1], and thereby create hash chains from
cach share value to the root.

Each party 1:

posts 1ts computed root R[1] to the bulletin board 400 for

other parties and entities to see. Use of the hash tree to
form R[1] thus reduces the amount of data that each
party needs to post and expose on the bulletin board
while still enabling subsequent auditability of 1ts share
values.

sends each share A[1][j], along with the hash chain C[1][1]
linking 1t to R[1], to the node NODE]j]

Each node j:

upon recerving a share A[1][j] and the hash chain CJ1][j]
from the party 1, uses the hash chain to verity (typically,
by recomputation to the respective root value, given the
sibling values in the chain) that the received Al1][j] was
indeed the value in the j-th leaf of the tree whose root
1s the posted R[1];

upon collecting all N shares A[1][1], A[2][1], . . . , A[N][3]:
computes 1ts share of the sum S[j]=A[1][1]+A[2]

[1]+ . . . +A[N][7]; and
posts the share S[j] to the bulletin board for all others
to see

Any interested party or entity that can access the bulletin
board 400 may then, upon seeing all K shares of the sum S
on the bulletin board, compute the final sum S=S[1]+
S[2]+ ... +S[K]. The central entity 300 may be the interested
entity, 1n which case 1t may compute the sum S as in the
basic embodiment, but, in this embodiment, any other party
that has access to the information 1n the bulletin board may
do so as well.

For this embodiment, the correct operation of each party
can be verified by an independent auditing entity 1000, by
the central enfity, etc., after establishing what the correct

value of A[i] should have been, by checking that the K
shares A[1][1], A[1][2], . Al1][K] indeed add up to AJi];
and that the K shares A[ ][1] Al1][2], . . ., A1]|K], when

aggregated into a hash tree, indeed result 1n the posted R][1].
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To enable this auditing procedure, each party should either
keep or be able to re-create the division of its mput Af1] to

the addends/shares.

The correct operation of each node can also be verified by
an independent auditor: First, the auditor 1000 vernfies that
the node has accepted only valid messages from the parties,
and 1t then verifies that each node has correctly computed
and posted 1ts share for the sum. Use of hash chains (or other
data structure, such as i1s described below) to check for
agreement with a posted value RJ1] 1s a preferred method
because of both 1ts security and 1ts computational and
administrative efliciency. To enable this aspect of auditing,
cach node must keep all received messages.

In some cases, 1t may also be so that an auditor wishes to
audit the operation of nodes as well as, or instead of the
parties. As FIG. 3 1illustrates, 1t may then also be possible to
include a hashing module 220 within each node. (Only node
1 1s show with this module, for the sake of drawing
simplicity.) The hashing module 220 may then input the
recerved share values A[1][1], A[2][1], . .., A[N][1] and

apply them as mput “leaves” for calculation of a hash ftree,
as described above, producing, for each node j, a corre-
sponding node root value NR|[j], which may then be stored
in the bulletin board 400. Hash tree chains may also be
computed and stored for each leatf value within the node as
well. A node may then be audited as described above for a

party.

Asymmetric Encryption

Embodiment

An encryption scheme in general consists of an encryp-
tion function ENC and corresponding decryption function
DEC such that, knowing the encryption ENC(k, X) of some
value X under the key k, it 1s computationally infeasible
recover the value X without knowing the key. In an asym-
metric encryption scheme the encryptlon key EK 1s different
from decryption key DK and it 1s computationally infeasible
to derive DK from EK. It 1s therefore possible to publish the
encryption key EK so that anyone can encrypt any value X
by computing Y=ENC(EK, X), but only the holder of the
decryption key DK can compute DEC(DK, Y) and recover

X.

See FIG. 4. In this embodiment, each node 1 first generates
a key pair (EK[1], DK][1]), for example, 1n a corresponding
software component 210. (This 1s shown only for NODE] 1]
for simplicity; other nodes will be configured analogously.)
It then posts the encryption key EK]j] on the bulletin board
400 for others to access, 1 particular, the parties PARTYT1].
Note that this 1s a one-time setup; the same keys can be used
to compute many sums.

Use of the bulletin board 400 eliminates the need for each
node to directly communicate 1ts encryption key to each of
the parties, but this would be a possible alternative arrange-
ment. In fact, 1n this embodiment, use of the bulletin board,
as a common communication portal, eliminates the need for
direct communication between parties and nodes altogether.

Each party 1 then:

as belore, represents 1ts input Af1] as a sum of K shares:

Al[=ANQ][1]+A][2]+ Aln][K]

encrypts each share with the encryption key of the cor-
responding node, for example, using a corresponding
computation component or routine 120: B[1][1]=ENC

(EKIj], Al

posts the encrypted shares B[1][1], B[1][2], . . .
to the bulletin board 400 for others to see

, Bl][K]
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Each node j then, upon seeing all N encrypted shares
Bl1][1], BI2][1], - . . , B[N][1] on the bulletin board:

decrypts the shares AlH]=DECDK[], Alal1D)

computes 1ts share of the sum S[j|=A[1][1]+A[2]

i+ . . . +A[N][j]

pOsts the share S[j] to the bulletin board for all others to

Se¢C

As before, any interested party or entity that can access
the bulletin board 400 may then, upon seeing all K shares of
the sum S on the bulletin board, compute the final sum
S=S[1]+S[2]+ . . . +S[K].

For this embodiment, the correct operation of each party
can be verified by an independent auditor, after establishing
what the correct value of Af1] should have been, by checking,
that the K shares A1][1], A[1][2], A[1][K], when
encrypted with the encryption keys of the nodes, indeed
result 1n the posted B[1][1], B[1][2], . . . , B[1][K]. Note that,
to enable this auditing procedure, each party should either

keep or be able to re-create the division of 1ts mput AJ1] to
the addends/shares.

