12 United States Patent

Colla et al.

US011010343B2

US 11,010,343 B2
May 18, 2021

(10) Patent No.:
45) Date of Patent:

(54) ARCHITECTURE, METHOD AND
APPARATUS FOR ENFORCING
COLLECTION AND DISPLAY OF
COMPUTER FILE METADATA

(52) U.S. CL
CPC GO6F 16/1734 (2019.01); GO6F 16/164
(2019.01); GO6F 16/168 (2019.01); GO6F

16/38 (2019.01); GO6F 21/00 (2013.01)

..,.._.I

&

| | (38) Field of Classification Search
(71) Applicant: JANUSNET PTY LIMITED, Milsons CPC GO6F 16/1734; GOGF 16/38; GOGF 16/168;
Pomt (AU) GOG6F 16/164
See application file for complete search history.
(72) Inventors: Gregory Alan Colla, Milsons Point
(AU); Kien Sen Huang, Milsons Point (56) References Cited
AU
(AU) U.S. PATENT DOCUMENTS
(73) Assignee: JA‘NUSNET PTY LIMITED, Milsons 8.024.304 B2 0/2011 Pulfer ef al
Point (AU) 8,171,394 B2 5/2012 Taylor et al.
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 OTHER PUBILICATIONS
U.S.C. 154(b) by 95 days.
“JeanusSEAL for Outlook—Features & Benefits”; janusNET; Feb.
(21) Appl. No.: 16/342,041 28, 2015; 9 pages; web.archive.org/web/20150228095935/http://
janusnet.com/janusSEAL/Outlook/features.
(22) PCT Filed: Oct. 13, 2017 (Continued)
(86) PCT No.: PCT/AU2017/000219 Primary Examiner — Asher D Kells
(74) Attorney, Agent, or Firm — Hayes Soloway PC
§ 371 (c)(1),
(2) Date: Apr. 15, 2019 (57) ABSTRACT
‘ The present invention provides a system for displaying and
(87) PCT Pub. No.. W02018/068080 capturing file metadata of an application data file stored on
PCT Pub. Date: Apr. 19, 2018 a computer; said computer including a processor and
memory; said memory storing an operating system for the
65 Prior Publication Data computer, a Kernel ol the operating system an ctadata
(65) D kernel of the operating sy d Metad
Storage; said computer including a user interface and at least
US 2019/0251063 Al Aug. 15, 2019 one 1nstalled application for interacting with a user which
_ o o processes said application data file; said system comprising;:
(30) Foreign Application Priority Data a Metadata Filter Driver installed on said computer; at least
one Metadata Application Thread, which the system injects
Oct. 14, 2016 (AU) i 2016904177 into said application when a process for execution of said
application 1s created; a Metadata Manager operating on said
(51) Int. CL computer, whereby said Metadata Filter Driver signals said
Gool’ 16717 (2019.01) Metadata Manager when said at least one application data
GO6F 16/16 (2019.01) file 1s accessed, which then notifies said Thread approprate
(Continued) (Continued)
@ @ 102 - @ @
: File System] ~ . Metadata | |
User i System Meta;::zfﬂter T;t:;:: ‘ Application ; Ap;_}lic::;un | Metadata SturaEeJ
{) %ﬁ i @ i *i 302 L; -
S 7 D™
E @ *H— sverTiipesh] — . ;
i orefuselpath, procsdd | eforssavalpath, pracessid) > /s?ﬁ - ; .
: E‘G“‘/ / E ;tidantpmmd} P f/f /O
: Eﬁ Eg mmmﬂmfﬂ '
; oo e m e = o i
; j/;:‘;/----#) Hmdiﬁrdmmdm____;:_mfiﬂ.iﬂzumnﬁnﬁimemdml] ;
i T ag L
1 ‘@/ o Ma-tadam[i;;, erodBled et atataprer- - bj 5

e

.

% L;
- - ?

I

|

|

[

r

;

US 11,010,343 B2
Page 2

to the at least one installed application which 1s accessing,
said application data file.

19 Claims, 7 Drawing Sheets

(51) Int. CL

GO6F 21/00 (2013.01)
GO6l’ 16/38 (2019.01)
(56) References Cited

U.S. PATENT DOCUMENTS

10,068,100 B2 9/2018 Fayccoooeeennnnin, GOO6F 21/6227
2003/0182583 Al 9/2003 Turco
2006/0235871 Al 10/2006 Trainor et al.
2006/0248038 Al* 11/2006 Kaplan GO6F 16/164
2006/0294474 Al 12/2006 Taylor et al.
2008/0104118 A1* 5/2008 Pulfer GO6F 16/986
2009/0307306 Al* 12/2009 Jalonccoeen, GOOF 16/14
709/203
2010/0146593 Al 6/2010 Stahl et al.
2010/0262577 Al* 10/2010 Pulfer GOOF 16/93
707/608
2011/0314551 Al1* 12/2011 Turner GO6F 21/604
726/26

OTHER PUBLICATIONS

“Document management system”; Wikipedia;, Cited Sep. 7, 2016;
Retrieved Apr. 11, 2019, 8 pages; https://en.wikipedia.org/wiki/
Document_management_system.

“IMS-FCIADS]: File Classification Infrastructure Alternate Data
Stream (ADS) File Format™; Microsoft Corporation; Cited Dec. 16,
2011; Retrieved Apr. 11, 2019, 4 pages; https://docs.microsoft.com/
en-us/openspecs/windows_protocols/ms-iciads/629d7al 5-54ba-4elc-
alb0-547atba28485.

“Understanding Custom Document Properties in Microsoft Oflice
Word 2003”; Microsoft Developer Network; Cited Jun. 23, 2016;
Retrieved Apr. 11, 2019, 7 pages; https://docs.microsoft.com/en-us/
previous-versions/oflice/oflice-12/aa537154(v=otlice.12).
“Introducing Dynamic Access Control”; Technet; Cited Jun. 28,
2016; Retrieved Apr. 11, 2019; 4 pages; https://social.technet.
microsoft.com/wiki/contents/articles/ 14269 .introducing-dynamic-
access-control.aspx.

“Using File Classification Infrastructure (FCI) and AD RMS to
automatically protect sensitive information”; Microsoft Corpora-
tion; Jan. 30, 2010; 5 pages; https://blogs.technet.microsoft.com/
filecab/2010/01/30/using-file-classification-infrastructure-fci-and-
ad-rms-to-automatically-protect-sensitive-information/.

“COM Add-ins Part I: Introducing an Office 2000 Solution for the

Entire (Oflice) Famuly”; Microsoft Developer Network; Jun. 13,
2014, 6 pages; https://docs.microsott.com/en-us/previous-versions/
office/ofhice-10/aal155767(v=othce.10).

“File Classification Infrastructure: Technical White Paper”; Microsoft
Download Center; published May 2009, 14 pages; http://download.
microsoft.com/download/D/D/3/DD3FB42C-D3C7-47C0-9431-
40D80256FBOA/FCI_TDM_WP_May 09.PDF.

“Australian Government security classification system”; Protective
Security Policy Framework; Feb. 28, 2015; 2 pages.
“Protectively marking and handling sensitive and security classified
information”; Protective Security Policy Framework; Feb. 28, 2015;
2 pages.

