12 United States Patent

US011018694B2

(10) Patent No.: US 11,018,694 B2

Gravel 45) Date of Patent: May 25, 2021
(54) FAST CYCLIC REDUNDANCY CHECK 7,627,802 B2 12/2009 Pisek et al.
CODE GENERATION 7.631,251 B2* 12/2009 BOWEro.coco...... HO3M 13/09
714/758
(71) Applicant: Hewlett Packard Enterprise 8,468,439 B2 . 6?013 Kirkpatrick /
Development LP, Houston, TX (US) 8,943,888 B2 9/2013 Bommena HO3M ;?;’;gég
_ 8,612,842 B2* 12/2013 Gammel HO3M 13/091
(72) Inventor: Mark Allen Gravel, Roseville, CA - 714/207
(US) 9,154,163 B2* 10/2015 Engberg HO3M 13/091
10,481,971 B2* 11/2019 Shinbashi GO6F 11/10
(73) Assignee: Hewlett Packard Enterprise 2004/0098635 A1* 5/2004 Cho ..o GO6F 13/423
Development LP, Houston, TX (US) 713/600
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBI ICATIONS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 16 days. AT&T Bell Laboratories, Error Control Aspects of High Speed
Networks, 1992, pp. 1-10, Retrieved from the Internet on Feb. 4,
(21) Appl. No.: 16/436,101 2019 from URL: <computer.org/csdl/proceedings/infcom/1992/0602/
' 00/00263560.pdf~>.
(22) Filed: Jun. 10, 2019 (Continued)
(65) Prior Publication Data Primary Examiner — Phung M Chung
US 2020/0389183 Al Dec. 10, 2020 (74) Attorney, Agent, or Firm — Sheppard Mullin Richter
& Hampton LLP
(51) Int. CL
HO3M 13/09 (2006.01) (37) ABSTRACT
HOSM 13/15 (2006.01) Systems and methods are provided for fast cyclic redun-
(52) US. ClL dancy check code generation. For example, a method
CPC e HO3M 13/091 (2013.01); HO3M 13/157 includes representing the sequence of bits as a polynomial
_ _ _ (2013.01) over a Galois field base 2; partitioning the polynomial into
(58) Field of Classification Search a plurality of partial polynomials, wherein the polynomial
None o _ equals the sum of the partial polynomials; concurrently
See application file for complete search history. generating a respective partial CRC code for each of the
_ partial polynomials; weighting each partial CRC code
(56) References Cited according to a position of the respective partial polynomial

U.S. PATENT DOCUMENTS

6/2005 Cavanna et al.
2/2007 Blightman et al.

0,904,558 B2
7,185,266 B2

in the polynomial; and summing the weighted partial CRC
codes.

20 Claims, 7 Drawing Sheets

COMPUTING COMPONENT 600

HARDWARE PROCESSORS 602

MACHINE-READABLE STORAGE MEDIA 604

REPRESENT THE SEQUENCE OF BITS AS A
POLYNOMIAL OVER A GALOIS FIELD BASE 2 606

v

PARTITION THE POLYNOMIAL INTO A PLURALITY OF
PARTIAL POLYNOMIALS, WHEREIN THE POLYNOMIAL
EQUALS THE SUM OF THE PARTIAL POLYNOMIALS

6508

Y

CONCURRENTLY GENERATE A RESPECTIVE PARTIAL
CRC CODE FOR EACH OF THE PARTIAL
POLYNOMIALS 610

Y

WEIGHT EACH PARTIAL CRC CODE ACCORDING TO A
POSITION OF THE RESPECTIVE PARTIAL
POLYNOMIAL IN THE POLYNOMIAL 612

Y

SUM THE WEIGHTED PARTIAL CRC CODES §14

US 11,018,694 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Ewing, Gregory: Reverse-engineering a CRC Algorithm, Mar.
2010, pp. 1-8, Retrieved from the Internet on Feb. 4, 2019 from
URL: <cosc.canterbury.ac.nz/greg.ewing/essays/CRC-Reverse-
Engineering. html >,

Harika, P. et al.; FPGA Based High Speed Parallel Cyclic Redun-
dancy Check, 2013, pp. 1-8, Retrieved from the Internet on Feb. 4,
2019 from URL: <pdfs.semanticscholar.org/b784/
bb0a0acOc1c0408955987230e51225818eb5.pdf>.

Priva, V.P.. Design of Parallel CRC Generation for High Speed
Application, Aug. 2017, pp. 1-4, Retrieved from the Internet on Feb.
4, 2019 from URL: <1]€SC org/upload/
776eba20eba20e1915¢644biib092 1¢3aa97 Design%62001%20Parallel %o
20CRC%20generation%20for%20H1gh%20Speed%20Application.
pdf >.

Walma, M.; Pipelined Cyclic Redundancy Check (CRC) Calcula-
tion, Aug. 13-16, 2007, pp. 1-2, Retrieved from the Internet on Feb.
4, 2019 from URL: <ieeexplore.ieee.org/document/4317846 >,

* cited by examiner

US 11,018,694 B2

Sheet 1 of 7

May 25, 2021

U.S. Patent

30IA30 |
IN3IT0

391A30 b
INTITD |

aort |
3I0IA3A |
INTT0 |

..... OO.W_. N | —— wm._‘

30IA30
INFD |

Qg
S E N ﬂu_”..

qo0rl |
FOIA4d |
INAO |

_____ %E‘
F0IA3d |
INANO |

gl

0zt

WHOMLAN |

8041
FOUAZ(
ANSHTO

Y’
FOIA3C
ANSTO

- 00t
30IA30
ANGNO

LN

30IA3Q

o . / \\

30IA3C
N3O

HOTT |
30IA3A |
(N3O |

. ,
. I...l...l..-l...l...)
; o ..l.v..-f..-.v..lf..-.ﬂ. .
“EEEREF Hi. .