The correct operation of each node can also be verified by
an independent auditor: The auditor asks the node to decrypt

the shares B[1][1], B[2][1], . . . , B[N][j] to recover A[1][j],
AlZ2][1], . . . , A[N][j] and then verifies that they add up to the
posted S[j].

Semi-Homomorphic Encryption Embodiment

In this embodiment, the encryption method 1s chosen to be
additively semi-homomorphic and thus has the property, 1n
addition to the encryption and decryption functions
described above, that SUM(ENC(EK, X), ENC(EK,
Y))=ENC(EK, X+Y). In other words, given the encryptions
ENC(EK, X) and ENC(EK, Y) of two values X and Y, 1t 1s
possible to compute the encryption ENC(EK, X+Y) of the
sum X+Y without knowing X and Y themselves. Several
existing  semi-homomorphic  asymmetric  encryption
schemes are known, among which are RSA and FlGamal.

In this embodiment, the actions of the parties and nodes
are the same as described above for the Asymmetric Encryp-
tion Embodiment. This embodiment, however, provides a
different method for verifying S[j]. In this embodiment, each

interested party can verity the correctness of any S[j] on the
bulletin board, and compute the final sum S as follows:
compute the encrypted share ES of the sum from the

posted encrypted shares as ES[1]=SUM(BI[1][;j], B[2]
a1, -, BIN][jD:
compute the encryption of the posted share of the sum
DI[jI=ENC(EK]]], S[j)):

verily that the two match: ES[j]=D][;j];

upon seeing all K shares of the sum on the bulletin board,
compute the final sum as in other embodiments: S=S
[1]+S[2]+ . . . +S[K].

In this embodiment, the correct operation of each party
can be verified by an independent auditor, after establishing
what the correct value of AJ1] should have been, by checking
that the K shares A[1][1], A[1][2], . . ., A[1][K], indeed add
up to correct value A[i]; and that the K shares A[i][1],
Al1][2], . . ., A[1][K], when encrypted with the encryption
keys of the nodes, indeed result in the posted BJi][1],
BJ[1][2], ., B[1][K]. As before, to enable this auditing
procedure, each party should either keep or be able to
re-create the division of 1ts input Af1] to the addends/shares.

Note that there 1s no need for specific auditing of the
nodes, since any party can verily the correctness of their
operation 1n real time as they post their shares S[j] to the
bulletin board.
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Hash Function and Semi-Homomorphic Encryption
Embodiment

In this embodiment, both collision-resistant hashing and
additively semi-homomorphic asymmetric encryption are
used. See FIG. 5, 1n which, as before, the operations and
components of only one of the parties and one of the nodes
are 1llustrated merely for the sake of simplicity; other parties
and nodes may be structured and operate analogously.

As belore, each node 7 first generates a key pair (EK[j].
DK][j]) and posts its encryption key on the bulletin board
400.

Then, each party PARTY]1]:

represents 1ts mput Af1] as a

[1]+A[1][2]+ . . . +A[1][K];
encrypts each share with the encryption key of the cor-
responding node, B[1][1]=ENCEK][;], Al1][1]D:
aggregates the encrypted shares into a hash tree, comput-
ing the root R[1]=TREE(BJ1][1], B[1][2], . . ., B[1][K]);
As before, this may be done internally, 1n a component
110, or by using an external system 600;

posts the R[1] to the bulletin board for all others to see;

sends each encrypted share B[i][j], along with the hash

chain CJ1][j] linking 1t to R[1], to the node ;.

Thereafter, Each node j, upon receiving an encrypted

ter,
share BJ1][1] and the corresponding hash chain C[1][j] from

the party 1:
uses the hash chain to verity that the received B[1][j] was
indeed the value 1n the j-th leaf of the tree whose root
1s the posted R[1];
decrypts the share A[1][1]=DEC(DK]1], B[1][1]):
upon collecting all N shares A[1][j], A[Z] []] , A[N][1]:
computes 1ts share of the sum S[]]—A[l][]]+A[2]

sum of K shares: A[1]=A[1]

11+ - . +A[N][j];
posts the share S[1] to the bulletin board for all others
to see.

As before, any interested party or entity that can access
the bulletin board 400 may then, upon seeing all K shares of
the sum S on the bulletin board, compute the final sum

S=S[1]+S[2]+ . . . +S[K].
For this embodiment, the correct operation of each party
can be verified by an independent auditor, after establishing
what the correct value of AJ1] should have been, by checking
that the K shares A[1][1], A[1][2], . . . , A[1]|K], when
encrypted with the encryption keys EK]j] of the nodes and
aggregated 1nto a hash tree, indeed result in the posted R]1].
As belore, to enable this auditing procedure, each party
should either keep or be able to re-create the division of 1ts
iput Af1] to the addends/shares.
The correct operation of each node can also be verified by
an independent auditor: First, the auditor 1000 verifies that
the node has accepted only valid messages from the parties,
such as by use of hash chains to check for agreement with
a posted root value RJ1]. The auditor then verifies that the
node has correctly computed 1ts share for the sum as follows:
compute the encrypted share of the sum from the received
encrypted shares as ES[1]=SUM(B]1][1], B[2][1], - . ..
BIN[j]);

compute the encryption of the posted share of the sum
D[j]=ENC(EK][j], S[j]); and

verity that the two match: ES[1]=DJj].