* cited by examiner

US 11,010,343 B2

Sheet 1 of 7

May 18, 2021

U.S. Patent

T Si4

JOALIQ)

12314 EIRPRISIA W3SAS 314

3

\

Sndendemndend 21 i bl

e nd gty e b

JaA0] EYBDEIS N

(PUIOY /o

\

.._...,...........
o ——— I—
pealy]
P3eI01S Erepela Al JafeuelAl B BpRIS A uoesjddy eyepeis|n ~
™.
A 104 e1epelain uonedddy /°
/ WasAS JBIndwad

ok/o

0
Sl
e | Z 81
- (g *
er) :

L 2t i
— _
= "

3 [EIRPEINLIMO | N
- (eperowoaRes T OPAATIERCR “
v @ | L | |
. | _
S @ Aﬁunnﬂuﬁwﬂﬁﬁaﬁﬂuzuaﬂmm&ﬁ. m |
(15 | u
U iiiiiiiii n VP .3 § 5] - 111 1 apRegnt Sl P JEL AR et i i
| | }
| T (1001 o bl TS ET T ;
; & _
_ }
@ {presanordiuppyion @ w “
| . i
~ {pS5300 4 IR d NS OIUAAOUD g
St | _ (pissazond’yied)pasduionuadue m
- i “
m M_ §
| || | - _ i
‘_nlh (yicdapguado hiedlaiiuado | ;
D V4 | |
= || _ @ | | :
{ned)apquade M
i
i

U d .
— [nppe "préesarosdiadevew @ :
e @ :
— _ !
- {uwppr)aful | :

-~ J ;

o Dﬂwﬁn—hu ‘ @ i w
\ | . i
] S _ N M
~ (1E4$63000) PAION UGS | t
_ (507 |
M “ {P133030J0 "YiegssIN0IQIPRILI)SEIQIJUC |
i
]

I {pissastd ‘YIrgssaseud]pINeanstasdidud @ M
{ {1oi6R13 ! I
m m

W @ (2% peamoulyoune|
i

2al
23e103S e1EpEIdA moﬂmu_”rhn« | 198euey | 13U
e pIepRIS u
e1EPEIBIA _ A eiepesin

U.S. Patent

US 11,010,343 B2

Sheet 3 of 7

May 18, 2021

U.S. Patent

i

&

wen{ 3R PRIDIN PO Y PO W ‘LR) IRPRIBAIISS —

ClE
-

|

Ny

¢ 314

-

=

wajisAg ajid N —

!

|

|

“

|

_

——— _

& |

@ _
lllllllll elepeIaNpIigpows —-——— =D m

ﬁﬂmﬂﬂwEuEh?uua [Jesnyducsd \ “

(e3RpEi3W)eARSRINSq T |

e e e ———— e e RIDEIW e e e — o e 2 W
g_H.............ii.!l.. _

. ((ped)aepelizinied @ m

(o, m

Q K [pisssoqud)uppyiss “ “

m @ 4 {pisssooud ‘\pruloars21048q "

2 (prssan01d “yed)eARS3105q |

_ i TOE |

_I.V T T (ped)sgeaes _

(Jpedspd
@\ r — - - T (o19nes
1 T T T @ N *
I R S — . _ - _ — e e _ m]
PEaIyl Jadeur|a} 13AlI(] 5 | as
93eIi0}S BlBpPRISIA] uoljednjddy uoizesijddy B1EPEIBIA 19314 IBPRIDIA LWalsAS n
BJBRPERISIA _

US 11,010,343 B2

Sheet 4 of 7

May 18, 2021

U.S. Patent

kil N e el MY O TERE e

33el01S elepeldiN

(ejepeiaw

.\

@\
@\\\ (Juzed

(Jeiepeiaiad

iy

asnidusosd

| 2

v

iy |

Uippy BlEPEION

¥ 314

WA Juibislyt bl R AR WA e sl

(e1epelaw edleiepeisipiles

(21epeisw ‘Yled)sBueydeiepeiaiNuce

o

W“HMHWM*MWMMMMMMWMMM
il = "

i

ladeue|n
ejepeldn

(o

(}e1epeIaNIes

mmm”-—uHﬂmmmmmmmmmmmmwmmmmmwu&**a-##

US 11,010,343 B2

Sheet 5 of 7

May 18, 2021

U.S. Patent

T T Y

pL10D ‘LU

G 314

ﬁmov AzeTt mx%_pw>c ﬂwm&aw X0} UMOJ(Q xuwnc a2yl

JquzmaHm NOD

L p e bl

- dp meip jeuwod Wp3 34

IO

US 11,010,343 B2

Sheet 6 of 7

May 18, 2021

U.S. Patent

SINAI()

1013313 $5320Y I|14
e eeenesmaensimn]

JIALIQ BIEPLIBIN |

SIBAUQ

Ll 2

TOWN
F8LI0)5 LILPLIAWN

_ . am_

2304035 9|14

SMICIGHT

WIISAS 114

JatLIaN
WaSAS Buneladp
% _ | vs| |
SO ——
- b e | i
4 IOWN
Mopuan uvonieaddy

80TT |

uonediddy - 33U I35
‘ WalsAg s1ndwio

US 11,010,343 B2

Sheet 7 of 7

May 18, 2021

U.S. Patent

Fig 7

US 11,010,343 B2

1

ARCHITECTURE, METHOD AND
APPARATUS FOR ENFORCING

COLLECTION AND DISPLAY OF
COMPUTER FILE METADATA

FIELD OF INVENTION

The present invention relates to the field of enforcement
of collection and display of computer file metadata and more
particularly to a software architecture, method and apparatus
for enabling the enforcement of collection and display of
computer file metadata.

BACKGROUND

File metadata information for enterprise 1s considered of
vital importance for consistent identification and reference,
attribution, resource integrity checking, classification,
describing resource relationships, searching, sorting, gen-
eration of reports, online access, system automation and
many other functions.

File metadata 1s not limited to simple {file attributes such
as 1ts title, subject, author, creation date, but can contain
much more information relevant to the business processes
and systems of the enterprise, such as a document’s revision
number, 1ts status, whether 1t 1s draft or final, who approved
its release, company, copyright owner, number of pages,
number ol words, keywords, case i1dentifier or document
identifier. If the file 1s a photograph, the metadata can
contain location details, when the photo was taken, the
subject of the photo and details of the camera that took the
photo, such as lens focal length and aperture settings. It the
file 1s an audio recording, 1ts metadata may contain recoding
information, such as the artist, when it was recorded, equip-
ment that was used for recording, and the name and location
of the recording studio.

Files can be stored on many different media, such as file
servers, Document Management Systems (DMS) (1), work-
station hard drives, file servers, removable storage media
(such as “thumb drives™), or in the cloud.

DMS systems are often configured to collect necessary
metadata when files or documents are added to the system.
This metadata may be generated, based on the content of the
source file, or generated automatically, or the system may
prompt the user to supply the metadata. In general, DMS
systems store metadata in databases (catalogues), logically
separate from the location of the file. For effective DMS
system operation, an orgamsation must be prepared to
commit resources to the purchasing, design, commissioning
and operation of the system. Users must traverse a learning
curve to use these systems eflectively. Such overheads may
be prohibitive for smaller organisations.

An alternative to storing file metadata in a database, 1s to
store 1t 1n the file system itself, such as 1n Microsoit NTFS
Alternate Data Streams (2) or Apple resource forks. Alter-
natively, file metadata can be stored 1n the file itself. For
example, Microsoit Word has the capability to collect docu-
ment properties, such as the document title, subject and
author, which 1s stored 1n the file. Additional metadata can
be collected and stored with the use of allow for the addition
of Custom Document Properties (3). Such metadata can be
used for automated file access control (4) and encryption (5).
Only a minority of the applications 1n use by an organisation
would have this capability. Furthermore, the entry of meta-
data 1s up to the operator, and can easily be forgotten.

Orgamisations, such as governments and enterprises, have
security classification policies which define security classi-

e

10

15

20

25

30

35

40

45

50

55

60

65

2

fication systems and handling protocols, so that information
generated by the organisation i1s handled correctly, both by
humans and by computer systems, based on the informa-
tion’s sensitivity. For example, the Australian Government
has published 1its security classification system (6), and its
handling protocols (7). At a minimum, such systems and
protocols normally define the appropriate range of classifi-
cations, and when a security classification should be applied,
such as when a document 1s saved, or prior to printing, and
where the secunity classification should be shown on a
document.