US 11,018,694 B2

Sheet 2 of 7

May 25, 2021

U.S. Patent

3dALANTT

e Fi g

fondf &

EHUOUAMOG (1A

19908 4 LIS

U.S. Patent May 25, 2021 Sheet 3 of 7 US 11,018,694 B2

kaS <
O =
ad
O
o o
m ad
5 1T
& . o
@ @ @ ‘|_- X
® @ ® d [(D
®. LL
@ @ @ <
— <
X -
E s

CRC

<
m

o~
M
-
p——
«
o0
L

U.S. Patent May 25, 2021 Sheet 4 of 7 US 11,018,694 B2

FIG. 4

US 11,018,694 B2

Sheet 5 of 7

May 25, 2021

U.S. Patent

RS D

4440

U.S. Patent May 25, 2021 Sheet 6 of 7 US 11,018,694 B2

COMPUTING COMPONENT 600

HARDWARE PROCESSORS 602

MACHINE-READABLE STORAGE MEDIA 604

REPRESENT THE SEQUENCE OF BITS AS A
POLYNOMIAL OVER A GALOIS FIELD BASE 2 606

PARTITION THE POLYNOMIAL INTO A PLURALITY OF
PARTIAL POLYNOMIALS, WHEREIN THE POLYNOMIAL

EQUALS THE SUM OF THE PARTIAL POLYNOMIALS
608

CONCURRENTLY GENERATE A RESPECTIVE PARTIAL
CRC CODE FOR EACH OF THE PARTIAL
POLYNOMIALS 610

WEIGHT EACH PARTIAL CRC CODE ACCORDING TO A
POSITION OF THE RESPECTIVE PARTIAL
POLYNOMIAL IN THE POLYNOMIAL 612

SUM THE WEIGHTED PARTIAL CRC CODES 614

U.S. Patent May 25, 2021 Sheet 7 of 7 US 11,018,694 B2

700

Nefwork
Interface(s)
718

Display Input Cursor

Control
116

Device(s)
fle 14

FIG. 7

US 11,018,694 B2

1

FAST CYCLIC REDUNDANCY CHECK
CODE GENERATION

DESCRIPTION OF RELATED ART

The disclosed technology relates generally to data com-
munication networks, and more particularly some embodi-
ments relate to checking for errors 1n data 1n such networks.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure, 1n accordance with one or more
various embodiments, 1s described 1n detail with reference to
the following figures. The figures are provided for purposes
of 1llustration only and merely depict typical or example
embodiments.

FI1G. 1 1llustrates one example of a network configuration
that may be implemented for an organization, such as a
business, educational institution, governmental entity,
healthcare facility or other orgamization.

FIG. 2 1llustrates the relationship between an Ethernet
data packet in network byte order and the message polyno-
mial terms and coethicients.

FIG. 3 illustrates an embodiment of a CRC generator
using the superposition principle according to one embodi-
ment of the disclosed technology.

FIG. 4 illustrates a technique for generating an H trans-
form matrix for a generator polynomial according to one
embodiment.

FIG. 5 illustrates a CRC code generator and checker
according to one embodiment of the disclosed technology.

FIG. 6 1s a block diagram of an example computing
component or device for generating a CRC code for a
sequence of bits according to embodiments of the disclosed
technology.

FIG. 7 depicts a block diagram of an example computer
system 1n which embodiments described herein may be
implemented.

The figures are not exhaustive and do not limit the present
disclosure to the precise form disclosed.

DETAILED DESCRIPTION

In systems such as data communication networks, data
may become corrupted during transmission, storage, and the
like. This data may include messages exchanged between
network devices, as well as internal values used within the
network devices, for example 1including internal parameters
employed by network switches, routers, and the like. One
common techmque for detecting corrupted data 1s the use of
cyclic redundancy check (CRC) codes. When data is trans-
mitted, stored, or the like, a first CRC code 1s calculated for
the data. Later, when the data 1s received, retrieved, or the
like, a second CRC code 1s calculated for the data. I the first
and second CRC codes do not match, the data 1s considered
corrupt.

In some situations, CRC code generation 1s implemented
using linear feedback shift registers (LFSR). These imple-
mentations sufler from several limitations. High-speed net-
work switches and routers 1n data communication networks
may operate 1 multiple terabits per second, and employ
very wide mternal interfaces that run a very high clock rates.
But LFSR implementations limit internal interface width
and/or clock rates because they scale with interface width.
Furthermore, LFSR 1mplementations maintain state repre-
senting the CRC code of all previously processed bytes of a
message. Therefore, when only a few bytes of the message

10

15

20

25

30

35

40

45

50

55

60

65

2

1s modified, it 1s not possible to patch the CRC code without
regenerating a new CRC code over the entire message. This
regeneration process consumes considerable internal pro-
cessing bandwidth.

Embodiments of the disclosed technology provide CRC
code generation and checking implementations using super-
position principles. These embodiments allows very-large-
scale mtegrated circuit (VLSI) designers to overcome the
problems described above regarding LFSR i1mplementa-
tions. These embodiments allow patching segments of a
message, and CRC code patching without regenerating the
CRC code for the entire message. These embodiments also
provide a fixed logic tree depth regardless of internal data
path width, and therefore support wider data buses.

The disclosed technology better supports high-speed net-
work switches and routers, which may rely on wide internal
data paths to achieve multiple terabit-per-second speeds, and
provides the ability to partially modily messages and patch
the CRC rather than having to regenerate the CRC over the
entire message. Moreover, the disclosed embodiments pro-
hat support adding pipeline stages between

vide functions t
cach function, thereby reducing the number of logic levels
between pipeline stages, further improving performance.
Betore describing embodiments of the disclosed systems
and methods 1n detail, 1t 1s useful to describe an example
network installation with which these systems and methods
might be implemented 1n various applications. FIG. 1 1llus-
trates one example of a network configuration 100 that may
be mmplemented for an organization, such as a business,
educational 1nstitution, governmental entity, healthcare
facility or other organization. "

This diagram illustrates an
example of a configuration implemented with an organiza-
tion having multiple users (or at least multiple client devices
110) and possibly multiple physical or geographical sites
102, 132, 142. The network configuration 100 may include
a primary site 102 in communication with a network 120.
The network configuration 100 may also include one or
more remote sites 132, 142, that are 1n communication with
the network 120.

The primary site 102 may include a primary network (not
shown), which can be, for example, an oflice network, home
network or other network installation. The primary site 102
network may be a private network, such as a network that
may include security and access controls to restrict access to
authorized users of the private network. Authorized users
may 1nclude, for example, employees of a company at
primary site 102, residents of a house, customers at a
business, and so on.

