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(57) ABSTRACT

The mvention relates to a method. The method includes
receiving a flawed mput comprising a domain specific
misspelling. The method further includes encoding, by an
encoder machine learming model executing on a computer
processor, the flawed input on a per character basis to create
a context vector. The method further includes decoding, by
a decoder machine learning model executing on the com-
puter processor, the context vector on the per character basis
to create a rephrased mput lacking the domain specific
misspelling. The method further includes presenting the
rephrased input.

20 Claims, 5 Drawing Sheets
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MISSPELLING CORRECTION BASED ON
DEEP LEARNING ARCHITECTURE

BACKGROUND

One of the functions of a computing system 1s to provide
access to large volumes of data. For example, 1n the case of
a search engine, the large volumes of data may be a
collection of websites. In a user support system, the large
volumes of data may be search queries or frequently asked
questions. In contrast to humans, computer systems do not
have native capabilities to interpret underlying meanings
behind questions. Specifically, computing systems may have
challenges interpreting the underlying request of the user.
Thus, whereas a human may ascertain a meamng and
responding approprately, the computing system 1s chal-
lenged 1n providing a response to mput from a user.

SUMMARY

In general, 1n one aspect, one or more embodiments relate
to a method comprising receiving a tlawed 1input comprising,
a domain specific misspelling; encoding, by an encoder
machine learning model executing on a computer processor,
the flawed put on a per character basis to create a context
vector; decoding, by a decoder machine learning model
executing on the computer processor, the context vector on
the per character basis to create a rephrased input lacking the
domain specific misspelling; and presenting the rephrased
input.

In general, 1n one aspect, one or more embodiments relate
to a system comprising a computer processor; a user nter-
face configured to receive a flawed mput; an trained encoder
model for executing on the computer processor to cause the
computer processor to encode the flawed 1nput at a character
level to create a context vector; and a trained decoder model
for executing on the computer processor to cause the com-
puter processor to decode the flawed 1mnput from the context
vector at the character level into a rephrased put.

In general, 1n one aspect, one or more embodiments relate
to a non-transitory computer readable medium comprising,
computer readable program code for causing a computer
system to clarity a search mput, by a classifier, as a tflawed
input; encode the input at a character level, by a trained
encoder model executing on a processor, to create a context
vector; decode the context vector at the character level, by
a trained decoder model executing on a processor, to create
a rephrased nput; and present the rephrased input.

Other aspects of the invention will be apparent from the
following description and the appended claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a user support system 1n accordance with
one or more embodiments.

FIG. 2 depict a flowchart for classiiying an input in
accordance with one or more embodiments.

FIG. 3 depict a flowchart for training a machine learning
model 1n accordance with one or more embodiments.

FIG. 4 shows an example for correcting an mput in
accordance with one or more embodiments.

FIG. 5A and FIG. 3B depict diagrams showing a com-
puting system in accordance with one or more embodiments.

DETAILED DESCRIPTION

Specific embodiments of the invention will now be
described 1n detail with reference to the accompanying
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figures. Like elements 1n the various figures are denoted by
like reference numerals for consistency.

In the following detailed description of embodiments of
the invention, numerous speciiic details are set forth 1n order
to provide a more thorough understanding of the invention.
However, 1t will be apparent to one of ordinary skill 1n the
art that the invention may be practiced without these specific
details. In other instances, well-known features have not
been described 1n detail to avoid unnecessarily complicating,
the description.

Throughout the application, ordinal numbers (e.g., first,
second, third, etc.) may be used as an adjective for an
clement (1.¢., any noun 1n the application). The use of ordinal
numbers 1s not to 1imply or create any particular ordering of
the elements nor to limit any element to being only a single
clement unless expressly disclosed, such as by the use of the
terms “before”, “after”, “single”, and other such terminol-
ogy. Rather, the use of ordinal numbers 1s to distinguish
between the elements. By way of an example, a first element
1s distinct from a second element, and the first element may
encompass more than one element and succeed (or precede)
the second element in an ordering of elements.

Further, although the description includes a discussion of
various embodiments of the invention, the various disclosed
embodiments may be combined 1n virtually any manner. All
combinations are contemplated herein.

In general, embodiments of the invention are redirected to
identifving flawed inputs and rephrasing the flawed inputs
using a machine learming encoder and decoder model. Spe-
cifically, one or more embodiments are directed to encoding
a flawed input on a character basis level to create a context
vector using an encoder machine learning model, and then
decoding the context vector into a rephrased mput using a
decoder machine learning model.

FIG. 1 shows a diagram for a system. The system 1ncludes
a user support system (100) and a user computing system
(102) 1n accordance with one or more embodiment. The user
support system (100) includes a data repository (110) and a
support server (124). The user support system (100) also
communicates with the user computing system (102). Each
ol these components 1s described below.

In one or more embodiments, data repository (110) 1s any
type ol storage unit and/or device (e.g., a file system,
database, collection of tables, or any other storage mecha-
nism) for storing data. Further, the data repository (110) may
include multiple different storage units and/or devices. The
multiple different storage unmits and/or devices may or may
not be of the same type or located at the same physical site.

In one or more embodiments, the data repository (110)
includes functionality to store classifier training data set
(112A) and encoder decoder training set data (112B). The
classifier training data set (112A) and encoder decoder
training data set (112B) have data for training the machine
learning models. Specifically, machine learning algorithms
include at least two phases, a training phase and a prediction
phase.

In the training phase for the classifier traiming data set
(112A), the machine learning model 1s trained to classify an
input based on whether an mput (described below) has a
domain specific misspelling. In other words, the machine
learning model receives a set of mput and classifies the
mputs ol a given set into two groups on the basis of a
classification rule. For example, the mnputs may be classified
by a rule determining the correct spelling of a word.

In the training phase for the encoder decoder training set
(112B), the machine learning model 1s trained to produce
certain output based on a set of mput. In other words, the
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machine learning model 1s provided with input and the
corresponding output. In the prediction phase, the machine
learning model generates an output when provided with
input. The set of iput used during the training phase may
not match the input provided during the prediction phase.

As shown 1n FIG. 1, the classifier training data set (112A)
and encoder decoder training data set (112B) include a
flawed mput (114A and 114B) and a rephrased mput (116A
and 116B). In general, an mnput 1s a submaission from a user.
The mput may be a search query, an interrogative sentence
or clause, an answer to a query or question. The flawed 1nput
(114A and 114B) 1s submission to the machine learning
model and the rephrased mput (116A and 116B) 1s an output.
Specifically, the flawed input (114A and 114B) 1s an input
detected as having a flaw, such as an unintentional misspell-
ing or intentional misspelling. In one or more embodiments,
the flaw may be a correct spelling with improper hyphen-
ation. The flaw may cause the mput to not accurately
represent the user’s intended nquiry, such as the user’s
problem or a user’s search. Further, for input corresponding
to a response, the flaw may cause the response not to be
presented or read. In other words, the flaw may prevent or
limit the response search soitware from providing a respon-
stve answer to the problem, particularly when the flaw 1s
domain specific. A rephrased imput 1s a mput that is
rephrased. Specifically, the rephrasing corrects the flaw by
removing the misspelling.

