12 United States Patent

Sloss et al.

US011017140B1

US 11,017,140 B1
May 25, 2021

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

(%)

(21)
(22)

(1)

(52)

(58)

(56)

2020/0042662 Al*

AUTONOMOUS VERIFICATION OF
CIRCUIT DESIGN FOR COMPUTING

DEVICES

Applicant:

Arm Limited, Cambridge (GB)

Inventors: Andrew Neil Sloss, Kirkland, WA
(US); Christopher Neal Hinds, Austin,
TX (US); Hannah Marie Peeler,
Austin, TX (US); Gary Dale
Carpenter, Austin, TX (US)

Assignee: Arm Limited, Cambridge (GB)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 16/836,851

Filed: Mar. 31, 2020

Int. CL

GO6F 30/3323 (2020.01)

GO6l 9/30 (2018.01)

U.S. CL

CPC GO6F 30/3323 (2020.01); GO6F 9/30134

(2013.01)

Field of Classification Search

CPC
USPC

GO6F 30/3323; GO6F 9/30134
716/107

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

7,350,180 B1*

9,996,328 B1*
2005/0183073 Al*

GOO6F 30/30

716/103
GO6F 21/577
GO6F 8/30

717/141
GOIR 31/318357

3/2008 Slavin

ttttttttttttttttttttt

6/2018 Kluss
8/2005 Reynolds

tttttttttttttttttttt

tttttttttttttttttt

2/2020 Krieg

ttttttttttttt

200

! o~
15
oSt ESNF M SNF ;

FEE L80

Sytacile sindciures |

Edit SHF tur spacfisd L'-‘J o _:

OTHER PUBLICATTIONS

Fenton et al., PonyGE2: Grammatical Evolution in Python, Pro-

ceedings of GECCO 17 Companion, Berlin, Germany, pp. 1-13
(Year: 2017).*
Application, App. No. PCT/EP2021/025119, filed Mar. 29, 2021,

108 Pages.

Notification of the International Application No. and of the Inter-
national Filing Date, App. No. PCT/EP2021/025119, dated Apr. 20,

2021, 10 Pages.

Notification of Receipt of Search, App. No. PCT/EP2021/025119
dated Apr. 22, 2021, 1 Page.

Notification Concerning Submission Obtention or Transmittal of
Priority Document, App. No. PCT/EP2021/025119, dated Apr. 23,
2021, 1 Page.

Application, App. No. PCT/EP2021/025123, Filed Mar. 30, 2021,
149 Pages.

Notification of Receipt of Search, App. No. PCT/EP2021/025123,
dated Apr. 22, 2021, 1 Page.

Notification of the International Application No. and of the Inter-
national Filing Date, App. No. PCT/EP2021/025123, dated Apr. 20,

2021, 10 Pages.

Notification Concerning Submission Obtention or Transmittal of
Priority Document, App. No. PCT/EP2021/025123, dated Apr. 26,
2021, 1 Page.

* cited by examiner

Primary Examiner — Suresh Memula

(74) Attorney, Agent, or Firm — Berkeley Law &
Technology Group, LLP

(57) ABSTRACT

Briefly, example methods, apparatuses, and/or articles of
manufacture are disclosed that may be implemented, in
whole or 1n part, using one or more computing devices to
facilitate and/or support one or more operations and/or
techniques for autonomous verification of circuit design for
Io'T-type devices, which may include, for example, Io'T-type
devices operating 1n resource constrained or like environ-
ments.

20 Claims, 14 Drawing Sheets

US 11,017,140 B1

Sheet 1 of 14

May 25, 2021

U.S. Patent

o

T TR

o

=
At
b

e e A e A e A e e e

*.
L}
*
L}
.'.
L}
f N
L}
f B
L}
.'.
L}
f N
kR

.o
.=

e

e T ad

l-.'

108

110

IHHH“H“H“HHH“I"IHIIIIII
HHHHHHHHHIII

P A R
Pt
.1....11._.......-.__..__.4...4.___...._._._._.__...__-_

e E A A

.

\ ol

124
118

-
]

" . -

g
r

HE
T
*h

-I- 4 M‘#“ ..‘_"
3"
: .;:':

Mar

A

g v

R_E_K_K_K n

XXXXEXXERRRE

e
Al

il

e @ d o a e de R ol et)
L LS N LS LS R R R

102

104
116

114

112

G,

U.S. Patent

May 25, 2021

Sheet 2 of 14

- arget design struciure

US 11,017,140 B1

F]

parameiers

arim

Convert EBENF o BN

248

Verify syntaciic
correctness of BNF

0

BNF verified? >

Ves

it BNF for spacified 32/

- - .. il e

d
syritaclic siructures

| ot BNE for specified
: variabhis names

260

veriy syntaclic

corregtnesas of BNE

AN
0
-

e

BNF verified? >

yes §

Output: BNF pruned for

specitied tunctionality and/or
- egited for adaed verification

- Target gesign struclure

' Target design structure |

pargmatars

———

g \

| |
| OAFATIEErs r

Iy

| Target design structure
parameters

FlG. 2

U.S. Patent May 25, 2021 Sheet 3 of 14 US 11,017,140 B1

200
_%_x‘“""“"“"“"" - - T T N

:: inpul: Determine Target Appilication ,

T o whe e L L L N1 LR L J = uh wlr = nhe wlm wh ke e e e ke LR L} LR o whe e mh L Xl L L] - ke wle = b whr ;’-

320} . S
k Datermine standards
of target ianguage

> _ 85
EENE suitable’? 4

no
340 _

Access/Analyze internal
Parser/Compiter Code

350 _

EBNE suitable’?
ad ACCESS/ANBIVID DREN SOUrce

EENFs/BNEs

238G

&

Generate EBNF

380

Output: EBNF _

FlG. 3

U.S. Patent May 25, 2021 Sheet 4 of 14 US 11,017,140 B1

410
kff' | | | A
\ input: EBNF :
420 _
isoiglie top-iavel
moadule
43{ |
2 Walk free rogied at top-ievel
modiuie
4440

-ﬁ“

\‘\”i Cutpul: EBNF pruned for
1_ speacified funciionality

~ A

[] e

FG. 4

U.S. Patent May 25, 2021

502

k;r _.Eﬁhi}ut: 5

P
s

BNF pruned for

Sheet 5 of 14

B
!

' specified functionality
M e S ot i ol ol e e e e Yl e

5

504

AN

06

508

1 Eliminate termination characters

{orrect comment syniax

S5i4

516

Handla/Conveart repetitions

518

520

L VWrap production names

Hnsure termunat values are
wrapped in guoles

Handie/onvert oplions

" Remove concatenation
1 Correct syniax for rule dafinition

Handls/Convert groupings

US 11,017,140 B1

N
-
-

FIG. 5

U.S. Patent

May 25, 2021

STAY.

Corrective operation{s}

§iel

Sheet 6 of 14

v ' T "" "
{ .

FUIRS Progerly
formed?

yes

G40

Craale code using rulng from 4
grammay

~Code compiled

N
successiully? .
' VS5
X 360
18, “Caode exeryted

successiully?

e’ e’ e’ L P — e e’ e’ e’ e’ e’ e’ . e’ e’

US 11,017,140 B1

G, 6

U.S. Patent May 25, 2021 Sheet 7 of 14 US 11,017,140 B1

Examine targel application

isalate applicable rules

740

750

Propagate changes through
grarmmar

- Qutput: pruned BNF,
. further pruned for syntax/

variable naming }
N\

-

l
F
E
E

G, 7

U.S. Patent May 25, 2021 Sheet 8 of 14 US 11,017,140 B1

808

802 P __

First Device

304 830 - Second Device 832
' Communications .
riedans input/Cutput
820

5 " 8§24 hMemory

' Primary Y Ser;ndar},f
L L Memory . Memory J
U AN— | 840

Compuler-
Headable
Mediym

FroCessor

FIG. 8

U.S. Patent May 25, 2021 Sheet 9 of 14 US 11,017,140 B1

200

<Gase_sialamenis> = <Case_Keywords'

(<ease expression{<case_tem{xcase ilem>{i<case em>{ Case item options{ idaiaull ¢

ase item>:Yendease'

<case_Keyword> = ‘case'i'cgsezi'casey’

<CASE_EXPressions = <expression:>

<case Hemp = <Case Hem_expressions' | <staiement_or_nuil>

<oase fem_ ophion> = lkcase fems>{xcase_item _ophons>

<gdefaull_casa_itermns = 'delaull | <statements

<EAPTESSION> = <Pprimary>lcunary_operaior<primany>
Eqe_xpressiﬁs*:wwétt‘sautmmore::-ﬁbinarywapcs}rat&m&xpmssicnwwiihoutﬂ_,_more:»-l"{’qaperatormaﬁgi

gnment>Yiweonditional_exaression:

<BXPrEssion_withoul_more> = <primary>i<unary _operators<primary>
V{<operator_assignment>Yiwconditional_expressions

<exXpression_wHRoUL aperaiors = <primarysicunary_oparaivre<primany>
lexpression_withoul_operaior_mores<binary_operators<agxpression_wiihoul_operalor_more

>icoondiional_axprassion_no_operalorn-

<@Xpression. withoul_condiional> = <primary>i<unary _operaton<primary>
expreasion__without _conditional_mores<binary operalory<expression without_conditional

More

<gxpression without _operator_conditional> = «primary>i<unary_operators<grimary>
cexpression_without_operator_conditional_mores><binary_operalor<axpression_withoul_op

arafor conditional mores

<@xprassion_without_operator_mores D= <prmary>i<unary _operators<primary>
i<conditional_exprassion_no_opetraior_mora>

<axpression without conditional_more> = <primary>l«<inary_operalar<orrnary>

<akpression_withoul_operator _conditional_more> = rimary>i<unary _operalor<primary>

<CASE_Hem _axprassions = <aXression:.

<COormma_case _item_expression _ophon> = ", '<case_item_expression>t

wcase Hem _expression»<oomma_case _Hem _expression oplions

<staternant_or null> = <statemeni>

<Primary> = <primary_literai>

<gnary_ oparaions o= ETILGPE T AT

{epe'ratar___assignmenb = <vgriable values<assignment_operator<exprassion_withoul _operators>

<DONAIIoNa!_aXRression> =

<cond_pradicates'?'<axpression_withoul_condilional>'"wexpression_without_conditionalx

<conditional_expression_no_mores> 1=

<cond_predicatex'?'<axpression_without_conditicnal_morex>"'<expresaion_without_conditicnal_morex

<CORAtional_sxpression_no_operators =

<cond_predicatex"?<expression_without_operaior_condiionaly'/<expression_withoul_operator_condi

honaix

FiG. 9A

U.S. Patent May 25, 2021 Sheet 10 of 14 US 11,017,140 B1

900 - Cont'd

<gcongitional_expression_no._operator_more> =
<gcongd_predicala>"?'cexpression_without_operator_conditional_more>' '<expression_withoul_operaior
_conditiongl_mores

<stgtemnant> = <siglternent_items

<primary_literal> = <riumbers
«varable_values 1= Y}

<assignment_operators = =P 2 T 2% 2 T 2= P b Poga oo T ladan Snome
<Cong_pragicater = <expression_or_cond_patiem><and_sxprassion_or_cond_patiern_opliore
<gtatement_item> = <blocking_assignment>')l

<procedural_continuous_assignmant>' Jl<cass_statementicconditional_statement>! <seq_biocks
<hiock _identifiern> 1= <identifiers

<numbers L= <ntegral_numbersi<real _numbers

<COMMA_eXpression_oghion> =", <expressions><Comma_expression _ophon>

<casiing_lype> = <simple _typexi<constant_primary»l«signingsi'stringt'const’
<assignment_pattern_exprassion_iypes = <integer_alom_types
<comma_varnabile ivalue_ oplion> =

Y vanable valuest'«vanable ivalues<comma_variable ivalus options
<EXPIEeSSIon_or_oond_patiern> = <cond_patierns

<gNd_expression_or_cond_patiem_ophon> = " &&&

wexpression_or_cond_paltem><and _expression_or_cond_pattern_ophion>
<blocking_assignment> L= <oparator_assignments

<gcondifional_statement> = {'<cond_predicaiesx’} '<statement_or_null>

<alse i _cond_pradicate_stalement_or_null_oplionsiif ('<cond_predicates’} <statement_or_nulb-
<else_#i_cond_predicate siatement_or_null opticns' eise '<statement_or_null>

«saq_biock> = hegin «statement_or_null_opticn>’ end’

<idenbiiers 1= <simple_idantifior

<infegral_number> = <decimal_numbersi<ocial_numbersi<tinary _numbears>i<nex_rumbers
<r@al_numbers =

<fixed _point_numbersi<unsigned _numberns<exp><umnsigned _numbenstaunsigned _numbers’.'<uinsigne
d__numbers<axp><cunsigned _numbersi<unsignad _numbers<expe<signe<unsigned _rumberstaunsigne
¢_numbers<ansigned_numbears<expge<signe<unsigned_numban-

<unsigned _numbers = <decimal_digit<dacimal_digit_option>

<fixed _point_numbern> = <unsigned_numbens''<unsigned_numbens

<simpia_iype> = «inleger_typexi<non_integer typex

<constant primany> = <primarry_htergh>

<signing> = 'signedfunsigned’ '

<structure_patiern_key> = <member_identilernsl<assignment_patiern_key>
<gommea_structure_pattern_key_expression_options> = "1, '<struciure_paltern_key>':
wexpression»<comma_structure_patlern_kay_expression_ophon>

<arrgy_pattern_key> = <constant_expressions>i<assignment_patiern_Key>
<CoMMa_array_patiem_key_expression_ophons> =", <array_pattern_key>':
EXpression><comma_array pattern_key_axprassion_option>

FIG. 9B

U.S. Patent May 25, 2021 Sheet 11 of 14 US 11,017,140 B1

900 - Cont'd

<gconsiant_expressions =

<constant brmary=l<unary operalors<constant primary>i<consiant _expression><Dmnary DperalGis
constant_expression>i«oonstant_sxpraessions>'?'«weconstant_exprassions>’. '<constant_exprassion>
<intager_atom_iypes = Dytel'shortintTinttiongintintegertiime’

<gond_patterr> [= <gxpression_without_operator_conditional_more>’ maiches ‘<patterre

w ol e - LN

<gelay_or_eavent_conirel> = <event _contrais

<gise i cond predicate statement o null option> =" else if {<ocond_predicalex’)
<staternant_or_null><else_if_cond_predicale_statement_or_null_option>

<stalsment_or_mudl_option> =

<siglament _or_nuliblasiaioment_or_null>{ J<stiatemant_or_mull_options

<simple_identifier> = VagriabletTvariable2variable3 variabied’

<decimal_number> 1=

<unsigned_numbersi<gecimal _basas<unsignad_numbersicsizas<decimal_bhases<unsighed _numbar
«gecimal _bases><x_digitbixsize><decimal_basex<_digibi<decimal_base><z_ _digit>i<size><decimal_ba
Se><<F_ digit>

<oclal_number> = <ooial_base><ocial valuesicsizes<octal _basex<octal vaiue

<binary numbers = <ginary_bDasas<ginary value>l<sizes<iinary_bases<pinary value>
<hex_numberns = <hex _Dasex<hax valueri<sizes<hex_basex<hex values

<@XPs = et

<Sig> = 4N
<gechnat_digits o= 0TTT2TRPSVETeT 71819

<nteger ype> L= <integer vedtor typexianieger _atom_typex

<non_inleger_type> = 'shorrealireaiirealtima’

<assignmant patiem key> = <simpla_tyvpest'default’

<binary _operator> = '+~

PP % e T e e P e P o P PV AT HTT T Vo e P e PRV A A s

Pt R B Lo ' '
<type_identifiers 1= <identifiers

«<panemn> =

Uxvariabla_identifierst . M l<constant_sxpressions{"{ "«patiern><comma _patiern_opliore" 11" { "<m
amber identiieny” | "wpattemy><comma_member identifier patiem option»”™ ¥
<event_controls = 1 {'<eveni _exprassiorn:-YH@ 1@ {7y

<gecimal_base> = Mg " sd" MM D s DTS

<SiZe> D= <NON_Zere_unsigned_numbers

< _Aigits = KT

<z digit> =GPV

<actal_bases = Tn"sg e O T s OISO

<golal_value> = <golal _gigibb<ocial_gigil_option>

<binary basex o= "R shTEhTTB N s B ERE"

<binary vaiues L= «binary _digit<binhary_qigit_oplicn>

<hex_base> = “hsh IS " H s HY" SH"

<hex_value> 1= <hax_digit<hex_digit_oplion>
<integer_vecior_types = bittlogictrey’

<packed dimension_option> = "l<packed_dimensions' wpacked_dimension_options

FlG. 9C

U.S. Patent May 25, 2021 Sheet 12 of 14 US 11,017,140 B1

a00 - Cont'd

<vatiable_identifler> 1= <identifiers

<comma_pattemn_option> = 'Y, ‘<paltern><comma_pattern_option>
<COormma_member_wlenitfier patiemophon> =", <mander_identifiers' :
wpattern><comma_member_identiliar_patiern_oplion>

<event exprassion> = <@xpressionsi<edge idaniifiers’ wexpression>i<axprassion:’ iff
wexpressioni<edge identifiens’ '<exprassion>' it ‘<expression>i<event _expression>’ of
‘wevant_expressionsicevent expressions’, <avant_expressionsi{ <avaeni_sxpressionsy’
<NON_zZerec_unsigned_number> = <hon_zero_decimal_gigib><denimal_digit_ophon>
<gctal_digits (= <x_digitslez_digit-toim 11 213141rs51et 7

<pinary_digit> 1= «<x_digitsl<z gigitsi ot

<hex adigit> =

<X_Gigitd<z_digit=I" 0T 11213 04V5TT71819a e d Pe TTVATRTCVDTEYH

<packed dimensions = T<eonstant_range>Tlaunsized _dimension>

<gdqe _ideniifier> = poseggainegedgeedge’

<non_zero. decimal_digits o= TY2TT4TSTe T8 Y

<constant_ranger = <constant_expressions’ '<consiant_expression>

«ainsized dimension> =171

<mpamberdentiiers = <identitiers

<procedural_continuous_assignment> = ‘assign ‘wvariable_assignments

variabie _assignments> U= <vananie _lvalues = <expression_withoul _operaior _condiional_mores
<glecimal_digit _option> == "l<decimal_digit-i<decimal_digit<decimal _gigit>
~binary_gigi opliorne == ”Ec:bénaryﬁ__ciigéibi{binarg___digitm:binafy___ciigit:-:»
<gctal_digit_oplions> == “i<opial_digitsi<acial_gigit><octal_digits

roule e -

FlG. 9D

U.S. Patent May 25, 2021 Sheet 13 of 14 US 11,017,140 B1

1000
aiways @{)
bagin
case {(NUM_BITS)
31 Degin
r XNOR = r_LFSRI3Z] ~ ¢ LFSR{2);
and
4: pagin
r ANQOR = ¢ LFSRI4] M v LFSRIBE
and
S pegin
r KNOR =1 _LFSR{5] "~ _LFSR{3};
ond
. begin
r XNOR =¢_LFSRIG] A~ _LFSRIBL
angd
7: begin
r XNOR =71 LFSRI7] A~ r _LFSRIG];
eng
o begin
r XNOR =1 LFSRI8] A~ 1 _LFSR[6] A~ r_LFSRS] M~ r_LFSRi4];
end
3: bhegin
r ANOR = r_LFSRI[8] % r_LFSR{5];
end
10 begin
r XNOR =1 LFSRI10] ~~ v LFSR{71:
ond
11: bagin
r XNOR = ¢ LFSRIH] A~ v LFSRIBE
ang
12: bagin
r XNOR =r LESRIM12] M1 LFSRIB] A1 LESRI4] A LESRITE
eng
13: Dagin
rXNOR = _LFSER{13] ¢~ r _LFSRI4] A~ LFSRIS A~ v LFSE,
end
14 begin
r XNOR = r_LFSR[14] A~ r_LFSRIS] A~ r LFSRIS A~ v _LFSRI
end |
15 begin
r XNOR =1 _LFSR[15] A~ 1r_LFSR{14];
e
16! begin
t ANOR = ¢ LFSRIG] A~ ¢ _LFSRHIS] M~ LFSRI3] A~ ¢ _LFSRI4]:
ang
17 bagin
r ANOR =r LESRI17] M1 LFSRI14];
angd
18 egin

¢ _XNOR = r_LFSR[18] * r_LFSR[11];

FlG. 10A

U.S. Patent May 25, 2021 Sheet 14 of 14 US 11,017,140 B1

1000 - Cont'd

eng
18: hegin
r ANGR =1y LFSRIGI A LFSRIST A ¢ LESRIZ2E A~ LFSRI{1];
end '
20 hagin
r XNOR =1 LFSRI20] A~ LFSR[17];
2N
21: bagin
f XNOR = r_LFSR[21] ~~r_LFSR[19};
Iale
22 begin
r ANOR = _LFSR[22] A~ _LFSRIZT]
end '
23: begin
r XNOR = r _LFSR[Z23] A~ LFSRI18]
eng
24 begin
r XNOR = ¢ LFSRI24] A~ v _LESRI[Z3] A~ _LFSR[22] A~ _LFSR{I7L
end
25 hagin
r XNOR =r LFSR[25] A~ r LFSR{22};
204
26 bagin
v XNOR =v¢_LFSR[26] "~ r_LFSR[B] *~ 1 _LFSRI2] *~r _LFSR[1L
&0
27 begin
f ANOR = ¢_LFSR[27] A~ v _LFSRIS] Avr LEFSRIZ A v LFGR;
end ' '
28 begin
r ANOR = LFSR[28] A~ r_LFSR{25};
enc
29 begin
r KNOR = LFSR[R28: A~ r LFSRIZT;
end |
30: hagin | |
r ANOR =1 LFSRI30] A~ ¢ _LFSRIB] A~ 1 _LFSR[4! A~ r LFSRI1;
end
31: bagin
r XNOR =v LFSR[31] "~ LFSR{28];
SIale
32: bagn
r KNOR =1 _LFSR{3Z] A r LFSR[22] A~ 1 _LESRZ] M v LSRR
and

gnidcase / casa {(NUM_BITS)
and // always @ {7}

FlG. 108

US 11,017,140 Bl

1

AUTONOMOUS VERIFICATION OF
CIRCUIT DESIGN FOR COMPUTING
DEVICES

RELATED APPLICATIONS

This patent application 1s related to U.S. Ser. No. 16/836,
841 entitled “AUTONOMOUS PSEUDO-RANDOM SEED
GENERATOR FOR COMPUTING DEVICES” and U.S.
Ser. No. 16/836,859 entitled “CREATING AND/OR
ENHANCING HARDWARE OBSCURITY VIA RAN-
DOMIZATION POINTS,” all filed concurrently herewith,
and all hereby expressly incorporated by reference 1n their
entirety.