In the illustrated example, the primary site 102 includes a
controller 104 in communication with the network 120. The
controller 104 may provide communication with the net-
work 120 for the primary site 102, though 1t may not be the
only point of communication with the network 120 for the
primary site 102. A single controller 104 1s 1llustrated,
though the primary site may include multiple controllers
and/or multiple communication points with network 120. In
some embodiments, the controller 104 communicates with
the network 120 through a router (not 1illustrated). In other
embodiments, the controller 104 provides router function-
ality to the devices in the primary site 102.

A controller 104 may be operable to configure and man-
age network devices, such as at the primary site 102, and
may also manage network devices at the remote sites 132,
142. The controller 104 may be operable to configure and/or
manage switches, routers, access points, and/or client
devices connected to a network. The controller 104 may
itsell be, or provide the functionality of, an access point.

US 11,018,694 B2

3

The controller 104 may be in communication with one or
more switches 108 and/or wireless Access Points (Aps)
106a-c. Switches 108 and wireless APs 106a-c¢ provide
network connectivity to various client devices 110a-;. Using
a connection to a switch 108 or AP 106a-c, a client device
110a-j may access network resources, including other
devices on the (primary site 102) network and the network
120.

Examples of client devices may include: desktop com-
puters, laptop computers, servers, web servers, authentica-
tion servers, authentication-authorization-accounting (AM)
servers, Domain Name System (DNS) servers, Dynamic
Host Configuration Protocol (DHCP) servers, Internet Pro-
tocol (IP) servers, Virtual Private Network (VPN) servers,
network policy servers, mainframes, tablet computers,
e-readers, netbook computers, televisions and similar moni-
tors (e.g., smart TVs), content receivers, set-top boxes,
personal digital assistants (PDAs), mobile phones, smart
phones, smart terminals, dumb terminals, virtual terminals,
video game consoles, virtual assistants, Internet of Things
(I0T) devices, and the like.

Within the primary site 102, a switch 108 1s imncluded as
one example of a point of access to the network established
in primary site 102 for wired client devices 110i-j. Client
devices 110i-j may connect to the switch 108 and through
the switch 108, may be able to access other devices within
the network configuration 100. The client devices 110:-f may
also be able to access the network 120, through the switch
108. The client devices 110i-j may communicate with the
switch 108 over a wired 112 connection. In the 1illustrated
example, the switch 108 communicates with the controller
104 over a wired 112 connection, though this connection
may also be wireless.

Wireless APs 106a-¢ are included as another example of
a point of access to the network established 1n primary site
102 for client devices 110a-~2. Each of APs 106a-c may be
a combination of hardware, software, and/or firmware that 1s
configured to provide wireless network connectivity to wire-
less client devices 110a-4. In the illustrated example, APs
106a-c can be managed and configured by the controller
104. APs 106a-c¢ communicate with the controller 104 and
the network over connections 112, which may be either
wired or wireless interfaces.

The network configuration 100 may include one or more
remote sites 132. A remote site 132 may be located 1n a
different physical or geographical location from the primary
site 102. In some cases, the remote site 132 may be in the
same geographical location, or possibly the same building,
as the primary site 102, but lacks a direct connection to the
network located within the primary site 102. Instead, remote
site 132 may utilize a connection over a different network,
e.g., network 120. A remote site 132 such as the one
illustrated 1n FIG. 1 may be, for example, a satellite ofhice,
another floor or suite 1n a building, and so on. The remote
site 132 may include a gateway device 134 for communi-
cating with the network 120. A gateway device 134 may be
a router, a digital-to-analog modem, a cable modem, a
Digital Subscriber Line (DSL) modem, or some other net-
work device configured to communicate to the network 120.
The remote site 132 may also include a switch 138 and/or
AP 136 1n communication with the gateway device 134 over
either wired or wireless connections. The switch 138 and AP
136 provide connectivity to the network for various client
devices 140a-d.

In various embodiments, the remote site 132 may be in
direct communication with primary site 102, such that client
devices 140a-d at the remote site 132 access the network

10

15

20

25

30

35

40

45

50

55

60

65

4

resources at the primary site 102 as 11 these clients devices
140a-d were located at the primary site 102. In such embodi-
ments, the remote site 132 1s managed by the controller 104
at the primary site 102, and the controller 104 provides the
necessary connectivity, security, and accessibility that
cnable the remote site 132°s communication with the pri-
mary site 102. Once connected to the primary site 102, the
remote site 132 may function as a part of a private network
provided by the primary site 102.

In various embodiments, the network configuration 100
may include one or more smaller remote sites 142, com-
prising only a gateway device 144 for communicating with
the network 120 and a wireless AP 146, by which various
client devices 150a-b access the network 120. Such a remote
site 142 may represent, for example, an individual employ-
ee’s home or a temporary remote office. The remote site 142
may also be in communication with the primary site 102,
such that the client devices 150a-b at remote site 142 access
network resources at the primary site 102 as 1f these client
devices 150a-b were located at the primary site 102. The
remote site 142 may be managed by the controller 104 at the
primary site 102 to make this transparency possible. Once
connected to the primary site 102, the remote site 142 may
function as a part of a private network provided by the
primary site 102.

The network 120 may be a public or private network, such
as the Internet, or other communication network to allow
connectivity among the various sites 102, 130 to 142 as well
as access to servers 160a-b. The network 120 may include
third-party telecommunication lines, such as phone lines,
broadcast coaxial cable, fiber optic cables, satellite commu-
nications, cellular communications, and the like. The net-
work 120 may include any number of intermediate network
devices, such as switches, routers, gateways, servers, and/or
controllers, which are not directly part of the network
configuration 100 but that facilitate communication between
the various parts ol the network configuration 100, and
between the network configuration 100 and other network-
connected entities. The network 120 may include various
content servers 160a-b. Content servers 160a-b may include
vartous providers of multimedia downloadable and/or
streaming content, including audio, video, graphical, and/or
text content, or any combination thereof. Examples of
content servers 160a-6 include, for example, web servers,
streaming radio and video providers, and cable and satellite
television providers. The client devices 110a-j, 140a-d,
150a-b may request and access the multimedia content
provided by the content servers 160a-b.

Now embodiments of the disclosed technology are
described 1n detail. Some of the discussion and examples
that follow employ the IEEE-CRC32 polynomial, which 1s
often used in high-speed Ethernet switches and routers.
However, the disclosed technology 1s not limited to that
polynomial, and therefore may be employed with other CRC
polynomials.