One or more embodiments 1s directed to correcting
domain specific misspellings. A domain 1s the area of
activity of the user support system. In other words, the
domain 1s the subject matter of the mputs submitted to the
user support system (100). The user support system (100)
may support a single domain or multiple domains. A domain
specific misspelling 1s a term or group of terms that 1s
incorrectly spelled in the particular domain but 1s not
misspelled outside the domain. In some embodiments, a
domain specific misspelling causes the term or group of
terms to have ambiguous meaning within the context of the
domain. For example, “tx” may be “Texas” or “taxes’ in the
financial domain. For example, a flawed input, may include
a misspelling or a set of characters not properly recognized
by the search software (e.g. “error 123”7 vs. “error code
1237).

Because of the flaw, a computer system, without a
machine learning approach, may be unable to provide sup-
port for the user’s problem that lead to the input or may be
unable to present the input. Specifically, flawed inputs (114A
and 114B) may show frustration with a software product
while being too ambiguous because of the domain specific
misspelling to perform a search for the solution. Even 1f the
answer that 1s provided by a search to the tlawed mput has
properly addressed the user’s problem, the flawed input,
once recorded 1n a repository, may prevent searching users
from finding relevant search results. Users are more likely to
select search results that are spelled correctly. Accordingly,
one or more embodiments both improves computer-human
interactions via a search and human-to-human interactions
via a computer.

In the encoder decoder training data set (112B), each
flawed 1nput (114B) 1s related to one or more corresponding
rephrased 1nputs (116B). The relationship between the
flawed mput (114B) and the rephrased mput (114B) allows
the machine learning models to be trained. A rephrased input
(116B) 1s an input that does not exhibit the same flaw as the
flawed mput (114B). For example, for a misspelled or
partially misspelled input, the rephrased input (116B) does
not have the misspelling or partially misspelling.
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In one or more embodiments, rephrased inputs (116 A and
116B) are correctly spelled and complete for the domain.
Further, the rephrased mput (116A and 116B) may lack
ambiguity. In one or more embodiments, the rephrased
iputs (116 A and 116B) are complete sentences or partially
complete sentences. For example the rephrased mput (116 A
and 116B) may consist only of the spelling corrections from
the flawed input (114A and 114B).

Continuing with the user support system i FIG. 1, the
data repository (110) 1s communicatively connected to a
support server (124). The support server (124) includes
functionality to obtain data from the data repository and
store data 1n the data repository. The support server is
hardware, software, or any combination thereof. For
example, the support server may be a computing device
described below with reference to FIGS. 5A and 5B. The
support server may be a hardware server, a server executing
in a virtual machine on corresponding hardware.

In one or more embodiments, support server (124) may
include a number of servers (e.g., racked servers) connected
by a network (e.g., a local area network (LAN) or a WAN)
to each other 1n a cluster (e.g., a load-balancing cluster, a
Hadoop cluster, a Beowulf cluster, etc.) or other distributed
system which may run website soltware (e.g., web-server
soltware, database software, etc.) and distributed-computing
and/or cloud software such as Apache Spark™, Map-Re-
duce, Google File System, Hadoop, Hadoop File System,
Hadoop YARN, Hive, Dremel, CloudBase, Memcached,
Redis, etc., which may be deployed alone or in combination.
Additionally, or alternatively, support server (124) and/or
data repository (110) may be hosted wholly or partially 1n a
(1) public cloud; and/or (2) a private cloud. In one or more
embodiments, the cloud resources may serve as a platform-
as-a-service (PaaS) or an infrastructure-as-a-service (IaaS).

In one or more embodiments, the support server (124) 1s
configured to provide context specific support to the user
computing system. The context specific support considers
not only the mput provided by the user, but also the context
of the mput. For example, the context specific support may
include the software application being used by the user, the
version of the software application being used, domain of
the software application, the information being displayed to
the user at the time of the input, and other information. The
context may be detected and/or provided by the user (e.g.,
using the user interface).

In one or more embodiments, support server (124)
includes a regular expression processor (127), a classifier
(126), a search rephrasing framework (128), a conversa-
tional user interface processor (134), a search query proces-
sor (136), and a web content processor (138).

In one or more embodiments, the classifier (126) classifies
an mput as having an error. The classifier (126) may classity
errors based on a domain specific level. For example, an
input may be phrased as “need to pay tx”. The classifier
(126) determines that the input “need to pay tx” has an error
based on the domain of the input and sends the error to the
machine learning model for correction. In some embodi-
ments, the classifier determines that “tx” 1s the source of the
error 1n the example input. In one or more embodiments, the
classifier (126) may be a neural network or any other type of
machine learning network. In one or more embodiments, the
classifier (126) analyzes the input at a character basis level.

In one or more embodiments, the regular expression
processor (127) 1s a software processor that 1s configured to
find a replace misspelled words 1n an mput, a search query,
a complete sentence, a partial sentence, or a question. The
regular expression processor may be used to replace mis-
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spelled words that the classifier (126) determines are com-
mon misspelled words. A common misspelled word 1s a
word that 1s misspelled more than a threshold number of
times. The common misspelled word may be a domain
specific misspelling or generic to multiple domains. For 5
example, the mput may be “How do I connect to the
Internet?”. The classifier may determine that the input may
be fixed using regular expressions as “Internet” 1s a com-
monly misspelled word without a particular domain.

The mput rephrasing framework (128) i1s a machine 10
learning framework that includes functionality to transform
flawed 1nputs into rephrased inputs. In one or more embodi-
ments, the mput rephrasing framework (128) includes two
distinct machine learning models to rephrase a single input.

In one or more embodiments, once trained, the two machine 15
learning models operate independently. The encoder
machine learning model (130) 1s configured to generate a
context vector (129) from a flawed input. In other words, the
encoder machine learning model (130) 1s configured to
encode the flawed 1put and create a context vector (129). 20
The decoder machine learning model (132) 1s configured to
decode the context vector (129) into a rephrased input.