This auditing process assumes that the node being audited
has kept all recerved messages. On the other hand, 1n this
embodiment, the auditor never sees the plaintexts of the
input shares the node received from the parties.

End of Round

In the description of the embodiments above, at least with
respect to some operations, 1t 1s stated that each node 1 will
be able to collect all N shares A[1][1], A[2][1], . . . , A[N][j],

or can derive all N of these from decryption. If all parties
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report all K respective shares quickly, this will generally not
be a problem. This may, however, not always be so, either
through deliberate failure of a party to participate com-
pletely or at all, or mmadvertently, for example because of
lack of network connection, unavailability of an mput A1],
ctc. There thus may be a need to define some limit for a
“round” that 1s, a pertod during which share values are
accepted by the nodes (directly, or via the bulletin board) for
summation (or other operation) to form the respective node
values S[j].

One method for handling this eventuality 1s a time cut-ofl:
The central entity (or some other superior entity, or via
agreement among the nodes) sets a cut-off time tend. The
nodes then form their values S[j] from whichever share
values (plain or encrypted) they have received by tend and
pass these values on to the central entity (and/or bulleting
board) for aggregation 1nto a global total value.

Another option would be to set a minmimum number of
parties to collect values from, or a mimmum number of
shares, possibly also with a time cut-ofl, and the nodes then
perform their usual operations based on the shares they have
received. This arrangement might be useful in cases in
which there 1s a large number of parties and the inputs of
only some sub-set form a sampling that 1s suflicient for
statistical purposes.

IT all shares for one party are omitted, the result 1s a sum
of the inputs of the remaining parties and could still be
useful. In some cases, 1t will be preterred to process only
“complete” sets of shares for parties. If, for example, only
one share from one party 1s not properly received, 1t will
cause an error of unknown size in the final sum S. This may
be acceptable 11 there 1s a large number of parties and total
accuracy 1s not required, such as for sampling; otherwise,
any chosen error-handling method may be applied, such as
that the entire process 1s aborted, or that the nodes first agree
on the subset of parties from which they all have shares, and
then compute the sum over only those, or that a final sum 1s
computed from whatever iputs have been received, etc.
Alternative Decompositions

In the description of various embodiments above, it 1s
stated that shares, encrypted values of shares, intermediate
node values S[j], etc. are summed to yield some intermediate
or final value. For example:

Ali|=A][1]+4[2][ 2]+ - - . +A[i][K]=2j=1KA[f] 7]

SHIFALLGI+ARIT - - - +AINIF=Z 4[]
ES[j1=SUM@1[1.B12101 - - - BINID=Z~, BlAl]

S=S[1]+S12]+ . .. +S[K]:2j=1KS[j]

and so on.

Decomposing each party’s value Af1] mto addends 1s,
however, not the only possibility. Instead of summation of
addends, for example, 1t would be possible to 1implement
multiplication of multiplicands. In other words, each party
could decompose its value into factors (integer or other-
wise). In this case:

Ali|=A][ 1 [xA4[z][2]% . . . xA[i][K]ZHJZIKA[i][j]

SHIFANLTIXARIYIX - - - xAIN]=T1 V4[] ]

ES[j1=SUMB[1][1.B[21[7], - - - BINIGD=TL,"B[i]
7]

S=S[1]xS[2]x . .. xS[K]ZHFlKSU]
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In embodiments that use semi-homomorphic encryption,
any of the known routines for multiplicatively semi-homo-
morphic asymmetric encryption may then be applied. The
various operations of posting values to the bulletin board
400 will then not need to change and other operations may
be carried out as described.

Embodiments arranged to form the final result S from
products of parties’ shares may be useful in situations where
cach party’s value A[1] represents, for example, a probabil-
ity, or percentage, or fraction of some quantity that is to be
combined multiplicatively with the values of other parties.

More generally, different embodiments may be adapted to

enable computation of a final result S using any operation &
such that

if A[m]=A4[m][1]RA[m][2]X . .
A[H]=AR][1RA4[H][2]D . .
then

. ®4[m][K] and
. QA[#n][K] for n=m,

A[m]OA[n]={A[m][1]Q4[n][1]} {4 [m][2]A4[#]
[21}© . .. O{4[m][K]DA[#][K]}-

In words, 1t should be possible to perform the operation on
shares from different parties in the different nodes, then
perform the operation on the results of the nodes, and get the
same result that one would get by directly operating on the
“undecomposed” party values. In any implementation that
relies on semi-homomorphic encryption, an encryption rou-
tine should then be chosen such that 1t exhibits semi-
homomorphism under the operation &.

One example of an operation that satisfies these condi-
tions 1s the integer ring under modular arithmetic, under both
addition and multiplication. Thus, as 1s well known:

(x+y)mod »=(x mod »)+(y mod #); and

(xxy)mod #=(x mod #)x(y mod #)

The values A[i1] of the different parties may then be
intended 1s to contribute as terms/multiplicands to a global
value, modulo n, that 1s,

S=(S[1]XS2]¥ . . . KS[K])mod #

Such a global value might, for example, be used as a
commonly generated, computationally verifiable key by the
parties, to which each party will have contributed a term
(thereby not requiring total trust of outside entities alone),
but 1n a way that the global value cannot be easily decom-
posed 1nto 1ts constituent terms because of unknown con-
tributions of the other parties.

Such an embodiment may also be useful 1n scenarios
involving random selection of a “winner”, such as 1n games
or 1n cryptocurrency mining routines: Each participating
party may generate a value Af1] as above, decompose 1t 1mto
addends or factors (or other operands) and submit these for
computation 1n the central entity 300 of a global final value
S. The party p whose mdividual value A[p] comes closest,
for example, to the global value mod n, could then be
designated the “winner” of the round. A[p] would, as above,
remain unknowable by other parties during the distributed
aggregations and computations in the nodes, but could be
revealed after the final result S has been produced.