The disclosed technology makes use of the superposition
principle. The superposition principle, also known as the
superposition property, holds that for all linear systems, the
response caused by two or more stimuli 1s the sum of the
responses that would have been caused by each stimulus
individually. For example, 11 mput A produces response X
and mput B produces response Y, then mput A+B produces
response X+Y. This property allows a string of bits such as
a message, 1 a polynomial representation, to be broken into
smaller, more manageable partial messages. A partial CRC
code may be generated for each partial message. The partial
CRC codes may be summed to provide a final CRC code.

US 11,018,694 B2

S

Owing to the superposition principle, the final CRC code 1s
the same as a CRC code generated over the entire message.
This technique may be used with any CRC generator poly-
nomuial.

The CRC calculation 1s based on polynomial division
over Galois field base 2, which constrains polynomial coet-
ficients to a value of 1 or 0. A transmitted message protected
by the CRC code 1s represented by the polynomial T(x). The
CRC code 1s the remainder, R(x), derived from dividing the
original massage, M(x), by the CRC Polynomial, G(x).

T(xX)=M(x)*X"+R(x)

R(x)=M(x)*X’ Mod G{(x)

FIG. 2 1llustrates the relationship between an FEthernet
data packet 1n network byte order and the message polyno-
mial terms and coellicients. An Ethernet packet 1s repre-
sented 1n polynomial form as a sequence of n bits. Each bit,
one or zero, becomes the coeflicient o to the term relative to
the bit position in the packet. The message polynomial M(x)
1s divided by CRC polynomial G(x) to produce the CRC

polynomial remainder R(x), which 1s appended to the mes-
sage M(X).

The message, M(x), can be broken into k partial mes-
sages, represented by k partial polynomials.

Pox)=ar XX +agx X% +asx X +
4 3 2 1 0
g XX +a3 XX +ap X X" +a; XX +agXX
Piw)=ais x X2 +apax X" +a x X2 +app x XM+

ap XXM +aox X1 +agx X7 +agx X8

Pu(x) = agie7 X X+ agiys X X¥° 4 agys X XV + aga X X 4

agiis X X+ agra XM +agryr X X3 + age x X

These smaller weighed polynomials can be summed to
represent M(x).

Mx)=P, (x)+F,_(xX)+ . . . +P3(x)+L5(x)+P | (x)+F,(x)

This notation will be used below to describe calculating
the message CRC over the partial messages.

The superposition principle states that for all linear sys-
tems, the system response can be represented as a sum of its
parts. An example of the superposition principle 1s the
Fourier series. In the context of the CRC calculation, the
superposition principle holds that a CRC result 1s the sum of
partial CRC results.

According to embodiments of the disclosed technology, a
message polynomial M(x) 1s decomposed 1nto a set of partial
polynomials P(x). A partial CRC code 1s generated for each
of the partial polynomials P(x). The partial CRC codes are

added over GF(2). Addition over GF(2) may be imple-
mented as a simple XOR operation using logic gates.

The message polynomial M(x) may be represented as the
sum of multiple partial polynomials. In this example, each
partial polynomial represents a byte of data, and so has eight
terms.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

My x)=P(x)+0+...+40+0+0+0

My_1x)=04+P,_1(x)+...+0+0+0+0

Mi(x)=04+0+L+P3;(x)+0+0+0
Mrx))=04+0+L+0+P(x)+0+0
Mi(x)=0+0+L+0+0+Pi(x)+0

Mox)=04+0+L+0+04+0+ Py(x)

Note that the message polynomial M(x) may be expressed
as a sum of the partial polynomaials.

&
Mx)=) M)
]

Therefore, the message CRC i1s the sum of the partial CRC
codes of the partial polynomials.

k&
R(x) = Z [Mi(x)- X" modG(x)]
O

RX)=R,(xX)+ R, (X)) + L+ R3(x)+ Kr(x)+ Ry(x)+ Rp(x)

Therefore the message CRC code may be generated by
summing the partial CRC codes generated from the decom-
position of the original message.

FIG. 3 illustrates an embodiment of a CRC generator
using the superposition principle according to one embodi-
ment of the disclosed technology. This technique supports
partial messages of any size, and with any arbitrary CRC
generator polynomial. The CRC code of each partial mes-
sage 1n this embodiment may be calculated piecewise over
8-bit-wide segments of the partial message. However, any
integer multiple of 8 bits may be processed 1n a similar
mannet.

Referring to FIG. 3, n partial messages are shown, at
B, _.-B,. Each partial message may be represented in poly-
nomial format. The example of FIG. 3 uses a message size
of n partial messages.

A partial CRC code 1s generated for each partial message,
as shown at CRC. The partial CRC codes are shown 1n FIG.
3 asr, (X)ry(x). A CRC generator polynomial of any size
may be used. For example, the IEEE-CRC32 generator
polynomial may be used. Generation of the IEEE_CRC32
CRC 1s purely combinatorial, and may be implemented as a
simple XOR ftree.

Each partial CRC code 1s then weighted for 1ts numeric
position in the message, as shown at H®*“.H°. The
weighting function 1s mathematically equivalent to append-
ing trailing zeros to piecewise polynomials, and may be
implemented as a transform referred to herein as an H-trans-
form, described below. The weighted partial CRC codes are
shown 1 FIG. 3 as R,__,(X)-R,(x). The n-1 partial CRC
results may be summed over GF(2) using a simple XOR tree
to produce a partial CRC code for the partial message. The
partial CRC code 1s shown 1 FIG. 3 as R(x).

From FIG. 3 it 1s clear that increasing the number of bytes
processed 1n parallel does not significantly change the worst
case logic path. The partial CRC codes are generated con-
currently.

US 11,018,694 B2

7

The H transform 1s an rxr binary transform matrix, where
r 1s the power of the generator polynomial. An element
Hi,j=1 11 and only 11 register bit J feeds register bit I 1n the
LSFR mmplementation. FIG. 4 illustrates a technique using
logic gates to generate an H transform matrix for a generator
polynomial G(x)=x’+x+1, where r=3, according to one
embodiment. The logic gates may be implemented 1n cir-
cuitry. Referring to FIG. 4, the technique may be imple-
mented using three D-type tlip-flops FF1, FF2, and FF3, and
two exclusive-or gates XOR1, XOR2. In the example of
FIG. 4, gate XOR2 receives the Q output of tlip-tlop FF3 and
the coellicients o of the message polynomial M(x), with the
leading bit first. The D input of flip-flop FE3 receives the O
output of the flip-tflop FF2. The D mnput of the pipe and flop
FF2 receives the output of the gate XOR1. The gate XOR1
receives the QQ output of the tlip-tlop FF1 and the output of
the gate XOR2. The D 1nput of the flip-tlop FF1 receives the
output of the gate XOR2.