The encoder machine learming model (130) and the
decoder machine learning model (132) are in the deep
learning machine learning models. Deep learning, also 25
known as deep structured learming or hierarchical learning,
1s part of a broader family of machine learning methods
based on learning data representations, as opposed to task-
specific algorithms. The encoder machine learning model
(130) and the decoder machine learning model (132) may 30
cach be recurrent neural networks (RNN). In other words,
the system may have at least two RNN, one for each of the
encoder machine learning model (130) and one for the
decoder machine learning model (132). An RNN 1is a net-
work that operates on a sequence and uses 1ts own output as 35
input for subsequent steps. The RNN may be a single or
multilayer RNN. Further, the RNN may be a long short term
memory (LSTM) RNN. The expression long short-term
refers to the fact that LSTM 1s a model for the short-term
memory which can last for a long period of time. An LSTM 40
1s well-suited to classily, process and predict time series
given time lags of unknown size and duration between
events. LSTM units are the building blocks of the layers of
the RNN 1n one or more embodiments. Further, the encoder
machine learning model and the decoder machine learming 45
model may form a sequence to sequence (seg2seq) network.

In one or more embodiments, the encoder-decoder model
may also be other deep learning models such as Convolution
Neural Network (CNN) and Fully Connected Network (FC),
or other machine learning models. 50

The encoder machine learning model (130) includes a
character to indices mapping. The character to indices
mapping may be referred to as an encoder dictionary. The
character to indices mapping maps individual characters of
the mput to an index value. A set of words are selected based 55
on frequency of use 1n the user support system. Each
character 1n the set of words has a unique location 1n a vector
space. The characters to indices mapping defines the loca-
tion of the characters in the vector space. When mapping a
flawed 1nput, each character 1s a one-hot vector, or giant 60
vector of zeros except for a single one at the index of the
word. Thus, for example, the character to indices mapping,
may map the character “0” in the word “network™ to 03,
which 1s represented by the vector000001000...1.

Similarly, the decoder machine learning model (132) 65
includes an indices to character mapping. The indices to
character mapping has the same characteristics as described

6

with respect to the character to indices mapping. The indices
to character mapping maps index values to characters. The
indices to character mapping may be referred to as a decoder
dictionary. The encoder dictionary and the decoder diction-
ary may be the same or different. For example, the encoder
dictionary may represent the same set of characters as the
decoder dictionary or a different set of characters. By way of
another example, the same character in the encoder diction-
ary and the decoder dictionary may be mapped to different
index values 1n the different dictionaries. Returning to the
“network’ example above, the index to character mapping of

the decoder dictionary may map the “0” 1

in the word “net-
work™ to 23, which 1s represented by the vector of zeros with
a one 1n the twenty-third position.

Continuing with the encoder machine learning model
(130), the encoder machine learning model creates a context
vector (129). The context vector 1s a hidden state of the
encoder machine learning model (130) and encodes the
meaning behind of the flawed 1nput. In one or more embodi-
ments, the context vector (129) has fixed dimensionality.
The size of the context vector 1s mndependent of the length
of the flawed mput. In one or more embodiments, context
vector 1s a numeric sequence.

In one or more embodiments, the support server (124)
includes a conversational user interface processor (134). The
conversational user interface processor (134) manages a
session for a user to interact with a person 1n real time. In one
or more embodiments, the conversational user interface
processor (126) 1s configured to receive an mput and direct
the connection of the user to a department or agent based on
the mput. The conversation user interface processor (126)
may further pass messages between the user and the agent.
In one or more embodiments, the flawed nput 1s 1dentified
and corrected before the conversational user 1nterface pro-
cessor directs the user to the right department or person for
help related to the user’s mput. For example, a user may log
on to a website to look for help related to filing a tax form.
The user may begin the conversation by asking about “error
123”7, which has a domain specific misspelling. The
rephrased input “error code 123” 1s used by the conversation
user interface processor to direct the user to the correct
department to seek help related to the rephrased nput.

In one or more embodiments, the support server (124)
includes a search query processor (136). The search query
processor (136) 1s configured to perform a search based on
a search query. The search query processor (136) 1s config-
ured to receive a flawed input when a user enters a search
into a search bar on the website. In one or more embodi-
ments, the search query processor (136) may use the
rephrased input without displaying the rephrased mput to the
user. In one or more embodiments, the search query pro-
cessor (136) may display the rephrased imput to the user
before searching. For example, the user may use a search
feature on a website to search for “error 123”. The search
query processor (136) may obtain the rephrased input “error
code 123” to produce a better search result for the user.

In one or more embodiments, the support server (124)
includes a web content processor (138). The web content
processor (138) 1s configured to post content to a website.
The content posted by the web content processor (138) may
be questions and answers or other content that i1s domain
specific. The web content processor (138) may receive a
flawed 1nput when a user enters a question into a website that
allows for other users to provide answers, or when a user
enters an answer. In one or more embodiments, the web
content processor (138) may replace the flawed mput with
the rephrased imput before the question 1s posted to the
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website. For example, a user may enter a question “What 1s
error 1237”. The web content processor (138) may replace
the mput with “What 1s error code 1237, Thus, other users
are more likely to find the question and read the answer.

The various soltware processors (€.g., conversation user
interface processor (134), search query processor (136) and
web content processor (138)) may be configured to direct
inputs to the classifier and other components of the support
server before processing the original mput or rephrased
input. In other embodiments, the classifier 1s configured to
intercept and process mputs before sending the rephrased
query to the software processor. As another example,
another component may be configured to process the input.

Continuing with FIG. 1, the user support system (100) 1s
communicatively connected to the user computing system
(102). For example, the user support system (100) may be
connected via a network to the user computing system (102).
In one or more embodiments, user computing system (102)
1s a computing system, such as the computing system
described below with reference to FIGS. SA and 5B. User
computing system (102) provides, to a user, various com-
puting functionality. For example, the computing function-
ality may include word processing, multimedia processing,
financial management, social network connectivity, network
management, and/or various other functions that a comput-
ing device pertorms for a user. The user may be a customer
or a potential customer of the user support system. In one or
more embodiments, the user computing device (102)
includes at least one user interface (104) for connecting to
the user support system (100).

The user interface (104) 1s an interface for receiving input
from a user and transmitting output to the user. For example,
the user interface (104) may be a graphical user interface or
other user interface. The user iterface (104) 1s displayed 1n
a local application 1n accordance with one or more embodi-
ments. For example, the user iterface (104) may be gen-
crated by a remote web application and transmitted to a
user’s web browser. By way of another example, the user
interface may be an interface of a software application
providing the functionality to the user (e.g., a local gaming,
application, a word processing application, a financial man-
agement application, etc.). In such a scenario, the help menu,
popup window, frame, or other portion of the user interface
may connect to the user support system (100) and present
output. In one or more embodiments, the user interface
includes an input user interface (UI) widget (106) and an
output ficld (108). The input Ul widget (106) 1s a user
interface component that includes functionality to receive
input from a user, such as a search query or an answer. For
example, the input Ul widget may be a text box. The output
field (108) includes functionality to present results to the
user. For example, the output field may include functionality
to present one or more rephrased inputs. The output field
may be further associated with a user interface widget to
receive a selection of a rephrased mput from the one or more
presented rephrased inputs. In one or more embodiments,
the output field (108) further includes functionality to pres-
ent answers to a user.