Solutions exist to add security classification metadata to
Microsoit Oflice documents when the associated software
application 1s being used (8) (9). However, these solutions
are limited to applications where COM Application Pro-
gramming Interfaces (APIs) are available in the application
(10), and the application’s API allows for the programmatic
extension of the application’s user interface. As such, these
solutions do not provide for wider usage 1n other computer
applications, such as Microsoit’s Paintbrush, Notepad or
applications which do not have an extension API, or where
an application extension API 1s available, but does not
provide the capability to dynamically modify the user inter-
face. Furthermore, these solutions will not work 1n a non-
Windows environment, such as Apple’s OS X, BSD, Linux,
Google Android, or other operating systems. As such, the
scope of such solutions 1s quite limited, so security classi-
fication policies, or metadata collection policies cannot be
tully enforced by these solutions.

Furthermore, the application of these solutions to a docu-
ment can modity the document, say by adding metadata to
the header or footer of a document, or otherwise within the
text of the document. Such process can be contrary to an
organisation’s business practices. For example, when a
document 1s sent by one organisation to a second organisa-
tion, the second organisation may want to keep the docu-
ment 1ntact in the form 1 which 1t was sent. Moditying the
document’s text in any way may diminish future evidentiary
value of the document.

Solutions also exist to apply classification metadata to
other file types (images, video, audio, PDF) programmati-
cally (11). Such implementations, however, do not enforce
user metadata policy, in that the display of file metadata
when viewing the contents of a file may not be noticeable or
conspicuous, nor do they enforce the mandatory collection
ol metadata.

Background art includes:

Taylor et al (12) describe systems and methods for pro-
viding user interface to recerve metadata from a user for an
application and associated generated file. This system 1s
limited to applications where the method 1s a feature of the
native application. Its limitation 1s that does not work for
applications which are already compiled and deployed to the
computer. It does not provide a mechanism to enforce
organisation policy of when the user must enter metadata.

Turco (8) describes a plug-in which extends Microsoit
Oflice functionality to collect and manage file associated
security classification metadata. This method 1s only appro-
priate for applications which have an extension application
programming interface. Its limitation 1s that 1t will not work
for applications which do not have an extension API.

Stahl et al (13) describe a method of securing access to a
file 1n a document management application using security
classification metadata. This system 1s limited 1n that 1t only
operates on files which are stored in the document manage-

US 11,010,343 B2

3

ment application. It does not work on files stored outside of
that system, such as on a workstation’s file system nor on a
network {file share.

Tramner et al (14) describe method and system for a
storage of files and associated file metadata. This system 1s
limited 1n that the files are stored within the system’s own
persistent storage. It does not work with a workstation’s own
file storage, not with network file storage, such as a Storage
Area Network (SAN). Furthermore, user interaction with the
system 1s via the system’s own user interface. It does not
interact with the user when the user 1s using an application
when processing a file.

In summary, there 1s a gap in the current field whereby
organisations provide a range ol computer applications for
users to complete business tasks (FIG. 7, shown as 0) and
there 1s a subset of the organisation’s applications (FIG. 7,
shown as ¢) which provide a native function to enter and
store custom metadata, there 1s a subset of the organisation’s
applications (FIG. 7, shown as A) which provide a function
to enforce metadata collection and there 1s a subset of the
organisation’s applications (FI1G. 7, shown as @) which have
an extension API, whereby an extension can be used to
enforce metadata policy. The organisation requires users to
comply with metadata policy, such as the mandatory col-
lection of appropriate metadata when {files are saved, and/or
users must be shown file metadata when operating on a file.
Of all the applications used by the organisation, 0, only a
small subset, shown shaded, can provide the required func-
tionality natively, or with the addition of an application
extension. These prior art approaches are specific to the
application being used to operate on the file, the operating
system on which the application 1s executing, intentionally
moditying the contents of the file, or not having the ability
to collect metadata at appropriate times.

These problems may be addressed or ameliorated 1n at
least some embodiments of the present invention, which 1n
at least some preferred forms provide an architecture,
method and apparatus to enforce metadata policy across a
plethora of computer applications and operating systems.

In alternative forms these problems may be addressed or
ameliorated 1n at least some embodiments of the present
invention, which 1n at least some preferred forms provide an
architecture, method and apparatus to enforce metadata
policy across a plethora of computer applications and oper-
ating systems without modifying the content of the file.

REFERENCES

1. Wikipedia. Document management system. [Online]
[Cited: 7 Sep. 2016.] https://en.wikipedia.org/wiki/Docu-
ment_management_system.

2. Microsoit Corporation. File Classification Infrastructure
Alternate Data Stream (ADS) File Format. [Online] 16
Dec. 2011. https://msdn.microsoft.com/en-us/library/
hh337062.aspx.

3.—. Understanding Custom Document Properties 1n
Microsolit Office Word 2003. Microsoft Developer Net-
work. [Online] January 2004. [Cited: 23 Jun. 2016.]
https://msdn.microsoft.com/en-us/library/aa537154.

4 —. Introducing Dynamic Access Control. Technet. [On-

lime] 1 Nov. 2012. [Cited: 28 Jun. 2016.] http://social-
technet.microsoit.com/wiki/contents/articles/14269 .1n-
troducing-dynamic-access-control.aspx.

5.—. Using File Classification Infrastructure (FCI) and AD
RMS to automatically protect sensitive information. [On-

line] 30 Jan. 2010. https://blogs.technet.microsoft.com/

10

15

20

25

30

35

40

45

50

55

60

65

4

filecab/2010/01/30/using-file-classification-inirastruc-
ture-ici1-and-ad-rms-to-automatically-protect-sensitive-
information/.

6. Australian Government. Australian Government security
classification system. Protective Security Policy Frame-
work. [Online] 6 May 2013. https://www.protectivesecu-
rity.gov.au/informationsecurity/Pages/AustralianGovern-
mentSecu rityClassificationSystem.aspx.

7 —. Protectively marking and handling sensitive and secu-
rity classified information. Protective Security Classifica-
tion Framework. [Online] 6 May 2015. https://www.pro-
tectivesecurity.gov.au/informationsecurity/Pages/

ProtectivelyMarking AndHandlingSensitive AndSecurityCla-

ssifiedInformation.aspx.

8. Turco, Anthony Jay. Electronic document classification
and monitoring 2003/0182583 Al US, 25 Sep. 2003.

9. Pulfer et al. Document classification toolbar. U.S. Pat. No.
8,024,304, 26 Oct. 2006.

10. Microsoit Corporation. COM Add-ins Part I: Introduc-
ing an Oflice 2000 Solution for the Entire (Oflice) Family.
Microsoft Developer Network. [Online] May 1999,
[Cited: 23 Jun. 2016.] https://msdn.microsoft.com/en-us/
library/aal55767.

11.—. File Classification Infrastructure: Technical White
Paper. Microsoft Download Center. [Online] May 2009.
http://download.microsoit.com/download/D/D/3/
DD3FB42C-D3C7-47C0-9431-40D80256FBOA/
FCI_TDM_WP_May_09.pdf.

12. Taylor et al. Methods and Systems for Providing a

Customized User Interface for Viewing and Editing Meta-
Data. U.S. Pat. No. 8,171,394 B2, 1 May 2012.

13. Stahl, Noah Z, Bartlett, Wendy S and Nrooks, Randall S.
Secure Document Management. 2010/0146593 Al US,
10 Jun. 2010.

14. Trainor, James and Pike, James Thomas. Method and
System for Managing Metadata Information. 2006/

0235871 A1 U5, 19 Oct. 2006.

NOTES

The term “comprising” (and grammatical varnations
thereol) 1s used 1n this specification in the inclusive sense of
“having” or “including”, and not i1n the exclusive sense of
“consisting only of”.

The above discussion of the prior art in the Background
of the mvention, 1s not an admission that any information
discussed therein 1s citable prior art or part of the common
general knowledge of persons skilled in the art in any
country.

