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ESCAPE PROFILING FOR THERAPEUTIC
AND VACCINE DEVELOPMENT

STATEMENT OF FEDERALLY SPONSOR.
RESEARCH OR DEVELOPMENT

s
w»

No part of the claimed subject matter was made with
government support.

TECHNICAL FIELD

This application relates generally to techniques to facili-
tate antiviral and vaccine development.

BACKGROUND

The ability for viruses to mutate and evade the human
immune system and cause infection, called viral escape,
remains an obstacle to development of antiviral therapies, as
well as and vaccines. For example, viral mutations that
allow an infection to escape from recognition by neutraliz-
ing antibodies have prevented the development of a univer-
sal antibody-based vaccine for influenza or human 1mmu-
nodeficiency virus (HIV) and are a concern in the
development of therapies for severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) infection. Escape has
motivated high-throughput experimental techniques that
perform causal escape profiling of all single-residue muta-
tions to a viral protein. Such techniques, however, require
substantial effort to profile even a single viral strain and
testing the escape potential of many (combinatorial) muta-
tions 1n many viral strains remains infeasible.

There remamns a need to provide new techmical
approaches to predict viral escape mutations to enable rapid
antiviral and vaccine development. The techniques of this
disclosure address this technical problem.

BRIEF SUMMARY

According to this disclosure, viral escape 1s modeled with
machine learning algorithms originally developed ifor
human natural language. The approach herein enables rapid,
eilicient and accurate identification of particular escape
mutations as those that preserve viral infectivity but cause a
virus to look different to the immune system, akin to word
changes that preserve a sentence’s grammaticality but
change 1ts meaning.

A method of wviral escape profiling according to this
disclosure 1s used 1n association with antiviral therapeutic or
vaccine design and development workilows and systems.
The method begins by training a language-based model
against training data comprising a corpus of viral protein
sequences of a given viral protein to model a viral escape
profile of the given viral protein. The corpus of viral protein
sequences of the given viral protein comprises copies of
amino acid sequences, preferably from multiple host spe-
cies, and the language-based model may be trained n an
unsupervised manner, without data about known escape
mechanisms. The viral escape profile (a model) represents,
for one or more regions of the given viral protein, a relative
viral escape potential of a mutation (a single one, or a
combinatorial), the relative viral escape potential being
derived as a function that combines both “semantic change,”
representing a degree to which the mutation 1s recognized by
the human immune system (1.e., antigenic change), and
“orammaticality,” representing a degree to which the muta-
tion aflects viral infectivity (i.e. viral fitness). The notions of
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semantic change and grammaticality derive from their ana-
logues 1n natural language processing. Using the model, a
region of the given viral protein having an escape potential
of interest 1s then identified. Information regarding the
region 1s then output to a vaccine or anti-viral therapeutic
design and development worktlow. For example, when the
escape potential of interest 1s a low escape potential, the
region 1s targeted for vaccine development; when the escape
potential of 1nterest 1s a high escape potential, the region 1s
targeted for anti-viral therapeutic development.

In one representative, but non-limiting implementation,
the language-based model comprises a Bi-directional Long
Short-Term Memory (BiLSTM) architecture, a deep learn-
ing neural network that comprises a set of hidden layers, and
an output layer. In this implementation, semantic change 1s
encoded as distances in an embedding space 1n the set of
hidden layers, and grammaticality 1s an emitted probability
output from the output layer. Other deep learning techniques
(e.g., transformer-based approaches, such as GTL-3) may be
used to train the model 1n lieu of recurrent architectures.

In a specific embodiment, the given viral protein 1s one of:
influenza hemagglutimin, HIV Env, and SARS-CoV-2 Spike.

The foregoing has outlined some of the more pertinent
features of the subject matter. These features should be
construed to be merely illustrative. Many other beneficial
results can be attained by applying the disclosed subject
matter 1n a different manner or by modifying the subject
matter as will be described.