Using standard matrix notation, the H transform 1llus-
trated 1 FIG. 4 1s given by

N e T o
o T =N

Subsequent H transform matrices may be generated by
multiplying H. For example, H*=H"'*H", H*=H**H", and so
on. The H transform matrix H is simply the identity matrix.

T
— 0 2

Messages are rarely comprised of an integer number of
partial messages. Therefore a message polynomial M(X) 1s
rarely comprised of an mteger number of partial polynomi-
als, P(x). In some embodiments, leading or trailing bytes
may be removed from a partial message, typically the first
or last partial message, respectively. In some embodiments,
superposition principles may be used to remove leading or
trailing bytes from a partial message, as described below.

In some embodiments, leading bytes may be removed by
removing the one or more partial polynomials with the most
weight, also referred to herein as “leading partial polyno-
mials”, thereby excluding the contribution of those partial
polynomials. For example, consider removing leading bytes
P,(x) and P,_,(x), 1llustrated below, from the CRC calcula-
tion.

M, (x)=P,(x)+0+ . . . +040+0+0

M, ((x)=0+F;,_(x)}+ . .. +0+0+040
M (x)=0+0+L+F;(x)+0+0+0
M5(x)=04+0+L+0+P5(x)+0+0

M (x)=040+L+0+0+P (x)+0

My(x)=0+0+L+0+0+0+Py(x)

The CRC contribution from bytes P,(x) and P,_,(X) in the
CRC code may be removed by zeroing the corresponding
partial CRC results from each piecewise polynomial.

R(xX)=R(0)+R; ((O)+L+R(xX)+R5(x)+R [(x)+Ry(x)

10

15

20

25

30

35

40

45

50

55

60

65

8

Summing zeros over GF(2) does not change the result.

This operation may be implemented by driving zero on
those leading bytes feeding the logic illustrated in FIG. 3.
Since the CRC function 1s purely combinatorial with no
initial state, the output for a zero put 1s also zero. The
H-Transtform 1s a stmple multiplication function on zero, so
the result 1s zero, and the XOR of all zeros does not add any
contribution to the final CRC result.

In some embodiments, trailing bytes of partial messages
may be removed by excluding the contribution of their
partial polynomuials, also referred to herein as “trailing
partial polynomials.” Consider a message M(x) with trailing
zeros 1n the partial polynomial format.

My(x)=P (x)+FP;_ ((x)+ . . . +P3(x)+P5(x)+0+0

Partial polynomials P,(x) and P,(x) together represent 16
trailing zeros (coellicients) ol the message. The trailing
zeros may be removed from the message M(x) by dividing
the message by X raised to the number of zeros to be
removed, X'° in this example. Partial polynomials P, (0) and
P,(0) each contain eight zero coellicients each.

Where the H transform i1s the mathematical equivalent of
adding trailing zeros to a partial CRC result, the G transform
1s the mathematical equivalent to removing trailing zeros on
a partial CRC result. The G matrix and the H matrix are
mathematic mnverses.

Where multiplying a CRC result by H'® is equivalent to
adding 16 trailing zeros, multiplying a CRC result by G*° is
equivalent to removing 16 trailing zeros. Given that imple-
mentations are generally limited to a finite partial message
length, 1t 1s possible to generate all possible G matrix
transforms needed to remove a determined number of trail-
Ing Zeros.

FIG. 5 illustrates a CRC code generator and checker
according to one embodiment of the disclosed technology.
This CRC code generator and checker supports the IEEE_
CRC32 polynomial and CRC format. Similar embodiments
may be employed to support other CRC polynomials. The
CRC code generator may be implemented using logic gates.
The logic gates may be implemented as circuitry.

The embodiment of FIG. 5 may use superposition prin-
les to generate and check CRC codes on both 160-byte

CIp.
256-byte mternal data paths timed to run at 1 Gbps clock

and
periods, and may support overall message sizes up to 16K
bytes using one or more 160-byte and 256-byte partial
messages. This embodiment supports removing both leading
and trailing partial message bytes.

Referring to FIG. 3, the system may include two IEEE
802.3 format translation circuits 502q,b. The IEEE 802.3
standard requires that a frame CRC code be appended to the
packet starting with the most significant bit. The internal
representation of the CRC code 1s 1 simple bit vector
format——crc[31:0], and may be transformed into the IEEE

format as follows:
IEEE CRC32[31:0]=" {crc 24:32],

crc[0:7]}

To mimic the imitial CRC state of an LFSR embodiment,
the CRC mput value of the first partial message may be
OxEFFFF _FFFF. The format translation blocks 502a,5 con-
vert between matrix and IEEE 802.3 formats and the internal
format used the system. In embodiments using other for-
mats, the IEEE 802.3 format translation circuits 502 may be
omitted.

The system may 1nclude n CRC base generator circuits
504(0) through 504(»z-1) to generate partial CRC codes.
Each CRC base generator circuits 504 calculates a piecewise

crc|12:23],cr¢l8:11],

US 11,018,694 B2

9

CRC code at weight zero for each byte of the partial
message. At most, the CRC Base Generator adds five 2-input
XOR logic levels.

The system may include n+1 H-transtorm circuits S06(0)
through 506(7) to shift the partial CRC codes. Each H-trans-
form circuit 506 weights each partial CRC code for its
position in the partial message. The H-Matrix may be a
constant function that selects one of 256 weights. The
welghts may be pre-calculated using scripts. This technique
1s easily extended to any arbitrary number of weights.

The system includes an XOR tree 516 to sum the shifted
partial CRC codes. The XOR tree 516 may combine all the
weighed partial CRC codes, along with the weighed previ-
ous CRC, 1nto the next CRC value, which may represent the
final CRC code or the intermediate LFSR state of a multi-
word packet. The results may be stored in storage 510. For
an overall supported message size of 16K bytes, an inter-
mediate CRC code (crc_out) may be stored and passed to the
logic as crc_in with the next partial message. On the last
partial message, crc_out, may be appended to the entire
message for transmission. The formatting logic 5025 ensure
that the CRC code 1s the format required for IEEE_CRC32.