FIG. 2 1s a flowchart diagram of a process for rephrasing
a flawed mnput, 1n accordance with one or more embodi-
ments. In one or more embodiments, the operations shown
in FIG. 2 and the flowcharts below may be performed by
soltware running on support server using data repository.

In Step 201, a submitted 1nput 1s received by a classifier.
The submitted mput may be received from the user interface
widget from a user which 1s then sent to the classifier. For
example, the user may submit the input through a local
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application executing on the user’s computing device (e.g.,
using a browser or other application). The input may be
transmitted, via the network, using various communication
protocols to the support server. A software processor, such as
the software processor described above, may have a classi-
fler or may transmit the submitted 1nput to the classifier. As
another example, the classifier may intercept the submitted
input. In one or more embodiments, the mput may be
submitted in multiple strings. Thus, each string corresponds
to a portion of the input. For example, the input may contain
3 sentences, but each sentence 1s submitted individually to
the classifier to be analyzed.

In Step 203, the classifier determines whether an error
exists 1n the submitted mput. In one or more embodiments,
the classifier classifies the input as to whether an error 1n the
input exists. The classifier analyzes the mput on a character
basis level to determine if the mput 1s a flawed mput. For
example, the classifier may be trained to extracts features
from the input and, based on the features, classily the
submitted 1nput 1mnto classes of correctly spelled, and mis-
spelled. For example, the classifier may be a Bayesian
classifier. A Bayesian classifier determines the posterior
probability that a submitted mnput 1s 1n a class based on the
probabilities of the features being 1n the class and the class
having the features. Because misspelling are domain spe-
cific, because misspellings may span multiple terms, and
because of the volume of possible misspellings, enumerating
the misspellings 1s computationally infeasible. Thus, direct
identification of a submitted input as a tlawed 1nput using an
enumerated method 1s computationally infeasible. By using
a classifier, one or more embodiments are able to classity
whether a submitted mnput 1s misspelled without having been
trained for the misspelling in the submitted 1nput.

If the classifier identifies a misspelling, the process moves
to step 205. If the classifier does not 1dentity a misspelling,
the process ends.

In Step 205, a determination 1s made whether to correct
the misspelling with regular expressions. As described
above, enumerating all possible misspellings may be com-
putationally infeasible as 1s having a regular expression to
recognize and revise each misspelling. Common misspell-
ings may be corrected with regular expressions. For
example, a regular expression may exist for each common
misspelling. The classifier may be trained to determine
whether to correct the misspelling with regular expressions.
In one or more embodiments, the classifier makes a decision
based upon domain specific misspellings or a common
misspelling. For example, the classifier may determine that
regular expressions may not {ix the flawed mput related to a
domain specific misspelling and, therefore, send the tflawed
input to the trained machine learning models. For example,
the flawed put “error 123 1s sent to the trained machine
learning model as the tflawed input does not contain a basic
misspelling but a domain specific misspelling. In another
example, the flawed mput may contain a common misspell-
ing, such as “eror code 123”7, and be sent to the regular
expressions processor to be fixed. I the classifier determines
that the misspelling should be corrected with regular expres-
sions, the process moves to step 207. If the classifier
determines that the misspelling should be corrected with the
trained learning model, the process moves to step 209. By
way ol another example, the regular expressions may be
applied prior to Step 203 to determine 1f a common mis-
spelling exists and to correct the common misspelling.

In Step 207, the mput 1s corrected using regular expres-
sions. Regular expressions are used for common misspell-
ings i1dentified by the classifier. Regular expressions are
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rules that define an input sequence and an output. IT at least
a portion of the submitted input satisfies the input sequence,
then the result 1s specified by the output, which applies the
correction. For the input, the regular expression specifies an
ordering of characters. Thus, to determine whether the
submitted 1mput satisfies the mput sequence, each character
in the submitted put 1s compared to a corresponding
location 1n the regular expression to determine whether the
character in the submitted mput 1s the same as the character
of the corresponding location. If the regular expression 1s
satisfied, then the output of the regular expression is the
rephrased input specified by the regular expression. If the
regular expression 1s not satisfied, the next regular expres-
sion may be analyzed with the collection of submitted mnput.
The process may end after the input 1s corrected.
Returming to Step 205, 1f a determination 1s made not to
correct the misspelling with a regular expression, the mis-
spelling 1s corrected by the encoder decoder machine learn-
ing model. In Step 209, the flawed mput 1s encoded at a
character level by an encoder machine learning model to
create a context vector. Specifically, machine learning 1is
applied to the flawed 1nput to transform the flawed input mnto
a context vector. The encoder dictionary 1s applied to the
flawed nput to obtain the indices for the characters of the
flawed put. The indices are used to create vectors for the
characters. Through several layers of the encoder machine
learning model, the encoder creates output and a hidden
state. The last hidden state i1s the context vector. The last
output may be ignored, thus, the encoder machine learning
model recerves, as input, the variable-length input sequence,
and outputs a fixed-length context vector. The context vector
1s a feature vector representing the input sequence. Thus, the
encoder machine learning model 1s responsible for stepping
through the input time steps and encoding the entire
sequence 1nto a fixed length vector called a context vector.
In Step 211, the context vector 1s decoded at a character
level nto a rephrased input by a decoder machine learning
model. The decoder machine learning model has a similar
structure as the encoder machine learning model but 1n
opposite orientation. The decoder machine learming model
takes the context vector as the first hidden state and creates
a variable-length sequence. At the end of processing, the
variable length sequence 1s a set of vectors having a one at

a particular location. The decoder dictionary 1s applied to the
set of vectors to obtain characters but 1s different than the
flawed 1nput. The characters decoded by the decoder
machine learning model 1s the rephrased mnput. Thus, the
decoder machine learning model 1s responsible for stepping
through the output time steps while reading from the context
vector.

In Step 213, the rephrased mput 1s presented. For
example, the rephrased input may be presented to the user’s
computing system (e.g., transmitted to the user’s computing
system, displayed, or otherwise presented). By way of
another example, the rephrased mput may be presented to a
soltware processor, such as the conversation user interface
processor, the search query processor, or the web content
processor. The actions of the software processor may be
performed with or without human interaction.

In Step 215, the mput 1s processed by a processor. For
example, the mput may be directed to a certain portion of a
website depending on the processor mvolved. For example,
the mput may have imitiated from a search engine on a
website; therefore, the search query processors directs the
input back to the search engine. The conversational user
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interface processors and web content processors may also
direct the input to a certain portion of the website depending
on the origin of the mput.