BRIEF DESCRIPTION OF THE

DRAWINGS

For a more complete understanding of the subject matter
and the advantages thereol, reference 1s now made to the
tollowing descriptions taken 1n conjunction with the accom-
panying drawings, in which:

FIG. 1A depicts a plot of viability/fitness (grammaticality)
versus antigenic variation (semantic landscape) showing
how constrained semantic change search (CSCS) for viral
escape prediction 1s used to search for mutations to a viral
sequence that preserve fitness while being antigenically
different:;

FIG. 1B depicts a viral protein-based language model
according to the techniques of this disclosure and, 1in par-
ticular, a neural language model with a bidirectional long
short-term memory (BiLSTM) architecture used to learn
both semantics (as a hidden layer output) and grammatical-
ity (as the language model output);

FIG. 1C depicts how CSCS-proposed changes to an
English language headline makes large changes to the over-
all semantic meaning of a sentence or to the part-of-speech
structure;

FIG. 2A depicts a UMAP visualization of the high-
dimensional semantic embedding landscape of influenza HA

subtype;
FIG. 2B depicts a UMAP visualization of the high-

dimensional semantic embedding landscape of influenza HA
host species;

FIG. 2C 1s a portion of FIG. 2B enlarged to show a cluster
consisting of avian sequences from the 2009 flu season
onwards also contains the 1918 pandemic flue sequence;

FIG. 2D depicts Louvain clusters of the HA semantic
embeddings;

FIG. 2E depicts the HIV Env semantic landscape and, 1n
particular, the subtype-related distributional structure);

FIG. 2F deplcts the Louvain clustering purity for the HIV
Env subtype in FIG. 2F;
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FIG. 2G depicts coronavirus spike host species; the call-
out portion shows sequence proximity in the semantic

landscape of coronavirus spike proteins 1s consistent with
the possible zoonotic origin of SARS-CoV-1, MERS-CoV,
and SARS-CoV-2;

FIG. 3A depicts semantic change and grammaticality for
several viral proteins;

FIG. 3B shows how CSCS compares with other known
techniques;

FIG. 3C depicts an escape potential plot of semantic
change versus grammaticality for influenza HI;

FIG. 3D 1s a plot of semantic change versus grammati-
cality across 891 surveilled SARS-CoV-2 Spike sequences;

FIG. 4 depicts protein structure visualizations for influ-
enza H1 and H3, and for the SARS-Cov-2 Spike, showing
how language modeling 1dentifies those parts of a protein
that are not prone to escape; and

FIG. 5 depicts FIGS. 5A and 5B depict various cartoon
and surface visualizations of escape potential for several
viral protein structures.

DETAILED DESCRIPTION

According to this disclosure, language modeling 1s used
to shed light on those parts of a protein not prone to escape,
thereby enabling more-targeted vaccine and anti-viral design
and development. As will be described, the approach herein
trains an algorithm that learns to model escape, preferably
from viral sequence data alone. It 1s not unlike learning
properties of natural language from large text corpuses,
since languages like English and Japanese use sequences of
words to encode complex meanings and have complex rules
(c.g., grammar). To escape, a mutant virus must preserve
infectivity and evolutionary {fitness, 1.e., 1t must obey a
“orammar” ol biological rules, and the mutant must no
longer be recognized by the immune system, analogous to a
change 1n the “meaning” or the “semantics™ of the virus. As
will be seen, the technique of this disclosure models viral
escape preferably by characterizing both semantic change
and grammaticality. More specifically, the approach (some-
times referred to herein as Constrained Semantic Change
Search (CSCS) for viral escape prediction 1s designed to
search for mutations to a viral sequence that preserve fitness
while being antigenically different. This corresponds to a
mutant sequent that 1s grammatical (1.e., conforms to the
structure and rules of a language), but has high semantic
change with respect to the original (e.g., wildtype) sequence.