SUMMARY OF INVENTION

Definitions

Application: a set of instructions executable by a com-
puter 1n order that the computer may carry out a function. An
application may be a text editor program or 1t may be a
spreadsheet program for example. It 1s commonly the case
that applications read data from files in order to execute a
programmed function and then output data to files as a result
ol execution of the programmed function.

Persistent storage: any storage device that retains data
alter power to that device 1s shut off. It 1s also sometimes
referred to as non-volatile storage.

Hard disk drives and solid-state drives are common types
of persistent storage. This can be 1n the form of file, block
or object storage. On the other hand, RAM and cache are

US 11,010,343 B2

S

typically non-persistent, and data 1s erased when power 1s
turned oil. However, certain types such as non-volatile RAM
and flash-based RAM are persistent. Persistence 1s beneficial
so that in the event of a crash or reboot, data 1s not lost.

Application Program Interface (API): a set of subroutine
definitions, protocols, and tools for building application
software. In general terms, 1t 1s a set of clearly defined
methods of communication between various software com-
ponents. A good API makes it easier to develop a computer
program by providing all the building blocks, which are then
put together by the programmer. An API may be for a
web-based system, operating system, database system, com-
puter hardware or soitware library. An API specification can
take many forms, but often includes specifications for rou-
tines, data structures, object classes, variables or remote
calls. POSIX, Microsoit Windows API, the C++ Standard
Template Library and Java APIs are examples of different
forms of APIs. Documentation for the API 1s usually pro-
vided to facilitate usage.

Just as a graphical user interface makes 1t easier for people
to use programs, application programming interfaces make
it easier for developers to use certain technologies 1n build-
ing applications. By abstracting the underlying implemen-
tation and only exposing objects or actions the developer
needs, an API reduces the cognitive load on a programmer.

Metadata: broadly, metadata 1s data that provides infor-
mation about data. A computer file will contain file data. In
at least some instances there may be associated metadata
with that file data. The metadata 1s logically distinct from the
file data 1in most 1nstances. The metadata may describe or
summarise aspects of the file data and or 1t may specily rules
for use of the file data.

Thread: a thread of execution 1s the smallest sequence of
programmed 1nstructions that can be managed indepen-
dently by a scheduler, which 1s typically a part of the
operating system. The implementation of threads and pro-
cesses differs between operating systems, but in most cases
a thread 1s a component of a process. Multiple threads can
ex1st within one process, executing concurrently and sharing
resources such as memory, while different processes do not
share these resources. In particular, the threads of a process
share 1ts executable code and the values of 1ts varniables at
any given time.

Kernel: the central part of an operating system. It manages
the tasks of the computer and the hardware—most notably
memory and CPU time. The kernel 1s the most fundamental
part ol an operating system. It can be thought of as the
program which controls all other programs on the computer.

In most mstances a computer user never iteracts directly
with the kernel. It runs behind the scenes.

File system filter driver: a file system filter driver 1s an
optional driver that adds value to or modifies the behaviour
of a file system. In the case of the Windows operating system
a file system filter driver 1s a kernel-mode component that
runs as part of the Windows executive;

A file system filter driver can filter I/O operations for one
or more {ile systems or file system volumes. Depending on
the nature of the driver, filter can mean log, observe, modity,
or even prevent. Typical applications for file system filter
drivers include antivirus utilities, encryption programs, and
hierarchical storage management systems.

Addin (or plug-in, plugin, add-in, add-on, addon, or
extension): 1s a soltware component that adds a specific
feature to an existing computer program. When a program
supports plug-ins, it enables customization. The common
examples are the plug-ins used 1n web browsers to add new
teatures such as search-engines, virus scanners, or the ability

10

15

20

25

30

35

40

45

50

55

60

65

6

to use a new file type such as a new video format. Well-
known browser plug-ins include the Adobe Flash Player, the
QuickTime Player, and the Java plug-in, which can launch
a user-activated Java applet on a web page to its execution
on a local Java virtual machine.

Applications support plug-ins for many reasons. Some of
the main reasons include:

to enable third-party developers to create abilities which
extend an application

to support easily adding new features

to reduce the size of an application

to separate source code from an application because of
incompatible software licenses.

At least some embodiments of the present invention
provide an architecture, method and apparatus which pro-
vides additional functionality to applications on a computer
system to give the applications the ability to display, capture
and manage file metadata. In preferred forms, the architec-
ture, method and apparatus operate without requiring modi-
fication of source code of the application. In preferred forms
it also has no dependency on the application having an
extension Application Programming Interface for reception
of addin (plug-in) components.

Accordingly 1in one broad form of the mvention there 1s
provided a system for displaying and capturing file metadata
of an application data file stored on a computer; said
computer mncluding a processor and memory; said memory
storing an operating system for managing operations of the
computer; saild memory further storing a kernel of the
operating system; said computer further including a user
interface and at least one installed application installed on
said computer for interacting with a user which, when
executed by the processor under the control of the operating
system, processes said application data file; said system
comprising;

a. a File System Metadata Filter Driver installed on said
computer, whereby said kernel of said operating system
signals said File System Metadata Filter Driver when
said 1nstalled application accesses said application data
file;

b. at least one Metadata Application Thread, which the
system 1njects into said installed application when an
application process for execution of said installed
application 1s created, whereby said Metadata Appli-
cation Thread handles messages generated by said
installed application and modifies the user interface of
said 1nstalled application to display information related
to 1nstalled application file metadata of said installed
application;

c. Said memory including Metadata Storage which stores
said application file metadata, from which said at least
one Metadata Application Thread reads said file meta-
data, and to which said at least one Metadata Applica-
tion Thread writes said installed application file meta-
data;

d. a Metadata Manager operating on said computer,
whereby said File System Metadata Filter Driver sig-
nals said Metadata Manager when said at least one
application data file 1s accessed, and which 1n turn
notifies said Metadata Application Thread appropnate
to that one of said at least one installed application
which 1s accessing said application data {ile.

Accordingly 1n yet a further broad form of the mvention
there 1s provided a system for displaying and capturing file
metadata of an application data file stored on a computer;
said computer ncluding a processor and memory; said
memory storing an operating system for managing opera-

US 11,010,343 B2

7

tions of the computer; said memory further storing a kernel
of the operating system; said computer further including a
user 1nterface and at least one installed application nstalled
on said computer for interacting with a user which, when
executed by the processor under the control of the operating
system, processes said application data file; and wherein
said application has no function to capture custom metadata
for said file; said system comprising:

a. a File System Metadata Filter Driver installed on said
computer, whereby said kernel of said operating system
triggers said File System Metadata Filter Driver when
said 1nstalled application accesses said application data
file;

b. a user interface component 1n the form of a Metadata
Application Thread to display information related to
said file metadata to the user of said computer; and
captures file metadata information from said user;

c. metadata storage which stores said file metadata and
wherein said metadata storage 1s persistent;

d. a Metadata Manager operating on said computer,
whereby said File System Metadata Filter Driver sig-
nals said Metadata Manager when said application data
files are accessed, and which 1n turn notifies said user
interface component;

Accordingly 1n yet a further broad form of the invention
there 1s provided a system for displaying and capturing file
metadata of an application data file stored on a computer;
said computer including a processor and memory; said
memory storing an operating system for managing opera-
tions of the computer; said memory further storing a kernel
of the operating system; said computer further including a
user interface and at least one installed application 1nstalled
on said computer for interacting with a user which, when
executed by the processor under the control of the operating
system, processes said application data file; said system
turther comprising;:

a. Metadata Storage which stores said file metadata,

whereby said storage 1s persistent;

b. at least one Metadata Application Thread 1n each said
installed application, whereby said Metadata Applica-
tion Thread intercepts file operation calls from the
installed application; handles said messages of said
installed application; modifies the user interface of said
installed application to display information related to
said file metadata to the user of said computer; captures
file metadata information from said user; and creates,
updates, deletes and otherwise accesses said file meta-
data from said Metadata Storage;