Choice of Shares

Regardless of the operation & to be applied, the parties
must choose, or implement, some way to decompose their
respective mputs Af1] into shares. Many diflerent ways are
possible.

One option 1s to generate the shares randomly from the
tull range of the underlying data type. For example, when
working with M-bit unsigned integers, each party 1 may
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generate the first K—1 shares A[1][1], A[1][2], . . ., A1][K-1]
as uniformly chosen random numbers 1n the range O . . .
2*_1 and compute the last share A[i][K] such that the sum
A[[11+A[1][2]+ . . . +A[i][K], when computed modulo 2,
equals the mput Af1]. This ensures the final share AJ1][K]
also has uniform distribution over the range 0 . . . 2¥-1 and
thus does not leak any information about the mput A[i].

When working with M-bit signed integers, the first K-1
shares may be chosen uniformly from the range -2~ . . .
2*-1_1, with the last one chosen such that the sum equals
A[i], modulo 2*, with the same security properties as in the
previous case. Similar considerations can also be applied
when working with fixed-point and floating-point values.

As yet another alternative, a party may choose share
values more deliberately, for example, choosing to report a
relatively low value to one or more nodes while reporting
higher values to other nodes. In other cases, a party may
want to choose the number and/or size of shares to corre-
spond to some “natural” grouping for purely internal admin-
istrative purposes, such as by manufacturing batch or date,
color, size, model, etc., without reporting this to nodes or
other entities. There 1s 1n practice little limit on how a party
may choose to decompose 1ts mput value Af1] into shares,
although some choices may provide more secrecy than
others.

For operations other than summing, similar techniques
may be applied. For example, in the case of shares being
formed as multiplicands, all but a final share value could be
chosen randomly to be non-zero and within some range,
with the final share value being the total mput value A[i]
divided by the product of the values already chosen. When
computing products of integers, it would be advisable to
perform the computations modulo a suthiciently large prime
number P so that the first K-1 (for example) shares can again
be chosen uniformly randomly and their product 1s guaran-
teed to have a multiplicative nverse, such that a suitable
value exists for the final share of AJ1]. Known techniques
may then be applied to deal with any rounding 11 floating-
point operations are mvolved.

Shamir’s Secret Sharing

As explained i1n several references, for example, A.
Shamir, “How to share a secret,” Communications of the
ACM, vol. 22, no. 11, pp. 612-613, 1979, Ad1 Shamir
proposed a secret sharing scheme in which a secret mput A
can be split into K shares 1 such a way that any subset of
M or more shares can be combined to reveal the mput, but
any subset of less than M shares leaks no information about
the mput. The Shamir method 1s yet another option for
creating shares, and for the operations used to yield a global
value S, for example, 1n the central entity. To achieve this,
the owner of the mput (usually called the dealer in literature
on such schemes) generates a polynomial of degree M-1,
P(x)=c[0]+c[1]*x+c[2]*x°+ . . . +c[M-1]*x"""", where
c[0]=A and the remaining c[1] are random numbers. Next the
dealer picks K distinct non-zero values X[1], X[2], . . ..
X|[K] and computes the shares as s(X[1]), s(X[2]), . . .,
s(X[K]). It 1s obvious that s(0)=c[0]=A, so anyone who can
reconstruct the polynomial will also be able to recover the
value A. It 1s well known from algebra that given M distinct
points on the curve of P(x), the polynomial can be recovered,
but given just M-1 points, there 1s an infinite number of
polynomials whose curves pass through all the given M-1
points, but mtersect the Y-axis at diflerent points.

In general, when multiple 1mnputs are split into shares in
this way, the shares from different inputs can’t be usefully
combined. However, under additional restriction that the
same values of X][j] have to be used for all mputs (for
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example, always taking X[1]=1, X[2]=2, . . . , X[K]=K),
then the scheme becomes additively homomorphic. Indeed,
with N mputs A[1], . . ., A[N] each independently split into
polynomials PARTY[1](x)=c[1][O]+c[1][1]*x+c[1][2]*
X+ . . . +c[i][M-11*x"', and the values A[i][j|FPARTY
[1](X][3]) distributed to the nodes as before, each node j can
compute and publish S[1]I=A[1]G]+AIZ]]+ . . . +A[N][]]
and any M-element subset of the shares S[j] will allow
recovery of the polynomial P(x)=PARTY[1](x)+PARTY][2]
(x)+ . .. +PARTY[N](x), and then P(0) will reveal the sum
ol 1nputs.
Composition Instead of Decomposition

In the description above of various embodiments, 1t 1s
assumed that each party represents its mput Af1] as an

operation on a set of shares, for example, the sum AJ1]=A
[1][1]+A1][2]+ . . . +A[1][K]. In many cases, this will be a
decomposition of A[i] into addends (or corresponding ele-
ments, depending on the operation mnvolved). In other
words, the party starts with a known value A[1], which 1s
wants to report yet still conceal, so 1t breaks 1t 1nto compo-
nents, that 1s, shares A[i1][j].

In some other implementations, however, a party may not
be the lowest level entity 1n the system, but rather may 1tself
collect and aggregate values that it has received from other
entities. As just one example, assume that an entity receives
K payments from customers and donors, that 1t must keep a
record of these individual payments, but that 1t must report
only a total received amount to a central authority, while
wishing to keep this total amount secret from competitor. In
other words, 1n this scenario, a party may be willing to reveal
its shares A[1][1] individually to different, respective nodes,
but not 1ts total A[1]. In this case, A[1][1] . .. A[1][K] are the
given values (shares) and may be summed (or other opera-
tion applied) to yield AJi]. The embodiments described
above may still be used as described.