Currently, computational models of protein evolution
focus either on fitness or on functional/semantic similarity,
whereas the approach herein (as depicted in FIG. 1A)
preferably understands both. Rather than developing two
separate models of fitness and function, preferably a single
neural language model 1s used that simultaneously achieves
these tasks. In one preferred implementation (although not
necessarily limiting), a neural language model with a bidi-
rectional long short-term memory (BiLSTM) architecture 1s
used to learn both semantics (e.g., as a hidden layer output)
and grammaticality to predict escape. FIG. 1C provides an
example of this approach with respect to several natural
language statements. As the examples 1 FIG. 1C show,
CSCS-proposed changes to a news headline (1implemented
using a neural language model trained on English news
headlines) makes large changes to the overall semantic
meaning of a sentence or to the part-of-speech structure. The
semantically-closest mutated sentence according to the same
model, however, 1s largely synonymous with the original
headline. The language model learns the probability of a
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token (e.g., an English word) given 1ts sequence context
(e.g., a sentence). Internally, the language model constructs
a semantic representation, or an “embedding,” for a given
sequence, and the output of the language model encodes
how well a particular token fits within the rules of the
language, or grammaticality and (as used herein) can also be
thought of as “syntactic fitness.” According to this disclo-
sure, the principles used to train a language model on a
sequence ol English words are used to train a language
model on a sequence of amino acids. Although 1mmune
selection occurs on phenotypes (e.g., protein structures),
evolution dictates that selection 1s reflected within genotypes
(e.g., protein sequences), which—according to this disclo-
sure—language models leverage to learn functional proper-
ties from sequence variation.

Thus, 1 the approach herein, language model-encoded
semantic change corresponds to antigenic change, language
model grammaticality captures viral fitness, and both high
semantic change and grammaticality predict viral escape.
The CSCS task search for mutations with both high gram-
maticality and high semantic change. Advantageously, the
preferred language model mmplementation of CSCS as
described herein uses sequence data alone (which 1s easier to
obtain than structure) and requires no explicit escape infor-
mation (1.e. 1s completely unsupervised), 1t does not rely on
multiple sequence alignment (MSA) preprocessing (1.€., 1t 18
alignment-free), and it captures global relationships across
an entire sequence (e.g., because word choice at the begin-
ning of a sentence can influence word choice at the end).

Intuitively, a goal of the approach herein i1s to i1dentily
mutations that induce high semantic change (e.g., a large
impact on biological function) while being grammatically
acceptable (e.g., biologically wiable). More precisely,
assume a sequence of tokens defined as X&' (X, . . ., Xx)
such that x &X, 1€[N], where X 1s a finite alphabet (e.g.,
characters or words for natural language, or amino acids for
protein sequence). Let X, denote a mutation at position 1 and
the mutated sequence as x[X,]& (..., X,_(, X, X115+ - - ).

The approach first requires a semantic embedding

ze £ (x), where f:XV—=R?* embeds discrete-alphabet
sequences mmto a K-dimensional continuous space, where,
ideally, closeness 1n embedding space would correspond to
semantic similanty (e.g., more similar 1n meaning). Then,
denote semantic change as the distance 1n embedding space,
1.e.,

Az[%)] = [z [F]=lf o~/ (2D (1)

where ||*|| denotes a vector norm. The grammaticality of a
mutation 1s described by

(2)

which takes values close to zero 1f x|X,] 1s not grammatical
and close to one if 1t 1s grammatical. A mutation 1s consid-
ered grammatical 11 1t conforms to the rules (e.g., morphol-
ogy and syntax) within a given language; violation of these
rules results 1n a loss of grammaticality.

An objective of the approach herein combines semantic
change and grammaticality. Taking inspiration from upper
confidence bound acquisition functions 1n Bayesian optimi-
zation (42), terms (1) and (2) are combined with a weight
parameter PE[0, ) above to compute:

pX;lx)

a(Fx) = Az[£]+Pp (X 1x)

for each possible mutation X,. Mutations X, are priorntized
based on a(X; x); this ranking of mutations based on
semantic change and grammaticality 1s sometimes referred

to herein as CSCS.



US 11,011,253 Bl

S

Algorithms

Algorithms for CSCS potentially take many forms; for
example, separate algorithms could be used to compute
Az[X.] and p(X,Ix) independently, or a two-step approach
might be possible that computes one of the terms based on 5
the value of the other.

Instead, a preferred technique herein uses a single

approach that computes both terms simultaneously and, 1n
particular, based on learned language models that learn the
probability distribution of a word given its context. One 10
language model considers the full sequence context of a
word and learns a latent variable probability distribution p
and function fg over all 1€[N] where:

ﬁ(xf|x[mx{f}:ff):ﬁ(x Z;) and Z, f(x[N] W }-) 15

1.e., latent variable z, encodes the sequence context X,
(..., X,_q, X;,q» . . . ) such that x, 1s conditionally
independent of its context given the value of z..