In a further broad form of the invention there 1s provided

a system to enforce metadata policy on use of data stored 1n
a file without moditying the data in the file to which the meta
data policy applies;

said system including a system for displaying and capturing
file metadata of an application data file stored on a computer;
said computer including a processor and memory; said
memory storing an operating system for managing opera-
tions of the computer; said memory further storing a kernel
of the operating system; said computer further including a
user 1nterface and at least one installed application nstalled
on said computer for interacting with a user which, when
executed by the processor under the control of the operating
system, processes said application data file; said system
comprising;

a. a File System Metadata Filter Driver installed on said
computer, whereby said kernel of said operating system

5

10

15

20

25

30

35

40

45

50

55

60

65

8

signals said File System Metadata Filter Driver when
said 1nstalled application accesses said application data
file:

b. at least one Metadata Application Thread, which the
system 1njects 1nto said installed application when an
application process for execution ol said installed
application 1s created, whereby said Metadata Appli-
cation Thread handles messages generated by said
installed application and modifies the user interface of
said 1nstalled application to display information related
to 1nstalled application file metadata of said installed
application;

¢. Said memory including Metadata Storage which stores
said application file metadata, from which said at least
one Metadata Application Thread reads said file meta-
data, and to which said at least one Metadata Applica-
tion Thread writes said installed application file meta-
data;

d. a Metadata Manager operating on said computer,
whereby said File System Metadata Filter Driver sig-
nals said Metadata Manager when said at least one
application data file 1s accessed, and which 1n turn
notifies said Metadata Application Thread appropniate
to that one of said at least one installed application
which 1s accessing said application data file.

In a further broad form of the invention there 1s provided

a system of organization of programme structures and file
structures 1n a computer comprising a processor 1 Commu-
nication with a memory in order to enforce metadata policy
on use of data stored in a file without modifying the data 1n
the file to which the meta data policy applies;

said system 1ncluding a system for displaying and capturing
file metadata of an application data file stored on the
computer; said computer including said processor and said
memory; saild memory storing an operating system for
managing operations of the computer; said memory further
storing a kernel of the operating system; said computer
further including a user interface and at least one installed
application 1nstalled on said computer for interacting with a
user which, when executed by the processor under the
control of the operating system, processes said application
data file; said system comprising:

a. a File System Metadata Filter Driver installed on said
computer, whereby said kernel of said operating system
signals said File System Metadata Filter Driver when
said 1nstalled application accesses said application data
file;

b. at least one Metadata Application Thread, which the
system 1njects 1nto said installed application when an
application process for execution ol said installed
application 1s created, whereby said Metadata Appli-
cation Thread handles messages generated by said
installed application and modifies the user interface of
said 1nstalled application to display information related
to 1nstalled application file metadata of said installed
application;

¢. Said memory including Metadata Storage which stores
said application file metadata, from which said at least
one Metadata Application Thread reads said file meta-
data, and to which said at least one Metadata Applica-
tion Thread writes said installed application file meta-
data;

d. a Metadata Manager operating on said computer,
whereby said File System Metadata Filter Driver sig-
nals said Metadata Manager when said at least one
application data file 1s accessed, and which 1n turn
notifies said Metadata Application Thread appropnate

US 11,010,343 B2

9

to that one of said at least one installed application
which 1s accessing said application data file.

In yet a further broad form of the invention there i1s
provided a method for displaying and capturing file meta-
data of an application data file stored on a computer; said
computer including a processor and memory; said memory
storing an operating system for managing operations of the
computer; saild memory further storing a kernel of the
operating system; said computer further including a user
interface and at least one 1nstalled application installed on
said computer for interacting with a user which, when
executed by the processor under the control of the operating
system, processes said application data file; said method
comprising;

a. installing a File System Metadata Filter Driver on said

computer, whereby said kernel of said operating system
signals said File System Metadata Filter Driver when

said 1nstalled application accesses said application data
file;

b. injecting at least one Metadata Application Thread into
said installed application when an application process
for execution of said installed application is created,
whereby said Metadata Application Thread handles
messages generated by said installed application and
modifies the user interface of said installed application
to display information related to installed application
file metadata of said installed application;

c. providing Metadata Storage in said memory which
stores said application file metadata, from which said at
least one Metadata Application Thread reads said file
metadata, and to which said at least one Metadata
Application Thread writes said 1nstalled application file
metadata;

d. providing a Metadata Manager operating on said com-
puter, whereby said File System Metadata Filter Driver
signals said Metadata Manager when said at least one
application data file 1s accessed, and which 1n turn
notifies said Metadata Application Thread appropnate
to that one of said at least one installed application
which 1s accessing said application data file.

Preferably, the system includes configuration information
which controls behaviour of said system.

Preferably, said system configuration information which
controls behaviour of said system including nominating
computer applications on which the system operates.

Preferably, said system modifies said installed application
to capture said file metadata of said application data file from
said user when said file 1s being saved within said installed
application.

Preferably, said system modifies said user interface of said
at least one installed application to allow said user to set
metadata appropriate to said application data file.

Preferably, said system modifies a title bar displayed in
said user interface of said installed application in order to
display said installed application file metadata.

Preferably, said system modifies said application to dis-
play said file metadata 1n a client window of the user
interface of said installed application.

Preferably, said system modifies said installed application
to overlay said file metadata on a printout when said
application data file 1s printed.

Preferably, said operating system 1s Microsoit Windows,
or Apple OSX, a BSD denived operating system, such as
FreeBSD or Open BSD, Linux or some other operating
system which allows for additional software components
which can be signalled when files are accessed.

10

15

20

25

30

35

40

45

50

55

60

65

10

Preferably, said application 1s Microsoit’s notepad.exe, or
some other application which can open, display, edit and
save text files.

Preferably, said application 1s Microsoit paintbrush.exe,
or some other type of application which can open, display,
edit and save 1mage {iles.

Preferably, said application 1s Microsoit’s Word.exe, Ope-
nOfhice, LibreOtlice, Adobe PageMaker, WPS Oflice, or
some other type of application which can open, display, edit
and save document files.

Preferably, said installed application 1s Windows Media
Player or some other type of application which plays back
audio files, and wherein said system modifies said installed
application to play audio cues associated with metadata of
said audio files before, during and/or after the playing back
of said audio file.

Preferably, said application plays back video files, such as
Windows Media Player. Said system modifies said applica-
tion to play video and/or audio cues associated with said
file’s metadata betore, during and/or aiter the playing back
of said file.

Preferably, said system modifies said application to dis-
play said metadata in the client region of said application
during video playback.

Preferably, said application 1s a system application, such
as Windows File Explorer, or some other system or third
party application which provides file management function-
ality to said user, such as copying, moving, deleting, renam-
ing, updating or creating {iles.

Preferably, said application 1s a web browser, such as
Internet Explorer, Safari, Chrome, Firefox, or some other
soltware application for retrieving, presenting, and travers-
ing nformation ifrom a computer network, such as the
Internet or an Intranet.

Preferably, said file metadata 1s security classification
information.

Preferably, said File System Metadata filter Driver 1s a
Windows mini filter driver, or a Max OS X listener, or some
additional operating system kernel component which
observes when the computer reads or writes files.

Preferably, said metadata storage 1s part of said comput-
er’s file system, such as Microsoit’s Alternate Data Streams
(ADS), or some form of extended file attribute, whereby the
file system can associate a file with file metadata.

Preferably, said file metadata 1s stored as properties within
said file, such as Microsoft Oflice’s Custom Document
Properties, or other file properties which are stored within
the file.

Preferably, said file metadata 1s stored on said computer
in a database, such as SQLite, BerkelyDB, or some other
database installed on said computer, capable of persistent
storage of said file metadata.

Preferably, said file metadata 1s stored on a computer
connected to said computer by a computer network, such as
database server, like Microsolt SQL Server or Oracle, or a
cloud service, or some other network storage capable of
persistent storage of said file metadata.

Preferably, said metadata is stored 1n a combination of the
file system, a local database, a network accessible database,
and 1n said file.