Of course, 1t will not always be the case that a party will
receive K values, or the same number of values as other
parties. In general, even for the embodiments described
above, 1t may not always be so that all the parties decompose
(or compose) their respective inputs Af1] into the same
number of shares. Mechanisms for dealing with this possi-
bility are described elsewhere 1n this specification.
Signatures

Digital signatures may optionally be used for different
values, or sets of wvalues, 1n the wvarious embodiments;
signatures may in many cases aid in the auditing and/or
verification processes. 1T the signatures also encode time
(such as a Guardtime KSI signature), then they may also
form an irrefutable timestamp. Essentially, a digital signa-
ture, in particular, a Guardtime KSI signature, will 1rrefut-
ably “seal” a value (including vector) both with respect to
the value itself and with respect to time, in the sense that any
change will be detectable.

Any of the values, or sets of values, used 1n the different
embodiments may be digitally signed 11 this 1s desired 1n a
kind of “maximum auditability” implementation. For
example, 1n embodiments that involve inputting shares into
a hash tree to form a root value R[1], 1t may be advantageous
to digitally sign that root value R[1], thereby anchoring 1t to
another auditable record and, 11 the signing i1s done using the
Guardtime KSI system (see system 600 in FIG. 2), to time
as well. Sitmilarly, the state of all or any portion of the data
posted 1n the bulletin board 400 may also be digitally signed
and/or timestamped, for example, at the end of each aggre-
gation round, or even after each change of state, such as after
every addition to any of the data structures (such as for
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EK[ ], B[ ], R[ ], S[ ], etc.), as may be the collection of node
output values S[j] and/or final value S within the central
entity.

Registration

Before a node can know that it 1s to recerve N share values
from the N parties, it must, at least in some embodiments, be
made aware that there are N participating parties. In some
implementations, the central entity 300 will know which
parties 1t wishes to collect and aggregate share information
from. For example, a public health mimistry may know from
which pharmacies it wants information regarding vaccine
inventory, or a regional distributor may want to compile
stock information from certain retailers. In these cases, the
central entity may contact the parties (that 1s, their comput-
ing systems) and instruct or request them to register. The
central entity may send, for example, the network addresses
to the nodes to which each party 1s to report shares (and thus
the number K), to the bulletin board, and to any other
relevant entities, as well as administrative information such
as access codes, time limits, information i1dentifying what
values the parties are to report, etc. Each party may then
acknowledge the task and information. During any inter-
entity network communication, i1dentity verification may
also be implemented, for example by using standard Public
Key Infrastructure (PKI) techniques.

It would also be possible instead for the central entity to
message the nodes mformation about the data that they are
to accumulate. The nodes may then handle the task of
communicating with one or more parties, exchanging nec-
essary 1nformation, and then communicating this iforma-
tion to the other nodes, which may then communicate, for
example, the network address of the nodes to “their’” respec-
tive parties.

Still other alternatives are possible for establishing the
information needed to begin the process of parties reporting
their share information. One such additional alternative
would be for the parties themselves to 1nitiate participation
in the data-reporting procedures. In this case, a party would
signal to either the central entity or to one or more of the
nodes that 1t wishes to participate. It approved, the superior
entity could then respond with the necessary network
addresses, possible assignment to nodes for reporting, etc.
Phantom Shares to Increase Entropy

Now consider again the basic embodiment 1llustrated 1n
FIG. 1 but assume that, as part of pre-reporting communi-
cation by the central entity 300 to each party 1, the central
entity 1ssues a respective, secret “phantom share” value
PS[i1]. The party 1 may then add this value to its mput value
Al1], to form A*[1]=A[1]+PS][1] and proceed as 1n any of the
described embodiments except for decomposing A*[1]
instead of Af1] imnto the K shares. The central entity may then
determine the actual total share value S by subtracting the
sum of all the N phantom share values PS[1] from the final
value S* that the central entity computes from the sum of the
node values S[1], that 1s,

ST ST, VST

The central entity may choose the phantom share values
in any manner. One example would be to choose the
phantom share values as random numbers within some
predetermined range. Another option would be to choose the
phantom share values such that they sum to O (note that there
1s no requirement for a share value to be a positive integer),
in which case there will be no need to subtract =,_," PS[i]
from the sum of values received from the nodes.

In implementations that use decomposition into multipli-
cands instead of addends, each party’s mput Af1] may be
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multiplied with the assigned phantom share value, 1n which
case the central entity would divide the result of multipli-
cation of the S[1] values by the product of all the phantom
share values, that 1s:

S=(IL;= ST "PS[i])

This optional modification increases the entropy of the
values reported by the parties such that, even 11 a malicious
actor were to 1tercept all the share values sent from a party
to the nodes, 1t would still not be able to determine what that
party’s actual total value A[i1] 1s. This option may be usetul
in cases 1n which a party’s input value A[1] may be too small
to split into the requisite or chosen number of shares without
using negative share values. Note that this embodiment
would preserve the privacy of parties’ inputs even with just
one node, assuming the central entity and the node are not
colluding.