Different aspects of the language model are then to
describe semantic change and grammaticality, e.g., by set- 20
ting terms (1) and (2) as:

Az[%,] = [E-2[%], and p(%;lx) = (17

where
25

30
is the average embedding across all positions, Z[X,] is

defined similarly but for the mutated sequence, and ||*||, is the

¢ . norm, chosen because of more favorable properties
compared to standard distance metrics, although some other
metric may be utilized. 3>
Effectively, distances in embedding space approximate
semantic change, and the emitted probability approximates
grammaticality. As used herein, the emitted probability 1s
called “grammaticality” because in natural language tasks, 1t
tends to be high for grammatically correct sentences. In the 49
case of viral sequences, the training distribution consists of
viral proteins that have evolved for ligh fitness/virality, so
the approach herein hypothesizes that high grammaticality
corresponds to high viral fitness, but they have been found
to have good empirical support. 43
As recurrent architectures for protein-sequence represen-
tation learning are known and useful there, similar encoder
models preferably are utilized here for the wviral protein
sequences One example embodiment 1s depicted 1n FIG. 1B,
which is Bi-directional Long Short-Term Memory. The >
model passes the full context sequence into BiLSTM hidden
layers. The concatenated output of the final LSTM layers 1s
used as the semantic embedding, 1.¢.,

55

~ def T
2= [LSTM (g r(xy, .o 5 X)) oo LSTM (g Xty o > 2n) ]

where g- 1s the output of the preceding forward-directed
layer, LSTM,is the final forward-directed LSTM layer, and ©Y

g and LSTM  are the corresponding reverse-directed com-
ponents. The final output probability 1s a soltmax-trans-
formed linear transformation of 7, 1.e.,

D(x;|Z;) def softmax(WzZ +b) 63

for some learned model parameters W and b. In one par-
ticular implementation, the following constraints were used:

6

a 20-dimensional learned dense embedding for each element
in the alphabet X, two BiLSTM layers with 512 units, and
categorical cross entropy loss optimized with a learning rate
o1 0.001, 3,=0.9, and [,=0.999. Hyperparameters and archi-
tecture were selected based on a small-scale grid search.

Rather than acquiring mutations based on raw semantic
change and grammaticality values, which may be on very
different scales, calibrating p may be made easier 1n practice
by first rank-transforming the semantic change and gram-
maticality terms, 1.e., acquiring based on

a'(%,;%) = rank(Az[&])+Prank(p(%,|x))

L

In this variant, all possible mutations X, are then given
priority based on the corresponding values of a'(x;; x), from
highest-to-lowest. Empirical results have been shown to be
consistently well-calibrated around p=1 (equally weighting
both terms), although this 1s not a requirement.
Extension to Combinatorial Mutations

For simplicity, the above description 1s limited to the
setting 1n which mutations are assumed to be single-token.
This 1s not a limitation, however, as the approach may be
extended to handle combinatorial mutations. According to
this variant, a mutant sequence as X=(X,, . . ., X»,), which has
the same length as x, where the set of mutatlons consists of
the tokens 1n X that disagree with those at the same position

in X, which 1s denoted:
M (2% (3723, )

The semantic embedding 1s then simply computed as 1 (X)
from which semantic change 1s then computed as above. For
the grammaticality score, a simple modeling assumption 1s
made and grammaticality computed as:

]_[ p(x; | x),

x;eMxx)

1.€., the product of the probabilities of the individual point-
mutations (1implemented in the log domain for better numerti-
cal precision). This approach works well empirically in the
combinatorial fitness datasets, even when the number of
mutations 1s not fixed (e.g., as 1n the SARS-CoV-2 DMS Kd
dataset). Other ways of estimating joint, combinatorial
grammaticality terms while preserving eflicient inference
may also be implemented.

In viral sequences, msertions and deletions are rarer than
substitutions. Nevertheless, the algorithms herein may also
be extended to compute semantic change of sequences with
insertions or deletions.