BACKGROUND

1. Field

The present disclosure relates generally to computing
devices and, more particularly, to autonomous verification of
circuit design for embedded computing devices, which may
include, for example, IoT-type devices operating 1n resource
constrained or like environments.

2. Information

The Internet 1s widespread. The World Wide Web or
simply the Web, provided by the Internet, 1s growing rapidly,
at least 1n part, from the large amount of content being added
seemingly on a daily basis. A wide variety of content 1n the
form of stored signals, such as, for example, text files,
images, audio files, video files, web pages, measurements of
physical phenomena, or the like 1s continually being
acquired, identified, located, retrieved, collected, stored,
communicated, etc. Increasingly, content 1s being acquired,
collected, communicated, etc. by a number of embedded
computing devices leveraging existing Internet or like infra-
structure as part of the so-called “Internet of Things™ or 10T,
such as via a variety of protocols, domains, and/or applica-
tions. The IoT 1s typically a system of interconnected and/or
internetworked physical computing devices capable of being
identified, such as uniquely via an assigned Internet Protocol
(IP) address, for example, and i which computing 1s
embedded into hardware so as to facilitate and/or support
devices’ ability to acquire, collect, and/or transmit content
over one or more communications networks. IoT devices
may comprise a wide variety of embedded devices, such as,
for example, automobile sensors, biochip transponders,
heart monitoring implants, thermostats, kitchen appliances,
locks or like fastening devices, solar panel arrays, home
gateways, controllers, or the like.

In some instances, the nature of IoT-type devices, such as
by virtue of having an embedded computing and/or com-
munication capability, which may include a capability to
automatically access the Internet, for example, may make
the IoT-type devices vulnerable. For example, at times,
IoT-type devices may be prone to hacking, nefarious log-in
exploits, or like security risks that may give on-line attackers
access to and/or control of the devices and, as a conse-
quence, compromise associated services, systems, networks,
infrastructures, or the like. However, 1n some 1nstances,
more traditional security measures, such as anti-virus, mal-
ware, or like defenses, for example, may not be suitable for
and/or applicable to IoT-type devices. For example, 1n
contrast to more advanced computing platforms with more
sophisticated anti-virus, malware, or like defenses, many

10

15

20

25

30

35

40

45

50

55

60

65

2

IoT-type devices may comprise peripheral or end-point
and/or resource-constrained embedded devices that utilize
lower-cost hardware and/or software solutions lacking com-
puting and/or processing power to run a suflicient security
software. Thus, how to secure IoT-type devices, including
those operating in resource constrained or like environ-
ments, for example, continues to be an area of development.

BRIEF DESCRIPTION OF THE DRAWINGS

Claimed subject matter 1s particularly pointed out and
distinctly claimed 1n the concluding portion of the specifi-
cation. However, both as to organization and/or method of
operation, together with objects, features, and/or advantages
thereof, it may best be understood by reference to the
following detailed description 1f read with the accompany-
ing drawings in which:

FIG. 1 1s a schematic diagram 1llustrating features asso-
ciated with an implementation of an example operating
environment for IoT-type devices.

FIG. 2 15 a flow diagram illustrating an implementation of
an example process for verification of circuit design for
Io'T-type devices.

FIG. 3 1s a flow diagram 1illustrating an implementation of
an example process for obtaiming an EBNF.

FIG. 4 1s a flow diagram 1illustrating an implementation of
an example process for pruning an EBNF for a specified
functionality.

FIG. 5 1s a flow diagram 1illustrating an implementation of
an example process for converting an EBNF to a BNFE.

FIG. 6 1s a flow diagram 1illustrating an implementation of
an example process for verification of a BNF.

FIG. 7 1s a flow diagram illustrating an implementation of
an example process for further pruning of a pruned BNF.

FIG. 8 1s a schematic diagram illustrating an implemen-
tation of an example computing environment.

FIGS. 9A-9D illustrate an implementation of an example
Verilog grammar.

FIGS. 10A-10B illustrate an implementation of example
syntactically correct LFSR-tailored Verilog code.

Reference 1s made 1n the following detailed description to
accompanying drawings, which form a part hereof, wherein
like numerals may designate like parts throughout that are
corresponding and/or analogous. It will be appreciated that
the figures have not necessarily been drawn to scale, such as
for simplicity and/or clarity of illustration. For example,
dimensions ol some aspects may be exaggerated relative to
others, one or more aspects, properties, etc. may be omitted,
such as for ease of discussion, or the like. Further, it 1s to be
understood that other embodiments may be utilized. Fur-
thermore, structural and/or other changes may be made
without departing from claimed subject matter. References
throughout this specification to “claimed subject matter”
refer to subject matter intended to be covered by one or more
claims, or any portion thereof, and are not necessarily
intended to refer to a complete claim set, to a particular
combination of claim sets (e.g., method claims, apparatus
claims, etc.), or to a particular claim. It should also be noted
that directions and/or references, for example, such as up,
down, top, bottom, and so on, may be used to facilitate
discussion of drawings and are not intended to restrict
application of claimed subject matter. Therefore, the follow-
ing detailed description 1s not to be taken to limit claimed
subject matter and/or equivalents.

DETAILED DESCRIPTION

References throughout this specification to one 1mple-
mentation, an implementation, one embodiment, an embodi-

US 11,017,140 Bl

3

ment, and/or the like means that a particular feature, struc-
ture, characteristic, and/or the like described 1n relation to a
particular implementation and/or embodiment 1s included in
at least one 1mplementation and/or embodiment of claimed
subject matter. Thus, appearances of such phrases, for
example, 1n various places throughout this specification are
not necessarily intended to refer to the same implementation
and/or embodiment or to any one particular implementation
and/or embodiment. Furthermore, 1t 1s to be understood that
particular features, structures, characteristics, and/or the like
described are capable of being combined in various ways 1n
one or more implementations and/or embodiments and,
therefore, are within intended claim scope. In general, of
course, as has always been the case for the specification of
a patent application, these and other 1ssues have a potential
to vary 1n a particular context of usage. In other words,
throughout the disclosure, particular context of description
and/or usage provides helpful guidance regarding reason-
able inferences to be drawn; however, likewise, “in this
context” 1n general without further qualification refers at
least to the context of the present patent application.

Some example methods, apparatuses, and/or articles of
manufacture are disclosed herein that may be used, 1n whole
or 1n part, to facilitate and/or support one or more operations
and/or techniques for autonomous verification of circuit
design for IoT-type devices, such as implemented 1n con-
nection with one or more computing and/or communication
networks and/or protocols (e.g., network protocols) dis-
cussed herein, for example. As discussed below, 1n some
instances, these or like one or more operations and/or
techniques may be mmplemented, 1n whole or 1 part, to
tacilitate and/or support one or more approaches for a more
secure and/or reliable operation of IoT-type devices includ-
ing, for example, IoT-type devices operating in resource
constrained or like environments. As will be seen, at times,
these one or more approaches may include, for example,
grammatically evolving particular domain knowledge and
incorporating such knowledge mnto a system-on-a-chip
(SOC) design flow so as to generate a suitable or suflicient
number of hardware solutions with an appropriate or other-
wise suitable distribution of randomness. As also discussed
below, these one or more approaches may also include, for
example, autonomous verification of these or like hardware
solutions, such as part of a SOC design tlow so as to further
mitigate security concerns.

As will also be seen, 1n some 1nstances, these or like
hardware solutions may comprise, for example, linear feed-
back shiit registers (LFSRs) that may be incorporated 1nto
an appropriate number of IoT-type devices and capable of
creating suilicient or otherwise suitable distribution random-
ness 1n these devices, such as via generating start state
initialization numbers and/or continually evolving a unique
open-ended fixed nstruction sequence. For purposes of
explanation, typically, an LFSR may comprise a digital logic
circuit, such as a sequential bi-stable logic circuit, just to
illustrate one particular example, capable of storing and/or
transferring (e.g., shifting, etc.) applicable digital signal
values and whose at least one mput value comprises a linear
function of 1ts previous state. As also discussed below, at
times, particular domain knowledge may, for example, be
represented via a subset of a grammar comprising an appli-
cable computer programming language, such as via com-
puter-readable code or instructions that perform a specific
task. As will also be seen, 1n at least one implementation, a
particular computer programming language, such as a hard-
ware description language (HDL), such as Verilog, for
example, may be utilized herein, in whole or 1n part, or

10

15

20

25

30

35

40

45

50

55

60

65

4

otherwise considered. As such, here, a “computer program-
ming language” should be interpreted broadly, such as
represented via computer-readable code or instructions
capable of being executed via a number of sequential and/or
parallel operations. Thus, here, one or more lines of code
may be executed one at a time, such as following a top-to-
bottom organization, for example, and/or 1n parallel, such as
to facilitate and/or support a simultaneous operation of
separate portions of digital hardware, 1t appropriate or
applicable, despite corresponding lines of code being written
using a top-to-bottom organization. Particular examples of
Io'T-type devices, LFSRs, applicable computer program-
ming language, etc. will be discussed 1n greater detail below.

Also discussed below are example approaches to verity-
ing autonomously generated HDL code, such as Verilog
code. For example, in an implementation, a grammatical
evolution process may generate evolved HDL code, such as
Verilog code tailored to a particular functionality, and such
evolved HDL code may be verified via a process utilizing
BNF input grammar to perform at least part of the verifi-
cation. Thus, 1n an 1mplementation, a subset of Verilog
generated as part of a grammatical evolution process may,
for example, be proven against a Verilog BNF definition.
Thus, BNF grammar may describe a particular search-space
language and may further provide at least partial verification
of an evolved Verilog solution. Additionally, as seen below,
further tailoring inputted BNE, such as beyond rules
obtained from a full Verilog BNF grammar, for example,
may help ensure that a particular outputted solution has
particular advantageous characteristics that may depend, at
least 1n part, on a particular application. In some 1nstances,
utilizing such an example approach, an increase 1n efliciency
and/or eflicacy with respect to verification of evolved Ver-
1log code may be achieved.

As further discussed below, at times, a BNF grammar may
serve as an example template for a target application, for
example, and/or may be utilized, at least 1n part, to verily
applicable HDL code. For example, utilizing a grammar
template, an example instance of a particular application
may be tested against the grammar template to determine
whether a particular evolved HDL solution 1s compatible
and/or compliant with the specifications of an appropriate
grammar. Further, a grammar template may be utilized, 1n
whole or 1n part, to create diflerent versions of a particular
application, which may mitigate security concerns such as in
situations wherein multiple mnstances of a particular appli-
cation have or share the same or similar HDL code, for
example.

“Electronic content,” as the term used herein, should be
interpreted broadly and refers to signals, such signal packets,
for example, and/or states, such as physical states on a
memory device, for example, but otherwise 1s employed in
a manner irrespective of format, such as any expression,
representation, realization, and/or communication, for
example. Content may comprise, for example, any informa-
tion, knowledge, and/or experience, such as, again, 1n the
form of signals and/or states, physical or otherwise. In this
context, “electronic” or “on-line” content refers to content in
a form that although not necessarily capable of being
percerved by a human, (e.g., via human senses, etc.) may
nonetheless be transformed 1nto a form capable of being so
percerved, such as visually, haptically, and/or audibly, for
example. Non-limiting examples may include text, audio,
images, video, security parameters, combinations, or the
like. Thus, content may be stored and/or transmitted elec-
tronically, such as betfore or after being perceived by human
senses. In general, it may be understood that electronic

US 11,017,140 Bl

S

content may be intended to be referenced in a particular
discussion, although in the particular context, the term
“content” may be employed for ease of discussion. Specific
examples of content may include, for example, computer
code, metadata, message, text, audio file, video file, data file,
web page, or the like. Claimed subject matter 1s not intended
to be limited to these particular examples, of course.

As alluded to previously, at times, securing and/or main-
taining IoT-type devices may, for example, present a number
of challenges, which may be due, at least in part, to the
devices’ inherent ability to automatically access and/or
communicate on a network, such as the Internet, as one
possible example. Typically, although not necessarily, in
contrast to more advanced computing platforms with more
sophisticated anti-virus, malware, or like security mecha-
nisms or defenses, many IoT-type devices may comprise, for
example, resource constrained edge or peripheral embedded
devices that utilize hardware and/or software solutions lack-
ing computing and/or processing power to run a security
soltware, implement secure updates and/or communication,
or the like. As such, in some instances, IoT-type devices may
be vulnerable to, for example, brute-force attacks and/or
other nefarious on-line attacks, log-1n exploits, etc. that may
give on-line attackers access to and/or control of these
devices and, as a consequence, compromise associated ser-
vices, systems, networks, infrastructures, or the like.

In some 1nstances, to address these or like challenges, one
or more security approaches may be utilized. For example,
since IoT-type devices utilize Internet or like network com-
munications exchange protocols (e.g., SSL/TLS, SSH, IKE,
etc.), at times, more secure operation of such devices may
depend, at least 1n part, on cryptographic or like security
features, such as in the form of pseudo-random number
generators (PRNGs). As a way of illustration, i some
instances, PRNGs may, for example, be capable of mitigat-
ing a threat of unauthorized device intrusions, such as via
introducing randomness 1nto one or more associated security
parameters. By way of explanation, typically, a PRNG
comprises a computing device and/or process capable of
generating a sequence of numbers whose properties approxi-
mate one or more properties of sequences of random num-
bers. A PRNG 1s typically mitialized via a special random
input value, called a *“seed,” which 1s generated by some
source of randomness that may comprise an IoT-type device.
Such a seed may determine and/or facilitate an output of a
random sequence by a PRNG, which may be used, in whole
or in part, to protect confidentiality and/or integrity of an
IoT-type device and/or electronic content, implement more
secure network communications, updates and/or other
operations, or the like. As such, at times, a security of a
PRING and, thus, of an associated IoT-type device may, for
example, depend, 1n whole or 1n part, on randomness of a
seed. Thus, 1n some instances, it may be useful for more
secure operation of IoT-type devices to employ an appro-
priate or otherwise suitable source of randomness.

In some 1nstances, however, finding and/or employing an
appropriate or otherwise suitable source of randomness,
such as for outputting a random seed value, for example,
may present challenges. To illustrate, since real-time clocks
(RTCs) are typically, although not necessarily, run with a
fixed frequency, certain IoT-type devices, such as those
employing an RTC as a source of randomness to produce a
seed, for example, may be prone or otherwise susceptible to
generating readable and/or predictable pseudo-random pat-
terns and, as such, may deliver a discoverable output. Also,
in some 1nstances, RTCs may not be available for certain
IoT-type devices, for example, and, 1f present, may be

10

15

20

25

30

35

40

45

50

55

60

65

6

operationally expensive, less than suflicient or suitable to
properly mitialize a PRNG due, at least 1n part, to hardware
and/or environmental limitations 1inherent to IoT-type
devices, or the like. In addition, at times, it may be useful to
verily code samples comprising these or like PRNGs, such
as 1n an autonomous manner, for example, so as to facilitate
and/or support appropriate and/or suitable patterns of behav-
1ior inherent to these or like PRNG while eliminate solutions
that may be prone to incorrect and/or undesirable behavior.

Accordingly, it may be desirable to develop one or more
methods, systems, and/or apparatuses that may implement a
PRINGs capable of producing a seed value, such as without
reliance on an RTC, for example, that may introduce a
suflicient or otherwise suitable amount and/or distribution of
randomness 1nto IoT-type devices so as to preclude or reduce
readable and/or predictable patterns while saving power
through execution on-demand and/or verily generated code
samples 1n a more eflective and/or more eflicient manner.

Thus, as will be described in greater detail below, 1n an
implementation, an extended Backus-Naur form (EBNF)
representation of a particular HDL grammar, such as a
Verilog grammar, for example, may be -electronically
obtained and/or subsequently pruned, such as for an LFSR
functionality. To {facilitate and/or support more eflective
and/or more eflicient processing, at times, a pruned EBNF
grammar may be converted to a Backus-Naur form (BNF),
for example, and used, at least 1n part, as input to a suitable
grammatical evolution tool, such as PonyGE2, just to 1llus-
trate one particular example. As will also be seen, 1n some
instances, one or more evolutionary criteria may be defined
and used, at least 1n part, in connection with one or more
PonyGE?2 runs, such as to incorporate and/or grammatically
evolve appropriate knowledge via a genotype encouraging a
suitable and/or suflicient variety of patterns of behavior
inherent to LFSRs, for example. These or like LFSRs may
be part of SoC design flows, for example, so as to comprise
PRINGs substantially corresponding to a number of Io'T-type
devices. Further, as will be described in greater detail below,
in an implementation, BNF representations of grammati-
cally evolved code, such as HDL code, may be verified at
least 1n part via comparison with specified BNF grammars,
for example.

PRNGs may, for example, be capable of facilitating a
predetermined variation of starting states across these IoT-
type devices, such as via generating and/or providing seeds
for start-state initialization numbers capable of introducing
appropriate or otherwise suitable distribution of random-
ness, as will also be seen. In operative use, an instruction
sequence may take input from a PRNG portion of an LFSR,
for example, and may run through a random sequence to
produce a seed, which may then be placed into a pseudo-
random generator initialization function of an IoT-type
device. In some instances, an instruction sequence may also
be continually evolved, such as via one or more linear
genetic programming approaches, for example, so as to
generate a new or different seed value once a random 1nput
1s called (e.g., every time, etc.). In addition, removal of an
RTC may, for example, save computing and/or processing
power, which may be beneficial at an IoT scale, as was also
indicated. Again, particular examples of an EBNF, BNF,
LFSR, PonyGE2 runs, benefits, etc., including verification
of grammatically evolved HDL code, will be discussed 1n
greater detail below.

FIG. 1 1s a schematic diagram 1llustrating features asso-
ciated with an implementation of an example operating
environment 100 capable of facilitating and/or supporting
one or more operations and/or techniques for autonomous

US 11,017,140 Bl

7

verification of circuit design for IoT-type devices, such as
grammatically evolved HDL code, for example, illustrated
generally herein at 102. In this context, “loT-type devices”
refer to one or more electronic or computing devices capable
of leveraging existing Internet or like infrastructure as part
of the so-called “Internet of Things™ or IoT, such as via a
variety ol applicable protocols, domains, applications, eftc.
As was 1ndicated, the IoT 1s typically a system of 1ntercon-
nected and/or mternetworked physical devices in which
computing 1s embedded into hardware so as to facilitate
and/or support devices’ ability to acquire, collect, and/or
communicate content over one or more communications
networks, for example, at times, without human participa-
tion and/or interaction. IoT-type devices may include a wide
variety ol stationary and/or mobile devices, such as, for
example, automobile sensors, biochip transponders, heart
monitoring implants, kitchen appliances, locks or like fas-
tening devices, solar panel arrays, home gateways, smart
gauges, smart telephones, cellular telephones, security cam-
cras, wearable devices, thermostats, Global Positioning Sys-
tem (GPS) transceivers, personal digital assistants (PDAs),
virtual assistants, laptop computers, personal entertainment
systems, tablet personal computers (PCs), PCs, personal
audio or video devices, personal navigation devices, or the
like. Typically, 1n this context, a “mobile device™ refers to an
electronic or computing device that may from time to time
have a position or location that changes, and a stationary
device refers to a device that may have a position or location
that generally does not change. In some instances, IoT-type
devices may be capable of being 1dentified, such as uniquely,
via an assigned Internet Protocol (IP) address, as one par-
ticular example, and/or having the ability to communicate,
such as receive and/or transmit electronic content, for
example, over one or more wired and/or wireless commu-
nications networks.