The system may include a G-matrix transform circuit 508
to remove trailing bytes from the last partial message. Since
any number of arbitrary bytes can be removed from a partial
word, this circuit may consume a measurable amount of the
timing budget, which 1s estimated to be at most ten 2-input
XOR logic levels or O(log 2(64)) complexity.

The number of logic levels may be reduced through one
or more techniques. Trailing byte removal may be quantized
over larger quantities, for example such as 4-byte or 32-byte
groups. The number of bytes that can be removed from the
last word may be bounded. Both options are available via
commercial compile optimizations and tying rm_Isb upper
or lower bits to constant values.

The system may include a CRC code correctness checker
circuit 514. The CRC code correctness checker circuit 514
validates the CRC code. In the example of the IEEE 802.3
CRC polynomial, correctness means that the final CRC code
calculation over the entire message (including all partial
messages) and message CRC code equals the predetermined
termination value o1 32'hC7 04 DD 7B. A variable crc_1s_
correct may be asserted during processing the last partial
message. Embodiments using different CRC polynomials
may employ diflerent termination values.

The system may include a byte valid generator circuit
512. The byte valid generator circuit 312 may be used to
determine which leading bytes of a partial message will be
removed from the CRC calculation. This embodiment may
remove leading bytes 1n the first partial message only.
Leading bytes may be truncated by driving the partial CRC
code result to all 0’s, which does not alter the XOR tree
results for partial CRCs on the other bytes.

FIG. 6 1s a block diagram of an example computing
component or device 600 for generating a CRC code for a
sequence of bits according to embodiments of the disclosed
technology. Computing component 600 may be, ifor
example, a server computer, a controller, or any other similar
computing component capable of processing data. In the
example implementation of FIG. 6, the computing compo-
nent 600 includes a hardware processor 602, and machine-
readable storage medium 604.

Hardware processor 602 may be one or more central
processing units (CPUs), semiconductor-based micropro-
cessors, and/or other hardware devices suitable for retrieval
and execution of instructions stored in machine-readable
storage medium, 604. Hardware processor 602 may fetch,

10

15

20

25

30

35

40

45

50

55

60

65

10

decode, and execute instructions, such as instructions 606-
614, to control processes or operations for doing stufl. As an
alternative or 1n addition to retrieving and executing mstruc-
tions, hardware processor 602 may include one or more
clectronic circuits that include electronic components for
performing the functionality of one or more instructions
606-614, such as a field programmable gate array (FPGA),
application specific integrated circuit (ASIC), or other elec-
tronic circuits.

A machine-readable storage medium, such as machine-
readable storage medium 604, may be any electronic, mag-
netic, optical, or other physical storage device that contains
or stores executable instructions. Thus, machine-readable
storage medium 604 may be, for example, Random Access
Memory (RAM), non-volatile RAM (NVRAM), an Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), a storage device, an optical disc, and the like. In
some embodiments, machine-readable storage medium 604
may be a non-transitory storage medium, where the term
“non-transitory” does not encompass transitory propagating
signals. As described 1 detail below, machine-readable
storage medium 604 may be encoded with executable
istructions, for example, mnstructions 606-614.

Hardware processor 602 may execute instruction 606 to
represent the sequence of bits as a polynomial over a Galois
field base 2. Hardware processor 602 may execute instruc-
tion 608 to partition the polynomial into a plurality of partial
polynomials, wherein the polynomial equals the sum of the
partial polynomials. For example, this representation and
partition may be as discussed above regarding FIG. 2.

Hardware processor 602 may execute instruction 610 to
concurrently generate a respective partial CRC code for each
of the partial polynomials. That 1s, the partial CRC codes are
generated 1n parallel at substantially the same time. Refer-
ring to FIG. 5, generating the partial CRC codes may be
performed by the CRC base circuits 504.

Referring again to FIG. 6, hardware processor 602 may
execute instruction 612 to weight each partial CRC code
according to a position of the respective partial polynomial
in the polynomial. Referring to FIG. 5, the partial CRC code
may be weighted by the H-transform circuits, for example as
described above.

Hardware processor 602 may execute instruction 614 to
sum the weighted partial CRC codes. Reterring to FIG. 5,
the sum may be obtained by the XOR tree 516, for example
as described above.

FIG. 7 depicts a block diagram of an example computer
system 700 1n which embodiments described herein may be
implemented. The computer system 700 includes a bus 702
or other communication mechanism for communicating
information, one or more hardware processors 704 coupled
with bus 702 for processing information. Hardware proces-
sor(s) 704 may be, for example, one or more general purpose
MICroprocessors.

The computer system 700 also includes a main memory
706, such as a random access memory (RAM), cache and/or
other dynamic storage devices, coupled to bus 702 for
storing information and instructions to be executed by
processor 704. Main memory 706 also may be used for
storing temporary variables or other intermediate informa-
tion during execution ol instructions to be executed by
processor 704. Such instructions, when stored in storage
media accessible to processor 704, render computer system
700 mto a special-purpose machine that 1s customized to
perform the operations specified 1n the instructions.

The computer system 700 further includes a read only
memory (ROM) 708 or other static storage device coupled

US 11,018,694 B2

11

to bus 702 for storing static information and instructions for
processor 704. A storage device 710, such as a magnetic
disk, optical disk, or USB thumb drive (Flash drive), etc., 1s
provided and coupled to bus 702 for storing information and
instructions.

The computer system 700 may be coupled via bus 702 to
a display 712, such as a liquid crystal display (LCD) (or
touch screen), for displaying information to a computer user.
An input device 714, including alphanumeric and other
keys, 1s coupled to bus 702 for communicating information
and command selections to processor 704. Another type of
user input device 1s cursor control 716, such as a mouse, a
trackball, or cursor direction keys for communicating direc-
tion mformation and command selections to processor 704
and for controlling cursor movement on display 712. In
some embodiments, the same direction information and
command selections as cursor control may be implemented
via receiving touches on a touch screen without a cursor.

The computing system 700 may include a user interface
module to implement a GUI that may be stored 1n a mass
storage device as executable software codes that are
executed by the computing device(s). This and other mod-
ules may include, by way of example, components, such as
soltware components, object-oriented software components,
class components and task components, processes, func-
tions, attributes, procedures, subroutines, segments of pro-
gram code, drivers, firmware, microcode, circuitry, data,
databases, data structures, tables, arrays, and variables.