Preferably, said application 1s capable of transferring files,
such as Skype, or Dropbox, or Filezilla, or a browser such
as Internet Explorer, Google Chrome, Apple Safari, or
Mozilla, or some other application which can copy or move
a file from said computer to another computer over a
computer network. Said system modifies said application to

US 11,010,343 B2

11

interrogate the metadata of said file prior to 1t being trans-
terred, and can reject the transfer of a file, based on rules
defined 1n said configuration.

Preferably, one such rule which may be enforced by said
system 1s that a security classified file can only be transmit-
ted across network channels, and to destinations, with
adequate protection.

Preferably, said computer 1s capable of performing screen
capture.

Preferably, said system modifies said application to inter-
rogate the metadata of said file being displayed, and 1f the
display 1s subject to screen capture.

Preferably, the screen capture uses a screen sharing appli-
cation, such as Skype, GoToMeeting or WebEX.

Preferably, the screen capture uses 1mage or video capture
applications, such as Window Snipping Tool, print screen or
Snaglt.

Preferably, said system can block the display of said file
during screen capture.

Preferably, said system can inherit metadata from said file
being displayed and display 1n captured image.

Preferably, said system can inherit metadata from said file
being displayed and store as metadata 1n captured image file.

Preferably, said manager tests validity of said file meta-
data by comparing said metadata with allowable ranges of
metadata specified 1n said configuration and takes corrective
action 1f 1nvalid.

Preferably, said manager uses said configuration to con-
trol when said metadata 1s collected, such as each time said
user saves a file through said application, or only when said
fille metadata does not exist or 1s invalid.

Preferably, said additional thread provides a user interface
to said user which allows the user to enter said metadata,
whereby the user 1nitiates the interaction via aid user inter-
face.

Preferably, said user interface 1s a dialog, or a ribbon bar,
or an application menu, or some other user intertface control
or collection of controls which allows said user to specily
information to said system.

Preferably, said configuration controls the selection
ranges presented to said user when collecting said metadata.

Preferably, said configuration allows for said file metadata
which has one or more values which are hierarchical in
nature, whereby the selection of one value, say a primary
value, controls the valid ranges of further, or secondary
values.

Preferably, said configuration allows for the selection of
a minimum security classification, such as SECRET, before
any caveat values, such as Releaseability Indicators, or
Codewords can be selected.

Preferably, the selection of one caveat value excludes the
selection of other caveats. For example, the selection of an
EYES-ONLY caveat will invalidate the any RELEASABIL-
ITY caveats.

Preferably, said system modifies allowable ranges of
metadata specified in said configuration, based on content of
said file, and rules defined 1n said configuration.

Preferably, said additional thread scans said file’s content
for keywords or numeric sequences, such as credit card
numbers, social security numbers, or bank account 1denti-
fiers, birth dates, or images, or embedded objects, to 1dentily
commercially sensitive or private, or otherwise sensitive
information.

Preferably, on identifying said sensitive information, said
system removes 1nvalid options from metadata ranges,
which would only allow said user to indicate that said file
contains sensitive information.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

Preferably, said configuration 1s stored as persistent data
on said computer, such as 1n the registry, an XML file, a text
file, or binary file, or some other storage which contains

configuration data.

Preferably, said configuration 1s managed centrally, say
using Group Policy, or a configuration server, or a database,
or some other system by which settings are managed cen-
trally or in the cloud, and deployed to one or more said
computers connected using a computer network.

Preferably, when a said application writes a said file to
said computer system, said File System Metadata Filter
Driver scans the associated file stream to check 11 1t contains
valid metadata, and 11 not, notifies said manager component
that metadata 1s missing.

Preferably, when a said application writes a said file to
said computer system, said File System Metadata Filter
Driver injects said collected metadata into the file stream.

Preferably, said files are stored on a hard drive on said
computer, or on a removable drive, or on a computer
network to which said computer 1s connected, or cloud
storage, or some other system on which files can be stored
and retrieved.

Preferably, said computer network 1s a local area network,
an Intranet, Extranet or the Internet, or some other form of
telecommunications network which allows computers to
exchange data.

Preferably, the system further includes system configura-
tion information which control behaviour of said system
including nominating computer applications on which the
system operates.

Preferably said user interface component uses a notifica-
tion area of said operating system.

Preferably said noftification area 1s the Windows Notifi-
cation Area (System Tray), or the Status Menu of Apple OS
X.

Preferably, there 1s provided a non-transitory computer-
readable medium coded to implement the system described
above.

Preferably, there 1s provided a non-transitory computer-
readable medium coded to implement the method described
above.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1: System diagram showing major system compo-
nents;

FIG. 2: Sequence diagram showing how a Windows
application can display the metadata of a file 1t has opened;

FIG. 3: Sequence diagram showing the capture of file
metadata when the file 1s saved;

FIG. 4: Sequence diagram showing the capture of file
metadata when activated by the user;

FIG. 5: Modified Notepad.exe application showing file’s
classification and classification menu;

FIG. 6: Block diagram of a system for enforcing collec-
tion and display of computer file metadata 1n accordance
with a further embodiment of the present invention;

FIG. 7 1s a Venn Diagram display of types of applications
available to an indicative organisation to complete computer
assisted tasks.

DETAILED DESCRIPTION OF PR
EMBODIMENTS

L1
vy

ERRED

Referring to FIG. 1, which shows system components
used to enforce metadata policy on user applications on a
desktop computer.

US 11,010,343 B2

13

The user (101) interacts with the computer system (102),
with the objective of completing various tasks. Applications
(103) are 1nstalled on the computer to aid 1n the completion
of those tasks. The user will use the computer system to
launch one or more applications.

Applications will access file data using the file system.
The kernel (104) contains various components to interact
with the computer system’s hardware and to manage opera-
tion. One such component 1s the Metadata Driver (1035),
which detects when processes are created or closed. Another
kernel component 1s the File System Metadata Filter Driver
(106) which detects when files are opened for reading, or
saved by applications.

The Metadata Storage (109) stores file metadata for files
on the computer system.

The Metadata Application Thread (108) 1s loaded 1nto the
Application. The Metadata Application Thread modifies the
appearance of the Application on the computer system, to
display metadata to the user, relevant to the file which the
Application accesses. It also presents an interactive control
to the user, so that the user can specily metadata relevant to
the file while using the application.

The Metadata Manager (107) co-ordinates operations
between the components. It recerves signals from the Meta-
data Driver and the File System Metadata Filter Driver, so
it can respond to events. It creates the Metadata Application
Thread and loads in 1nto the Application. It accesses file
metadata from the Metadata Storage. It signals the Metadata
Application Thread when new metadata 1s available.

Referring to FI1G. 2, which 1s a sequence diagram showing
how a Windows application can display the metadata of a
file 1t has open.

The User (101) interacts with the Operating System (102)
to launch the application (201). The operating system loads
the Application (103, 202). The operating system kernel
(104), which 1s part of the Operating System (102) signals
the Metadata Driver (105) that a process has been created
(203). It provides the process 1dentifier and application path
name as part of the signal information. The Metadata Driver
signals the Metadata Manager (107) that the process has
been created (204). The Metadata Manager checks that the
newly created process should be monitored (205) by com-
paring the process’ application path with known processes to
monitor. The set of processes to monitor 1s part of the
Metadata Policy (110).

The Metadata Manager creates a Metadata Application
Thread (108)(206), which it injects into the Application’s
process (207). The Metadata Manager keeps a reference of
the process 1dentifier and the Metadata Application Thread
(208).

At a later stage, the User (101) interacts with the appli-
cation (103) to open a file (209). The Application makes
internal call to open the file (210) which 1n turn makes a call
to the system (102) to open the file (211). The system signals
the File System Metadata Filter Driver (106) that a file 1s
being opened (212). The file path and the Applications’
process 1dentifier are contained 1n the information in the
signal. The File System Metadata Filter Driver signals the
Metadata Manager (107) about the file activity (213). The
Metadata Manager retrieves the reference of the Metadata
Application Thread, based on the process 1dentifier from the
signal (214). The Metadata Manager retrieves the file meta-
data (2135, 216) from the Metadata Storage (109), based on
the file’s path that 1t recerved 1n the signal (213).