It should be appreciated that operating environment 100 1s
described heremn as a non-limiting example that may be
implemented, 1 whole or 1n part, 1n the context of various
wired or wireless communications networks, or any suitable
portion and/or combination of such networks. For example,
these or like networks may include one or more public
networks (e.g., the Internet, the World Wide Web), private
networks (e.g., intranets), wireless wide area networks
(WWAN), wireless local area networks (WLAN, etc.), wire-
less personal area networks (WPAN), telephone networks,
cable television networks, Internet access networks, fiber-
optic communication networks, waveguide communication
networks, or the like. It should also be noted that claimed
subject matter 1s not limited to a particular network and/or
operating environment. Thus, depending on an 1mplemen-
tation, one or more operations and/or techniques for a PRNG
tor IoT-type devices, may be performed, at least 1n part, 1n
an indoor environment, an outdoor environment, or any
combination thereof.

Thus, as illustrated, 1n an implementation, one or more
IoT-type devices 102 may, for example, receive or acquire
satellite positioning system (SPS) signals 104 from SPS
satellites 106. In some 1nstances, SPS satellites 106 may be
from a single global navigation satellite system (GNSS),
such as the GPS or Galileo satellite systems, for example. In
other instances, SPS satellites 106 may be from multiple
GNSS such as, but not limited to, GPS, Galileo, Glonass, or
Beidou (Compass) satellite systems. In certain implementa-
tions, SPS satellites 106 may be from any one several
regional navigation satellite systems (RNSS) such as, for
example, WAAS, EGNOS, QZSS, just to name a few

examples.

10

15

20

25

30

35

40

45

50

55

60

65

8

At times, one or more IoT-type devices 102 may, for
example, transmit wireless signals to, or receive wireless
signals from, a suitable wireless communication network. In
one example, one or more IoT-type devices 102 may com-
municate with a cellular communication network, such as by
transmitting wireless signals to, or recerving wireless signals
from, one or more wireless transmitters capable of trans-
mitting and/or receirving wireless signals, such as a base
station transceiver 108 over a wireless communication link
110, for example. Similarly, one or more IoT-type devices
102 may transmit wireless signals to, or receive wireless
signals from a local transceiver 112 over a wireless com-
munication link 114. Base station transceiver 108, local
transceiver 112, etc. may be of the same or similar type, for
example, or may represent diflerent types of devices, such as
access points, radio beacons, cellular base stations, femto-
cells, an access transceiver device, or the like, depending on
an 1mplementation. Similarly, local transceiver 112 may
comprise, for example, a wireless transmitter and/or receiver
capable of transmitting and/or receiving wireless signals.
For example, at times, wireless transceiver 112 may be
capable of transmitting and/or receiving wireless signals
from one or more other terrestrial transmitters and/or receiv-
ers.

In a particular implementation, local transceiver 112 may,
for example, be capable of communicating with one or more
Io'T-type devices 102 at a shorter range over wireless com-
munication link 114 than at a range established via base
station transceiver 108 over wireless communication link
110. For example, local transceiver 112 may be positioned 1n
an indoor or like environment and may provide access to a
wireless local area network (WLAN, e.g., IEEE Std. 802.11
network, etc.) or wireless personal area network (WPAN,
¢.g., Bluetooth® network, etc.). In another example 1mple-
mentation, local transcerver 112 may comprise a femtocell
or picocell capable of facilitating communication via link
114 according to an applicable cellular or like wireless
communication protocol. Again, it should be understood that
these are merely examples of networks that may communi-
cate with one or more IoT-type devices 102 over a wireless
link, and claimed subject matter 1s not limited 1n this respect.
For example, 1n some 1nstances, operating environment 100
may include a larger number of base station transceivers
108, local transceivers 112, networks, terrestrial transmaitters
and/or receivers, etc.

In an 1implementation, one or more IoT-type devices 102,
base station transceiver 108, local transceiver 112, etc. may,

for example, communicate with one or more servers, refer-
enced herein at 116, 118, and 120, over a network 122, such
as via one or more communication links 124. Network 122
may comprise, for example, any combination of wired or
wireless communication links. In a particular implementa-
tion, network 122 may comprise, for example, Internet
Protocol (IP)-type infrastructure capable of facilitating or
supporting communication between one or more IoT-type
devices 102 and one or more servers 116, 118, 120, etc. via
local transceiver 112, base station transceiver 108, directly,
ctc. In another implementation, network 122 may comprise,
for example, cellular communication network infrastructure,
such as a base station controller or master switching center
to facilitate and/or support mobile cellular commumnication
with one or more IoT-type devices 102. Servers 116, 118,
and/or 120 may comprise any suitable servers or combina-
tion thereol capable of facilitating or supporting one or more
operations and/or techniques discussed herein. For example,
servers 116, 118, and/or 120 may comprise one or more
content servers, simulation servers, update servers, back-end

US 11,017,140 Bl

9

servers, management servers, archive servers, location serv-
ers, positioning assistance servers, navigation servers, map
servers, crowdsourcing servers, network-related servers, or
the like.

In particular implementations, one or more IoT-type
devices 102 may have circuitry or processing resources
capable of determining a position {ix or estimated location of
one or more IoT-type devices 102, mnitial (e.g., a prior1) or
otherwise. For example, 11 satellite signals 104 are available,
one or more IoT-type devices 102 may compute a position
fix based, at least 1n part, on pseudorange measurements to
four or more SPS satellites 106. Here, one or more Io'T-type
devices 102 may, for example, compute such pseudorange
measurements based, at least 1in part, on pseudonoise code
phase detections 1n signals 104 acquired from four or more
SPS satellites 106. In particular implementations, one or
more IoT-type devices 102 may receive from one or more
servers 116, 118, or 120 positioning assistance data to aid 1n
the acquisition of signals 104 transmitted by SPS satellites
106 including, for example, almanac, ephemeris data, Dop-
pler search windows, just to name a few examples.

In some 1implementations, one or more IoT-type devices
102 may obtain a position fix by processing wireless signals
received from one or more terrestrial transmitters positioned
at known locations (e.g., base station transceiver 108, local
transceiver 112, etc.) using any one of several techniques,
such as, for example, Observed Time Difference Of Arrival
(OTDOA), Advanced Forward Link Trlateration (AFLT), or
the like. In these techmiques, a range from one or more
IoT-type devices 102 may, for example, be measured to three
or more of terrestrial transmitters based, at least in part, on
one or more positioning reference signals transmitted by
these transmitters and received at one or more IoT-type
devices 102, as was 1ndicated. Here, servers 116, 118, or 120
may be capable of providing positioning assistance data to
one or more IoT-type devices 102 including, for example,
OTDOA reference transmitter data, OTDOA neighbor trans-
mitter data, reference signal time difference search window,
quality of service parameters, positioning reference signal
configuration parameters, locations, 1dentities, orientations,
etc. of one or more terrestrial transmaitters to facilitate and/or
support one or more applicable positioning techniques (e.g.,
AFLT, OTDOA, etc.). At times, servers 116, 118, or 120 may
include, for example, a base station almanac (BSA) indicat-
ing locations, i1dentities, orientations, etc. of cellular base
stations (e.g., base station transceiver 108, local transceiver
112, etc.) in one or more particular areas or regions associ-
ated with operating environment 100.

As alluded to previously, in particular environments, such
as indoor or like environments (e.g., urban canyons, etc.),
for example, one or more Io'T-type devices 102 may not be
capable of acquiring and/or processing signals 104 from a
suflicient number of SPS satellites 106 so as to perform a
suitable positioning technique. Thus, optionally or alterna-
tively, one or more IoT-type devices 102 may, for example,
be capable of determining a position {ix based, at least in
part, on signals acquired from one or more local transmit-
ters, such as femtocells, Wi-F1 access points, or the like. For
example, one or more IoT-type devices 102 may obtain a
position fix by measuring ranges to three or more local
transceivers 112 positioned at known locations. In some
implementations, one or more IoT-type devices 102 may, for
example, measure ranges by obtaining a media access con-
trol (MAC) address from local transceiver 112 using one or
more appropriate techniques.

In an implementation, one or more IoT-type devices 102
may, for example, receive positioning assistance data (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

10

OTDOA, AFLT assistance data, etc.) for one or more
positioning operations from servers 116, 118, and/or 120. At
times, positioning assistance data may include, for example,
locations, 1dentities, orientations, positioning reference sig-
nal configurations, etc. of one or more local transceivers 112,
base station transceivers 108, etc. positioned at known
locations for measuring ranges to these transmitters based, at
least 1n part, on an round-trip time (R17T), time of arrival
(TOA), time difference of arrival (TDOA), etc., or any
combination thereof. In some instances, positioning assis-
tance data to aid indoor positioning operations may include,
for example, radio heat maps, context parameter maps,
routeability graphs, etc., just to name a few examples. Other
assistance data received by one or more IoT-type devices
102 may 1include, for example, electronic digital maps of
indoor or like areas for display or to aid in navigation. For
example, 11 an IoT-type device comprises a mobile device,
a map may be provided to the mobile device as 1t enters a
particular area, for example, and may show applicable
features such as doors, hallways, entry ways, walls, etc.,
points of interest, such as bathrooms, pay phones, room
names, stores, or the like. By obtaining a digital map of an
indoor or like area of interest, a mobile IoT device may, for
example, be capable of overlaying i1ts current location over
the displayed map of the area so as to provide an associated
user with additional context, frame of reference, or the like.

According to an implementation, one or more IoT-type
devices 102 may access navigation assistance data via
servers 116, 118, and/or 120 by, for example, requesting
such data through selection of a unmiversal resource locator
(URL). In particular implementations, servers 116, 118,
and/or 120 may be capable of providing navigation assis-
tance data to cover many different areas including, for
example, tloors of buildings, wings of hospitals, terminals at
an airport, portions of a university campus, areas of a large
shopping mall, etc., just to name a few examples. Also, 1f
memory, data transmission and/or processing resources at
one or more IoT-type devices 102 make receipt of position-
ing assistance data for all areas served by servers 116, 118,
and/or 120 impractical or infeasible, a request for such data
from one or more IoT-type devices 102 may, for example,
indicate a rough or course estimate of a location of one or
more IoT-type devices 102. One or more IoT-type devices
102 may then be provided navigation assistance data cov-
ering, for example, one or more areas including or proximate
to a roughly estimated location of one or more IoT-type
devices 102.

Even though a certain number of computing platforms
and/or devices are illustrated herein, any number of suitable
computing platiorms and/or devices may be implemented to
facilitate and/or support one or more techniques and/or
processes associated with operating environment 100. For
example, at times, network 122 may be coupled to one or
more wired and/or wireless communication networks (e.g.,
WLAN, etc.) so as to enhance a coverage area for commu-
nications with one or more IoT-type devices 102, one or
more base station transceivers 108, local transceiver 112,
servers 116, 118, 120, or the like. In some 1nstances, network
122 may facilitate and/or support femtocell-based operative
regions ol coverage, for example. Again, these are merely
example implementations, and claimed subject matter 1s not
limited 1n this regard.

Attention 1s now drawn to FIG. 2, which 1s a flow diagram
illustrating an 1mplementation of an example process 200
that may be performed, in whole or 1 part, to facilitate
and/or support one or more operations and/or techniques for
autonomous verification of grammatically evolved code,

US 11,017,140 Bl

11

such as HDL code, for IoT-type devices. As was indicated
and as will be seen, at times, process 200 may be imple-
mented, at least 1n part, in connection with a grammatical
evolution tool that may be used, in whole or 1 part, to
grammatically evolve particular domain knowledge so as
encourage a suitable and/or suflicient variety of patterns of
behavior inherent to LFSRs, for example. As will also be
seen, 1 some 1nstances, particular domain knowledge may,
for example, be represented via one or more content struc-
tures comprising arrays of linear genotypic binary or integer
variables, called genomes, and 1n which a particular arrange-
ment may represent a candidate solution. It should be noted
that content acquired or produced, such as, for example,
input signals, output signals, operations, results, etc. asso-
ciated with example process 200 may be represented via one
or more digital signals. It should also be appreciated that
even though one or more operations are 1llustrated or
described concurrently or with respect to a certain sequence,
other sequences or concurrent operations may be employed.
In addition, although the description below references par-
ticular aspects and/or features illustrated 1n certain other
figures, one or more operations may be performed with other
aspects and/or features.

Thus, example process 200 may, for example, begin at
operation 210 with obtaining an EBNF representation of a
particular HDL grammar, such as a Verilog grammar, just to
illustrate one possible implementation. Generally, a gram-
mar may comprise a set of rules that describe syntax of
sentences and/or expressions in a language. In certain simu-
lations or experiments, it has been observed that, to facilitate
and/or support grammatical evolution, 1t may, for example,
be useful to employ a context-fee grammar, such as a
grammar in which rules are not sensitive to the sentence’s
context. In addition, it has also been observed that a gram-
mar of a particular computer programming language, such as
a Verllog HDL grammar, for example, may be useful due, at
least 1n part, to its syntax’s suitability and/or applicability to
represent a desired functionality, such as LFSR functionality
and/or 1ts expected behavior (e.g., modeling, SOC design,
etc.). For example, a Verilog HDL or simply Verilog com-
prises a specialized computer programming language
expressed 1n a textual format that may be used, at least 1n
part, for describing or specitying a structure and/or behavior
of electronic circuits, such as digital logic circuits, as one
example. As such, in some instances, Verilog may, for
example, be used, 1n whole or 1 part, for modeling elec-
tronic systems, for verification through simulation, timing,
analysis, test analysis (e.g., testability analysis, fault grad-
ing, etc.), logic synthesis, or the like. In an implementation,
obtaining an EBNF grammar may be informed, at least 1n
part, by one or more target design parameters 2135, for
example. A particular example of obtaining an EBNF gram-
mar that may be implemented, at least 1n part, 1n connection
with operation 210, for example, will be discussed 1n greater
detail below, such as with reference to FIG. 3.

Having obtained an EBNF grammar, example process 200
may, for example, proceed to operation 220, such as to prune
an obtained EBNF grammar for a suitable functionality. For
example, as was 1indicated, 1n some instances, such as
instead of using a full set of an EBNF grammar, 1t may be
usetul to create a particular subset of an EBNF grammar that
may tailored to implement a desired functionality, such as an
LFSR functionality, just to illustrate one possible implemen-
tation. In some instances, an LFSR functionality may be
useful to create suflicient or otherwise suitable distribution
of randomness across a given and/or limited number of
hardware solution variants, among other things, such as via

5

10

15

20

25

30

35

40

45

50

55

60

65

12

shifting one or more appropriate digital signal wvalues
according to an applicable linear function, for example.
Thus, at times, an EBNF grammar may, for example, be
pruned, such as via extracting and/or removing syntactic
items not suitable or useful for a desired functionality, for
example, such as to facilitate and/or support phenotype
consistency. Typically, in the context of grammatical evo-
lution, a “genotype” refers to a bit string (e.g., an array of
binary vanables, etc.), and a “phenotype” refers to its
expression (e€.g., a computer program, code, string, etc.).
Likewise, a particular example of pruning an EBNF gram-
mar for a LFSR functionality will be discussed 1n greater
detail below, such as with reference to FIG. 4, for example.

According to an implementation, example process 200
may proceed to operation 230 and may convert an EBNF
grammar, such as pruned for an LFSR functionality, for
example, to a BNF grammar. For example, in certain simu-
lations or experiments, 1t has been observed that, 1n some
instances, utilizing a grammar expressed via an extended
version ol Backus-Naur form may be less beneficial or
suitable, such as for facilitating and/or supporting one or
more operations or processes for grammatical evolution,
among other operations. For example, it has been observed
that, at times, recursive EBNF rules or functions may be less
usetul for specifying applicable structures, and that rule
names may be more concisely or suitably defined via a BNF
grammar, such as with less options or without an undue
number of options within a particular rule. However, since
a grammar ol a current Verilog HDL 1s explained or speci-
fied via an EBNF, 1n some instances, 1t may be useful to
convert an EBNF grammar to a simpler or otherwise more
suitable BNF grammar, as was indicated. In addition, since
an EBNF notation 1s more widely—and even universally—
recognized and/or accepted, at times, it may be diflicult
and/or 1mpossible to access and/or obtain a standard or
applicable BNF grammar, such as a BNF grammar that may
be functionally equivalent or similar to an EBNF grammar
tailored for a desired functionality. A particular example of
converting an EBNF grammar to a BNF grammar will be
discussed in greater detail below, such as with reference to
FIG. S, for example.

Thus, 1n a particular implementation, as a result of opera-
tion 230, a subset of a Verilog BNF grammar that focuses on
an LFSR area, for example, may be generated and/or
obtained, such as to further limit or restrict a search space
during one or more grammatical evolution operations. For
example, a subset of a tailored Verilog BNF grammar may
be stored as one or more digital signals and/or states 1n a
suitable computer file and may be used, 1n whole or 1n part,
as mput to a suitable grammatical evolution tool, such as 1n
connection with one or more evolutionary parameters so as
to facilitate and/or support a suitable and/or suthicient varia-
tion 1n LFSRs, for example. By way of example but not
limitation, a particular implementation of a subset of a
Verilog grammar 900 that focuses on a LFSR area of the
grammar 1s illustrated in FIGS. 9A-9D.

Continuing with example process 200, as referenced at
operation 240, at least 1n part responsive to obtaining a BNF
grammar, such as a subset of a Verilog BNF grammar that
focuses on an LFSR area, for example, the BNF grammar
may be verified for syntactical correctness and/or may be
verified to ensure that the BNF grammar 1s an accurate
representation of a target language. For example, responsive
at least 1n part to converting an EBNF grammar to a BNF
grammar, there may be 1ssues with a grammar that may
leave 1t msuflicient and/or otherwise unsuitable for use 1n
generating and/or veritying HDL code, such as Verilog code.

US 11,017,140 Bl

13

Further, for example, it may be possible to make mistakes
while editing a BNF grammar for functionality and/or for
better formed rules. As may be seen herein, verification of
syntactic correctness of a BNF grammar may be employed
at least 1n part 1n response to initial alterations to source
EBNF grammar and/or prior to a BNF grammar being
utilized for subsequent applications.

In particular implementations, various approaches may be
utilized to verily correctness and/or suitability of a BNF
grammar. If a particular BNF grammar 1s not properly
formed, for example, uses of the grammar may yield unsat-
isfactory outcomes. In an implementation, for example, a
subset of a tailored and/or otherwise specified Verilog BNF
grammar may be fed, such as used as an 1mput, for example,
into a suitable grammatical evolution tool to verily syntactic
correctness of a BNF grammar, for example. In at least one
implementation, a PonyGE2 tool may, for example, be
utilized, 1n whole or 1n part, or otherwise considered. For
purposes of explanation, a PonyGE2 tool or simmply
PonyGE?2 1s an open source implementation of grammatical
evolution 1n Python, developed by the Natural Computing
Research and Applications Group at the University College
Dublin (accessible at: https://github.com/ugultopu/Po-
nyGE2). Since PonyGE?2 1s built in Python, 1t may facilitate
and/or support grammatical evolution of Python syntax,
which may include Verilog syntax. More specifically, it may
make outputted computer code or instructions more read-
able, such as, for example, by parsing code breaks and/or
making ranges 1n a grammar to be more concisely expressed.
Depending on an implementation, PonyGE2 may grammati-
cally evolve a BNF grammar defined via a specification of
an entire language, for example, or via a subset of a grammar
tailored to implement a particular functionality, such as an
LFSR functionality, as was indicated.

To venily syntactical correctness of a BNF grammar, for
example, PonyGE2 and/or other suitable tool may follow
grammatical paths, such as from a particular rule to rules
within the particular rule, for example, until particular paths
reach terminal values, 1n an implementation. PonyGE2 may
detect circular rules, for example, that may be problematic
at least 1 part because any code generated from such
grammar may result in an infinite cycle of rules, for
example. In an implementation, syntactic correctness of a
BNF grammar may be accomplished at least in part via
generation of code utilizing rules included by the grammar
and/or by checking to ensure that the generated code can be
compiled and/or executed successtully (e.g., without error
and/or within expected limits). A particular code sample
may not perform any particular function, for example, but if
it compiles and/or executes as expected then the grammar
may be determined to successtully describe a context-free
version of the grammar. Further, in an implementation,
verification may be accomplished at least 1n part by com-
paring an output, such as a code sample, with one or more
particular specified and/or desired goal characteristics. For
example, 1iI an output, such as a code sample, 1s within an
acceptable goal range, the function may be said to have been
successiully implemented. Otherwise, 11 the output 1s not
within an acceptable goal range, the particular code sample
may be determined to have failed verification.