FIG. 3 1s a flowchart diagram of a process for training the
machine learning encoder and decoder models 1n accordance
with one or more embodiments. The encoder dictionary and
decoder dictionary may be predefined. Specifically, charac-
ter frequency within the field of the user support framework
1s used to select the set of characters to represent in the
encoder dictionary and the decoder dictionary. Thus, 11 the
user support framework provides networking support ser-
vices, then the character router, switch, and other network-
ing words may be in the respective dictionaries while such
characters would not be included 1n a user support frame-
work for vehicle maintenance. For the encoder dictionary,
common abbreviations (e.g., “4” for “for’”) used 1n searches
or asking questions of the user support framework may also
be selected. For the decoder dictionary, proper language may
be selected. The index values 1n the words may be randomly
defined. In particular, the index value assigned to a selected
character 1s irrelevant as long as a one-to-one mapping exists
in one or more embodiments. Remaining unselected char-
acters (1.e., characters that are not selected) will be associ-
ated with a predefined value in the index for unknown
character.

In Step 301, traiming data sets are generated that include
flawed 1nputs and rephrased mputs. When the training data
sets are generated, the flawed inputs are related to the
corresponding rephrased inputs. One technique for creating
flawed queries 1s to sert various tlaws into correct mputs.
The correct mputs are imputs that are verified, such as by a
human, as lacking misspellings including domain specific
misspellings and are exemplary. The correct input 1s the
rephrased mput 1n the training data and the corresponding
flawed 1nput(s) 1s the one or more inputs generated by
iserting the misspellings into the correct mput. For
example, abbreviations may replace terms of the nput,
where the abbreviations have multiple meanings within the
domain. Thus, the abbreviations add ambiguity to the input.
Further, various words may be removed from the mput. In
one or more embodiments, words may be replaced with
similar words that are within a threshold edit distance from
the original word. The edit distance 1s the number of letters
to change (replace, add, or remove) to create a new word. By
way of a specific example, the word, “examiner” has an edit
distance of four from the word “example.” By way of
another example, “foot” and “food” have an edit distance of
one. One or more embodiments may further account for the
similarity between words as typed on a keyboard. For
example, similar words may be selected that have minimal
typing distance between each other on the keyboard.

In Step 303, the classifier 1s trained using generated
training data sets. Specifically, the classifier 1s trained to
classity inputs as having an error, such as misspellings or
partial misspellings, on a character level based on the flawed
inputs from the training data sets. The classifier may be
tested and assigned different values based on the perior-
mance of the classifier. The values may be a correctly
classified as a misspelling which 1s fixed (e.g. True Positive),
a correctly spelled mput flagged as a misspelling and con-
verted incorrectly (e.g. False Positive), a correct spelling
recognized as a correct spelling (e.g. True Negative), and a
misspelling recognized as a correct spelling (e.g. False
Negative). In one or more embodiments, a correction score
1s calculated based on the above-mentioned values. The
correction score may include a single score or multiple
scores. For example, one part of the correction score may be
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a fraction of all the corrected misspellings based on the set
of mput. Another part of the correction score may be a
fraction of all the partially corrected misspellings based on
the set of mput. In one or more embodiments, the correction
score updates the machine learning model based on the
calculations.

In Step 305, the encoder machine learning model 1s
trained using the generated training data sets. Specifically,
the encoder machine learning model 1s trained to generate a
context vector from the flawed input. The context vector
encodes the meaming of the flawed mput.

In Step 307, the decoder machine learning model 1s
trained using the generated training data sets. The decoder
machine learning model 1s trained to generate the rephrased
input from the context vector. Specifically, the flawed 1nput
1s executed through the encoder machine learning model,
and the system tracks every output and the latest hidden
state. At the end of the encoder machine learning model
operating on the flawed mnput in the training data, the latest
hidden state 1s the context vector. The decoder machine
learning model 1s given the start of sentence token as the
decoder machine learning model’s first input, and the con-
text vector as the decoder machine learming model’s first
hidden state. The decoder 1s then trained to generate, from
the context vector, the rephrased input. The process 1s
repeated for each tlawed input and rephrased input 1n the
training data set.

FIG. 4 shows an example how the classifier and encoder
and decoder models may operate. In this specific example,
an 1mput (400), <1099 misc form”, 1s 1dentified by the binary
classifier (404). The binary classifier identifies each charac-
ter of the input (402) and maps each character with an
identifier (e.g., X_, X, X, ... X ) until every character of the
input (400) has been identified. The binary classifier (404)
identifies which character words are spelled correctly and
incorrectly. While there 1s no misspelling and only an
abbreviation 1n “1099 misc form”, the binary classifier
recognizes that the return result (409) 1s a domain specific
partial misspelling. In this example, the domain specification
relates to financial terms.

The encoder machine learning model (410) receives the
input “1099 misc form™ from the binary classifier (404). The
encoder machine learning model (410) encodes “1099 misc
form” to a set of character indices X_, X;, . . . X, X, ; ... X,
(409), where, for x,, x is the index of i”” character in the
flawed input. The output of the encoder machine learning
model 1s 1gnored (416). The encoder machine learming
model (410) creates a context vector (414) to a vector
multi-dimensional space. The decoder machine learning
model (412) receives the context vector (414) in the vector
multi-dimensional space. Through several iterative time
steps as show by the arrow (418), the encoded context vector
(414) 1s decoded to a new set of character indices defined by
the transmitted mappingy_,v,,...V, V.. ...V, (421), which
1s related to the transmitted result “form 1099-misc™ (420).
The new transmitted mapping (421) 1s added to the output
result (422) to produce the output mapping “form 1099-
misc” (423).

Embodiments of the invention may be implemented on a
computing system. Any combination of mobile, desktop,
server, router, switch, embedded device, or other types of
hardware may be used. For example, as shown in FIG. SA,
the computing system (500) may include one or more
computer processors (502), non-persistent storage (504)
(c.g., volatile memory, such as random access memory
(RAM), cache memory), persistent storage (506) (e.g., a
hard disk, an optical drive such as a compact disk (CD) drive
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or digital versatile disk (DVD) drive, a tlash memory, etc.),
a communication interface (512) (e.g., Bluetooth interface,
inirared interface, network interface, optical interface, etc.),
and numerous other elements and functionalities.

The computer processor(s) (502) may be an integrated
circuit for processing instructions. For example, the com-
puter processor(s) may be one or more cores or miCro-cores
of a processor. The computing system (500) may also
include one or more mput devices (510), such as a touch-
screen, keyboard, mouse, microphone, touchpad, electronic
pen, or any other type of mput device.

The communication interface (512) may include an inte-
grated circuit for connecting the computing system (500) to
a network (not shown) (e.g., a local area network (LAN), a
wide area network (WAN) such as the Internet, mobile
network, or any other type of network) and/or to another
device, such as another computing device.