The Metadata Manager (107) signals to the Metadata
Application Thread (108) that the file open 1s completed,
with the file’s metadata (217). The Metadata Application

10

15

20

25

30

35

40

45

50

55

60

65

14

Thread converts the file metadata to text suitable for display
to the user (219). It can use configuration from the Metadata
Policy to decide which parts of the file metadata to display,
how to translate 1t, and where to locate the display in the
Application. The Metadata Application Thread updates the
Application’s window with the text (220).

Referring to FIG. 3, which shows the flow of control
undertaken to capture of file metadata when the file 1s saved.

The user (101) interacts with the Application (103) to save
the file which 1s being displayed or edited (301). The
Application retrieves the file path from memory (302).
Alternatively, the user may specily a new path to which to

save the file. The Application makes a call to the System
(102) to save the file to the specified path (303). The System
notifies the File System Metadata Filter Driver (106) that a
file 1s to be saved, and passes parameters including the file
path and the process identifier (304). The File System
Metadata Filter Driver notifies the Metadata Manager (107)
with the same parameters (305). Using the process 1dentifier,
the Metadata Manager retrieves (306) the Metadata Appli-
cation Thread (108) that was created when the file was
opened (206). The Metadata Manager (107) retrieves (307)
the file’s metadata from Metadata Storage (109), which 1s
returned to the Metadata Manager (308). In some cases, the
file may not have metadata (not shown) and no metadata will
be returned.

The Metadata Manager notifies the Metadata Application
Thread (108) that the file 1s being saved (309), and provides
the metadata, 11 1t exists. The Metadata Application Thread
prompts the user to confirm the metadata (310). The user can
modily the metadata as necessary. If no metadata exists for
the file, the user selects valid metadata. The Metadata
Application Thread returns the metadata to the Metadata
Manager (107). The Metadata Manager writes the metadata
to the Metadata Storage (109), indexed by the file path (312).

Referring to FIG. 4, which shows the capture of file
metadata when activated by the user.

The user (101) interacts with the Metadata Application
Thread (108) to set the metadata of the file which the
Application (103) 1s displaying (401). The Metadata Appli-
cation Thread has extended the user interface of the Appli-
cation with additional controls (see FIG. §5). The Metadata
Application Thread retrieves from memory the path of the
file being displayed (402). The Metadata Application Thread
gets from memory the existing metadata for the file (403).
The Metadata Application Thread prompts the user with the
existing metadata, which the user may modity (404). The
Metadata Application Thread notifies the Metadata Manager
(107) of changes, and provides the path and the updated
metadata (4035). The Metadata Manager writes the metadata
to the Metadata Storage (109), indexed by the file path (406).

Referring to FIG. 5, which shows the Microsoft Windows
Notepad.exe application (text editor), as extended by the
invention, operating on Microsoit Windows 10.

The Application, Notepad.exe, 1s shown, contained by the

Window Border (501),

The title bar includes the Control Menu box (502) and
shows the file name of the file being edited (504), and the
application name (505). The title bar has been extended by
the addition of a classification control (503).

The Menu bar (508) shows the options available to the
user when using the application.

The Status bar (509) shows the Application’s status. In
this example it displays the cursor position.

The client area of the application window shows the

content of the file (507).

US 11,010,343 B2

15

The 1mage also shows how the application window 1s
turther extended by the System. The file metadata 1s dis-
played (506). In this case the security classification of the
file 1s shown between the title bar and the menu bar.

Further Embodiment

FIG. 6 describes a further embodiment of the present
invention wherein like components are numbered as for
components described 1n earlier embodiments except in the
1000 series.

It describes 1in block diagram form apparatus and meth-
odology to enforce the data policy on use of data stored 1n
a file without modifying the data in the file to which the
metadata policy applies.

Referring to FIG. 6, there 1s shown system components
used to enforce metadata policy on user applications on a
desktop computer 1n accordance with a further embodiment
of the present invention.

The user (not shown) interacts with the computer system
(1102), with the objective of completing various tasks.
Applications (1103) are installed on the computer to aid in
the completion of those tasks. The user will use the computer
system to launch one or more applications.

Applications will access file data using the file system.
The kernel (1104) contains various components to interact
with the computer system’s hardware and to manage opera-
tion. One such component 1s the Metadata Driver (11035),
which detects when processes are created or closed. Another
kernel component 1s the File System Metadata Filter Driver
(1106) which observes when files are opened for reading, or
saved by applications.

The Metadata Storage (1109) contains file metadata for
files including the metadata MD-1 for file F-1 on the
computer system. In a preferred form the files including file
F-1 are stored in separate file data storage (1110). More
preferably the separate file data storage 1110 1s logically
separate storage from the file metadata storage 1109.

The Metadata Application Thread (1108) which 1s execut-
able as an additional thread 1n the application 1103 is loaded
into the Application 1103. The Metadata Application Thread

1108 modifies the appearance, e.g. Application Window, of

the user interface (1111) generated by the Application 1103
on the computer system 1102, 1n order to display metadata
including meta data MD-1 to the user, relevant to the file F-1
which the Application accesses. It also presents an 1nterac-
tive control (1112) on the Application’s user interface 1111
to the user, so that the user can specily metadata including,
metadata MD-1 relevant to the file F-1 while using the
application 1103.

The Metadata Manager (1107) co-ordinates operation
between the components. It recerves signals from the Meta-
data Driver 1105 and the file access detector 1n this instance
in the form of File System Metadata Filter Driver 1106, so
it can respond to events. It creates the Metadata Application
Thread 1108 and loads it into the Application 1103. It
accesses llle metadata including metadata MD-1 from the
Metadata Storage 1109. It signals the Metadata Application
Thread executing as thread 1108 when new metadata includ-
ing metadata MD-1 1s available.

In one particular form code to implement the system and
method of any of the previously described embodiments 1s
stored on a non-transitory medium such as a memory device.
The code can then be loaded into memory 1120 from the
non-transitory medium for execution by CPU 1121.

10

15

20

25

30

35

40

45

50

55

60

65

16
INDUSTRIAL APPLICABILITY

Embodiments of the invention provide data structures and
program structures for the handling and the display of
metadata including, in particular metadata associated with
layered security systems.

The mvention claimed 1s:

1. A system for displaying and capturing file metadata of
an application data file stored on a computer; said computer
including a processor and memory; said memory storing an
operating system for managing operations of the computer;
said memory further storing a kemel of the operating
system; said computer further including a user interface and
at least one 1nstalled application installed on said computer
for interacting with a user which, when executed by the
processor under the control of the operating system, pro-
cesses said application data file; said system comprising:

a. a File System Metadata Filter Driver installed on said
computer, whereby said kernel of said operating system
signals said File System Metadata Filter Driver when
said 1nstalled application accesses said application data
file;

b. at least one Metadata Application Thread, which the
system 1njects 1nto said installed application when an
application process for execution of said installed
application 1s created, whereby said Metadata Appli-
cation Thread handles messages generated by said
installed application and modifies the user interface of
said 1nstalled application to display information related
to 1nstalled application file metadata of said installed
application;

c. Said memory including Metadata Storage which stores
said application file metadata, from which said at least
one Metadata Application Thread reads said file meta-
data, and to which said at least one Metadata Applica-
tion Thread writes said installed application file meta-
data;

d. a Metadata Manager operating on said computer,
whereby said File System Metadata Filter Driver sig-
nals said Metadata Manager when said at least one
application data file 1s accessed, and which 1n turn
notifies said Metadata Application Thread appropnate
to that one of said at least one installed application
which 1s accessing said application data file;

wherein said computer 1s capable of performing screen
capture; and wherein said system modifies said application
to 1interrogate the metadata of said file being displayed, and
if the display is subject to screen capture; and wherein said
system can block the display of said file during screen
capture; and wheremn the screen capture uses a screen
sharing application, such as Skype, GoToMeeting or
WebEXx; or wherein the screen capture uses 1image or video
capture applications, such as Window Snipping Tool, print
screen or Snaglt.