In some instances, a particular computer file, such as a
parameter and/or configuration file may, for example, be
generated and may also be used, 1n whole or 1n part, as input
to PonyGE2, such as in connection with subset of a tailored
BNF grammar. Depending on an implementation, a {ile may
comprise an input specification comprising one or more
evolutionary criteria and/or applicable parameters, such as

10

15

20

25

30

35

40

45

50

55

60

65

14

for use 1n connection with one or more PonyGE2 runs, for
example. It should be noted that even though a file may be
described herein as an external file, in some instances, a file
internal to PonyGE2, or any combination of an external and
internal files, may be used herein, in whole or 1n part. It
should also be noted that, even though a single file may be
described herein, such as for ease of discussion, any suitable
number of files may be generated and/or used herein (e.g.,
a parameter file, fitness function file, etc.), in whole or 1n
part. As illustrated, 1n an 1mplementation, evolutionary
criteria may include, for example, a number of mput param-
cters, such as a number of generations, size of population,
type and percent chance of crossover, type and percent
chance of mutation, etc.

As referenced generally at operation 2350, a determination
may be made as to whether a BNF grammar has been
satisfactorily verified. As mentioned, 1n an implementation a
BNF grammar may be determined to have been successiully
verified 1f an output, such as a code sample based on the
BNF grammar, 1s successtully compiled (e.g., goes through
Verilog compiler without error and/or within an expected
range). As further mentioned, verification of a BNF may be
accomplished at least in part by comparing an output, such
as a code sample, with one or more particular specified
and/or desired goal characteristics. For example, 11 an out-
put, such as a code sample, 1s within an acceptable goal
range, the function may be said to have been successtully
implemented. Otherwise, 1f the output 1s not within an
acceptable goal range, the particular code sample may be
determined to have failed verification. In a particular imple-
mentation, at least 1n part 1n response to a determination that
a BNF grammar has not been satisfactorily verified, such as
according to a fitness score failing to at least meet a specified
threshold, for example, process 200 may return to example
operations 210, 220, and/or 230 for further acquisition,
pruning, and/or converting of source EBNF grammar, for
example. Further, as seen, at times, a fitness function may
also be defined and/or used, at least 1n part, to evaluate a
number of HDL code samples, such as a number of indi-
vidual LFSR solutions, for example, via computing and/or
assigning corresponding fitness values, such as to determine
and/or eliminate solutions that may be prone to incorrect
and/or undesirable behavior, for example, while selecting
subsequent generations. As also 1illustrated, 1n some
instances, a grammar style ol mutation, such as mutation
occurring on one or more terminals comprising end leaf
options and rules within a grammar, for example, may be
used, at least i part, or otherwise considered, just to
illustrate one possible implementation.

As also depicted at operation 250, at least in part 1n
response to a determination that a BNF grammar has been
satisfactorily verified, for example, process 200 may pro-
ceed to operation 260, wherein, for example, a BNF gram-
mar may be edited for specific syntactic structures. A BNF
grammar may further be edited for specified variable names
at operation 270, in an implementation. Example operations
to edit a BNF grammar for specific syntactic structures
and/or to edit a BNF grammar for specific variable names 1s
described more fully below in connection with FIG. 7, for an
implementation.

Continuing with example process 200, as referenced at
operation 280, at least 1n part responsive to editing a BNF
grammar for specified syntactic structures and/or for speci-
fied variable names, the BNF grammar may again be verified
for syntactical correctness and/or the BNF grammar may
again be verified to ensure that the BNF grammar 1s an
accurate representation of a target language. See the discus-

US 11,017,140 Bl

15

s1on above 1n connection with operation 240 for additional
details, for an 1mplementation.

As 1ndicated at operation 290, for example, a determina-
tion may be made as to whether a BNF grammar has been
satisfactorily verified. As mentioned, at times, a fitness
function may be defined and/or used, at least in part, to
evaluate a number of HDL code samples, such as a number
of individual LFSR solutions, for example, via computing
and/or assigning corresponding fitness values, such as to
determine and/or eliminate solutions that may be prone to
incorrect and/or undesirable behavior, for example. At least
in part i response to a determination that a BNF grammar
has not been satisfactorily verified, such as according to a
fitness score failing to at least meet a specified threshold, for
example, process 200 may return to example operations 260
and/or 270 for turther operations to edit a BNF grammar for
specific syntactic structures and/or to edit a BNF grammar
for specific variable names, 1n a particular implementation.

As also depicted at operation 290, at least in part 1n
response to a determination that a BNF grammar has been
satisfactorily verified, such as according to a fitness score at
least meeting a specified threshold, for example, process 200
may proceed to operation 295. As referenced at 295, accord-
ing to an immplementation, based, at least in part, on the
above-referenced input, a BNF representation of a syntac-
tically correct Verilog code or instructions, such as tailored
to implement an LFSR functionality, for example, may be
generated and/or obtained, such as 1n the form of an appro-
priate output. By way of example but not limitation, a
syntactically correct LESR-tailored Verilog code or instruc-
tions 1000 that were used, at least 1n part, 1n connection with
a particular simulation or experiment 1s 1llustrated in FIGS.
10A-10B.

According to an implementation, example process 200
may implement one or more grammatical evolution opera-
tions and/or processes via PonyGE2. For example, in some
instances, syntactically correct Verilog code may be used, at
least 1 part, as mput to PonyGE2, such as in connection
with evolutionary criteria, such as referenced 215, so as to
grammatically evolve a suitable or otherwise suflicient num-
ber LFSR solutions, for example. Further, for example,
optimal or suflicient solutions, such as definable via an
evolved, tailored and/or verified Verilog grammar, for
example, may be integrated into particular hardware solu-
tions, such as loaded ito a suitable filesystem, memory,
chip, etc. as part of an SoC design flow so as to comprise a
suitable or otherwise suthicient number of IoT-type devices.
For example, 1n some instances, such as for N hardware
solutions, N outcomes or starting states may be implemented
or achieved, meaming that the N hardware solutions may be
capable of providing suflicient or otherwise suitable vari-
ability so as to make 1t less likely or unlikely that two
random selected IoT-devices may produce the same out-
come (e.g., a random seed, number, etc.), just to 1llustrate
one possible implementation. Thus, at times, a particular
production run of an SoC design flow may embed a par-
ticular hardware varniant into a corresponding IoT-type
device, for example, such as to allow for a pool of start-state
initialization numbers with an appropriate or otherwise
suitable distribution of randomness. At times, these or like
hardware solutions may be tested and/or verified, such as
part of an SoC design flow, for example, for consistency,
start-state 1nmitialization numbers, appropriate or otherwise
suitable distribution of randomness, or the like. Thus, 1n
operative use, an struction sequence may take mput from
a PRNG portion of an LFSR, for example, and may run
through a random sequence to produce a seed, which may

10

15

20

25

30

35

40

45

50

55

60

65

16

then be placed into a pseudo-random generator mnitialization
function of an IoT-type device so as to generate one or more
start-state 1nitialization numbers. In some instances, an
instruction sequence may also be continually evolved, such
as via one or more linear genetic programming approaches,
for example, so as to generate a new or diflerent seed value
every time a random input 1s called.

Referring now to FIG. 3, which 1s a flow diagram 1llus-
trating an implementation of an example process 300 that
may be performed, 1n whole or in part, to facilitate and/or
support one or more operations and/or techniques for an
clectronic circuit, such as a PRNG, for IoT-type devices, for
example. As was indicated, 1n some instances, example
process 300 may be performed, in whole or 1n part, to obtain
an EBNF representation of a particular HDL grammar, such
as a Verilog grammar, just to illustrate one possible 1imple-
mentation. Likewise, 1t should be noted that content
acquired and/or produced, such as, for example, mput sig-
nals, output signals, operations, results, etc. associated with
example process 300 may be represented via one or more
digital signals. It should also be appreciated that even though
one or more operations are illustrated or described concur-
rently or with respect to a certain sequence, other sequences
or concurrent operations may be employed. In addition,
although the description below references particular aspects
and/or features illustrated in certain other figures, one or
more operations may be performed with other aspects and/or
features.

Thus, as referenced generally at 310, example process 300
may, for example, begin with determining or defining a
target application. For example, as alluded to previously, in
some 1nstances, a target application may depend, at least 1n
part, on a nature of a problem to be solved. As was also
discussed, 1n at least one implementation, a target applica-
tion may comprise, for example, generating a PRNG capable
of producing a seed value so as to imtroduce a suilicient
and/or otherwise suitable distribution of randomness into
Io'T-type devices, such as without reliance on RICs. At
times, determining or defining a target application may also
involve determining appropriate synthesis or like tools and/
or aspects, for example, so as to limit a search and/or
solution space and also an applicable representation for such
a space. For example, in certain simulations or experiments,
it has been observed that a proper or suitable grammar to
work from may be usetul 1in terms of quality of an output. As
was discussed, a grammar typically comprises a set of rules
that describe syntax of sentences and expressions 1n a
particular language. Thus, 11 a grammar for a target language
1s not correct or otherwise suitable for a target application,
for example, 1t may be diflicult to define a structure repre-
sentative ol a solution to a particular problem, which may
result 1 output errors. Also, 1f a grammar 1s confusing,
poorly documented, etc., then processing such a grammar
may be operationally expensive. Thus, 1t may be useful to
determine and/or obtain a sufliciently well-formed grammar
that may, for example, be organized 1n a clearer and/or more
consistent way.

Typically, although not necessarily, grammars may
specily their rules 1n a top-down organization. For example,
in some instances, top-level, complex items may be listed
first, and their pieces are then may be detailed after a rule
definition. A number of symbols used in a grammar may be
more usefully or suitably defined, such as near the end of the
grammar, for example. Thus, a grammar organized 1n such
a way so as to comprise an appropriate candidate for
subsequent pruning, such as for a suitable or desired func-
tionality, as discussed below, may be useful. In addition, n

US 11,017,140 Bl

17

some 1nstances, 1t may be useful to determine 11 a particular
grammar of interest comprises a number of gaps, such as, for
example, 1n the form of rules that are not defined and/or
include 1ll-formed alternatives, rules that are not grammati-
cal, not conforming to applicable rules of a grammar,
accepted usage, standards, or the like. Also, 1t may be useful
to implement one or more evaluation operations, such as to
determine whether these or like gaps may be suitable or
appropriately filled or addressed, such as for a resulting
grammar to suitably work for a particular language. By way
of example but not limitation, 1n at least one 1implementa-
tion, 1t has been determined that, for a particular target
application, such as to facilitate and/or support creating
PRINGs at a suitable IoT scale, for example, 1t may be useful
to limit or restrict a search space by a BNF representation of
a Verillog HDL grammar, for example, such as to implement
a suitable or desired functionality. Further, 1t has also been
determined that 1t may be useful to employ Python due, at
least 1n part, to 1ts handling of varnables, content structures,
sequencing, object orientation, and/or utilization of a more
straightforward syntax similar to natural language, which
may facilitate and/or support more eflective and/or more
cllicient utilization of a particular grammatical evolution
tool, such as PonyGE?2.

Thus, continuing with the above discussion, since a
standard or suitable BNF grammar may no longer be avail-
able or accessible (e.g., obsolete, outdated, etc.), in some
instances, 1t may, for example, be usetul to obtain an EBNF
grammar that may be capable of being expressed 1n the form
of a BNF grammar. Since an EBNF grammar may comprise
a number of non-standard features 1n its syntax, for example,
it may be useful to determine one or more applicable or
appropriate standards that may be applicable or suitable for
a target language, such as Verilog, as referenced generally at
320. Thus, here, an 1nput specification, such as stored as one
or more digital signals and/or states in memory may, for
example, be accessed and evaluated so as to determine
compliance with applicable or otherwise suitable language
standards. As a way of illustration, on-line content compris-
ing an EBNF standards may, for example, be accessed and
analyzed for errors, gaps or omissions, 1nconsistencies, etc.
in an associated grammar so as determine compliance with
Verilog standards, for example. In some instances, 1t may
also be useful to determine whether a particular grammar of
interest 1s comprehensive or otherwise suitable for conver-
sion, grammatical evolution, and/or one or more other
suitable processes. Thus, since a Python grammar 1s typi-
cally used for a Python parser in conjunction with one or
more other supporting files, including a “token” computer
file speciiying a meaning of symbols available 1n Python, for
example, at times, 1t may be useful to access such a file for
the purpose of determining standards of a target language.

Having determined standards of a target language,
example process 300 may proceed to operation 330, for
example, so as to determine suitability of an EBNF gram-
mar, which may be based, at least 1n part, on the determined
standards. Thus, as illustrated, 1f 1t 1s determined that a
particular EBNF grammar 1s suitable, such as to facilitate
and/or support conversion, grammatical evolution, and/or
one or more other suitable processes, example process may
proceed to operation 390, such as to output the EBNF
grammar for further processing (e.g., at operation 220 of
FIG. 2, etc.). However, 1f 1t 1s determined that an EBNF
grammar 1s not suitable, for example, example process 300
may proceed to operation 340, such as to access and/or
analyze an applicable internal parser and/or compiler code
or instructions for a suitable grammar. For example, since

10

15

20

25

30

35

40

45

50

55

60

65

18

grammars may be used in a parse and/or compilation pro-
cess, 1n some 1instances, 1t may be useful to access and/or
cvaluate code of an internal parser and/or compiler to
determine whether a given grammar comprises a more
complete, accurate, etc. representation of a target language.
Thus, as referenced at 350, such a decision may be made, at
least 1n part, via, for example, evaluating a grammar of an
internal parser and/or compiler code or instructions for
errors, gaps or omissions, inconsistencies, or the like, such
as discussed above. Likewise, here, i1t 1t 1s determined that
an EBNF grammar is suitable, example process 300 may
proceed to operation 390, such as, for example, to output the
grammar for further processing.

If no, however, example process 300 may proceed to
operation 360, such as to access and/or analyze one or more
open source EBNF and/or BNF grammars, 1f available. For
example, 1n some 1nstances, a target language may not have
a suitable grammar, such as in 1ts specification, internal
parser and/or compiler code or instructions, or the like. To
illustrate, a specification for the LLVM intermediate repre-
sentation (IR), as one example, includes a grammar that may
be readily accessible, but i1s not labeled as an ofhcial
grammar due, at least in part, to 1ts sparsity and, as such, may
not be suitable for a target language. Thus, 1 some
instances, 1t may be useful to access and/or analyze a
grammar that may have been developed 1n open source, such
as 1n connection with a particular open source project, for
example. It should be noted, however, that, in certain
simulations or experiments, 1t has been observed that open
source grammars are typically non-standard, may have dii-
ferent syntax constraints and/or meaning, or the like and, as
such, may be error-prone, diflicult to process, etc. However,
in some 1nstances, such as 11 one or more open source EBNF
and/or BNF grammars are available and/or accessible, these
grammars may be evaluated, such as 1n a manner discussed
above, for example, so as to determine their suitability for a
target language.

Similarly, here, example process 300 may, for example,
implement a decision operation, as referenced at 370, and
may output a suitable EBNF grammar via operation 390,
such as upon appropriate analysis and/or determination or,
alternatively, may proceed to operation 380, at which point
a suitable EBNF grammar may be generated, such as via one
or more appropriate techniques. For example, in some
instances, a suitable EBNF grammar may be generated via
a set of istructions defining and/or expressing (e.g., for-
mally, etc.) appropriate symbols (e.g., non-terminal, termi-
nal, start symbols) and production rules, simplifying nota-
tion, 1f suitable or desired, or the like. As was indicated, at
times, while generating a suitable EBNF grammar, 1t may,
for example, be useful to implement one or more operations
so as to prune the grammar for a desired functionality, such
as an LFSR functionality, just to illustrate one possible
implementation. It should be noted that, in some 1nstances,
it may be useful to generate a BNF grammar, such as instead
of an EBNF grammar, for example. In such a case, an
operation converting an EBNF grammar to a functionally
equivalent or substantially similar BNF grammar, such as
implemented in connection of operation 230 of FIG. 2, for
example, may be optional. Likewise, here, a generated
EBNF grammar may, for example, be outputted, such as for
turther processing, as referenced generally at 390.

As was 1ndicated, 1n some instances, it may, for example,
be useful to further limit or restrict a search space defined via
an EBNF grammar, such as to better or more precise
represent a suitable functionality of a target application. In
some 1nstances, 1t may, for example, also be useful to

US 11,017,140 Bl

19

disregard and/or eliminate certain individual LFSR solu-
tions, such as those that may not change after crossover,
those that may not produce a new individual LFRS solution
alter crossover, or the like. Thus, 1n an implementation, a
suitable EBNF grammar may be pruned, such as for an
LFSR functionality, for example, which, at times, may
tacilitate and/or support generation of more tailored, more
compact, more fitted, etc. individual LFSR solutions. In this
context, “pruning” refers to a process of removing one or
more content structures (e.g., trees, subtrees, syntactic items,
rules, etc.) that may not be required or otherwise useful for
a target application, such as, for example, content structures
not required or otherwise useful to implement a particular
functionality (e.g., an LFSR functionality, etc.), content
structures having duplicate function arguments, etc.

Thus, referring now to FIG. 4, which 1s a flow diagram
illustrating an 1mplementation of an example process 400
that may be performed, in whole or 1 part, to facilitate
and/or support one or more operations and/or techniques for
pruning an EBNF grammar for an LFSR functionality. As
was indicated, in some instances, pruning an EBNF gram-
mar may, for example, be implemented, at least 1n part, in
connection with operation 220 of FIG. 2. Likewise, 1t should
be noted that content acquired or produced, such as, for
example, 1nput signals, output signals, operations, results,
etc. associated with example process 400 may be repre-
sented via one or more digital signals. It should also be
appreciated that even though one or more operations are
illustrated or described concurrently or with respect to a
certain sequence, other sequences or concurrent operations
may be employed. In addition, although the description
below references particular aspects and/or features illus-
trated 1n certain other figures, one or more operations may
be performed with other aspects and/or features.

Thus, according to an implementation, while pruning an
EBNF for a particular functionality, it may, for example, be
useiul to 1solate one or more syntactic items required or
otherwise suitable for that functionality to be available
without any unnecessary items retained. For example, as
discussed below, a requisite top-most-level structure may be
initially 1solated. This structure may depend, at least 1n part,
on an implementation and may comprise, for example, a
method definition in Python, a class i Java, a module in
Verilog, or the like, just to 1llustrate a few possible examples.
In some instances, a rule definition for these or like struc-
tures may include, for example, a relatively complex tree of
options rooted at them so as to allow for a number of
different program structures. Thus, at times, 1t may be useful
to follow lines of corresponding tree structures, for example,
and eliminate branches that are unnecessary or less than
usetul for a particular functionality. To illustrate, 1f a process
1s adding two numbers together unconditionally and return-
ing them as an output, for example, rules that describe how
to define case statements or “il/else” constructs may be
removed or pruned. At times, one or more alternatives from
rules may also be removed so as to further prune or limit a
search space, for example.

In some instances, such as while following a tree rooted
at a top-level structure needed or otherwise useful for a
given task, it may be useful, for example, to label or make
note regarding which rules are touched during this process.
In certain simulations or experiments, 1t has been observed
that these rules may comprise, for example, one or more
additional rules that were disconnected from a tree structure.
As such, these rules may not be needed or otherwise usetul
for a particular functionality and, thus, may also be removed
or pruned, for example. At times, 1t may, for example, be

10

15

20

25

30

35

40

45

50

55

60

65

20

useful to add mmplicit structure to a final grammar, such as
once a needed or useful functionality has been 1solated. This
aspect may depend, at least 1n part, on a desired functionality
and/or target application, for example, and may aflect a final
output of a grammar.

Thus, with this in mind, according to an implementation,
example process 400 may begin at operation 410, such as
with using a suitable grammar, such as an EBNF grammar
obtained at operation 210 of FIG. 2, for example, as an input.
At operation 420, a particular top-level module, such as a
top-level Verilog module may, for example, be 1solated, as
was indicated. In some instances, a top-level Verilog module
may comprise, for example, HDL code or a portion thereof,
such as defining Verilog syntax constraints via expected
behavior inherent to and/or representative of a particular
desired functionality, such as an LFSR functionality, just to
illustrate one possible implementation. Typically, a Verilog
module may comprise, for example, a basic unit of hierar-
chy, such as descriptive of appropriate boundaries, iputs
and/or outputs, behavior (e.g., register transfer level logic,
etc.), hierarchical design, or the like. Here, a rule for module
declaration may be mitially isolated, for example, since a
module may serve as a top-level rule during a prunming
process. It should be noted that within a Verilog grammar, a
module declaration may be mitially treated as a top-level
rule, for example, so that a number of syntactic items
connected to 1t as a tree root may be suiliciently large.
Subsequently, branches of a tree rooted at that root may, for
example, be followed and pruned, as appropriate.

Having 1solated a top-level Verilog module at operation
420, a tree-walk 1n a suitable tree structure, such as a tree
structure rooted at a top-level module, for example, may be
performed as referenced generally at 430. For example, a
Verilog module declaration may be connected to a larger
number of rules that may ofler one or more additional
functionalities. However, in some instances, it may, for
example, be usetul to tree-walk a smaller subset of these
rules, such as to obtain an EBNF grammar that may be
representative of a specified functionality, such as an LFSR
functionality. By way of example but not limitation, a
number of general functionalities that may be retained to
suitably express or represent a specified functionality, such
as an LFSR functionality, in Verilog, for example, may
include the following:

Establishing input varnables.