Further, the computing system (500) may include one or
more output devices (508), such as a screen (e.g., a liquad
crystal display (LLCD), a plasma display, touchscreen, cath-
ode ray tube (CRT) monitor, projector, or other display
device), a printer, external storage, or any other output
device. One or more of the output devices may be the same
or different from the input device(s). The mput and output
device(s) may be locally or remotely connected to the
computer processor(s) (502), non-persistent storage (504),
and persistent storage (506). Many diflerent types of com-
puting systems exist, and the aforementioned input and
output device(s) may take other forms.

Software 1nstructions in the form of computer readable
program code to perform embodiments of the mnvention may
be stored, 1n whole or 1n part, temporarily or permanently, on
a non-transitory computer readable medium such as a CD,
DVD, storage device, a diskette, a tape, tlash memory,
physical memory, or any other computer readable storage
medium. Specifically, the software instructions may corre-
spond to computer readable program code that, when
executed by a processor(s), 1s configured to perform one or
more embodiments of the invention.

The computing system (500) in FIG. SA may be con-
nected to or be a part of a network. For example, as shown
in FIG. 5B, the network (520) may include multiple nodes
(e.g., node X (522), node Y (524)). Each node may corre-
spond to a computing system, such as the computing system
shown 1 FIG. SA, or a group of nodes combined may
correspond to the computing system shown 1n FIG. 5A. By
way ol an example, embodiments of the invention may be
implemented on a node of a distributed system that is
connected to other nodes. By way of another example,
embodiments of the invention may be implemented on a
distributed computing system having multiple nodes, where
cach portion of the imnvention may be located on a different
node within the distributed computing system. Further, one
or more elements of the aforementioned computing system
(500) may be located at a remote location and connected to
the other elements over a network.

Although not shown 1n FIG. 3B, the node may correspond
to a blade 1n a server chassis that 1s connected to other nodes
via a backplane. By way of another example, the node may
correspond to a server 1n a data center. By way of another
example, the node may correspond to a computer processor
or micro-core of a computer processor with shared memory
and/or resources.

The nodes (e.g., node X (522), node Y (524)) in the
network (520) may be configured to provide services for a
client device (3526). For example, the nodes may be part of
a cloud computing system. The nodes may include func-
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tionality to receive requests from the client device (526) and
transmit responses to the client device (526). The client
device (526) may be a computing system, such as the
computing system shown in FIG. 5A. Further, the client
device (526) may include and/or perform all or a portion of
one or more embodiments of the invention.

The computing system or group of computing systems
described 1n FIGS. 5A and 5B may include functionality to
perform a variety of operations disclosed herein. For
example, the computing system(s) may perform communi-
cation between processes on the same or different system. A
variety ol mechanisms, employing some form of active or
passive communication, may facilitate the exchange of data
between processes on the same device. Examples represen-
tative of these inter-process communications include, but are
not limited to, the implementation of a file, a signal, a socket,
a message queue, a pipeline, a semaphore, shared memory,
message passing, and a memory-mapped {ile. Further details
pertaining to a couple of these non-limiting examples are
provided below.

Based on the client-server networking model, sockets
may serve as interfaces or communication channel end-
points enabling bidirectional data transfer between pro-
cesses on the same device. Foremost, following the client-
server networking model, a server process (e.g., a process
that provides data) may create a first socket object. Next, the
server process binds the first socket object, thereby associ-
ating the first socket object with a umique name and/or
address. After creating and binding the first socket object,
the server process then waits and listens for imcoming
connection requests from one or more client processes (e.g.,
processes that seek data). At this point, when a client process
wishes to obtain data from a server process, the client
process starts by creating a second socket object. The client
process then proceeds to generate a connection request that
includes at least the second socket object and the unique
name and/or address associated with the first socket object.
The client process then transmits the connection request to
the server process. Depending on availability, the server
process may accept the connection request, establishing a
communication channel with the client process, or the server
process, busy in handling other operations, may queue the
connection request 1n a butler until server process is ready.
An established connection informs the client process that
communications may commence. In response, the client
process may generate a data request specitying the data that
the client process wishes to obtain. The data request 1s
subsequently transmitted to the server process. Upon receiv-
ing the data request, the server process analyzes the request
and gathers the requested data. Finally, the server process
then generates a reply including at least the requested data
and transmits the reply to the client process. The data may
be transferred, more commonly, as datagrams or a stream of
characters (e.g., bytes).

Shared memory refers to the allocation of virtual memory
space 1n order to substantiate a mechanism for which data
may be communicated and/or accessed by multiple pro-
cesses. In 1mplementing shared memory, an imtializing
process first creates a sharecable segment 1n persistent or
non-persistent storage. Post creation, the mitializing process
then mounts the shareable segment, subsequently mapping,
the shareable segment 1nto the address space associated with
the mitializing process. Following the mounting, the nitial-
1zing process proceeds to 1dentily and grant access permis-
s10n to one or more authorized processes that may also write
and read data to and from the shareable segment. Changes
made to the data in the shareable segment by one process
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may immediately aflect other processes, which are also
linked to the shareable segment. Further, when one of the
authorized processes accesses the shareable segment, the
shareable segment maps to the address space of that autho-
rized process. Often, only one authorized process may
mount the shareable segment, other than the mmitializing
process, at any given time.

Other techniques may be used to share data, such as the
various data described 1n the present application, between
processes without departing from the scope of the invention.
The processes may be part of the same or diflerent appli-
cation and may execute on the same or different computing
system.

Rather than or 1n addition to sharing data between pro-
cesses, the computing system performing one or more
embodiments of the invention may include functionality to
receive data from a user. For example, in one or more
embodiments, a user may submit data via a graphical user
interface (GUI) on the user device. Data may be submitted
via the graphical user interface by a user selecting one or
more graphical user interface widgets or inserting text and
other data into graphical user interface widgets using a
touchpad, a keyboard, a mouse, or any other mnput device. In
response to selecting a particular 1tem, information regard-
ing the particular item may be obtained from persistent or
non-persistent storage by the computer processor. Upon
selection of the 1tem by the user, the contents of the obtained
data regarding the particular item may be displayed on the
user device 1n response to the user’s selection.

By way of another example, a request to obtain data
regarding the particular 1item may be sent to a server opera-
tively connected to the user device through a network. For
example, the user may select a uniform resource locator
(URL) link within a web client of the user device, thereby
initiating a Hypertext Transter Protocol (HT'TP) or other
protocol request being sent to the network host associated
with the URL. In response to the request, the server may
extract the data regarding the particular selected 1tem and
send the data to the device that initiated the request. Once the
user device has received the data regarding the particular
item, the contents of the received data regarding the par-
ticular 1item may be displayed on the user device in response
to the user’s selection. Further to the above example, the
data recerved from the server after selecting the URL link
may provide a web page in Hyper Text Markup Language
(HTML) that may be rendered by the web client and
displayed on the user device.