Assigned Party Input Values

So far 1n the description, 1t has been suggested that each
party has a value that 1s to be kept secret even from the
central entity, which aggregates received values to derive a
previously unknown global value S. This i1s not the only
scenar1o. In some situations the central authority may know
in advance what the global value S 1s, then decomposes it
into pieces that are distributed to the respective parties,
secretly, and then the parties need to submit them back, by
way ol any of the methods described herein. Such an
embodiment could be used to implement, for example,
multi-party authorization of some action, or to prove that all
had participated 1n some process.

Rosters

Assume that each of K nodes NODE][j] 1s to receive a
respective one of K shares from each of N parties. Each node
may then maintain a simple N-element “roster” in which 1t
indicates from which nodes 1t has received share values.
This could be as simple as an N-bit word 1n which each bit
corresponds to a node, a “1” indicates that a share value has
been recerved and a *“0” indicates the opposite, or any known
data structure may be used to indicate which nodes have
“reported”. One such structure could be a list of party
identifiers, which a party may send along with share values,
which could be dernived from the network address of the
party, or otherwise. A node may then sum its recerved share
values to S[j] when it has recerved all N values, but will be
able to 1dentily each node that has not sent a share value, for
example, by some deadline. The node may then signal this
failure to other nodes, and/or to the central entity, and/or to
the node 1tsell as a “reminder” or other type of notification.
The nodes and/or central entity may then take any chosen
remedial action, such as not completing the data accumula-
tion round at all (where total compliance 1s required),
computing S based on only the K values received by all
nodes from fully compliant parties, computing S based on
whatever share values have been received, even if not all
have been received from a party, etc.

FIGS. 6 A and 6B 1illustrate a form of roster 700, 1n this
case a two-dimensional data structure, that may be used 1n
not only the situation in which there are N nodes each
reporting K shares to each of K nodes, but also other
possibilities as well. The roster 700 may be established and
maintained within the central entity 300, or as part of the
bulletin board 400 (which may itself be within the central
entity), or i some other entity with which the nodes can
communicate. The roster 700 could also be maintained
within any of the nodes, and/or duplicated and synchronized
by more than one node.
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In FIGS. 6A and 6B, each column corresponds to one of

the K nodes and each row corresponds to one of the N
parties; ol course other data structures may be used to store
and indicate the same information. In the illustrated case,
there are eight nodes (K=8) and ten parties (N=10), although
this 1s of course simply by way of illustration. In FIG. 6 A,
for each row, an unshaded cell indicates that the respective
party 1s to send a share value to the node of the correspond-
ing column; the row this indicates into how many shares the
corresponding party will be decomposing 1ts input value
into. Instead of “a” common number K of shares, in these
embodiments, each party will create k[1] shares, which may
be the same for all parties, but may also differ. A shaded cell,
however, indicates that the party 1s not going to report a
share value to that node. For example, as 1llustrated 1n FIG.
6A, party PARTY][1] 1s to send share values to nodes 3-7
(five shares; party PARTY|[2] 1s to send share values to nodes
1 and 4-8; party PARTY]7/] 1s to send share values to all K
nodes; and so on.
Note that party PARTY[8] 1s sending only a single share
value, to node 8, which might be because that party PARTY
[8] does not care about the extra security oflered by “split-
ting” 1ts mput value into share values that are “distributed”
to different nodes. This reduces the security of other parties,
however, by making it possible to subtract off a single
known value from an intercepted partial sum; in other
words, allowing a party to create a single “share” reduces
entropy and 1s therefore not preferable.

Now see the state of the roster 700 as 1illustrated 1n FIG.
6B, 1n which an “X” 1n a cell indicates that the respective
Node S[j] has received a share value from the respective
party PARTY/1]. This information may be reported to which-
ever enfity maintains the roster at the designated end of a

round (such as a time deadline), or in real time, as share
values are recerved. Note that the actual share value recerved
1s not indicated in the roster 700, since this would cause
party mput values Af1] to be revealed by summing a com-
plete row. For example, as illustrated, node 3 has recerved all
the share values 1t was supposed to, that 1s, from Parties 1,
3-7, and 9, as has Node 2 (parties 3, 6, 7, and 9), node 3,
node 4, node 6, and node 7.

On the other hand node 5 1s not shown as having received
any share values, which may indicate a failure of node 5
itselt, or of 1its connection to the entity hosting the roster. The
illustrated roster also indicates that party PARTY[9] has
failed to send wvalues to Nodes 1 and 8, in addition to
whatever caused Node 5 not to report the share value A[9,5].

In the absence of a complete roster (all share values
reported to all proper nodes), the central entity may take any
chosen remedial action, as mentioned above, ranging from
refraining from any S computation to simply computing S
based on whatever S[j] values it has received, computing S
based on only S[j] values from nodes whose indications
(columns) are complete, etc. The central entity may also
contact any nodes with incomplete roster indications, for
example, to request retransmission, and/or to pass on a
request for the node to query and request retransmission
from any parties that have “missing’” shares, etc.

The roster may be mitialized in any chosen manner. One
example would be for parties, upon 1nitial registration with
the central entity, to indicate how many shares they will
submit, and, 11 not assigned by the central entity (an option),
which nodes they will transmit share values to. This would
enable the central entity to configure the roster (that is, the
data structure that implements 1t) before the parties begin to
transmit share values. One reason a party might wish to
submit fewer than some fixed number K of shares, where
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K=the number of nodes, 1s that 1t may not wish or be allowed
to establish network communication with one or more of the
nodes at all.

Furthermore, the nodes might have some natural “group-
ing”’, such as geographic, such that parties 1n a region 1 may
report only to the k[1] nodes in that region, parties in a
region 2 report only to the k[2] nodes 1n that region, and so
on. The central entity, or the respective regional nodes, may
then communicate to the respective parties to which nodes
they are to submit values, and this how many shares they
should divide their respective input values into.