Establishing output variables.

Establishing register variables.

Always blocks that trigger on a clock edge or at any

change.

Begin/end structures.

If/else constructs.

Assigning to one variable from another variable, includ-
ing when an assignment 1s a concatenation of difler-
ently sized vanables.

Case/endcase constructs, including cases themselves that
all contain begin/end blocks.

The ~, ~, *, binary operators.
The = Boolean equality operator.

Getting a value of a single index 1n a vaniable size register.

An assign statement, including a functionality to include
a lambda expression as a conditional assignment.

Syntax for setting a size of a variable to something greater
than 1.

It should be noted, however, that these functionalities are
provided as non-limiting examples, such as for purposes of
illustration of building blocks that, 1n some instances, may
serve as their own roots to trees mm an HDL grammar

US 11,017,140 Bl

21

structure, such as a Verilog grammar structure. In addition,
to properly express an LESR, for example, 1t may be useful,
for example, to retain rules that may support one or more of
the above functionalities 1n a pruned version. It may also be
useful to ensure that rules reach terminal wvalues, for
example, so that they may be properly expressed in a
concrete form. Thus, rules that may not be usetul to 1imple-
ment an LFSR functionality and/or rules that may not
support one or more ol the above functionalities may be
pruned or removed, for example, even 1f they are included
in a tree rooted at a top-level rule, such as a module
declaration. At times, rules that are not a part of this
grammar tree may also be removed, for example, as they
may lead to an unwanted output. In an implementation, an
EBNF grammar pruned for an LFSR functionality may, for
example, be outputted, as referenced at 410.

FIG. 5 15 a flow diagram 1llustrating an implementation of
an example process 500 that may be performed, 1n whole or
in part, to facilitate and/or support one or more operations
and/or techniques for converting an EBNF grammar to a
BNF grammar. As indicated, example process 500 may be
performed, at least 1n part, in connection with operation 230
of FIG. 2, for example. Likewise, 1t should be noted that
content acquired or produced, such as, for example, mput
signals, output signals, operations, results, etc. associated
with example process 500 may be represented via one or
more digital signals. It should also be appreciated that even
though one or more operations are illustrated or described
concurrently or with respect to a certain sequence, other
sequences or concurrent operations may be employed. In
addition, although the description below references particu-
lar aspects and/or features illustrated 1n certain other figures,
one or more operations may be performed with other aspects
and/or features.

Thus, example process 500 may begin, such as at opera-
tion 502, for example, with an approprate input, such as an
EBNF pruned for an LFSR functionality. As indicated
above, 1t has been observed that, 1n some instances, utilizing
a grammar expressed via an extended version of Backus-
Naur form may be less beneficial or suitable, such as, for
example, for facilitating and/or supporting one or more
operations or processes for grammatical evolution, among
other operations. Thus, at times, 1t may, for example, be
usetul to convert a suitable EBNF grammar to a functionally
equivalent or substantially similar BNF grammar. As was
also discussed, typically, although not necessarily, a BNF
grammar may comprise a more concise and/or clear set of
rules. For example, BNF’s productions or rule names are
indicated by a text being wrapped by < > (e.g., <Rule>,
<Another-Rule>, etc.). Also, production and rule names
may, for example, be used, in whole or 1n part, within other
production bodies as well, such as similarly with their < >
wrapping. Further, terminals are contained within double
quotes (*) or single quotes (° ’), and different options
within a production are separated by the | symbol. A
production may be defined via a production name, followed
by ‘::=", for example, and then followed by a body of the
production. Comments are typically at the end of a line, for
example, and begin with the °;” character.

An EBNF grammar, however, may have a larger number

of complex rules. Consider, for example:

TABLE 1

Example EBNF rules.

= or: or:=, depending on

the type

Concatenation ,

Definition

10

15

20

25

30

35

40

45

50

55

60

65

22
TABLE 1-continued

Example EBNF rules.

Termination .
Alternation |
Optional [...]
Repetition {...}
Grouping (...)
Terminal String oo Mor 'L
Comment (* ... ™)
Special Sequence ?7...7

Exception

3

Additionally, an EBNF’s production/rule names are typi-
cally not wrapped with the < > symbols, thus, requiring a

standard termination character and a different way of mark-
ing comments. At times, this aspect may prove to be rather
diflicult to implement or change to fit into a BNF pattern. As
such, with such a large number of EBNF rules, in some
instances, 1t may be desirable or useful to more concisely
define a production without an undue number of options
within a rule, for example. Thus, as discussed below, 1n at
least one implementation, an EBNF grammar may be con-
verted to a functionally equivalent or substantially similar
BNF grammar, such as without changing internals of pro-
ductions, for example, and/or i1mplementing syntactic
changes that may bring a structure of an EBNF grammar
more in line with a BNF grammar format.

Thus, according to an implementation, as illustrated via
an operation at 504, one or more production rules may, for
example, be wrapped. For example, in an EBNF grammar,
wrapping production names with < > brackets may be
optional. As such, 1n some 1nstances, operation 504 may also
be optional, such as 1t a given EBNF grammar (e.g., an
EBNF grammar mputted at operation 502, etc.) does not
contain such brackets, for example. Otherwise, 1t may, for
example, be useful to implement appropriate rule process-
ing, such as to access all applicable or useful rules and, for
every token that 1s not a terminal, wrap 1t with <>, Since an
EBNF rules typically do not contain spaces, in some
instances, these rules may, for example, be represented via
a single unbroken string of characters.

Example process 500 may then proceed to operation 506
to ensure, such as to analyze and/or determine, for example,
that applicable terminal values are wrapped 1n quotes. For
example, 1n certain simulations or experiments, 1t has been
observed that, in an EBNF grammar, terminal values may be
bolded, such as instead of being wrapped 1n single or double
quotes. Additionally, 1t has been observed that a collection of
literals may be indicated via range statements or regex
expressions. Thus, for a particular instance of a terminal
value, 1t may, for example, be useful to analyze and/or
determine that i1t 1s wrapped in eirther single or double
quotes. At times, this may depend, at least in part, on an
applicable convention, for example, and/or 1f quotes are
capable of correctly representing inside content (e.g., “”” and
‘"> are capable of representing single occurrences of the ' and
" characters, etc.). In some 1nstances, it may also be useful
to enumerate range or regex expressions into all their
combinations and/or options, for example.

With regard to operation 508, one or more termination
characters may, for example, be eliminated or deleted. For
example, in an EBNF grammar, a rule may be terminated by
a *;” character, such as due, at least in part, to not wrapping
production names. In certain simulations or experiments, 1t
has been observed that these termination characters may not
be needed or otherwise useful mn a BNF grammar and, as
such, may be deleted.

US 11,017,140 Bl

23

Continuing with the above discussion, at operation 510,
comment syntax of an EBNF grammar may, for example be
corrected. For example, comments 1n an EBNF grammar are
typically contained within a (* . . . *) structure, while
comments within an BNF grammar may be at the end of a
line and prepended by a ;" symbol. Thus, here, it may, for
example, be usetul to access all or applicable comments and,
iI any are contained within a line (e.g., have eflective code
both before and after a comment, etc.), split that single line
into three, such as with the comment being positioned as the
middle line. Then, for all or applicable comments, 1t may, for
example, be usetul to remove the prepending (* and replace
it with *;”. Here, trailing for *) for all comments may also be
removed, such as i1l appropriate or applicable, so as to
facilitate and/or support outputting a grammar that may be
more precise and/or easier to process.

In an implementation, at operation 512, concatenation
comprising an EBNF grammar may, for example, be
removed. For example, an EBNF grammar typically repre-
sents concatenation of different elements within a single
production option with a *,” symbol. In certain simulations or
experiments, however, 1t has been observed that such con-
catenation may not be useful for a BNF grammar, such as to
implement a desired functionality. As such, here, such
concatenation may be removed, for example, and appropri-
ate elements may be listed 1n a sequential order, such as
without a concatenation symbol.

With regard to operation 514, syntax for an EBNF rule
definition may, for example, be corrected. For example, 1n an
EBNF grammar, a standard notation for the beginning of a
definition of a rule after a rule name has been stated 1s *=".
However, 1n a particular simulation or experiment, 1t has
been observed that this notation may be marked with a

%Y &6,

different set of characters, such as, for example, *“:=", *.”,
“o=="_“:="_ It has also been observed that, 1n a BNF
grammar, 1t may, for example, be usetul to represent this
notation via *“::=". Thus, 1n some 1nstances, 1t may be useful,
for example, to analyze and/or determine that all or suitable
instances of a definition notation are compliant with a BNF
standard of *“::=".

According to an implementation, example process 500
may further proceed to operation 516, during which repeti-
tions may, for example, be handled, such as processed and/or
converted. Typically, although not necessarily, repetitions 1n
an EBNF grammar are represented via the following struc-
ture: “{ ... } . In this context, a “repetition” refers to one or
more elements within curly braces that 1s being allowed to
appear an arbitrary number of time, including not at all. For
example, if within a rule there is a statement of ‘{<option>}"
then the result of that production may contain O, 1, or more
instances of <option>. For a particular occurrence of this
structure, a new rule may, for example, be created and/or
appropriately labeled. For example, in some 1instances, it
may be useful to label a new production with a name that
includes an original name of 1tems appearing within 1t with
“ repetition” added at the end. A new rule may have three
options for its body, such as, for example:

Empty or ° °

A single occurrence of items within a repetition.

A single occurrence of items within a repetition and a

recursive call to a new rule.

According to an implementation, a new rule may, for
example, replace repetition syntax in a rule that contains a
repetition. Thus, consider, for example:

Original Rule:

<rule>::=<constant> “terminal” {<parameter>}

10

15

20

25

30

35

40

45

50

55

60

65

24

New Rule(s):

<rule>::=<constant> “terminal” <parameter_repetition>
<parameter_repetition>::=" ’|<parameter>=1<parameter>
<parameter_repetition>

In some 1nstances, this may, for example, facilitate and/or
support expressing the same or similar functionality as
repetition syntax mm an EBNF grammar, but with tools
available 1n and/or applicable to a BNF grammar. It should
be noted that, once a new rule 1s defined, 1t may, for example,
be useful to replace a given repetition with its rule counter-
part so as to avoid creating duplicate productions.

Continuing with example process 500, at operation 518,
one or more options may, for example, be handled, such as
processed and/or converted. For example, syntax for an
option 1n an EBNF grammar may comprise a text contained
within a ‘[. . . |” construction. In some instances, an option
syntax may, for example, indicate that items within the
brackets may appear O or 1 times. To address this, at times,
a process, such as similar to a process handling repetition
discussed above may, for example be employed, 1n whole or
in part. To illustrate, for a particular option, a new rule that
may have two options within a body, such as one of them
being empty and the other being a single instance of an
inside of an option structure, for example, may be created.
Similarly, any suitable rule name may be used herein, but, 1n
some 1nstances, 1t may be useful to label a new production
with a name 1ndicative of what 1s 1nside a particular option,
for example, and adding “_option” at the end. Thus, con-
sider, for example:

Original Rule:

<rule>::=<constant> [<name-parameter>] “terminal”

New Rule(s):

<rule>::=<constant> <name-parameter_option> “terminal”
<name-parameter_option>::=° ’|<name-parameter>

Likewise, 1n some mstances, generating new rules via this
approach may facilitate and/or support expressing the same
or similar functionality, such as partially or substantially, as
option syntax in an EBNF grammar, for example, but with
tools available 1 and/or applicable to a BNF grammar.
Similarly, here, 1t should be noted that, once a new rule 1s
defined, 1t may be useful to replace a given repetition with
its rule counterpart, for example, so as to avoid creating
duplicate productions. For example, 1n at least one 1mple-
mentation, two options from a single option 1n an original
rule may be created, such as to avoid creating another rule
entirely. In such a case, such as i a specific option 1s used
in several places, for example, 1t may be usetful to replace
those 1nstances of the option with a new rule.

As further illustrated, example process 300 may proceed
to operation 520, for example, such as to process, such as
handle and/or convert one or more applicable groupings.
Typically, although not necessarily, a grouping 1n an EBNF
grammar 1s represented by the (. . .)’ syntax 1 which a
body of the grouping comprises a collection of items sepa-
rated by °|” characters. While 1nside a grouping, for example,
one of the items may be expressed at a time. For a particular
grouping, depending on an implementation, the following
approaches may, for example, be utilized, 1n whole or 1n
part, or otherwise considered:

An alternate within an existing rule may be made, such as

for a particular option 1n a grouping, where the alternate
has only one of the options included 1n 1t; and/or

A new rule that has a body 1dentical to the 1nside of the
original grouping may be created.

US 11,017,140 Bl

25

Thus, consider, for example:
Original Rule:
<rule>::=<test> (<optionl>|<option2>|<option3>)
New Rule with Added Alternatives:

<rule>::=<test> <optionl>|<test>
<option3>

New Rules when an Additional Rule 1s Created:

<option2>|<test>

<rule>::=<test> <optionl-option2-option3_grouping=>

<optionl -option2-option3 grouping>::=

<optionl>|<option2>|<option3=>

In an implementation, such as depending, at least in part,
on what 1s 1 a body of a rule to be adapted, 1t may be useful
to add a new rule, such as instead of adding alternatives to
an existing rule, for example. In some instances, such as 1f
a new rule 1s generated, for example, it may also be useful
to indicate options 1n a grouping and append *“_grouping’ at
the end of the rule name.

With regard to operation 522, appropriate undefined rules
or productions may, for example, be added. As was 1ndi-
cated, 1n some 1nstances, an EBNF grammar for a target
application may be mncomplete, such as having rules that are
used 1 a body of some other rule, but that rule 1s not defined
in any other part of a specification or some content. For
example, 1n certain simulations or experiments, 1t has been
observed that a larger number of terminal options for a
single rule may be expressed without enumerating all of
them. At times, this may involve, for example, interpreting
what a particular rule represents and/or defining 1t for a BNF
converter. To 1llustrate, a standard Verilog EBNF has rules
that are not defined, such as, for example, <Any_ASCII_ch-
aracter>, <Any_ASCII_character_except_white_space>, an
<Any_ASCII_character_except_new_line>, or the like.
These or like rules may indicate what a corresponding rule
may contain, for example, and defining 1t may involve
introducing every applicable ASCII character, at times, with
exceptions, 1f appropriate. In some 1nstances, this may
tacilitate and/or support converting a non-standard, incom-
plete, maccurate, etc. EBNF grammar 1into a BNF grammar
that may be standard-compliant, more effective and/or more
cllicient to process, or the like, as was 1ndicated.

In certain simulations or experiments, 1t has also been
observed that an EBNF grammar may comprise special
characters, such as characters contained within the “? ... ?’
structure, for example. Generally, these or like special
characters may not necessarily be comments, for example,
and may be outside the scope of a typical EBNF standard.
At times, these or like special characters may be included as
a marker, for example, but, to implement these special
characters, 1t may be useful to generate a new collection of
rules to represent meaning of these or like special characters.

In some 1nstances, such as optionally or alternatively, an
augmented BNF (ABNF) grammar may, for example, be
utilized herein, 1n whole or 1n part, or otherwise considered.
It should be noted that one or more syntactical elements of
such an ABNF, however, may be incompatible with those of
a BNF grammar. As such, here, an ABNF may be used, at
least 1n part, for protocols specifications, such as similarly to
an EBNF, for example, but may have different notations for
choice, option, and/or repetition, for example. As a way of
illustration, for implementation purposes, some of the dii-
terences are 1llustrated below. Thus, consider, for example:

10

15

20

25

30

35

40

45

50

55

60

65

26

EBNF Notation ABNF Notation

Choice | /
Repetition { expansion } *(expansion)

At times, an ABNF may also specily, for example, upper
and/or lower bounds on a number of repetitions allowed for
a syntactic item. For example, a repetition to be repeated n
or more times may be preceded by n*. Further, a repetition
to be repeated between n and m times may, for example, be

preceded by n*m. As such, here, conversion from an ABNF
grammar to a BNF grammar may, for example, be imple-
mented, 1 whole or 1n part, 1n a manner similar to conver-
sion from an EBNF grammar to a BNF grammar, as dis-
cussed above, while accounting for these or like differences.

As 1llustrated at 524, a suitable BNF grammar, such as a
BNF grammar that may be functionally equivalent or sub-
stantially similar to an mputted EBNF grammar (e.g., at
operation 502, e¢tc.) may, for example, be outputted, at which
point example process 500 may terminate. As indicated
above, 1n an implementation, such a BNF grammar that may
comprise, for example, a subset of an HDL grammar, such
as a Verilog BNF grammar, that focuses on a particular area,
such as an LFSR area, may be simpler to process (e.g., parse,
compile, etc.), may be primed for use in a number of tools,
such as for grammatical evolution applications, and/or the
like.

FIG. 6 1s a flow diagram 1illustrating an implementation of
an example process 600 that may be performed, 1n whole or
in part, to facilitate and/or support one or more operations
and/or techniques for verifying syntactic correctness of a
BNF grammar. As discussed herein, such as 1n connection
with operations 240 and/or 280 of FIG. 2, for example, 1n
some 1nstances, 1t may, for example, be useful to verily
correctness and/or validity of an outputted BNF grammar.
For example, as was indicated, here, the PonyGE2 tool,
accessible at https://github.com/PonyGE/PonyGE2, may be
utilized, 1n whole or in part. As was also discussed, since
PonyGE2 1s built 1n Python, 1t has support for grammatical
evolution of Python syntax. More specifically, 1t may allow
to make outputted code more eflective and/or more eflicient,
such as for processing, for example, by parsing code breaks
and/or making ranges in a grammar to be more concisely
expressed. Likewise, 1t should be noted that content acquired
or produced, such as, for example, input signals, output
signals, operations, results, etc. associated with example
process 600 may be represented via one or more digital
signals. It should also be appreciated that even though one
or more operations are 1llustrated or described concurrently
or with respect to a certain sequence, other sequences or
concurrent operations may be employed. In addition,
although the description below references particular aspects
and/or features illustrated in certain other figures, one or
more operations may be performed with other aspects and/or
features.

Example process 600 may begin at operation 610, utiliz-
ing a pruned BNF grammar as input, for example. In an
implementation, a BNF grammar outputted at operation 524
of FIG. 5, for example, may be utilized as an mput to
example process 600. Continuing with example process 600,
as referenced at operation 620, at least in part responsive to
obtaining a pruned BNF grammar, such as a subset of a
Verilog BNF grammar that focuses on a particular area, such
as an LFSR area, for example, the BNF grammar may be
analyzed. For example, as mentioned, one or more software-
based tools, such as PonyGE2, for example, may be utilized

US 11,017,140 Bl

27

to analyze a BNF grammar. In general, a BNF grammar may
be analyzed to verily the grammar for syntactical correct-
ness and/or to ensure that the BNF grammar 1s an accurate
representation of a target language, for example. As was
indicated, after converting an EBNF grammar to a BNF
grammar, there may be 1ssues with the grammar that may
make 1t msuilicient and/or otherwise unsuitable for use in
creating and/or veritying code. Further, for example, mis-
takes may be made while editing a BNF grammar for
tfunctionality and/or while editing for better formed rules.

As imdicated generally at 630, a determination may be
made as to whether one or more rules for a particular BNF
grammar have been properly formed. As was indicated, 11 a
particular BNF grammar 1s not properly formed, for
example, uses of the grammar may yield unsatisfactory
outcomes. In particular 1mplementations, various
approaches may be utilized to verily whether rules are
properly formed for a particular BNF grammar. In an
implementation, for example, a subset of a tailored and/or
otherwise specified Verilog BNF grammar may be fed, such
as used as an input, for example, into a suitable grammatical
evolution tool to verily that the rules are properly formed.
For example, 1n an implementation, PonyGE2 may follow
grammatical paths, such as from a particular rule to rules
within the particular rule, for example, until particular paths
reach terminal values. Further, for example, PonyGE2 may
detect circular rules that may, as was indicated, be problem-
atic at least 1n part because any code generated from such
grammar may result in an mfimite cycle of rules. Example
operations and/or processes that may be performed with
respect to various rules are described above, for example, in
connection with example operations 210, 220 and/or 230
and/or 1n connection with example processes 200, 300, 400
and/or 500. As mentioned, example process 400 may pertain
to pruning an EBNF, such as for a specified functionality, for
example. Further, in an implementation, example process
500 may pertain to converting an EBNF grammar to a BNF
grammar. Additionally, as indicated, example process 600
may pertain to testing and/or executing a well-formed BNF
to generate output code, 1n an implementation. Thus, 1n an
implementation, example processes 400 and 3500 may
involve design decisions and example process 600 may
relate to implementation of a design.

As further indicated generally at 670, responsive at least
in part to a determination that a BNF has not been satisfac-
torily verified, example process 600 may proceed to opera-
tion 670 which may, for example, include one or more
operations to correct the BNF. In an implementation, cor-
rective operations may include operations 210, 220 and/or
230 and/or example processes 200, 300, 400 and/or 500, for
example. Of course, claimed subject matter 1s not limited 1n
scope 1n these respects.