Semantic patterns learned by the above-described viral
language models are antigenically meaningful. This can be
seen by visualizing the semantic embedding of each
sequence, €.g., 1 the influenza, HIV and coronavirus cor-
puses, using Uniform Manifold Approximation and Projec-
tion (UMAP), and quantifying these clustering patterns
using Louvain clustering to group sequences on the basis of
theirr semantic embeddings. The resulting two-dimensional
semantic landscapes show clustering patterns corresponding,
to subtype host species of both, suggesting that the language
model 1s able to learnming functionally meaningiul patterns
from raw sequence. In particular, FIG. 2A (influenza HA
subtype) and FIG. 2B (influenza HA host species) depict
UMAP wvisualization of the high-dimensional semantic
embedding language of influenza HA. FIG. 2C depicts a
cluster consisting of avian sequences from the 2009 flu
season onwards also contains the 1918 pandemic {flu
sequence, consistent with their antigenic similarity. As
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depicted in FIG. 2D, Louvain clusters of the HA semantic
embeddings have similar purity with respect to subtype or
host species as compared to phylogenetic sequence cluster-

ing (Phylo). In these plots bar height 1s the mean and error
bars show 93% confidence. FIG. 2E depicts the HIV E

Env
semantic landscape (subtype-related distributional struc-
ture), and FIG. 2F depicts 1ts high Louvain clustering purity.
FIG. 2G depicts coronavirus spike host species; as shown,
sequence proximity in the semantic landscape of coronavi-
rus spike proteins 1s consistent with the possible zoonotic
origin of SARS-CoV-1, MERS-CoV, and SARS-CoV-2. The
clustering purity based on the percent composition of the
most represented metadata category (sequence subtype or
host species) within each cluster can be measured. In these
examples, average cluster purities for HA subtype, HA host
species, and Env subtype are 99%, 96% and 95%, respec-
tively, comparable to or higher than the clustering purities
obtaned by MSA-based phylogenetic reconstruction.
Analysis of these semantic landscapes supports the hypoth-
esis that viral sequence embeddings encode functional and
antigenic variation.

According to this disclosure, biological interpretation of
language model semantics and grammaticality enables
robust escape prediction. In particular, and with reference to
FIG. 3A, while grammaticality 1s positively correlated with
fitness, semantic change has negative correlation, suggesting
that most semantically-altered proteins lose fitness. As
depicted in FIGS. 3B and 3C, however, a mutation with both
high semantic change and high grammaticality i1s more
likely to induce escape. Considering both semantic change
and grammaticality according to the techmiques herein
enables 1dentification of escape mutants that 1s consistently
higher than that of previous fitness models or generic
tfunctional embedding models. FIG. 3D 1s a plot of semantic
change versus grammaticality across 891 surveilled SARS-
CoV-2 Spike sequences; only three have both higher seman-
tic change and grammaticality than a Spike sequence with
four mutations that 1s associated with a potential re-infection
case.

Based on the results of CSCS technique as described,
escape potential across the protein structure can then be
visualized, and enrichment or depletion of escape can then
be quantified. This enables identification of target regions
(or sub-regions) of the protein structure that are less (or
more) prone to escape, and thus facilitate the rapid design
and development of therapeutics and vaccines that target
those specific regions or sub-regions. FIG. 4 depicts protein
structure visualizations for influenza H1 and H3, and for the
SARS-Cov-2 Spike. As can be seen, escape potential 1s
significantly enriched in the HA head (permutation-based
P<1x107>) and significantly depleted in the HA stalk (per-
mutation-based P<1x107>), which is consistent with HA
mutation rates and supported by the successiul development
of anti-stalk broadly neutralizing antibodies. Escape 1in
SARS-Cov-2 Spike 1s significantly enriched at the N-termi-
nal domain and receptor binding domain (RBD) and sig-
nificantly depleted at multiple regions 1n the S2 subunit; this
model of Spike escape thus suggests that immunodominant
antigenic sites 1 S2 may be more stable target antibody
epitopes.

FIG. § depicts FIGS. SA and 5B depict additional visu-

alizations of protein structures. In particular, this figure
depicts cartoon n illustrations of HA H1 and HA H3. It also
depicts HIV Env as cartoon and surface oriented to 1llustrate
the semantically-important inner domain. Further, the draw-
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ing also depicts views of SARS-CoV-2 Spike in monomeric
(surface) and trimeric form (cartoon) illustrating S2 escape
depletion.