As an alternative, the information used to configure and
complete the roster 700 could be conveyed as part of the
share-reporting process itsell. For example, assume that
party 1 wishes to communicate to nodes how many shares 1t
has created and which share 1t 1s sending to each node. Each
transmission from a party to a node could then be 1n the form
(or equivalent) of a set of data such as {IDJ[i], k[i], g
Ali][q]}, where IDJ[i] is an identifier of the party PARTYTi],
k[1] indicates how many total shares party PARTY]1] 1s
going to be transmitting, q 1s an index number 1ndicating
which share 1s being transmitted now, and Af1][q] 1s the
actual share value. Thus, following this protocol, {ID[1], 6,
2, A[1][2]}, sent to node 4, would indicate that party 1 is
transmitting the share value A[1][2] as the 2”¢ of 6 total
shares. As part of completing a round, the node 1 could then
send to the central entity all of the subsets {1DJi], k[i], q}.
along with 1ts node sum S[j]; the central entity would then
be able to construct the roster. This procedure would also be
able to detect duplicate transmissions: If two different nodes
report that they have received the g-th of k[1] share from
party 1, this would 1ndicate a discrepancy that could trigger
remedial action. The roster 700 1n this embodiment may be
configured as 1 FIG. 6C, in which, imstead of S[j] 1denti-
fiers, the columns indicate the k[1] values for the respective
nodes, such that each row acts as a form of *“tally” of
transmitted shares. The roster shown in FIG. 6B would then
appear as 1 FIG. 6C: party 1 has reported 4 out of 5 total
shares; party 2 has reported 5 out of 6; and so on. This
configuration would not easily detect that node 5 has failed
to submit any values at all, but the cells of a roster config-
ured as 1n FIG. 6C could be made three-dimensional by
including, instead of just a marker (“X” 1n the figure), the
number of the node that passed the respective cell informa-
tion. The central entity may detect failure of a node more
straightforwardly, however: It would not have received
information from that node at all when the node was to
submit 1ts S[1] sum.

Alternatives to Hash Trees

FIGS. 2, 3 and 3, and the accompanying description, refer
to the use of hash trees to aggregate sets of values mto a
single root value and, for each value, a unique corresponding,
value chain to that single root value. Hash trees are, how-
ever, just one option. In general, any multi-element data
and/or computational structure that encodes all of a set of
multiple mput values (such as the share values AJ1][j] for a
party, or node input values S[1][j] for a node) to produce one
or more output values that conceal the mputs and may be
stored and used for validation may be used instead of hash
trees.

One such alternative structure 1s a variation of a skip list,
which 1s a well-known data structure first described 1n Pugh,
William, “Concurrent Maintenance of Skip Lists”, (Techni-
cal report), Dept. of Computer Science, U. Maryland, CS-
TR-2222, (April 1989). See FIG. 7A. In summary, a skip list
1s a data structure that comprises a hierarchy of “layers” (in
FIG. 7A layers 0, 1, 2, although any number may be
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included) of linked lists of ordered sequences of elements,
cach having an mmitial (Head) and final (Tail) value. The
lowest layer comprises the full ordered sequence of values
(such as share values). Higher layers contain successively
sparser elements and are used to successively “bracket”
values 1n lower layers until a desired element 1s located. In
FIG. 7A, arrows between “boxes” indicate pointers. One
feature of a skip list 1s that 1t enables searching with far
fewer average operations than a linear search of the lowest
level linked list would require. Another feature 1s that 1t
allows for insertions and deletions without requiring the
search path of elements from Head to Tail to change.

FIG. 7B shows a modification of the skip list, in which
arrows 1ndicate hashing operations instead of simple point-
ers. Thus, the value K=hash(hash(7) | 8), where *“7” and “8”
indicate the values stored in the respective numbered ele-
ments. Similarly, Z=hash(hash(I | hash(o | K)) | L), and so
on. For every element 1-11, there 1s a unique hash path (a
“chain”) to the highest level Tail value, that 1s, 1n FIG. 7B,
the value Z. Values I and I are the previous and K and L are
the subsequent sibling values on the path from 6 to Z. An
initial Head value A may be included to form an initial
“seed” for the structure.

To use a skip list such as 1s shown 1n FIGS. 7A and 7B 1n
embodiments of the invention, the share values (or node
input values) may form the lowest level elements (1-11 1n
FIG. 7B) and the value Z=7]1] may be used in the manner
described above for the hash tree root R[1] (and/or NR[j]),
such as being posted to the bulletin board, etc. The path from
cach element to the Tail value Z may then function in a
manner similar to a hash chain. Especially where large
numbers of shares are anticipated, use of a skip list may
enable an auditor to more quickly search for and find a share
value 1n question.

System Components

Viewed 1from the system perspective, the different
embodiments of the mnvention described above define a
system ol communicating computing devices that cooperate
to enable accumulation of party mput values Af1] 1 a
manner that preserves the secrecy of the values. To accom-
plish this, various data structures are created and updated.
Note that some data structure, even 1f a simple list, may be
used by each party to store its share values AJ1,j], by each
node to accumulate the share values it receives, and by the
central entity to accumulate the node values S[j].

FIG. 8 illustrates the main hardware and software com-
ponents of a computing system that may be used to 1mple-
ment any of the enfities, that 1s, a party, a node, the central
entity, or any system with which these communicate to
implement, for example, the bulletin board 400 or signature
service 600, if these are not included within one of the
entities.