Continuing with example process 600, as referenced at
operation 640, syntactic correctness ol a BNF grammar may
be verified at least 1n part via generating code utilizing rules
included by the grammar. In an implementation, only rules
from the particular grammar may be utilized 1n generating
the code. Further, in an implementation, as indicated gen-
crally at 650, a determination may be made as to whether the
generated code can be compiled successiully. As further
indicated generally at operation 660, a determination may be
made as to whether successtully compiled code can be
executed successiully. As was indicated, a particular code
sample may not perform any particular function 1 some
instances. However, 1f the code compiles as expected and
also executes as expected, the grammar may be determined
to successtully describe a context-iree version of the gram-

10

15

20

25

30

35

40

45

50

55

60

65

28

mar. In general, determinations that grammar rules have
been properly formed, that code generated from the gram-
mar compiles successtully and/or correctly and/or that the
compiled code executes successiully and/or correctly may
indicate that the BNF has been satistactorily verified, as
referenced generally at 680. In an implementation, a BNF
grammar may be determined to have been satistactorily
verified 1T a generated HDL code segment (e.g., Verilog code
segment) does not violate any specified constraints for a
particular HDL (e.g., Verilog). For example, if a BNF
grammar can be compiled without syntactical errors to
Register Transfer Logic (RTL), the BNF grammar may be
determined to have been successiully verified.

Retferring now to FIG. 7, which 1s a tlow diagram 1llus-
trating an 1mplementation of an example process 700 that
may be performed, 1n whole or in part, to facilitate and/or
support one or more operations and/or techniques for further
pruning a BNF grammar for syntax and/or variable naming.
In some i1mplementations, example process 700 may be
implemented, at least 1n part, in connection with operations
260 and/or 270 of FIG. 2, for example. Likewise, 1t should
be noted that content acquired or produced, such as, for
example, 1nput signals, output signals, operations, results,
etc. associated with example process 700 may be repre-
sented via one or more digital signals. It should also be
appreciated that even though one or more operations are
illustrated or described concurrently or with respect to a
certain sequence, other sequences or concurrent operations
may be employed. In addition, although the description
below references particular aspects and/or features illus-
trated 1n certain other figures, one or more operations may
be performed with other aspects and/or features.

As was indicated, EBNFs and/or BNFs may be context-
free, 1n that they may refer to changes 1n syntactic structure
ol code segments but not to elements therein for semantic
correctness. If 1t 1s desired to include such context 1 a
grammar and/or if 1t 1s desired that the grammar to exhibit
at least a measure of semantic consistency, the grammar may
be further edited to include such context. In an 1mplemen-
tation, a copy of a BNF may be created and/or stored prior
to additional editing to provide a canvass for generating
different versions of more structured grammars.

In an implementation, one or more operations for turther
pruning a BNF grammar for syntax and/or variable naming
may be based, at least in part, on a particular end use of the
grammar and/or on particular specifications for a particular
application. For example, 11 only particular specific aspects
of an HDL code are meant to be changed, then one or more
operations may be performed to edit and/or prune the
grammar according to the particular specific aspects.
Depending on a particular application, some or even much
of a grammar pruned in accordance with other operations,
such as operations 220 and/or 230 and/or example processes
400 and/or 500, for example, may be edited, such as heavily
edited, or even removed, 1n an implementation. However,
claimed subject matter 1s not limited 1n scope in these
respects.

In an 1implementation, rules for a BNF grammar may be
further 1solated, assessed and/or edited to implement addi-
tional syntactic constraints beyond those imposed by other
operations, such as operations 210, 220 and/or 230 and/or
example processes 400 and/or 500, for example. Example
process 700 may begin at operation 710, utilizing a pruned
BNF grammar as mput, for example. As was indicated, a
pruned BNF grammar may be verified for syntactic correct-
ness, such as discussed above 1n connection with example
process 600, for example. Continuing with example process

US 11,017,140 Bl

29

700, as referenced at operation 720, at least 1n part respon-
sive to obtaining a pruned and/or verified BNF, a target
application may be examined, such as to identily structures
that may be consistent across various and/or all versions of
a target application. For example, other operations involving
pruning and/or otherwise editing a grammar, such as opera-
tions 210, 220 and/or 230, for example, may 1solate particu-
lar functionality without adding context for a particular
application. For operation 720, in an implementation, syn-
tactic structures may be identified for a particular applica-
tion, and such structures may be fixed within a grammar to
provide context.

Example process 700 may continue to operation 730,
wherein applicable rules may be 1solated and/or otherwise
identified, in an implementation. For example, at least in part
in response to identifying syntactic structures to be con-
strained, such as structures i1dentified at operation 720, for
example, one or more rules, such as top-level rules, for
example, that may describe functionality related to the
identified syntactic structures may be 1solated and/or other-
wise 1dentified. Further, in an implementation, additional
rules may be 1solated and/or otherwise identified, including,
for example, rules that may be aflected by changes to other
1solated and/or otherwise identified rules. Such additional
rules may include, for example, rules that may utilize other
rules to be changed and/or rules that may be utilized by other
rules to be changed, for example.

Example process 700 may continue to operation 740,
wherein applicable rules, such as those i1solated and/or
otherwise 1dentified at operation 730, for example, may be
altered. For example, as was 1indicated, 1solated and/or
otherwise identified rules may be altered to 1nject context for
a particular application into a BNF grammar. Depending at
least 1n part on the particular characteristics of a particular
application, particular changes to be made and/or a particu-
lar scope of changes to be made may vary significantly 1n
some 1nstances and/or may have significant implications for
a particular grammar, for example.

In some circumstances, again, depending at least 1n part
on particular characteristics of a particular application,
alterations to applicable rules for a particular grammar may
be relatively simple. For example, 1n a particular implemen-
tation, a particular rule may be replaced with a terminal
value and/or one or more portions of a rules definition may
be removed to limit a search space for that rule. Of course,
these are merely a couple of non-limiting examples of
changes that may be made to one or more rules, and claimed
subject matter 1s not limited 1n scope in these respects.
Further, rules may be altered 1n a variety of ways, 1n an
implementation. Particular options for alterations to rules
may depend at least in part on characteristics of a particular
application and/or on a particular syntax structure, for
example.

In an implementation, for a circumstance in which a rule
may have multiple contexts within a particular application,
one or more duplicate rules may be generated having
different contexts. For some constrained constructs, such as
conditional loops for specific portions of an application,
multiple duplicates may be generated, for example. In an
implementation, duplicates of a particular rule may be
generated 1n advance of editing the particular rule for a
particular context. Again, claimed subject matter 1s not
limited 1n scope in these respects.

Example process 700 may continue to operation 750,
wherein alterations to particular rules, such as rules altered
in connection with operation 740, may be propagated
through a grammar. For example, alterations made at opera-

5

10

15

20

25

30

35

40

45

50

55

60

65

30

tion 740 may lead to changes 1n subsequent rules that either
utilize an altered rule and/or are utilized by an altered rule.
In an implementation, changes to subsequent rules may be
based at least 1n part on a particular application for which a
grammar 1s being pruned and/or at least 1n part on changes
particular rules made previously.

In circumstances 1n which duplicate rules are generated,
such as was 1ndicated 1n connection with operation 740, for
example, an assessment may be made as to which rules
should be altered to reference particular duplicate rules. In
an 1mplementation, additional duplicates of one or more
rules may be generated to accommodate rules altered pre-
viously, such as in connection with operation 740, for
example. A similar and/or recursive process for altering
and/or duplicating rules may be employed to propagate rules
changes through a grammar as may be used in connection
with operation 740, for example. A process for propagating
rules changes through a grammar may be repeated recur-
sively, for example, until there remain no additional rules to
be altered based on a group of rules altered at operation 740,
in an 1mplementation.

In addition to pruning and/or editing a grammar to build
in context of particular syntactic structures, i1t may be
advantageous 1n some circumstances to prune and/or edit a
grammar for variable naming, as was indicated previously.
While operations 710 through 760 have been described 1n
terms of syntactic structures to be edited with a particular
application 1n mind, additional operations similar to those
described 1n connection with operations 710 through 760 to
make alterations to particular terminal values, such as, for
example, numerical values, string values, etc., 1n an 1mple-
mentation. Similar to operations mvolving alteration of rules
described above in connection with operations 710 through
760, operations to alter terminal values, for example, may
depend on particular characteristics of a particular applica-
tion.

For example, referring again to operation 720, a target
application may be examined, such as to identify constant
values that may be consistent across various and/or all
versions of a target application. For example, variables that
may be replaced with constant values may be identified.
Identification of particular vaniables to be replaced by con-
stant values and/or 1dentification of variable names that may
be fixed to a particular string value may depend, at least in
part, on a particular application. Further, referring again to
operation 730, responsive at least in part to 1dentification of
variable names and/or constants to be constrained, particular
rules, such as top-level rules, that describe usage of such
identified variable names and/or constants may be 1solated
and/or otherwise identified. As was 1ndicated, additional
rules may be 1solated and/or otherwise identified, including,
for example, rules that may be aflected by changes to other
rules.

Referring again to operation 740, applicable rules, such as
those 1solated and/or otherwise 1dentified at operation 730,
for example, may be altered. Depending at least 1n part on
the particular characteristics of a particular application,
particular changes to be made and/or a particular scope of
changes to be made may vary significantly 1n some instances
and/or may have significant implications for a particular
grammar, for example. In some circumstances, again,
depending at least 1n part on particular characteristics of a
particular application, alterations to applicable rules for a
particular grammar may be relatively simple. For example,
in a particular implementation, a particular random string
may be replaced by a fixed string. Of course, this 1s merely
an example of a change that may be made to one or more

US 11,017,140 Bl

31

rules related to variable names and/or constants, and claimed
subject matter 1s not limited in scope in these respects. As
illustrated at 750, a suitable BNF grammar, such as a BNF
grammar pruned for syntax and/or variable naming, may, for
example, be outputted, at which point example process 700
may terminate. In an implementation, example process 700
may 1volve removing rules that may not apply to a par-
ticular application and/or specified functionality, thereby
focusing a particular BNF grammar on the particular appli-
cation and/or specified functionality at 1ssue. Termination of
example process 700 may occur, for example, one the BNF
grammar 1s defined 1n a sufliciently expressive manner to as
to produce code that satisfies one or more particular con-
straints related to the particular application and/or specified
functionality.

As discussed herein, one or more operations and/or tech-
niques for a pseudo-random number generator (PRNG) for
IoT-type devices, to name one example electronic circuit
type, may provide benefits. For example, utilizing one or
more approaches discussed above, a PRNG for particular
IoT-type devices, such as peripheral or end-point and/or
resource-constrained embedded devices, just to illustrate a
few examples, may be created. In some instances, such a
PRING may be capable of producing a seed value, such as
without reliance on an RTC, for example, that may introduce
a sutlicient or otherwise suitable amount and/or distribution
of randomness 1nto IoT-type devices so as to preclude or
reduce readable and/or predictable patterns. As was indi-
cated, a PRNG may, for example, also be capable of saving
power through execution on-demand. In addition, removal
of an RTC may also significantly save power on particular
IoT-type devices, such as IoT-type devices operating in
resource constrained or like environments, for example. As
was also discussed, random numbers may be critical for a
wide number of applications including security, statistical
sampling, on-line gaming, or the like. A field of cryptogra-
phy may utilize random numbers generated 1n connection
with a PRNG, such as discussed herein, to create unique
keys, for example, statistical sampling may be capable to use
such a PRNG to select simple random samples, on-line
gaming may benefit by employing such a PRNG to provide
non-linear changes 1n game patterns, or the like. Of course,
such a description of certain aspects of an autonomous
pseudo-random seed generator and its benefits 1s merely an
example, and claimed subject matter 1s not so limited.

Also discussed herein are example approaches to verify-
ing autonomously generated HDL code, such as Verilog
code. As mentioned, for example, a grammatical evolution
process may generate evolved HDL code, such as Verilog
code. Evolved HDL code may be verified via a process
utilizing BNF 1input grammar to perform at least part of the
verification, for example. Thus, 1n an 1mplementation, a
subset of Verilog generated as part of a grammatical evolu-
tion process may be proven against a Verilog BNF defini-
tion. Thus, BNF grammar may describe the search-space
language and may further provide at least partial verification
of an evolved Verilog solution. Additionally, as was 1ndi-
cated, further tailoring mputted BNF beyond rules obtained
from a full Verilog BNF grammar may help ensure that an
cventual outputted solution has particular advantageous
characteristics that may depend, at least in part, on a
particular application. Utilizing such an example approach,
an increase in efliciency and/or eflicacy with respect to
verification of evolved Verilog code may be achieved.

As further discussed herein, a BNF grammar may serve as
an example template for a target application and/or may be
utilized to vernity existing HDL code. Utilizing a particular

10

15

20

25

30

35

40

45

50

55

60

65

32

grammar template, an example nstance of a particular
application may be tested against the particular template to
determine whether a particular evolved HDL solution 1s
compatible and/or compliant with the specifications of the
grammar. Further, a grammar template may be utilized to
create diflerent versions of a particular application, such as
to mitigate security concerns 1n situations wherein multiple
instances of a particular application share the same HDL
code, for example.

In the context of the present disclosure, the term “con-
nection,” the term “component” and/or similar terms are
intended to be physical, but are not necessarily always
tangible. Whether or not these terms refer to tangible subject
matter, thus, may vary 1n a particular context of usage. As an
example, a tangible connection and/or tangible connection
path may be made, such as by a tangible, electrical connec-
tion, such as an electrically conductive path comprising
metal or other electrical conductor, that 1s able to conduct
clectrical current between two tangible components. Like-
wise, a tangible connection path may be at least partially
allected and/or controlled, such that, as is typical, a tangible
connection path may be open or closed, at times resulting
from influence of one or more externally derived signals,
such as external currents and/or voltages, such as for an
clectrical switch. Non-limiting 1llustrations of an electrical
switch include a transistor, a diode, etc. However, a “con-
nection” and/or “component,” 1 a particular context of
usage, likewise, although physical, can also be non-tangible,
such as a connection between a client and a server over a
network, which generally refers to the ability for the client
and server to transmit, receive, and/or exchange communi-
cations, as discussed in more detail later.

In a particular context ol usage, such as a particular
context 1n which tangible components are being discussed,
therefore, the terms “coupled” and “connected” are used in
a manner so that the terms are not synonymous. Similar
terms may also be used 1n a manner i which a similar
intention 1s exhibited. Thus, “connected” 1s used to indicate
that two or more tangible components and/or the like, for
example, are tangibly 1n direct physical contact. Thus, using
the previous example, two tangible components that are
clectrically connected are physically connected via a tan-
gible electrical connection, as previously discussed. How-
ever, “‘coupled,” 1s used to mean that potentially two or more
tangible components are tangibly 1n direct physical contact.
Nonetheless, 1s also used to mean that two or more tangible
components and/or the like are not necessarily tangibly 1n
direct physical contact, but are able to co-operate, laise,
and/or interact, such as, for example, by being “optically
coupled.” Likewise, the term “coupled” may be understood
to mean 1ndirectly connected in an appropriate context. It 1s
further noted, 1n the context of the present disclosure, the
term physical 11 used 1n relation to memory, such as memory
components or memory states, as examples, necessarily
implies that memory, such memory components and/or
memory states, continuing with the example, 1s tangible.

Additionally, 1n the present disclosure, in a particular
context of usage, such as a situation in which tangible
components (and/or similarly, tangible materials) are being
discussed, a distinction exists between being “on” and being
“over.” As an example, deposition of a substance “on” a
substrate refers to a deposition involving direct physical and
tangible contact without an intermediary, such as an inter-
mediary substance (e.g., an mtermediary substance formed
during an intervening process operation), between the sub-
stance deposited and the substrate 1n this latter example;
nonetheless, deposition “over” a substrate, while understood

US 11,017,140 Bl

33

to potentially include deposition “on™ a substrate (since
being “on” may also accurately be described as being
“over”), 1s understood to 1include a situation 1n which one or
more intermediaries, such as one or more intermediary
substances, are present between the substance deposited and
the substrate so that the substance deposited 1s not neces-

sarily 1n direct physical and tangible contact with the sub-

strate.

A similar distinction 1s made 1n an appropriate particular
context of usage, such as in which tangible materials and/or
tangible components are discussed, between being
“beneath” and being “under.” While “beneath,” in such a
particular context of usage, 1s mtended to necessarily imply
physical and tangible contact (similar to “on,” as just
described), “under” potentially includes a situation in which
there 1s direct physical and tangible contact, but does not
necessarily imply direct physical and tangible contact, such
as 1 one or more intermediaries, such as one or more

intermediary substances, are present. Thus, “on” 1s under-
stood to mean “immediately over” and “beneath” 1s under-
stood to mean “immediately under.”

It 1s likewise appreciated that terms such as “over” and
“under” are understood 1n a similar manner as the terms
“up,” “down,” “top,” “bottom,” and so on, previously men-
tioned. These terms may be used to facilitate discussion, but
are not intended to necessarily restrict scope of claimed
subject matter. For example, the term “over,” as an example,
1s not meant to suggest that claim scope 1s limited to only
situations in which an embodiment 1s right side up, such as
in comparison with the embodiment being upside down, for
example. An example includes a tlip chip, as one illustration,
in which, for example, orientation at various times (e.g.,
during fabrication) may not necessarily correspond to ori-
entation of a final product. Thus, 1f an object, as an example,
1s within applicable claim scope 1n a particular orientation,
such as upside down, as one example, likewise, 1t 1s intended
that the latter also be interpreted to be included within
applicable claim scope in another orientation, such as right
side up, again, as an example, and vice-versa, even if
applicable literal claim language has the potential to be
interpreted otherwise. Of course, again, as always has been
the case 1n the specification of a patent application, particu-
lar context of description and/or usage provides helpiul
guidance regarding reasonable inferences to be drawn.

Unless otherwise indicated, 1n the context of the present
disclosure, the term “or” 1f used to associate a list, such as
A, B, or C, 1s intended to mean A, B, and C, here used 1in the
inclusive sense, as well as A, B, or C, here used 1n the
exclusive sense. With this understanding, “and” 1s used 1n
the inclusive sense and intended to mean A, B, and C;
whereas “and/or” can be used in an abundance of caution to
make clear that all of the foregoing meanings are intended,
although such usage i1s not required. In addition, the term
“one or more” and/or similar terms 1s used to describe any
feature, structure, characteristic, and/or the like 1n the sin-
gular, “and/or” 1s also used to describe a plurality and/or
some other combination of features, structures, characteris-
tics, and/or the like. Furthermore, the terms “first,” “second”
“thard,” and the like are used to distinguish different aspects,
such as different components, as one example, rather than
supplying a numerical limit or suggesting a particular order,
unless expressly indicated otherwise. Likewise, the term
“based on” and/or similar terms are understood as not
necessarily intending to convey an exhaustive list of factors,
but to allow for existence of additional factors not neces-
sarily expressly described.

10

15

20

25

30

35

40

45

50

55

60

65

34

Furthermore, 1t 1s intended, for a situation that relates to
implementation of claimed subject matter and 1s subject to
testing, measurement, and/or specification regarding degree,
to be understood 1n the following manner. As an example, in
a given situation, assume a value of a physical property 1s to
be measured. If, alternatively, reasonable approaches to
testing, measurement, and/or specification regarding degree,
at least with respect to the property, continuing with the
example, 1s reasonably likely to occur to one of ordinary
skill, at least for implementation purposes, claimed subject
matter 1s intended to cover those alternatively reasonable
approaches unless otherwise expressly indicated. As an
example, 11 a plot of measurements over a region 1s produced
and implementation of claimed subject matter refers to
employing a measurement of slope over the region, but a
variety ol reasonable and alternative techniques to estimate
the slope over that region exist, claimed subject matter 1s
intended to cover those reasonable alternative techniques,
even 1f those reasonable alternative techniques do not pro-
vide 1dentical values, 1dentical measurements or identical
results, unless otherwise expressly indicated.

It 1s further noted that the terms “type” and/or “like,” 1f
used, such as with a feature, structure, characteristic, and/or
the like, using “optical” or “electrical” as simple examples,
means at least partially of and/or relating to the feature,
structure, characteristic, and/or the like 1n such a way that
presence ol minor varnations, even variations that might
otherwise not be considered fully consistent with the feature,
structure, characteristic, and/or the like, do not 1n general
prevent the feature, structure, characteristic, and/or the like
from being of a “type” and/or being “like,” (such as being
an “optical-type” or being “optical-like,” for example) 11 the
minor variations are sulliciently minor so that the feature,
structure, characteristic, and/or the like would still be con-
sidered to be predominantly present with such vanations
also present. Thus, continuing with this example, the terms
optical-type and/or optical-like properties are necessarily
intended to include optical properties. Likewise, the terms
clectrical-type and/or electrical-like properties, as another
example, are necessarily intended to iclude electrical prop-
erties. It should be noted that the specification of the present
disclosure merely provides one or more 1llustrative
examples and claimed subject matter 1s intended to not be
limited to one or more 1llustrative examples; however, again,
as has always been the case with respect to the specification
of a patent application, particular context ol description
and/or usage provides helpful guidance regarding reason-
able inferences to be drawn.