As has been described, preferably a single model 1s used
to simultaneously learn both semantics and grammaticality.
After traming the language model on a corpus of viral
protein sequences from animals with homologous proteins,
the language model learns a diflerent internal representation
for each sequence (based only on semantics, not grammati-
cality). CSCS 1s then used to predict which mutations to a
viral protein lead to escape, and this 1s achieved without
telling the model anything about known escape mutations.
Thus, the technique herein provides for zero-shot prediction.
For example, our model 1dentifies significant escape poten-
t1al 1n the head region of influenza HA but significant escape
depletion 1n the stalk region, consistent with the current
clorts to find antibodies that can broadly neutralize many

different types of influenza by binding to the stalk. Similarly,
for the SARS-CoV-2 Spike, the model predicts significant
escape depletion 1n certain regions of the S2 subunit. Based
on these predictions, antiviral therapeutics that target
regions less prone to escape are then developed. For
example, in the field of molecular modeling, docking 1s a
method which predicts the preferred orentation of one
molecule to a second when bound to each other to form a
stable complex. Molecular docking i1s one of the most
frequently used methods 1n structure-based drug design, due
to i1ts ability to predict the binding-conformation of small
molecule ligands to the appropriate target binding site.
Using docking, a drug molecule i1s selected to target a
low-escape protein region by simulating how well 1t binds or
“docks” to the protein region, where that low-escape protein
region 1s 1dentified by the language model-based escape
profiling technique of this disclosure. In this manner, the
described methods improve these docking technologies. For
vaccine design, the language model-based escape profiling
herein facilitates selection of parts of the protein to go into
a vaccine. An example technology of this type 1s called
immunoifocusing, and it 1s used to engineer antigens 1n order
to produce antibodies with desired characteristics. Using the
techniques herein, subregions of a protein that go into the
vaccine are 1identified with more precision, thereby 1mprov-
ing the efliciencies of the underlying technology. Docking
and 1mmunofocusing are representative underlying tech-
nologies that are improved by applying the language model-
based escape profiling methods of this disclosure, but they
are not intended to be limited. More generally, when design-
ing therapeutics or vaccines, language modeling as
described herein sheds light on those parts of proteins that
are not prone to escape, thus enabling the modeling to act as
a front-end technology solution that improves the efliciency
or operation of the underlying antiviral therapeutic or vac-
cine design technology.
Other Methods and Materials

Models described herein were trained and evaluated with
Tensorflow 2.2.0 and Python 3.7 on Ubuntu 18.04, with
access to a Nvidia Tesla V100 PCle GPU (32 GB RAM) and
an Intel Xeon Gold 6130 CPU (2.10 GHz, 768 GB of RAM).
Using CUDA-based GPU acceleration, training on the 1nflu-
enza HA corpus required approximately 72 hours and evalu-
ating all possible single-residue mutant sequences for a
single strain required approximately 35 minutes. Training on
the HIV Env corpus required approximately 80 hours and
cvaluating all possible single-residue mutant sequences
required approximately 90 minutes. Training on the coro-
navirus spike corpus required approximately 20 hours and
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evaluating all possible single-residue mutant sequences
required approximately 10 hours.

The following publicly-available datasets were used for
model training: Intfluenza A HA protein sequences from the
NIAID Influenza Research Database (IRD) (www.tlud-
b.org); HIV-1 Env protein sequences from the Los Alamos
National Laboratory (LANL) HIV database (www.hiv.lanl.
ogov); Coronavidae spike protein sequences from the Virus
Pathogen Resource (ViIPR) database (www.viprbrc.org/bre/
home.spg?decorator=corona); SARS-CoV-2 Spike protein
sequences from NCBI Virus (www.ncbi.nlm.nih.gov/labs/
virus/vssl/); and SARS-CoV-2 Spike and other Betacorona-
virus spike protein sequences from GISAID (www.gisaid.
org/).