Once data 1s obtamned, such as by using techniques
described above or from storage, the computing system, 1n
performing one or more embodiments of the invention, may
extract one or more data 1items from the obtained data. For
example, the extraction may be performed as follows by the
computing system 1 FIG. SA. First, the organizing pattern
(e.g., grammar, schema, layout) of the data 1s determined,
which may be based on one or more of the following:
position (e.g., bit or column position, Nth token in a data
stream, etc.), attribute (where the attribute 1s associated with
one or more values), or a hierarchical/tree structure (con-
sisting of layers of nodes at diflerent levels of detail-such as
in nested packet headers or nested document sections).
Then, the raw, unprocessed stream of data symbols 1s parsed,
in the context of the organizing pattern, into a stream (or
layered structure) of tokens (where each token may have an
associated token “type”).

Next, extraction criteria are used to extract one or more
data 1items from the token stream or structure, where the
extraction criteria are processed according to the organizing
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pattern to extract one or more tokens (or nodes from a
layered structure). For position-based data, the token(s) at
the position(s) i1dentified by the extraction criteria are
extracted. For attribute/value-based data, the token(s) and/or
node(s) associated with the attribute(s) satisiying the extrac-
tion criteria are extracted. For hierarchical/layered data, the
token(s) associated with the node(s) matching the extraction
criteria are extracted. The extraction criteria may be as
simple as an 1dentifier string or may be a query presented to
a structured data repository (where the data repository may
be organized according to a database schema or data format,
such as XML).

The extracted data may be used for further processing by
the computing system. For example, the computing system
of FIG. 5A, while performing one or more embodiments of
the invention, may perform data comparison. Data compari-
son may be used to compare two or more data values (e.g.,
A, B). For example, one or more embodiments may deter-
mine whether A>B, A=B, A =B, A<B, etc. The comparison
may be performed by submitting A, B, and an opcode
specilying an operation related to the comparison into an
arithmetic logic unit (ALU) (i.e., circuitry that performs
arithmetic and/or bitwise logical operations on the two data
values). The ALU outputs the numerical result of the opera-
tion and/or one or more status flags related to the numerical
result. For example, the status flags may indicate whether
the numerical result 1s a positive number, a negative number,
zero, etc. By selecting the proper opcode and then reading
the numerical results and/or status flags, the comparison
may be executed. For example, 1n order to determine 11 A>B,
B may be subtracted from A (1.e., A-B), and the status flags
may be read to determine 1f the result 1s positive (1.e., 1f
A>B, then A-B>0). In one or more embodiments, B may be
considered a threshold, and A 1s deemed to satisty the
threshold 1 A=B or 1f A>B, as determined using the ALU.
In one or more embodiments of the invention, A and B may
be vectors, and comparing A with B requires comparing the
first element of vector A with the first element of vector B,
the second element of vector A with the second element of
vector B, etc. In one or more embodiments, 1f A and B are
strings, the binary values of the strings may be compared.

The computing system 1n FIG. SA may implement and/or
be connected to a data repository. For example, one type of
data repository 1s a database. A database 1s a collection of
information configured for ease of data retrieval, modifica-
tion, re-organization, and deletion. Database Management
System (DBMS) 1s a software application that provides an
interface for users to define, create, query, update, or admin-
ister databases.

The user, or software application, may submit a statement
or query mto the DBMS. Then the DBMS interprets the
statement. The statement may be a select statement to
request information, update statement, create statement,
delete statement, etc. Moreover, the statement may include
parameters that specity data, or data container (database,
table, record, column, view, etc.), identifier(s), conditions
(comparison operators), functions (e.g. join, full join, count,
average, etc.), sort (e.g. ascending, descending), or others.
The DBMS may execute the statement. For example, the
DBMS may access a memory butler, a reference or index a
file for read, write, deletion, or any combination thereof, for
responding to the statement. The DBMS may load the data
from persistent or non-persistent storage and perform com-
putations to respond to the query. The DBMS may return the
result(s) to the user or software application.

The computing system of FIG. 5A may include function-
ality to present raw and/or processed data, such as results of
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comparisons and other processing. For example, presenting
data may be accomplished through various presenting meth-
ods. Specifically, data may be presented through a user
interface provided by a computing device. The user interface
may include a GUI that displays information on a display
device, such as a computer monitor or a touchscreen on a
handheld computer device. The GUI may include various
GUI widgets that organize what data 1s shown as well as how
data 1s presented to a user. Furthermore, the GUI may
present data directly to the user, e.g., data presented as actual
data values through text, or rendered by the computing
device into a visual representation of the data, such as
through visualizing a data model.

For example, a GUI may first obtain a notification from a
soltware application requesting that a particular data object
be presented within the GUI. Next, the GUI may determine
a data object type associated with the particular data object,
¢.g., by obtaining data from a data attribute within the data
object that identifies the data object type. Then, the GUI may
determine any rules designated for displaying that data
object type, e.g., rules specified by a software framework for
a data object class or according to any local parameters
defined by the GUI for presenting that data object type.
Finally, the GUI may obtain data values from the particular
data object and render a visual representation of the data
values within a display device according to the designated
rules for that data object type.

Data may also be presented through various audio meth-
ods. In particular, data may be rendered into an audio format
and presented as sound through one or more speakers
operably connected to a computing device.

Data may also be presented to a user through haptic
methods. For example, haptic methods may include vibra-
tions or other physical signals generated by the computing
system. For example, data may be presented to a user using,
a vibration generated by a handheld computer device with a
predefined duration and intensity of the vibration to com-
municate the data.

The above description of functions present only a few
examples of functions performed by the computing system
of FIG. 5A and the nodes and/or client device 1n FIG. 5B.
Other functions may be performed using one or more
embodiments of the imnvention.

While the invention has been described with respect to a
limited number of embodiments, those skilled in the art,
having benefit of this disclosure, will appreciate that other
embodiments can be devised which do not depart from the
scope of the invention as disclosed herein. Accordingly, the
scope of the invention should be limited only by the attached
claims.

What 1s claimed 1s:

1. A method comprising:

recerving a submitted input comprising a domain specific

misspelling, wherein the domain specific misspelling 1s
a misspelling within a domain and a correct spelling
outside of the domain;

classifying, by a binary classifier, the submitted input into

an incorrectly spelled class based on identifying an
incorrect spelling in the submaitted input, wherein the
binary classifier operates on a character mapping of the
submitted mput and classifies mto only two classes
comprising the incorrectly spelled class and a correctly
spelled class;

failing to correct the misspelling; and

based on the failure to correct the misspelling and after

classifying the submitted mput into the incorrectly
spelled class:
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receiving the submitted input comprising the domain
specific misspelling as a return result of the classi-
fying by the binary classifier;

encoding, by an encoder machine learning model
executing on a computer processor, the return result
on a per character basis to create a context vector;

iteratively decoding, by a decoder machine learning
model executing on the computer processor, the
context vector on the per character basis to create a
rephrased mput as an output result, the rephrased
input lacking the domain specific misspelling; and

presenting the rephrased input.