In general, each computing system 800 will include
standard components such as system hardware 810 with at
least one processor 811, some form of system software 820
such as an operating system 821 and/or virtual machine
hypervisor, as well as volatile and/or non-volatile memory
and/or storage, which 1s indicated “collectively” as compo-
nent 812. The various data structures described herein, as
well as the processor-executable code created to embody the
soltware modules used to carry out the various computations
and functions illustrated in FIGS. 1-7B, may be stored and
thus embodied 1n either or both types of memory/storage
components. Especially given the proliferation of high-
speed “non-volatile” storage components, the difference
between these two component classes 1s becoming less
relevant. The software modules will comprise processor-
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executable code that, when run by the processor(s) 811,
cause the processor(s) to carry out the corresponding func-
tions.

Standard I/O access components 814 may also be
included 1n each device to enable communication with other
entities and systems over any known type of network,
wireless or wired.

One or more entities may also include or connect to and
control a display 900, with corresponding conventional
drivers, etc.

FIG. 8 shows the system 800 as including an application
layer 830, which comprises various soltware modules for
performing the functions described above, for example,
depending on the entity, decomposing party input values
Al1] (831), computing hash values (110) and/or decryptions/
encryptions (120, 210), computing node sums S[1] (832) or
the final result S (833), etc. (not all of which will typically
be included 1n one enftity but are shown together for suc-
cinctness). If signatures/timestamps are used, these may be
computed 1n an external system 600, whereby a software
module 860 may also be included to format and submit
requests appropriately and receive the results. Such an
application layer 1s usually distinguished from the system
software layer 1n that system software operates in a privi-
leged mode with respect to 1ts interaction with system
hardware whereas “applications” don’t.

Rosters 700, 1 implemented, may be created and stored
within the storage component(s) 812 as other data structures,
under the control of a corresponding software module 870.

The mvention claimed 1s:
1. A method for communicating secret values from a
plurality of parties to a central entity, comprising;:
within each party,
generating a respective first plurality of share values
such that the share values, when operated on accord-
ing to a predetermined mathematical operation, yield
a respective one of the secret values associated with
the respective party;
applying the first plurality of share values as input
values to a first multi-element data and computa-
tional structure that computes from the share values
a unique {irst aggregation value and, for each share
value, determines a umque, first repeatable relation-
ship enabling recomputation of the first aggregation
value from the corresponding share value;
storing each first aggregation value in a bulletin data
structure accessible to an auditing entity; and
exposing the first plurality of share values separately to
a respective plurality of nodes, each node thereupon
computing a respective node output value by apply-
ing the predetermined mathematical operation to the
share values received by the respective node and
transmitting the respective node output value to a
central entity, which thereupon computes a global
value by applying the predetermined mathematical
operation to the node output values receirved from the
respective nodes;
whereby an audited one of the parties 1s considered
validated 11, upon subsequent application of its the first
plurality of share values as input values to the multi-
clement data and computational structure, the same first
aggregation value 1s obtained as was stored from the
bulletin data structure.
2. The method of claim 1, in which:
the first multi-element data and computational structure 1s
a hash tree:
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the unique first aggregation value 1s a root value of the
hash tree; and
the unique, repeatable relationship 1s a representation of a
recomputation path through the hash tree.
3. The method of claim 2, further comprising storing the
root values corresponding to the parties 1n the bulleting data

structure.

4. The method of claim 1, in which:

the first multi-element data and computational structure 1s

in the form of a skip list;

the unique first aggregation value 1s a tail value of the skip

list; and

the unique, repeatable relationship 1s a representation of a

recomputation path through the skip list.
5. The method of claim 1, further comprising, within each
node, applying the share values received by the respective
node as mputs to a second multi-element data and compu-
tational structure that computes from the share values
received by the node a unique second aggregation value and
determines a unique, second repeatable relationship
enabling recomputation of the second aggregation value
from the corresponding share values received by the respec-
tive node;
storing each second aggregation value 1n the bulletin data
structure accessible to an auditing entity; and

whereby an audited one of the nodes 1s considered vali-
dated 1f, upon subsequent application of 1its the share
values received by the node as mput values to the
second multi-element data and computational structure,
the same second aggregation value 1s obtained as was
stored from the bulletin data structure.

6. The method of claim 1, further comprising:

within each party;

inputting from the bulletin data structure an encryption
key stored in the bulletin data structure by each
respective node that will receive any of the party’s
share values;
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encrypting each share value using the encryption key
corresponding to the respective node and causing the
encrypted share values to be stored in the bulletin
data structure;
exposing the share values to the nodes in the form of
the encrypted share values stored in the bulletin data
structure, whereupon the nodes obtain the share
values from which to compute their respective node
output values by inputting from the bulletin data
structure and applying to each iputted encrypted
share value a corresponding decryption key.
7. The method of claim 1, further comprising digitally
signing contents of the bulletin data structure.
8. The method of claim 1, further comprising timestamp-
ing at least a partial state of the bulletin data structure.
9. The method of claim 1, further comprising creating a

roster data structure having elements indicating which share
values have been exposed to which nodes.

10. The method of claim 9, 1n which at least one party
exposes fewer share values to nodes than a total number of
nodes.

11. The method of claim 9, in which the number of the
first plurality of shares 1s not constant over all of the parties.

12. The method of claim 11, further comprising including
along with each share value exposed by each party to nodes
additional data indicating a number of total shares of the
party and an index value indicating its order among the
number of total shares.

13. The method of claim 9, further comprising determin-
ing from the roster data structure whether the central entity
has failed to recerve information.

14. The method of claam 1, in which at least one share
value of each party 1s an entropy-increasing phantom share
value received from the central enfity.
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