In one embodiment, the language model 1s trained to
predict the observed amino acid residue at all positions in
cach sequence, using the remaiming sequence as the mput;
one training epoch 1s completed when the model has con-
sidered all positions 1n all sequences in the training corpus.
Each model 1s trained until convergence of cross entropy
loss across one training epoch. The language models for HA,
Env, and Spike were used to produce semantic embeddings
for sequences within each language model’s respective
training corpus, where the semantic embedding procedure as
described above. In particular, and using the Scanpy version
1.4.5 Python package, the Euclidean k-nearest neighbors
(KNN) graph where each node corresponds to an embedded
viral sequence (k=100 for influenza and HIV and k=20 for
coronavirus) was first constructed. Based on the KNN graph,
UMAP Python implementation as wrapped by Scanpy was
used with default parameters to construct the two-dimen-
sional visualizations. Also based on the same KNN graph,
unsupervised clustering with Louvain community detection
was performed with a resolution parameter of 1, also using
the implementation wrapped by Scanpy, to cluster sequences
within each viral corpus. Louvain cluster purity was evalu-
ated with respect to a metadata class (e.g., host species or
subtype) by first calculating the percent composition of each
metadata class label (e.g., “H1” through “H16” for HA
subtype) within a given cluster and using the maximum
composition over all class labels as the purity percentage;
this purity percentage for each Louvain cluster was calcu-
late.

Escape potential 1s computed at each position within a
given viral sequence by summing the value of the CSCS
rank-based acquisition function (i.e., a'(X,; x)) across all
amino acids. These scores from the protein sequences of
interest (used 1n the escape prediction validation experi-
ments) are then mapped to three-dimensional structural loci.
The enrichment or depletion of escape prediction scores
within a given region of a protein sequence are quantified as
follows. Define a region as a (potentially non-contiguous)
set of positions. Head and stalk regions for HA were
determined based on the coordinates used by Kirkpatrick et
al. Region positions for Env were determined using the
annotation provided by UniProt (ID: QNOSS) and hyper-
variable loops were determined as defined by the HIV
LANL database. Region positions for SARS-CoV-2 were
determined using the annotation provided by UniProt (ID:
PODTC2).

Generalizing, one or more of the machine learning tech-
niques described herein are provided using a set of one or
more computing-related entities (systems, machines, pro-
cesses, programs, libraries, functions, or the like) that
together facilitate or provide the described functionality
described above. In a typical implementation, a representa-
tive machine on which machine learning software executes
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comprises commodity hardware, an operating system, an
application runtime environment, and a set of applications or
processes and associated data, that provide the functionality
of a given system or subsystem. The functionality may be
implemented 1n a standalone machine, or across a distrib-
uted set ol machines.

One or more machine learning-based algorithms may be
implemented 1in computer soitware as a set of computer
program instructions executable 1n one or more processors,
as a special-purpose machine. Representative machines on
which the subject matter herein 1s provided may be hardware
processor-based computers running an operating system and
one or more applications to carry out the described func-
tionality.

-

T'he model training may be provided as a service.

-

T'he technique herein leverages the principle that evolu-
tionary selection 1s reflected 1n sequence variation. As such,
CSCS as described herein may be applied beyond viral
escape to different kinds of natural selection (e.g., T-cell
selection) or drug selection. For example, CSCS and 1its
components may be used to select components of a multi-
valent or mosaic vaccine. The techniques herein may also
provide the foundation for more complex modelling of
sequence dynamics. As such, distributional hypothesis from
linguistics (1n which co-occurrence patterns can model com-
plex concepts and on which language models are based),
may be used to extend the approach described herein.

Further, the language model-based escape profiling tech-
niques herein are not limited to viral escape profiling. More
generally, the techniques may be used to profile escape for
any surface proteins that are highly mutagenic, e.g., the
malaria parasite.

Still further, the notion of i1dentifying escape potential
with respect to a “region” of a protein sequence (or more
generally, a genome or portion thereof) 1s not limited to a
single region, as the technique may also facilitate identifying
mutations from diflerent regions, as well as epigenetic-type
mutations.

Having described the subject matter herein, what we
claim also 1s set forth below:

The mnvention claimed 1s:

1. A method of escape profiling for use 1n association with
therapeutic or vaccine development, comprising:

training a language-based model against training data

comprising a corpus of protein sequences of a given
protein to model an escape profile of the given protein,
the escape profile representing, for one or more regions
of the given protein, a relative escape potential of a
mutation, the relative escape potential being derived as
a Tunction that combines both semantic change, repre-
senting a degree to which the mutation 1s recognized by
the human 1mmune system, and grammaticality, repre-
senting a non-zero degree to which the mutation atfects
infectivity;

identifying a region of the given protein having an escape

potential of interest; and

outputting information regarding the region to one of: a

vaccine design workflow, and a therapeutic design
workilow.