With advances in technology, 1t has become more typical
to employ distributed computing and/or commumnication
approaches 1 which portions of a process, such as signal
processing of signal samples, for example, may be allocated
among various devices, mncluding one or more client
devices, one or more server devices and/or one or more
peer-to-peer devices, via a computing and/or communica-
tions network, for example. A network may comprise two or
more devices, such as network devices and/or computing
devices, and/or may couple devices, such as network devices
and/or computing devices, so that signal communications,
such as 1n the form of signal packets and/or signal frames
(e.g., comprising one or more signal samples), for example,
may be exchanged, such as between a server device, a client
device and/or a peer-to-peer device, as well as other types of
devices, mncluding between wired and/or wireless devices
coupled via a wired and/or wireless network, for example.

An example of a distributed computing system comprises
the so-called Hadoop distributed computing system, which

US 11,017,140 Bl

35

employs a map-reduce type of architecture. In the context of
the present disclosure, the terms map-reduce architecture
and/or similar terms are intended to refer to a distributed
computing system implementation and/or embodiment for
processing and/or for generating larger sets of signal
samples employing map and/or reduce operations for a
parallel, distributed process performed over a network of
devices. A map operation and/or similar terms refer to
processing of signals (e.g., signal samples) to generate one
or more key-value pairs and to distribute the one or more
pairs to one or more devices of the system (e.g., network).
A reduce operation and/or similar terms refer to processing,
of signals (e.g., signal samples) via a summary operation
(e.g., such as counting the number of students 1n a queue,
yielding name frequencies, etc.). A system may employ such
an architecture, such as by marshaling distributed server
devices, executing various tasks 1n parallel, and/or managing
communications, such as signal transfers, between various
parts of the system (e.g., network), in an embodiment. As
mentioned, one non-limiting, but well-known, example
comprises the Hadoop distributed computing system. It
refers to an open source implementation and/or embodiment
of a map-reduce type architecture (available from the
Apache Software Foundation, 1901 Munsey Drive, Forrest
Hill, Md., 21050-2747), but may include other aspects, such
as the Hadoop distributed file system (HDEFS) (available
from the Apache Software Foundation, 1901 Munsey Drive,
Forrest Hill, Md., 21050-2747). In general, thereiore,
“Hadoop™ and/or similar terms (e.g., “Hadoop-type,” etc.)
refer to an 1implementation and/or embodiment of a sched-
uler for executing larger processing jobs using a map-reduce
architecture over a distributed system. Furthermore, in the
context of the present disclosure, use of the term “Hadoop™
1s intended to include versions, presently known and/or to be
later developed.

In the context of the present disclosure, the term “network
device” refers to any device capable ol communicating via
and/or as part of a network and may comprise a computing
device. While network devices may be capable of commu-
nicating signals (e.g., signal packets and/or frames), such as
via a wired and/or wireless network, they may also be
capable of performing operations associated with a comput-
ing device, such as anthmetic and/or logic operations,
processing and/or storing operations (e.g., storing signal
samples), such as 1n a non-transitory memory as tangible,
physical memory states, and/or may, for example, operate as
a server device and/or a client device in various embodi-
ments. Network devices capable of operating as a server
device, a client device and/or otherwise, may include, as
examples, dedicated rack-mounted servers, desktop comput-
ers, laptop computers, set top boxes, tablets, netbooks, smart
phones, wearable devices, integrated devices combining two
or more features of the foregoing devices, and/or the like, or
any combination thereof. As mentioned, signal packets
and/or frames, for example, may be exchanged, such as
between a server device and/or a client device, as well as
other types of devices, including between wired and/or
wireless devices coupled via a wired and/or wireless net-
work, for example, or any combination thereof. It 1s noted
that the terms, server, server device, server computing
device, server computing platform and/or similar terms are
used interchangeably. Similarly, the terms client, client
device, client computing device, client computing platform
and/or similar terms are also used interchangeably. While 1n
some 1nstances, for ease ol description, these terms may be
used 1n the singular, such as by referring to a “client device”
or a “server device,” the description 1s intended to encom-

10

15

20

25

30

35

40

45

50

55

60

65

36

pass one or more client devices and/or one or more server
devices, as appropriate. Along similar lines, references to a
“database” are understood to mean, one or more databases
and/or portions thereolf, as appropriate.

It should be understood that for ease of description, a
network device (also referred to as a networking device)
may be embodied and/or described 1n terms of a computing
device and vice-versa. However, 1t should further be under-
stood that this description should 1n no way be construed so
that claimed subject matter 1s limited to one embodiment,
such as only a computing device and/or only a network
device, but, instead, may be embodied as a variety of devices
or combinations thereof, including, for example, one or
more illustrative examples.

A network may also include now known, and/or to be later
developed arrangements, dertvatives, and/or improvements,
including, for example, past, present and/or future mass
storage, such as network attached storage (NAS), a storage
area network (SAN), and/or other forms of device readable
media, for example. A network may include a portion of the
Internet, one or more local area networks (LANSs), one or
more wide area networks (WANSs), wire-line type connec-
tions, wireless type connections, other connections, or any
combination thereof. Thus, a network may be worldwide 1n
scope and/or extent. Likewise, sub-networks, such as may
employ differing architectures and/or may be substantially
compliant and/or substantially compatible with differing
protocols, such as network computing and/or communica-
tions protocols (e.g., network protocols), may interoperate
within a larger network.

In the context of the present disclosure, the term sub-
network and/or similar terms, 11 used, for example, with
respect to a network, refers to the network and/or a part
thereof. Sub-networks may also comprise links, such as
physical links, connecting and/or coupling nodes, so as to be
capable to communicate signal packets and/or frames
between devices of particular nodes, including via wired
links, wireless links, or combinations thereof. Various types
of devices, such as network devices and/or computing
devices, may be made available so that device interoper-
ability 1s enabled and/or, 1n at least some 1nstances, may be
transparent. In the context of the present disclosure, the term
“transparent,” 1 used with respect to particular communi-
cating devices of a network, refers to the devices commu-
nicating via the network in which the devices are able to
communicate via one or more intermediate devices, such as
of one or more intermediate nodes, but without the commu-
nicating devices necessarily specifying the one or more
intermediate nodes and/or the one or more intermediate
devices of the one or more intermediate nodes. Thus, a
network may include the one or more itermediate nodes
and/or the one or more mtermediate devices of the one or
more intermediate nodes 1n communications and the net-
work may engage in communications via the one or more
intermediate nodes and/or the one or more intermediate
devices of the one or more intermediate nodes, but the
network may operate as if such intermediate nodes and/or
intermediate devices are not necessarily involved in com-
munications between the particular communicating devices.
For example, a router may provide a link and/or connection
between otherwise separate and/or independent LANS.

In the context of the present disclosure, a “private net-
work™ refers to a particular, limited set of devices, such as
network devices and/or computing devices, able to commu-
nicate with other devices, such as network devices and/or
computing devices, 1n the particular, limited set, such as via
signal packet and/or signal frame communications, for

US 11,017,140 Bl

37

example, without a need for re-routing and/or redirecting
signal communications. A private network may comprise a
stand-alone network; however, a private network may also
comprise a subset of a larger network, such as, for example,
without limitation, all or a portion of the Internet. Thus, for
example, a private network “in the cloud” may refer to a
private network that comprises a subset of the Internet.
Although signal packet and/or frame communications (e.g.
signal communications) may employ intermediate devices
of intermediate nodes to exchange signal packets and/or
signal frames, those intermediate devices may not necessar-
i1ly be 1included in the private network by not being a source
or designated destination for one or more signal packets
and/or signal frames, for example. It 1s understood in the
context of the present disclosure that a private network may
direct outgoing signal communications to devices not in the
private network, but devices outside the private network
may not necessarily be able to direct inbound signal com-
munications to devices included in the private network.

The Internet refers to a decentralized global network of
interoperable networks that comply with the Internet Proto-
col (IP). It 1s noted that there are several versions of the
Internet Protocol. The term Internet Protocol, IP, and/or
similar terms are intended to refer to any version, now
known and/or to be later developed. The Internet includes
local area networks (LANs), wide area networks (WANSs),
wireless networks, and/or long haul networks that, for
example, may allow signal packets and/or frames to be
communicated between LANs. The term World Wide Web
(WWW or Web) and/or similar terms may also be used,
although it refers to a part of the Internet that complies with
the Hypertext Transfer Protocol (HTTP). For example, net-
work devices may engage mn an HTTP session through an
exchange of appropnately substantially compatible and/or
substantially compliant signal packets and/or frames. It 1s
noted that there are several versions of the Hypertext Trans-
ter Protocol. The term Hypertext Transier Protocol, HT'TP,
and/or similar terms are intended to refer to any version,
now known and/or to be later developed. It 1s likewi1se noted
that 1n various places in this document substitution of the
term Internet with the term World Wide Web (*“Web”) may
be made without a significant departure 1n meaning and may,
therefore, also be understood 1n that manner 1t the statement
would remain correct with such a substitution.

Although claimed subject matter 1s not in particular
limited 1n scope to the Internet and/or to the Web; nonethe-
less, the Internet and/or the Web may without limitation
provide a useful example of an embodiment at least for
purposes of illustration. As indicated, the Internet and/or the
Web may comprise a worldwide system of interoperable
networks, including interoperable devices within those net-
works. The Internet and/or Web has evolved to a seli-
sustaining facility accessible to potentially billions of people
or more worldwide. Also, 1n an embodiment, and as men-
tioned above, the terms “WWW” and/or “Web” refer to a
part of the Internet that complies with the Hypertext Transier
Protocol. The Internet and/or the Web, therefore, in the
context of the present disclosure, may comprise a service
that organizes stored digital content, such as, for example,
text, images, video, etc., through the use of hypermedia, for
example. It 1s noted that a network, such as the Internet
and/or Web, may be employed to store electronic files and/or
clectronic documents.

The term “electronic file” and/or the term “electronic
document” or the like are used throughout this document to
refer to a set of stored memory states and/or a set of physical
signals associated 1n a manner so as to thereby at least

5

10

15

20

25

30

35

40

45

50

55

60

65

38

logically form a file (e.g., electronic) and/or an electronic
document. That 1s, 1t 1s not meant to 1mplicitly reference a
particular syntax, format and/or approach used, for example,
with respect to a set of associated memory states and/or a set
ol associated physical signals. If a particular type of file
storage format and/or syntax, for example, 1s intended, it 1s
referenced expressly. It 1s further noted an association of
memory states, for example, may be 1n a logical sense and
not necessarily 1n a tangible, physical sense. Thus, although
signal and/or state components of a file and/or an electronic
document, for example, are to be associated logically, stor-
age thereot, for example, may reside in one or more different
places 1n a tangible, physical memory, 1n an embodiment.

A Hyper Text Markup Language (“HTML”), for example,
may be utilized to specily digital content and/or to specily
a format thereof, such as in the form of an electronic file
and/or an electronic document, such as a Web page, Web
site, etc., for example. An Extensible Markup Language
(“XML”) may also be utilized to specily digital content
and/or to specily a format thereof, such as 1n the form of an
electronic file and/or an electronic document, such as a Web
page, Web site, etc., 1n an embodiment. Of course, HIML
and/or XML are merely examples of “markup” languages,
provided as non-limiting illustrations. Furthermore, HI ML
and/or XML are intended to refer to any version, now known
and/or to be later developed, of these languages. Likewise,
claimed subject matter are not intended to be limited to
examples provided as illustrations, of course.

In the context of the present disclosure, the term “Web
site” and/or similar terms refer to Web pages that are
associated electronically to form a particular collection
thereof. Also, 1n the context of the present disclosure, “Web
page” and/or similar terms refer to an electronic file and/or
an electronic document accessible via a network, imncluding
by specilying a uniform resource locator (URL) for acces-
s1ibility via the Web, 1n an example embodiment. As alluded
to above, in one or more embodiments, a Web page may
comprise digital content coded (e.g., via computer istruc-
tions) using one or more languages, such as, for example,
markup languages, including HITML and/or XML, although
claimed subject matter 1s not limited 1n scope 1n this respect.
Also, 1n one or more embodiments, application developers
may write code (e.g., computer instructions) in the form of
JavaScript (or other programming languages), for example,
executable by a computing device to provide digital content
to populate an electronic document and/or an electronic file
in an appropriate format, such as for use in a particular
application, for example. Use of the term “JavaScript”
and/or similar terms intended to refer to one or more
particular programming languages are intended to refer to
any version of the one or more programming languages
identified, now known and/or to be later developed. Thus,
JavaScript 1s merely an example programming language. As
was mentioned, claimed subject matter 1s not intended to be
limited to examples and/or 1llustrations.

As was 1dicated, 1n the context of the present disclosure,
the terms “‘entry,” “electronic entry,” “document,” “elec-
tronic document, 7

27 L

22 94

content”, “digital content,” “item,”
“object,” and/or similar terms are meant to refer to signals
and/or states 1n a physical format, such as a digital signal
and/or digital state format, e.g., that may be perceived by a
user 1i displayed, played, tactilely generated, etc. and/or
otherwise executed by a device, such as a digital device,
including, for example, a computing device, but otherwise
might not necessarily be readily perceivable by humans
(e.g., 1f 1n a digital format). Likewise, 1n the context of the
present disclosure, digital content provided to a user 1n a

US 11,017,140 Bl

39

form so that the user 1s able to readily perceive the under-
lying content 1itself (e.g., content presented 1n a form con-
sumable by a human, such as hearing audio, feeling tactile
sensations and/or seeing 1images, as examples) 1s referred to,
with respect to the user, as “consuming” digital content,
“consumption” of digital content, “consumable” digital con-
tent and/or similar terms. For one or more embodiments, an
clectronic document and/or an electronic file may comprise
a Web page of code (e.g., computer instructions) in a markup
language executed or to be executed by a computing and/or
networking device, for example. In another embodiment, an
clectronic document and/or electronic file may comprise a
portion and/or a region of a Web page. However, claimed
subject matter 1s not intended to be limited 1n these respects.

Also, for one or more embodiments, an electronic docu-
ment and/or electronic file may comprise a number of
components. As previously indicated, in the context of the
present disclosure, a component 1s physical, but 1s not
necessarily tangible. As an example, components with ref-
erence to an electronic document and/or electronic file, 1n
one or more embodiments, may comprise text, for example,
in the form of physical signals and/or physical states (e.g.,
capable of being physically displayed and/or maintained as
a memory state in a tangible memory). Typically, memory
states, for example, comprise tangible components, whereas
physical signals are not necessarily tangible, although sig-
nals may become (e.g., be made) tangible, such as if
appearing on a tangible display, for example, as 1s not
uncommon. Also, for one or more embodiments, compo-
nents with reference to an electronic document and/or elec-
tronic file may comprise a graphical object, such as, for
example, an 1mage, such as a digital 1image, and/or sub-
objects, including attributes thereof, which, again, comprise
physical signals and/or physical states (e.g., capable of being,
tangibly displayed and/or maintained as a memory state 1n a
tangible memory). In an embodiment, digital content may
comprise, for example, text, images, audio, video, haptic
content and/or other types of electronic documents and/or
clectronic files, including portions thereotf, for example.

Also, 1 the context of the present disclosure, the term
parameters (€.g., one or more parameters) refer to matenal
descriptive of a collection of signal samples, such as one or
more electronic documents and/or electronic files, and exist
in the form of physical signals and/or physical states, such
as memory states. For example, one or more parameters,
such as referring to an electronic document and/or an
clectronic file comprising an image, may include, as
examples, time of day at which an i1mage was captured,
latitude and longitude of an 1image capture device, such as a
camera, for example, etc. In another example, one or more
parameters relevant to digital content, such as digital content
comprising a technical article, as an example, may 1nclude
one or more authors, for example. Claimed subject matter 1s
intended to embrace meaningiul, descriptive parameters 1n
any format, so long as the one or more parameters comprise
physical signals and/or states, which may include, as param-
cter examples, collection name (e.g., electronic file and/or
clectronic document 1dentifier name), technique of creation,
purpose of creation, time and date of creation, logical path
if stored, coding formats (e.g., type of computer instructions,
such as a markup language) and/or standards and/or speci-
fications used so as to be protocol compliant (e.g., meaning
substantially compliant and/or substantially compatible) for
one or more uses, and so forth.

Signal packet communications and/or signal frame com-
munications, also referred to as signal packet transmissions
and/or signal frame transmissions (or merely “signal pack-

10

15

20

25

30

35

40

45

50

55

60

65

40

ets” or “signal frames™), may be communicated between
nodes of a network, where a node may comprise one or more
network devices and/or one or more computing devices, for
example. As an illustrative example, but without limitation,
a node may comprise one or more sites employing a local
network address, such as in a local network address space.
[ikewise, a device, such as a network device and/or a
computing device, may be associated with that node. It 1s
also noted that in the context of this disclosure, the term
“transmission” 1s intended as another term for a type of
signal communication that may occur in any one of a variety
of situations. Thus, 1t 1s not mtended to 1imply a particular
directionality of communication and/or a particular 1nitiat-
ing end of a communication path for the “transmission”
communication. For example, the mere use of the term 1n
and of itself 1s not intended, 1n the context of the present
disclosure, to have particular implications with respect to the
one or more signals being communicated, such as, for
example, whether the signals are being communicated “to”
a particular device, whether the signals are being commu-
nicated “from” a particular device, and/or regarding which
end of a communication path may be initiating communi-
cation, such as, for example, 1n a “push type” of signal
transier or 1 a “pull type” of signal transier. In the context
of the present disclosure, push and/or pull type signal
transters are distinguished by which end of a communica-
tions path 1nitiates signal transfer.

Thus, a signal packet and/or frame may, as an example, be
communicated via a communication channel and/or a com-
munication path, such as comprising a portion of the Internet
and/or the Web, from a site via an access node coupled to the
Internet or vice-versa. Likewise, a signal packet and/or
frame may be forwarded via network nodes to a target site
coupled to a local network, for example. A signal packet
and/or frame communicated via the Internet and/or the Web,
for example, may be routed via a path, such as either being
“pushed” or “pulled,” comprising one or more gateways,
servers, etc. that may, for example, route a signal packet
and/or frame, such as, for example, substantially 1n accor-
dance with a target and/or destination address and availabil-
ity of a network path of network nodes to the target and/or
destination address. Although the Internet and/or the Web
comprise a network of mteroperable networks, not all of
those interoperable networks are necessarily available and/
or accessible to the public.

In the context of the particular disclosure, a network
protocol, such as for communicating between devices of a
network, may be characterized, at least in part, substantially
in accordance with a layered description, such as the so-
called Open Systems Interconnection (OSI) seven layer type
of approach and/or description. A network computing and/or
communications protocol (also referred to as a network
protocol) refers to a set of signaling conventions, such as for
communication transmissions, for example, as may take
place between and/or among devices in a network. In the
context of the present disclosure, the term “between” and/or
similar terms are understood to include “among™ 1f appro-
priate for the particular usage and vice-versa. Likewise, 1n
the context of the present disclosure, the terms “compatible
with,” “comply with” and/or similar terms are understood to
respectively include substantial compatibility and/or sub-
stantial compliance.

A network protocol, such as protocols characterized sub-
stantially in accordance with the aforementioned OSI
description, has several layers. These layers are referred to
as a network stack. Various types of communications (e.g.,
transmissions), such as network communications, may occur

22

US 11,017,140 Bl

41

across various layers. A lowest level layer mn a network
stack, such as the so-called physical layer, may characterize
how symbols (e.g., bits and/or bytes) are communicated as
one or more signals (and/or signal samples) via a physical
medium (e.g., twisted pair copper wire, coaxial cable, fiber
optic cable, wireless air interface, combinations thereof,
etc.). Progressing to higher-level layers 1n a network proto-
col stack, additional operations and/or features may be
available via engaging in communications that are substan-
tially compatible and/or substantially compliant with a par-
ticular network protocol at these higher-level layers. For
example, higher-level layers of a network protocol may, for
example, allect device permissions, user permissions, etc.

A network and/or sub-network, in an embodiment, may
communicate via signal packets and/or signal frames, such
via participating digital devices and may be substantially
compliant and/or substantially compatible with, but 1s not
limited to, now known and/or to be developed, versions of
any of the following network protocol stacks: ARCNET,
AppleTalk, ATM, Bluetooth, DECnet, Ethernet, FDDI,
Frame Relay, HIPPI, IEEE 1394, IEEE 802.11, IEEE-488,
Internet Protocol Suite, IPX, Myrnet, OSI Protocol Suite,
QsNet, RS-232, SPX, System Network Architecture, Token
Ring, USB, and/or X.25. A network and/or sub-network may
employ, for example, a version, now known and/or later to
be developed, of the following: TCP/IP, UDP, DECnet,
NetBEUI, IPX, AppleTalk and/or the like. Versions of the
Internet Protocol (IP) may include 1Pv4, IPv6, and/or other
later to be developed versions.