In general, the word “component,” “engine,” “system,”
“database,” data store,” and the like, as used herein, can refer
to logic embodied in hardware or firmware, or to a collection
of software instructions, possibly having entry and exit
points, written 1n a programming language, such as, for
example, Java, C or C++. A soltware component may be
compiled and linked into an executable program, 1nstalled 1n
a dynamic link library, or may be written 1n an interpreted
programming language such as, for example, BASIC, Perl,
or Python. It will be appreciated that software components
may be callable from other components or from themselves,
and/or may be invoked in response to detected events or
interrupts. Software components configured for execution
on computing devices may be provided on a computer
readable medium, such as a compact disc, digital video disc,
flash drive, magnetic disc, or any other tangible medium, or
as a digital download (and may be orniginally stored in a
compressed or installable format that requires installation,
decompression or decryption prior to execution). Such sofit-
ware code may be stored, partially or fully, on a memory
device of the executing computing device, for execution by
the computing device. Software 1nstructions may be embed-
ded 1n firmware, such as an EPROM. It will be further
appreciated that hardware components may be comprised of
connected logic units, such as gates and tlip-tlops, and/or
may be comprised of programmable units, such as program-
mable gate arrays or processors.

The computer system 700 may implement the techniques
described herein using customized hard-wired logic, one or
more ASICs or FPGAs, firmware and/or program logic
which 1n combination with the computer system causes or
programs computer system 700 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 700 in response to
processor(s) 704 executing one or more sequences of one or
more instructions contained i main memory 706. Such
instructions may be read into main memory 706 from
another storage medium, such as storage device 710. Execu-
tion of the sequences of instructions contained 1 main

2?6

10

15

20

25

30

35

40

45

50

55

60

65

12

memory 706 causes processor(s) 704 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination
with software 1nstructions.

The term “non-transitory media,” and similar terms, as
used herein refers to any media that store data and/or
instructions that cause a machine to operate 1 a specific
fashion. Such non-transitory media may comprise non-
volatile media and/or volatile media. Non-volatile media
includes, for example, optical or magnetic disks, such as
storage device 710. Volatile media includes dynamic
memory, such as main memory 706. Common forms of
non-transitory media include, for example, a floppy disk, a
flexible disk, hard disk, solid state drive, magnetic tape, or
any other magnetic data storage medium, a CD-ROM, any
other optical data storage medium, any physical medium

with patterns ol holes, a RAM, a PROM, and EPROM, a
FLASH-EPROM, NVRAM, any other memory chip or
cartridge, and networked versions of the same.

Non-transitory media 1s distinct from but may be used 1n
conjunction with transmission media. Transmission media
participates 1n transferring information between non-transi-
tory media. For example, transmission media includes
coaxial cables, copper wire and fiber optics, including the
wires that comprise bus 702. Transmission media can also
take the form of acoustic or light waves, such as those
generated during radio-wave and infra-red data communi-
cations.

The computer system 700 also includes a communication
interface 718 coupled to bus 702. Network interface 718
provides a two-way data communication coupling to one or
more network links that are connected to one or more local
networks. For example, communication interface 718 may
be an integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, network interface 718 may
be a local area network (LAN) card to provide a data
communication connection to a compatible LAN (or WAN
component to communicated with a WAN). Wireless links
may also be implemented. In any such implementation,
network interface 718 sends and receives electrical, electro-
magnetic or optical signals that carry digital data streams
representing various types ol information.

A network link typically provides data communication
through one or more networks to other data devices. For
example, a network link may provide a connection through
local network to a host computer or to data equipment
operated by an Internet Service Provider (ISP). The ISP 1n
turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet.” Local network and
Internet both use electrical, electromagnetic or optical sig-
nals that carry digital data streams. The signals through the
vartous networks and the signals on network link and
through communication mterface 718, which carry the digi-
tal data to and from computer system 700, are example
forms of transmission media.

The computer system 700 can send messages and receive
data, including program code, through the network(s), net-
work link and communication interface 718. In the Internet
example, a server might transmit a requested code for an
application program through the Internet, the ISP, the local
network and the communication interface 718.

The received code may be executed by processor 704 as
it 1s received, and/or stored in storage device 710, or other
non-volatile storage for later execution.

US 11,018,694 B2

13

Each of the processes, methods, and algorithms described
in the preceding sections may be embodied 1n, and fully or
partially automated by, code components executed by one or
more computer systems or computer processors comprising,
computer hardware. The one or more computer systems or
computer processors may also operate to support perfor-
mance of the relevant operations 1 a “cloud computing”
environment or as a “software as a service” (SaaS). The
processes and algorithms may be implemented partially or
wholly 1n application-specific circuitry. The various features
and processes described above may be used independently
of one another, or may be combined 1n various ways.
Different combinations and sub-combinations are intended
to fall within the scope of this disclosure, and certain method
or process blocks may be omitted 1n some 1implementations.
The methods and processes described herein are also not
limited to any particular sequence, and the blocks or states
relating thereto can be performed 1n other sequences that are
appropriate, or may be performed in parallel, or in some
other manner. Blocks or states may be added to or removed
from the disclosed example embodiments. The performance
of certain of the operations or processes may be distributed
among computer systems or computers processors, not only
residing within a single machine, but deployed across a
number of machines.

As used herein, a circuit might be implemented utilizing
any form of hardware, software, or a combination thereof.
For example, one or more processors, controllers, ASICs,
PLAs, PALs, CPLDs, FPGAs, logical components, software
routines or other mechanisms might be 1mplemented to
make up a circuit. In implementation, the various circuits
described herein might be implemented as discrete circuits
or the functions and features described can be shared 1n part
or 1n total among one or more circuits. Even though various
features or elements of functionality may be individually
described or claimed as separate circuits, these features and
functionality can be shared among one or more common
circuits, and such description shall not require or imply that
separate circuits are required to implement such features or
tfunctionality. Where a circuit 1s implemented 1n whole or 1n
part using soitware, such software can be implemented to

operate with a computing or processing system capable of

carrying out the functionality described with respect thereto,

such as computer system 600.
As used herein, the term “or” may be construed 1n either

an 1nclusive or exclusive sense. Moreover, the description of

resources, operations, or structures in the singular shall not
be read to exclude the plural. Conditional language, such as,
among others, “can,” “could,” “might,” or “may,” unless
specifically stated otherwise, or otherwise understood within
the context as used, 1s generally intended to convey that
certain embodiments include, while other embodiments do
not include, certain features, elements and/or steps.