2. The system of claim 1, wherein said system modifies
said 1nstalled application to capture said file metadata of said
application data file from said user when said file 1s being
saved within said installed application.

3. The system of claim 1, wherein said system modifies
said user 1nterface of said at least one installed application
to allow said user to set metadata appropriate to said
application data file.

4. The system of claim 1, wherein said system modifies a
title bar displayed in said user interface of said installed
application in order to display said installed application file
metadata.

US 11,010,343 B2

17

5. The system of claim 1, wherein said system modifies
said application to display said file metadata in a client
window of the user interface of said installed application.

6. The system of claim 1, wherein said system modifies
said 1nstalled application to overlay said file metadata on a
printout when said application data file 1s printed.

7. The system of claim 1, wherein said operating system
1s Microsoft Windows, or Apple OSX, a BSD derived
operating system, such as FreeBSD or Open BSD, Linux or
some other operating system which allows for additional
soltware components which can be signalled when files are
accessed.

8. The system of claim 1, wherein said application 1s
Microsolit’s notepad.exe, or some other application which
can open, display, edit and save text files; or wherein said
application 1s Microsoit paintbrush.exe, or some other type
of application which can open, display, edit and save image

files; or wherein said application 1s Microsoit’s Word.exe,
OpenOflice, LibreOfhlice, Adobe PageMaker, WPS Oflice, or
some other type of application which can open, display, edit
and save document files; or wherein said installed applica-
tion 15 Windows Media Player or some other type of
application which plays back audio files, and wherein said
system modifies said installed application to play audio cues
associated with metadata of said audio files before, during
and/or after the playing back of said audio file; or wherein
said application 1s a system application, such as Windows
File Explorer, or some other system or third party applica-
tion which provides file management functionality to said
user, such as copying, moving, deleting, renaming, updating
or creating files; or wherein said application 1s a web
browser, such as Internet Explorer, Safari, Chrome, Firefox,
or some other software application for retrieving, presenting,
and traversing mformation from a computer network, such
as the Internet or an Intranet.

9. The system of claim 1, wherein said application plays
back video files, such as Windows Media Player, wherein,
said system modifies said application to play video and/or
audio cues associated with said file’s metadata before,
during and/or after the playing back of said file; and wherein
said system modifies said application to display said meta-
data in the client region of said application during video
playback.

10. The system of claim 1, wherein said file metadata 1s
security classification information.

11. The system of claim 1, wherein said File System
Metadata filter Driver 1s a Windows mini filter driver, or a
Max OS X listener, or some additional operating system
kernel component which observes when the computer reads
or writes files.

12. The system of claim 1, wherein said metadata storage
1s part of said computer’s file system, such as Microsoit’s
Alternate Data Streams (ADS), or some form of extended
file attribute, whereby the file system can associate a file
with file metadata; and wherein said file metadata 1s stored
as properties within said file, such as Microsoft Office’s
Custom Document Properties, or other file properties which
are stored within the file; and wherein said file metadata 1s
stored on said computer 1n a database, such as SQLite,
BerkelyDB, or some other database installed on said com-
puter, capable of persistent storage of said file metadata; and
wherein said file metadata 1s stored on a computer connected
to said computer by a computer network, such as database
server, like Microsolt SQL Server or Oracle, or a cloud
service, or some other network storage capable of persistent
storage of said file metadata; and wherein said metadata 1s

10

15

20

25

30

35

40

45

50

55

60

65

18

stored 1n a combination of the file system, a local database,
a network accessible database, and 1n said file.

13. The system of claim 1, wherein said application 1s
capable of transferring files, such as Skype, or Dropbox, or
Filezilla, or a browser such as Internet Explorer, Google
Chrome, Apple Satari, or Mozilla, or some other application
which can copy or move a {ile from said computer to another
computer over a computer network; and wherein said system
modifies said application to interrogate the metadata of said
file prior to 1t being transferred, and can reject the transfer
of a file, based on rules defined in said configuration; and
wherein one such rule which may be enforced by said
system 1s that a security classified file can only be transmit-
ted across network channels, and to destinations, with
adequate protection.

14. The system of claim 1, wherein said system can inherit
metadata from said file being displayed and display in
captured 1mage; or wherein said system can inherit metadata
from said file being displayed and store as metadata 1n
captured 1mage file.

15. The system of claim 1, wherein said Metadata Appli-
cation Thread provides a user interface to said user which
allows the user to enter said metadata, whereby the user
initiates the interaction via aid user interface; and wherein
said user interface 1s a dialog, or a ribbon bar, or an
application menu, or some other user interface control or
collection of controls which allows said user to specity
information to said system.

16. The system of claim 1, wherein said Metadata Appli-
cation .

Thread scans said file’s content for keywords or
numeric sequences, such as credit card numbers, social
security numbers, or bank account identifiers, birth dates, or
images, or embedded objects, to i1dentily commercially
sensitive or private, or otherwise sensitive mformation; and
wherein on 1dentifying said sensitive information, said sys-
tem removes mvalid options from metadata ranges, which
would only allow said user to indicate that said file contains
sensitive information.

17. The system of claim 1, wherein when a said applica-
tion writes a said file to said computer system, said File
System Metadata Filter Driver mjects said collected meta-
data into the file stream.

18. The system of claim 1, wherein said files are stored on
a hard drive on said computer, or on a removable drive, or
on a computer network to which said computer 1s connected,
or cloud storage, or some other system on which files can be
stored and retrieved.

19. A system of organization of programme structures and
file structures 1 a computer comprising a Processor 1in
communication with a memory in order to enforce metadata
policy on use of data stored 1n a file without modifying the
data 1n the file to which the meta data policy applies;

a. said system including a system for displaying and
capturing file metadata of an application data file stored
on the computer; said computer including said proces-
sor and said memory; said memory storing an operating,
system for managing operations of the computer; said
memory further storing a kernel of the operating sys-
tem; said computer further including a user interface
and at least one installed application installed on said
computer for interacting with a user which, when
executed by the processor under the control of the
operating system, processes said application data file;
said system comprising:

a. a File System Metadata Filter Driver installed on said
computer, whereby said kernel of said operating

US 11,010,343 B2

19

system signals said File System Metadata Filter
Driver when said installed application accesses said
application data file;

. at least one Metadata Application Thread, which the
system 1njects 1nto said installed application when an
application process for execution of said installed
application 1s created, whereby said Metadata Appli-
cation Thread handles messages generated by said
installed application and modifies the user interface
of said installed application to display information

related to installed application file metadata of said
installed application;

. Said memory including Metadata Storage which
stores said application file metadata, from which said
at least one Metadata Application Thread reads said
file metadata, and to which said at least one Metadata
Application Thread writes said 1nstalled application
file metadata;

10

15

20

d. a Metadata Manager operating on said computer,

whereby said File System Metadata Filter Driver
signals said Metadata Manager when said at least
one application data file 1s accessed, and which 1n
turn noftifies said Metadata Application Thread
appropriate to that one of said at least one installed
application which 1s accessing said application data

file;

wherein said computer 1s capable of performing screen
capture; and wherein said system modifies said application
to 1interrogate the metadata of said file being displayed, and
i the display is subject to screen capture; and wherein said
system can block the display of said file during screen
capture; and wheremn the screen capture uses a screen
sharing application, such as Skype, GoToMeeting or

Web]

X ; or wherein the screen capture uses 1mage or video

capture applications, such as Window Snipping Tool, print
screen or Snaglt.

	Front Page
	Drawings
	Specification
	Claims