Regarding aspects related to a network, including a com-
munications and/or computing network, a wireless network
may couple devices, including client devices, with the
network. A wireless network may employ stand-alone, ad-
hoc networks, mesh networks, Wireless LAN (WLAN)
networks, cellular networks, and/or the like. A wireless
network may further include a system of terminals, gate-
ways, routers, and/or the like coupled by wireless radio
links, and/or the like, which may move freely, randomly
and/or organize themselves arbitrarily, such that network
topology may change, at times even rapidly. A wireless
network may further employ a plurality of network access
technologies, including a version of Long Term Evolution
(LTE), WLAN, Wireless Router (WR) mesh, 2nd, 3rd, or 4th
generation (2G, 3G, or 4G) cellular technology and/or the
like, whether currently known and/or to be later developed.
Network access technologies may enable wide area cover-
age for devices, such as computing devices and/or network
devices, with varying degrees of mobility, for example.

A network may enable radio frequency and/or other
wireless type communications via a wireless network access
technology and/or air interface, such as Global System for
Mobile communication (GSM), Universal Mobile Telecom-
munications System (UMTS), General Packet Radio Ser-
vices (GPRS), Enhanced Data GSM Environment (EDGE),
3GPP Long Term Evolution (LTE), LTE Advanced, Wide-
band Code Division Multiple Access (WCDMA), Bluetooth,
ultra-wideband (UWB), IEEE 802.11 (including, but not
limited to, IEEE 802.11b/g/n), and/or the like. A wireless
network may include virtually any type of now known
and/or to be developed wireless communication mechanism
and/or wireless communications protocol by which signals
may be communicated between devices, between networks,
within a network, and/or the like, including the foregoing, of
course.

In one example embodiment, as shown in FIG. 8, a system
embodiment may comprise a local network (e.g., a second
device 804 and a computer-readable medium 840) and/or

10

15

20

25

30

35

40

45

50

55

60

65

42

another type of network, such as a computing and/or com-
munications network. For purposes of illustration, therefore,
FIG. 8 shows an embodiment 800 of a system that may be
employed to implement either type or both types ol net-
works. Network 808 may comprise one or more network
connections, links, processes, services, applications, and/or
resources to facilitate and/or support communications, such
as an exchange ol communication signals, for example,
between a computing device, such as 802, and another
computing device, such as 806, which may, for example,
comprise one or more client computing devices and/or one
or more server computing device. By way of example, but
not limitation, network 808 may comprise wireless and/or
wired communication links, telephone and/or telecommuni-
cations systems, Wi-F1 networks, Wi-MAX networks, the
Internet, a local area network (LAN), a wide area network
(WAN), or any combinations thereof.

Example devices in FIG. 8 may comprise features, for
example, ol a client computing device and/or a server
computing device, in an embodiment. It 1s further noted that
the term computing device, in general, whether employed as
a client and/or as a server, or otherwise, refers at least to a
processor and a memory connected by a communication
bus. Likewise, in the context of the present disclosure at

least, this 1s understood to refer to suflicient structure within
the meaning of 35 § USC 112 (1) so that 1t 1s specifically

intended that 35 § USC 112 (1) not be implicated by use of
the term “computing device” and/or similar terms; however,
if 1t 1s determined, for some reason not immediately appar-
ent, that the foregoing understanding cannot stand and that
35 § USC 112 (1) therefore, necessarily 1s implicated by the
use of the term “computing device” and/or similar terms,
then, 1t 1s mtended, pursuant to that statutory section, that
corresponding structure, material and/or acts for performing
one or more functions be understood and be interpreted to be
described at least in FIGS. 1-7 of the present disclosure.

Referring now to FIG. 8, 1n an embodiment, first and third
devices 802 and 806 may be capable of rendering a graphical
user terface (GUI) for a network device and/or a comput-
ing device, for example, so that a user-operator may engage
in system use. Device 804 may potentially serve a similar
function 1n this illustration. Likewise, 1n FIG. 8, computing
device 802 (‘first device’ i figure) may interface with
computing device 804 (‘second device’ i figure), which
may, for example, also comprise features of a client com-
puting device and/or a server computing device, in an
embodiment. Processor (e.g., processing device) 820 and
memory 822, which may comprise primary memory 824 and
secondary memory 826, may communicate by way of a
communication bus 815, for example. The term “computing
device,” 1n the context of the present disclosure, refers to a
system and/or a device, such as a computing apparatus, that
includes a capability to process (e.g., perform computations)
and/or store digital content, such as electronic files, elec-
tronic documents, measurements, text, images, video, audio,
etc. 1n the form of signals and/or states. Thus, a computing
device, 1n the context of the present disclosure, may com-
prise hardware, software, firmware, or any combination
thereol (other than software per se). Computing device 804,
as depicted 1n FIG. 8, 1s merely one example, and claimed
subject matter 1s not limited 1n scope to this particular
example.

For one or more embodiments, a computing device may
comprise, for example, any of a wide range of digital
clectronic devices, including, but not limited to, desktop
and/or notebook computers, high-definition televisions,
digital versatile disc (DVD) and/or other optical disc players

US 11,017,140 Bl

43

and/or recorders, game consoles, satellite television receiv-
ers, cellular telephones, tablet devices, wearable devices,
personal digital assistants, mobile audio and/or video play-
back and/or recording devices, or any combination of the
foregoing. Further, unless specifically stated otherwise, a
process as described, such as with reference to flow dia-
grams and/or otherwise, may also be executed and/or
allected, 1n whole or 1n part, by a computing device and/or
a network device. A device, such as a computing device
and/or network device, may vary in terms of capabilities
and/or features. Claimed subject matter 1s intended to cover
a wide range of potential variations. For example, a device
may include a numeric keypad and/or other display of
limited functionality, such as a monochrome liquid crystal
display (LLCD) for displaying text, for example. In contrast,
however, as another example, a web-enabled device may
include a physical and/or a virtual keyboard, mass storage,
one or more accelerometers, one or more gyroscopes, global
positioning system (GPS) and/or other location-identifying,

type capability, and/or a display with a higher degree of
functionality, such as a touch-sensitive color 2D or 3D
display, for example.

As suggested previously, communications between a
computing device and/or a network device and a wireless
network may be in accordance with known and/or to be
developed network protocols including, for example, global
system for mobile communications (GSM), enhanced data
rate for GSM evolution (EDGE), 802.11b/g/n/h, etc., and/or
worldwide interoperability for microwave access
(WiIMAX). A computing device and/or a networking device
may also have a subscriber i1dentity module (SIM) card,
which, for example, may comprise a detachable or embed-
ded smart card that 1s able to store subscription content of a
user, and/or 1s also able to store a contact list. A user may
own the computing device and/or network device or may
otherwise be a user, such as a primary user, for example. A
device may be assigned an address by a wireless network
operator, a wired network operator, and/or an Internet Ser-
vice Provider (ISP). For example, an address may comprise
a domestic or international telephone number, an Internet
Protocol (IP) address, and/or one or more other identifiers.
In other embodiments, a computing and/or communications
network may be embodied as a wired network, wireless
network, or any combinations thereof.

A computing and/or network device may include and/or
may execute a variety of now known and/or to be developed
operating systems, derivatives and/or versions thereof,
including computer operating systems, such as Windows,
10S, Linux, a mobile operating system, such as 1085,
Android, Windows Mobile, and/or the like. A computing
device and/or network device may include and/or may
execute a variety of possible applications, such as a client
software application enabling communication with other
devices. For example, one or more messages (e.g., content)
may be communicated, such as via one or more protocols,
now known and/or later to be developed, suitable for com-
munication of e-mail, short message service (SMS), and/or
multimedia message service (MMS), including via a net-
work, such as a social network, formed at least 1n part by a
portion ol a computing and/or communications network,
including, but not limited to, Facebook, LinkedIn, Twaitter,
Flickr, and/or Google+, to provide only a few examples. A
computing and/or network device may also mclude execut-
able computer instructions to process and/or communicate
digital content, such as, for example, textual content, digital
multimedia content, and/or the like. A computing and/or
network device may also include executable computer

10

15

20

25

30

35

40

45

50

55

60

65

44

instructions to perform a variety of possible tasks, such as
browsing, searching, playing various forms of digital con-
tent, including locally stored and/or streamed video, and/or
games such as, but not limited to, fantasy sports leagues. The
foregoing 1s provided merely to illustrate that claimed
subject matter 1s intended to include a wide range of possible
features and/or capabilities.

In FIG. 8, computing device 802 may provide one or more
sources ol executable computer instructions in the form
physical states and/or signals (e.g., stored in memory states),
for example. Computing device 802 may communicate with
computing device 804 by way of a network connection, such
as via network 808, for example. As previously mentioned,
a connection, while physical, may not necessarily be tan-
gible. Although computing device 804 of FIG. 8 shows
various tangible, physical components, claimed subject mat-
ter 1s not limited to computing devices having only these
tangible components as other implementations and/or
embodiments may include alternative arrangements that
may comprise additional tangible components or fewer
tangible components, for example, that function differently
while achieving similar results. Rather, examples are pro-
vided merely as 1llustrations. It 1s not intended that claimed
subject matter be limited 1n scope to illustrative examples.

Memory 822 may comprise any non-transitory storage
mechanism. Memory 822 may comprise, for example, pri-
mary memory 824 and secondary memory 826, additional
memory circuits, mechanisms, or combinations thereof may
be used. Memory 822 may comprise, for example, random
access memory, read only memory, etc., such as 1n the form
of one or more storage devices and/or systems, such as, for
example, a disk drive including an optical disc drive, a tape
drive, a solid-state memory drive, etc., just to name a few
examples.

Memory 822 may be utilized to store a program of
executable computer instructions. For example, processor
820 may fetch executable instructions from memory and
proceed to execute the fetched instructions. Memory 822
may also comprise a memory controller for accessing device
readable-medium 840 that may carry and/or make accessible
digital content, which may include code, and/or 1nstructions,
for example, executable by processor 820 and/or some other
device, such as a controller, as one example, capable of
executing computer nstructions, for example. Under direc-
tion of processor 820, a non-transitory memory, such as
memory cells storing physical states (e.g., memory states),
comprising, for example, a program ol executable computer
instructions, may be executed by processor 820 and able to
generate signals to be communicated via a network, for
example, as previously described. Generated signals may
also be stored 1n memory, also previously suggested.

Memory 822 may store electronic files and/or electronic
documents, such as relating to one or more users, and may
also comprise a device-readable medium that may carry
and/or make accessible content, including code and/or
instructions, for example, executable by processor 820 and/
or some other device, such as a controller, as one example,
capable of executing computer instructions, for example. As
previously mentioned, the term electronic file and/or the
term electronic document are used throughout this document
to refer to a set of stored memory states and/or a set of
physical signals associated 1n a manner so as to thereby form
an electronic file and/or an electronic document. That 1s, it
1s not meant to implicitly reference a particular syntax,
format and/or approach used, for example, with respect to a
set of associated memory states and/or a set of associated
physical signals. It 1s further noted an association of memory

US 11,017,140 Bl

45

states, for example, may be 1n a logical sense and not
necessarily in a tangible, physical sense. Thus, although
signal and/or state components of an electronic file and/or
clectronic document, are to be associated logically, storage
thereol, for example, may reside 1n one or more diflerent 5
places 1n a tangible, physical memory, 1n an embodiment.

Algorithmic descriptions and/or symbolic representations
are examples of techniques used by those of ordinary skill 1n
the signal processing and/or related arts to convey the
substance of their work to others skilled in the art. An 10
algorithm 1s, 1 the context of the present disclosure, and
generally, 1s considered to be a seli-consistent sequence of
operations and/or similar signal processing leading to a
desired result. In the context of the present disclosure,
operations and/or processing involve physical mampulation 15
ol physical quantities. Typically, although not necessarily,
such quantities may take the form of electrical and/or
magnetic signals and/or states capable of being stored,
transierred, combined, compared, processed and/or other-
wise manipulated, for example, as electronic signals and/or 20
states making up components of various forms of digital
content, such as signal measurements, text, images, video,
audio, etc.

It has proven convenient at times, principally for reasons
of common usage, to refer to such physical signals and/or 25
physical states as bits, values, elements, parameters, sym-
bols, characters, terms, numbers, numerals, measurements,
content and/or the like. It should be understood, however,
that all of these and/or similar terms are to be associated with
appropriate physical quantities and are merely convenient 30
labels. Unless specifically stated otherwise, as apparent from
the preceding discussion, 1t 1s appreciated that throughout
this specification discussions utilizing terms such as “pro-
cessing,” “‘computing,” “‘calculating,” “determining”,
“establishing”, “obtaimng”, ‘“identifying”, “selecting”, 35
“generating”’, and/or the like may refer to actions and/or
processes ol a specific apparatus, such as a special purpose
computer and/or a stmilar special purpose computing and/or
network device. In the context of this specification, there-
fore, a special purpose computer and/or a similar special 40
purpose computing and/or network device 1s capable of
processing, manipulating and/or transforming signals and/or
states, typically in the form of physical electronic and/or
magnetic quantities, within memories, registers, and/or other
storage devices, processing devices, and/or display devices 45
of the special purpose computer and/or similar special
purpose computing and/or network device. In the context of
this particular disclosure, as mentioned, the term “specific
apparatus” therefore includes a general purpose computing
and/or network device, such as a general purpose computer, 50
once 1t 1s programmed to perform particular functions, such
as pursuant to program soitware instructions.

In some circumstances, operation of a memory device,
such as a change 1n state from a binary one to a binary zero
or vice-versa, for example, may comprise a transformation, 55
such as a physical transformation. With particular types of
memory devices, such a physical transformation may com-
prise a physical transformation of an article to a different
state or thing. For example, but without limitation, for some
types of memory devices, a change 1n state may ivolve an 60
accumulation and/or storage of charge or a release of stored
charge. Likewise, in other memory devices, a change of state
may comprise a physical change, such as a transformation in
magnetic orientation. Likewise, a physical change may
comprise a transiformation 1 molecular structure, such as 65
from crystalline form to amorphous form or vice-versa. In
still other memory devices, a change 1n physical state may

46

involve quantum mechanical phenomena, such as, superpo-
sition, entanglement, and/or the like, which may involve
quantum bits (qubits), for example. The foregoing 1s not
intended to be an exhaustive list of all examples 1n which a
change in state from a binary one to a binary zero or
vice-versa 1n a memory device may comprise a transforma-
tion, such as a physical, but non-transitory, transformation.
Rather, the foregoing 1s intended as illustrative examples.

Referring again to FIG. 8, processor 820 may comprise
one or more circuits, such as digital circuits, to perform at
least a portion of a computing procedure and/or process. By
way ol example, but not limitation, processor 820 may
comprise one or more processors, such as controllers, micro-
processors, microcontrollers, application specific integrated
circuits, digital signal processors, programmable logic
devices, field programmable gate arrays, the like, or any
combination thereof. In various implementations and/or
embodiments, processor 820 may perform signal process-
ing, typically substantially in accordance with fetched
executable computer instructions, such as to manipulate
signals and/or states, to construct signals and/or states, etc.,
with signals and/or states generated in such a manner to be
communicated and/or stored in memory, for example.

FIG. 8 also 1llustrates device 804 as including a compo-
nent 832 operable with input/output devices, for example, so
that signals and/or states may be appropriately communi-
cated between devices, such as device 804 and an input
device and/or device 804 and an output device. A user may
make use of an input device, such as a computer mouse,
stylus, track ball, keyboard, and/or any other similar device
capable of recerving user actions and/or motions as 1nput
signals. Likewise, a user may make use of an output device,
such as a display, a printer, etc., and/or any other device
capable of providing signals and/or generating stimuli for a
user, such as wvisual stimuli, audio stimuli and/or other
similar stimuli.

In the preceding description, various aspects of claimed
subject matter have been described. For purposes of expla-
nation, specifics, such as amounts, systems and/or configu-
rations, as examples, were set forth. In other instances,
well-known features were omitted and/or simplified so as
not to obscure claimed subject matter. While certain features
have been 1llustrated and/or described herein, many modi-
fications, substitutions, changes and/or equivalents will now
occur to those skilled in the art. It 1s, therefore, to be
understood that the appended claims are intended to cover
all modifications and/or changes as fall within claimed
subject matter.

What 1s claimed 1s:

1. A method, comprising:

veritying one or more hardware solutions at least 1n part
by:

clectronically determining a search space defined by a
first Backus-Naur form (BNF) representation of a com-
puter programming language;

clectronically restricting the search space to implement a
target functionality representing patterns of electronic
behavior inherent to one or more hardware solutions,
including obtaining an extended Backus-Naur form

(EBNF) representation substantially similar or func-
tionally equivalent, or a combination thereot, to the first
BNF representation and pruning the EBNF represen-
tation for the target functionality;

converting the EBNF representation to a second BNF
representation to produce a subset of the first BNF
representation focused on the target functionality; and

US 11,017,140 Bl

47

determining whether the one or more hardware solutions
are compliant with the first BNF representation defin-
ing the search space.

2. The method of claim 1, wherein the search space 1s
defined via a grammar.

3. The method of claim 2, wherein the grammar comprises
a context-iree grammar.

4. The method of claim 1, wherein the computer pro-
gramming language comprises a hardware description lan-
guage (HDL).

5. The method of claim 4, wherein the HDL comprises
Verilog.

6. The method of claim 1, further comprising pruning the
subset of the first BNF representation focused on the target
functionality to implement one or more syntactic constraints
in accordance with a particular characteristic of the target
functionality.

7. The method of claim 1, further comprising altering one
or more rules of the subset of the first BNF representation
focused on the target functionality to inject context related
to the target functionality.

8. The method of claim 1, further comprising altering one
or more rules of the subset of the first BNF representation
tocused on the target functionality to change a variable name
to a constant.

9. The method of claim 1, wherein the determining
whether the one or more hardware solutions are compliant
with the first BNF representation of the search space
includes determining whether the one or more hardware
solutions can compile without error.

10. The method of claim 1, wherein the determining
whether the one or more hardware solutions are compliant
with the first BNF representation of the search space

includes determining whether compiled code corresponding
to the one or more hardware solutions can be successtully
executed.

11. The method of claim 1, wherein the plurality of
hardware solutions comprise a plurality of linear feedback
shift registers (LFSRs).

12. The method of claim 1, wherein the target function-
ality comprises a functionality of LFSRs.

13. The method of claim 1, wherein said evolutionary
criteria 1s applied via one or more grammatical evolution
operations.

14. The method of claim 13, wherein the one or more
grammatical evolution operations are implemented, at least
in part, via a grammatical evolution tool.

15. The method of claim 14, wherein the grammatical
evolution tool comprises PonyGE2, and wherein the deter-
mimng whether the one or more hardware solutions are
compliant with the first BNF representation of the search
space 1s performed at least 1n part utilizing PonyGE?2.

16. An apparatus comprising:

one or more processors coupled to a memory, the one or

more processors to verily one or more hardware solu-

tions, wherein, to verily the one or more hardware

solutions, the one or more processors to:

clectronically determine a search space to be defined by
a first Backus-Naur form (BNF) representation of a
computer programming language;

clectronically restrict the search space to implement a
target functionality to represent patterns of electronic
behavior inherent to one or more of hardware solu-

10

15

20

25

30

35

40

45

50

55

60

48

tions, to include the one or more processors to obtain
an extended Backus-Naur form (EBNF) representa-
tion substantially similar or functionally equivalent,
or a combination thereot, to the first BNF represen-
tation and prune the EBNF representation for the
target Tunctionality;

convert the EBNF representation to a second BNF
representation to produce a subset of the first BNF
representation focused on the target functionality;
and

determine whether the one or more hardware solutions
are compliant with the first BNF representation
defining the search space.

17. The apparatus of claim 16, wherein, to electronically
restrict the search space, the one or more processors further
to:

define the evolutionary criteria to encourage the patterns

of electronic behavior inherent to the one or more
hardware solutions; and

obtain a syntactically correct form of the first BNF

representation based, at least i part, on the to be
defined evolutionary criteria.

18. The apparatus of claim 16, wherein, to determine
whether the one or more hardware solutions are compliant
with the first BNF representation of the search space, the one
or more processors to compile the one or more hardware
solutions to generate compiled code corresponding to the
one or more hardware solutions.

19. The apparatus of claim 16, wherein, to determine
whether the one or more hardware solutions are compliant
with the first BNF representation of the search space, the one
or more processors to determine whether compiled code
corresponding to the one or more hardware solutions can be
successiully executed.

20. An article, comprising: a non-transitory storage
medium having stored thereon instructions executable by a
computing device to:

verily one or more hardware solutions, wherein, to verity

the one or more hardware solutions, the computing

device to:

clectronically determine a search space to be defined by
a first Backus-Naur form (BNF) representation of a
computer programming language;

clectronically restrict the search space to implement a
target functionality to represent patterns of electronic
behavior inherent to one or more of hardware solu-
tions, to include the one or more processors to obtain
an extended Backus-Naur form (EBNF) representa-
tion substantially similar or functionally equivalent,
or a combination thereof, to the first BNF represen-
tation and prune the EBNF representation for the
target functionality;

convert the EBNF representation to a second BNF
representation to produce a subset of the first BNF
representation focused on the target functionality;
and

determine whether the one or more hardware solutions
are compliant with the first BNF representation
defining the search space.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