Terms and phrases used in this document, and variations
thereot, unless otherwise expressly stated, should be con-
strued as open ended as opposed to limiting. Adjectives such
as ‘“‘conventional,” ‘“traditional,” “normal,” ‘‘standard,”
“known,” and terms of similar meaning should not be
construed as limiting the item described to a given time
period or to an 1tem available as of a given time, but 1nstead
should be read to encompass conventional, traditional, nor-
mal, or standard technologies that may be available or

5

10

15

20

25

30

35

40

45

50

55

60

known now or at any time in the future. The presence of 65

A Y

broadening words and phrases such as “one or more,” “at
least,” “but not limited to” or other like phrases 1n some

14

instances shall not be read to mean that the narrower case 1s
intended or required 1n instances where such broadening
phrases may be absent.

What 15 claimed 1s:

1. A network switch, comprising:

hardware logic for generating a cyclic redundancy check
(CRC) code for a received message comprising a
sequence of bits, wherein the hardware logic com-
Prises:

a first group of logic gates representing the sequence of
bits 1n the message;

a second group of logic gates configured to partition the
message into a plurality of partial messages;

a thaird group of logic gates configured to concurrently
generate a respective partial CRC code for each of
the partial messages;

a Tfourth group of logic gates configured to weight each
partial CRC code according to a position of a cor-
responding partial message 1n the message; and

a fifth group of logic gates configured to sum the
weighted partial CRC codes, thereby generating the
CRC code for the message; and

hardware logic for comparing the generated CRC code
with a previously calculated CRC code associated with
the message to determine whether the received message
1s corrupted.

2. The network switch of claim 1, wherein the third group

of logic gates comprises:

a sixth group of logic gates configured to divide a partial
polynomial representing the partial message by a CRC
polynomial, and to obtain a remainder of the dividing.

3. The network switch of claim 1, wherein the fourth

group ol logic gates i1s configured to multiply a partial
polynomial representing the partial message by a respective
weilght matrix.

4. The network switch of claim 1, further comprising:

a sixth group of logic gates configured to exclude a
contribution of a leading partial polynomial represent-
ing a number of leading bytes from the CRC code by
zeroing the weighted partial CRC code corresponding,
to the leading partial polynomual.

5. The network switch of claim 1, further comprising:

a sixth group of logic gates configured to exclude a
contribution a trailing partial polynomial representing a
number of trailing bytes from the CRC code by mul-
tiplying the sum of the weighted partial CRC codes by
a transiform matrix.

6. The network switch of claim 1, wherein:

the sequence of bits represents a packet of data; and

the network switch further comprises a sixth group of
logic gates configured to append the generated CRC
code to the packet of data.

7. The network switch of claim 1, further comprising:

a sixth group of logic gates configured to convert the
generated CRC code to IEEE 802.3 CRC code format.

8. A network switch, comprising;:

a hardware processor; and

a non-transitory machine-readable storage medium
encoded with instructions executable by the hardware
processor to perform operations for generating a cyclic
redundancy check (CRC) code for a recetved message
comprising a sequence of bits, the operations compris-
ng:
partitioning the message into a plurality of partial

messages,

concurrently generating a respective partial CRC code
for each of the partial messages,

US 11,018,694 B2

15

weighting each partial CRC code according to a posi-
tion of respective corresponding partial message 1n
the message, and

generating the CRC code for the message by summing
the weighted partial CRC codes, and

determining whether the message 1s corrupted by com-
paring the generated CRC code with a previously
calculated CRC code associated with the message.

9. The network switch of claim 8, wherein the generating
the respective partial CRC code for each of the partial
messages cComprises:

dividing a partial polynomial representing the partial

message by a CRC polynomial; and

taking a remainder of the dividing.

10. The network switch of claim 8, wherein the weighting
cach partial CRC code according to a position of a corre-
sponding partial message in the message comprises:

multiplying a partial polynomial representing the partial

message by a respective weight matrix.

11. The network switch of claim 8, the operations further
comprising;

excluding a contribution of a leading partial polynomual

representing a number of leading bytes from the CRC
code, comprising zeroing the weighted partial CRC
codes corresponding to the leading partial polynomaial
prior to the summing.

12. The network switch of claim 8, the operations further
comprising;

multiplying the sum of the weighted partial CRC codes by

a transform matrix to exclude a contribution of a
trailing partial polynomial representing a number of
trailing bytes from the CRC code.

13. The network switch of claiam 8, wherein:
the sequence of bits represents a packet of data; and
the operations further comprises appending the generated

CRC code to the packet of data.

14. The network switch of claim 8, the operations further
comprising;

converting the CRC code to IEEE 802.3 CRC code

format.

10

15

20

25

30

35

40

16

15. A method for generating, by a network switch, a cyclic
redundancy check (CRC) code for a message received at the
network switch comprising a sequence of bits, the method
comprising;

partitioning, by the network switch, the message nto a

plurality of partial messages;

concurrently generating a respective partial CRC code for

cach of the partial messages;

welghting each partial CRC code according to a position

of a corresponding partial message in the message;
generating the CRC code for the message by summing the
welghted partial CRC codes; and

determiming whether the message 1s corrupted by com-

paring the generated CRC code with a previously
calculated CRC code associated with the message.

16. The method of claim 15, wherein generating the
respective partial CRC code for each of the partial messages
COmMprises:

dividing a partial polynomial representing the partial

message by a CRC polynomaial; and

taking a remainder of the dividing.

17. The method of claim 135, wherein weighting each
partial CRC code according to a position of a corresponding
partial message 1n the message comprises:

multiplying a partial polynomial representing the partial

message by a respective weight matrix.

18. The method of claim 15, further comprising:

zeroing the weighted partial CRC codes corresponding to

one or more leading partial polynomials representing a
number of leading bytes prior to the summing to
exclude a contribution of the one or more leading
partial polynomials from the CRC code.

19. The method of claim 15, further comprising:

multiplying the sum of the weighted partial CRC codes by

a transform matrix to exclude a contribution of one or
more trailing partial polynomials representing a num-
ber of trailing bytes from the CRC code.

20. The method of claim 15, wherein:

the sequence of bits represents a packet of data; and

the method further comprises appending the generated

CRC code to the packet of data.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