2. The method as described 1n claim 1 wherein the corpus
ol protein sequences of the given protein comprises copies
of amino acid sequences from multiple host species.

3. The method as described 1n claim 2 wherein the
language-based model 1s trained 1n an unsupervised manner,
without data about known escape mutations.
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4. The method as described in claam 1 wherein the
language-based model comprises a bi-directional long short-
term memory (BiLSTM) architecture.

5. The method as described 1n claim 4 wherein the
BiLSTM architecture comprises a set of hidden layers, and
an output layer.

6. The method as described 1n claim 5 wherein semantic
change 1s encoded as distances 1n an embedding space 1n the
set of lidden layers, and wheremn grammaticality 1s an
emitted probability output from the output layer.

7. The method as described 1n claim 1 wherein the escape
potential of interest 1s a low escape potential and the region
1s targeted for vaccine development.

8. The method as described 1n claim 1 wherein the escape
potential of interest 1s a high escape potential and the region
1s targeted for anti-viral therapeutic development.

9. The method as described 1 claam 1 wherein the
mutation 1s one of: a single mutation, and a combinatorial
mutation.

10. The method as described 1 claim 1 wherein the
function that combines both semantic change and grammati-
cality applies a weighting to a score representing one of: the
semantic change, the grammaticality, and a combination of
semantic change and grammaticality.

11. The method as described in claim 1 wherein ident-
tying the region of the given viral protein performs a
constrained semantic change search (CSCS) to identily
grammatical mutations to the given protein that induce high
semantic change.

12. The method as described 1n claim 1 wherein the given
protein 1s a viral protein that 1s one of: influenza hemagglu-
tinin, HIV Env, and SARS-CoV-2 Spike.

13. The method as described 1n claim 1 wherein the
language-based model learns semantic change as a hidden
layer output, and grammaticality as the language model
output.

14. A method associated with a vaccine or anti-viral
therapeutic design worktlow, comprising:

providing a neural network;

receiving training data comprising a corpus of viral pro-

tein sequences of a given viral protein;

using the training data, training the neural network 1n an

unsupervised manner to model a viral escape profile of
the given viral protein, the viral escape profile repre-
senting, for one or more regions ol the given viral
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protein, a relative viral escape potential of a mutation,
the relative viral escape potential being derived as a
function that combines both semantic change, repre-
senting a degree of antigenic change recognized by the
human 1immune system, and grammaticality, represent-
ing a degree to which the mutation affects viral fitness;

wherein the language-based model learns semantic
change as a hidden layer output of the neural network,
and grammaticality as the language model output from
the neural network.

15. The method as described 1n claim 14 wherein the
corpus of viral protein sequences comprises copies of amino
acid sequences from multiple host species.

16. The method as described in claim 14 wherein the
anti-viral therapeutic design workflow comprises molecular
docking technology.

17. The method as described in claim 14 wherein the
vaccine design workilow comprises immunofocusing tech-
nology.

18. A method of escape profiling of SARS-CoV-2 Spike
for use 1n association with therapeutic or vaccine develop-
ment, comprising;:

training a language-based model against training data

comprising a corpus ol protein sequences of SARS-
CoV-2 Spike to model an escape profile, the escape
profile representing, for one or more regions of the
SARS-CoV-2 Spike protein, a relative escape potential
of a mutation, the relative escape potential being
derived as a function that combines both semantic
change, representing a degree to which the mutation 1s
recognized by the human immune system, and gram-
maticality, representing a degree to which the mutation
aflects viral infectivity;

identifying a region of the SARS-CoV-2 Spike having an

escape potential of interest; and

outputting information regarding the region to one of: a

vaccine design worktlow, and a therapeutic design
workilow.

19. The method as described 1n claim 18 wherein the
vaccine design workilow comprises immunofocusing tech-
nology.

20. The method as described in claim 18 wherein the
therapeutic design workilow comprises molecular docking
technology.
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