2. The method of claim 1, wherein

classitying, by the binary classifier, the submitted input
into the incorrectly spelled class 1s performed by per-
forming a Bayesian classification on the submitted
input.

3. The method of claim 1, comprising;:

classilying a true positive value on a plurality of traiming
sets;

classifying a false positive value on the plurality of
training sets;

classifying a true negative value on the plurality of
training sets;

classifying a false negative value on the plurality of
training sets;

calculating a correction score for the plurality of training
sets based on the true positives, the false positives, the
true negatives, and the false negatives; and

updating the trained encoder model based on the correc-
tion score.

4. The method of claim 1, comprising;:

refining a submitted iput mto a plurality of strings,
wherein the plurality of strings comprises multiple
portions of the submitted nput; and

analyzing the plurality of strings by the binary classifier.

5. The method of claim 1, comprising;:

identifying, via a conversational user iterface processor,
that the submitted 1nput 1s mitiated through a web
conversation; and

routing the submitted 1input from the web conversation to
the binary classifier.

6. The method of claim 1, comprising;:

identifying, via a search query processor, that the submit-
ted 1mput 1s mitiated through a web search; and

routing the submitted mput from the web search to the
binary classifier.

7. The method of claim 1, comprising;:

identifying, via a web content processor, that the submit-
ted 1put 1s mitiated through a web post; and

routing the submitted nput from the web post to the
binary classifier.

8. The method of claim 1, comprising;:

determining, without user intervention, to analyze a
search 1put using a plurality of regular expressions;
and

correcting the search input, by the regular expressions, as
the rephrased nput.

9. A system comprising:

a computer processor;

a user 1terface configured to receive a submitted input,
the submitted mput comprising a domain specific mis-
spelling, wherein the domain specific misspelling 1s a
misspelling within a domain and a correct spelling
outside of the domain;

a binary classifier executing on the computer processor
for causing the computer processor to classity the
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submitted 1nput 1into an incorrectly spelled class, based
on 1dentifying an incorrect spelling in the submatted
input,
wherein the binary classifier operates on a character
mapping ol the submitted input and classifies into only
two classes comprising the incorrectly spelled class and
a correctly spelled class;
a regular expression processor executing on the computer
processor to cause the computer processor to correct
the misspelling;
a trained encoder model for executing on the computer
processor to cause the computer processor, based on a
failure by the regular expression processor to correct
the muisspelling and after classitying the submitted
input into the icorrectly spelled class, to:
receive the submitted input comprising the domain
specific misspelling as a return result of the classi-
tying by the binary classifier;

encode the return result at a character level to create a
context vector, wherein the trained encoder 1s trig-
gered 1n response to the binary classifier classiiying
the submitted input into the incorrectly spelled class;
and

a trained decoder model for executing on the computer
processor to cause the computer processor to iteratively
decode the context vector at the character level into a
rephrased mput as an output result, the rephrased 1nput
lacking the domain specific misspelling.

10. The system of claim 9,

wherein the binary classifier 1s a Bayesian classifier that
1s configured to classily the submitted input as the
flawed 1put.

11. The system of claim 9, further comprising;

a conversational user interface processor for executing on
the computer processor for causing the computer pro-
cessor to:
identify that the submitted input 1s mitiated through a

web conversation; and
route the submitted 1input from the web conversation to
the binary classifier.

12. The system of claim 9, further comprising:

a search query processor for executing on the computer
processor for causing the computer processor to:
identify that the submitted input 1s mitiated through a

web search; and
route the submitted mput from the web search to the
binary classifier.

13. The system of claim 9, further comprising:

a web content processor for executing on the computer
processor for causing the computer processor to:
identify that the submitted nput 1s mitiated through a

web post; and
route the submitted mmput from the web post to the
binary classifier.

14. A non-transitory computer readable medium compris-

ing computer readable program code for causing a computer
system to:

recerve a submitted input comprising a domain specific
misspelling, wherein the domain specific misspelling 1s
a misspelling within a domain and a correct spelling
outside of the domain;

classity, by a binary classifier, the submitted input 1nto an
incorrectly spelled class, based on 1dentifying an incor-
rect spelling in the submitted input, wherein the binary
classifier operates on a character mapping of the sub-
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mitted input and classifies into only two classes com-
prising the incorrectly spelled class and a correctly
spelled class;

fail to correct the misspelling; and

based on the failure to correct the misspelling and after s
classitying the submitted mput into the incorrectly

spelled class:

receive the submitted mput comprising the domain
specific misspelling as a return result of the classi-
tying by the binary classifier;

encode the return result at a character level, by a trained
encoder model executing on a processor and in
response to the binary classifier classitying the sub-
mitted nput into the incorrectly spelled class, to
create a context vector;

iteratively decode the context vector at the character
level, by a trained decoder model executing on a
processor, to create a rephrased mput as an output
result, the rephrased mput lacking the domain spe-
cific misspelling; and

present the rephrased nput.

15. The non-transitory computer readable medium of
claim 14, wherein

classitying, by the binary classifier, the submitted input as

the flawed iput is performed by performing a Bayesian
classification on the submitted nput.

16. The non-transitory computer readable medium of
claiam 14, further comprising computer readable program
code for causing the computer system to:

classity a true positive value on a plurality of training sets;

classily a false positive value on the plurality of traiming

sets;

classily a true negative value on the plurality of training

sets;

classily a false negative value on the plurality of training

sets;
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calculate a correction score for the plurality of training
sets based on the true positives, the false positives, the
true negatives, and the false negatives; and

update the trained encoder model based on the correction
score.

17. The non-transitory computer readable medium of

claam 14, further comprising computer readable program
code for causing the computer system to:

refine the submitted mput mto a plurality of strings,

wherein the plurality of strings comprises multiple
portions of the submitted mnput; and

analyze the plurality of strings by the binary classifier.

18. The non-transitory computer readable medium of
claiam 14, further comprising computer readable program
code for causing the computer system to:

1dentify, via a conversational user interface processor, that

the submitted input 1s 1mtiated through a web conver-
sation; and

route the submitted mmput from the web conversation to

the binary classifier.

19. The non-transitory computer readable medium of
claam 14, further comprising computer readable program
code for causing the computer system to:

identily, via a search query processor, that the submitted

input 1s mitiated through a web search; and

route the submitted mmput from the web search to the

binary classifier.

20. The non-transitory computer readable medium of
claiam 14, further comprising computer readable program
code for causing the computer system to:

identify, via a web content processor, that the submatted

iput 1s mitiated through a web post; and

route the submitted input from the web post to the binary

classifier.
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