US011010287B1

a2 United States Patent 10) Patent No.: US 11,010,287 B1

Barua et al. 45) Date of Patent: May 18, 2021

(54) FIELD PROPERTY EXTRACTION AND 2011/0035371 AL* 2/2011 Pongccccccoo. GOGF 16/2365
FIELD VALUE VALIDATION USING A 707/722
VALIDATED DATASET 2014/0208218 Al* 7/2014 Carasso GOGF 3/04842
715/738

: : : : : 2019/0102683 Al* 4/2019 Jayaraman GOO6F 16/285

(71) Appllcant' Intult Inc-j Mountaln Vlewj CA (US) 2019/0387012 Al 253 12/2019 Orihara ““““““““““ GO6F 21/55

(72) Inventors: Trilokesh Barua, Bangalore (IN); Linu
Mathew Koshy, Bangalore (IN); Mohit OTHER PUBLICATIONS
Mayank, Bangalore (IN)

Bille et al., “Fast and compact regular expression matching”,

(73) Assignee: Intuit Inc., Mountain View, CA (US) published by Theoretical Computer Science 409 (2008), pp. 486-
496 (Year: 2008).*

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 * cited by examiner

U.S.C. 154(b) by O days.
Primary Examiner — S. Sough
Assistant Examiner — Zheng Wei

(22) Filed: Jul. 1, 2019 (74) Attorney, Agent, or Firm — Ferguson Braswell
Fraser Kubasta PC

(21) Appl. No.: 16/459,211

(51) Int. CL

GO6F 11/36 (2006.01) (57) ABSTRACT

GO6N 20/00 (2019.01) | | | | |
(52) U.S. CL A method ncludes executing, multiple times, a target appli-

CPC GO6F 11/3692 (2013.01); GO6F 11/3688 cation with at least one test input dataset to obtain multiple

(2013.01); GO6N 20/00 (2019.01) test output datasets. The test output data sets each include
(58) Field of Classification Sea;ch multiple field values for multiple fields. The method further

CPC GOGE 11/34- GOGF 11/3452- GOGE 11/36: includes comparing the field values with at least one vali-

GO6F 11/3612: GOGF 11/3616-364 GOGF dated output dataset to assign the fields into a match class,
11/3688: E}O6F 11/3697- GO61\; 50/00 an 1gnore class, and an unknown class, extracting, from the

comparing, a field property for a first subset of the fields 1n

See application file for complete search history. the match class, and generating a test result by adding, to the

(56) References Cited test result, whether a first subset of the field values corre-

sponding to the first subset of the fields satisfies a corre-

U.S. PATENT DOCUMENTS sponding field property, and 1gnoring a second subset of the

a second subset of fields classified in the 1gnore class. The

9,052,259 BL* 52015 Hood ..o, GUOOE 1 ;/1 3;16/55’3 method further includes presenting the test result.
2007/0028217 Al* 2/2007 Mishra GO6F 11/3688
717/124 18 Claims, 13 Drawing Sheets

(' START)

l Step 701
Select test input dataset F
Step 703

Execute target application using
test input dataset

l I,— Step 705

Store test output dataset

Compare fields of test output - Step 707

dataset and validated output, YES
extract field properties, and
obtain a comparison result

I

Step 709
Generate test result based on
comparison result

Step 711
Another test
dataset?

NO

* v Step 713
Generate user interface based

on test results

Step 715
‘ Present user interface |

(E%D)

U.S. Patent May 18, 2021 Sheet 1 of 13 US 11,010,287 B1

100
Target Application

.......................
Application Logic

104 Application
Programming
Interface

106 Input Dataset =

108 Output Dataset

114 Field X

ldentifier

116 Field Y

ldentifier

*e e

FIG. 1

U.S. Patent May 18, 2021 Sheet 2 of 13 US 11,010,287 B1

< _ 100
... DaaRepository Target Application

202
Application Tester

208 Test Output Datasets

216

Test Executioner
210 Classification Result Set

212 Field X Properties 218 Field Properties

* Extrapolator
&
&

220

User Interface

214 Field Y Properties

lll

|
L)
w
[
|
~
»
|
[
%
L,
[£
L
[8
]
"

FIG. 2

U.S. Patent May 18, 2021 Sheet 3 of 13 US 11,010,287 B1

00 Validated Dataset

304 Validated

302 Output Dataset

Test Input =
Dataset

ll

404 Test Output

402 Dataset

Input
ldentifier

FIG. 4

200
Field Properties

202
Field Identifier

204
Field Class

206 Regular
Expression
(Regex)

U.S. Patent

May 18, 2021 Sheet 4 of 13

00 Field Classes

602
Unknown Class

604
Ignore Class

606
Match Class

608
Exact Match

Subclass

610

Regex Match
Subclass

FIG. 6

US 11,010,287 B1

U.S. Patent May 18, 2021 Sheet 5 of 13 US 11,010,287 B1

START

Select test input dataset '
Execute target application using |
test input dataset
Store test output dataset

Compare fields of test output
dataset and validated output, YES
extract field properties, and
obtain a comparison result

Step 701

Step 703

Step 705

Step 707

Step 709

(Generate test result based on

comparison result
Ia Step 711
Another test
dataset?
NO

Step 713

(Generate user interface based

on test results

Step 715

Present user interface

FIG. 7

U.S. Patent May 18, 2021 Sheet 6 of 13 US 11,010,287 B1

Initial Level
w Validation

START

Step 801

Obtain status codes

Step 803

Status
codes satisty
thresholds?

NO

YES

Step 807 / Step 805

NO Validation fails

Responses received?

YES
Initial level validation is a
success

END

Step 809

FIG. 8

U.S. Patent May 18, 2021 Sheet 7 of 13 US 11,010,287 B1

Field Level
START ¢ Validation
- Step 901
Obtain field value from
field
~ Step 903
o S N
field in unknown e YES
class?
otep 905
NO -'
Use field value for training
{0 determine field
properties
Step 907 T Step 911
IS Does
YES field in match YES< field value satisty

class? field properties”?

NO ‘ T
~ Step 909 YES
" s Step 91
Ignore field Set field value Set field value
as valid as failed
Step 915

/// - Step 917

Another field

e

END

FIG. 9

US 11,010,287 B1

Sheet 8 of 13

May 18, 2021

U.S. Patent

G20l dais
(N4 h
yibus| Buiyorews
ON uo paseq yjbuaj 198 S3A
. R
SNUIUOD T -
U BULOTEW UMOWIUN 6 1o ppuor
/201 do1s -
€201 dalg - 1201 da1s -
ON _
X908l Mau 0] UDISSIAXS Xxabal mau 0] X809J) Mau 0] U0ISSaIdXd
oawnueydie puaddy uolssasdxas ouswnu puaddy onegeudie puaddy
6101 d8lS ~ S3A GLO| dais SIA L 101 dalg Q3A
¢, U0ISS8IdX8 ;,U0ISS0.1dX3) wco_wwmaxm//
ouawnueydre ouauab QN oLawnu oLauab ON— onegeydje suauab /,,f
yorew sbumg g yorew sbumg yorew sbung .
xobal mau 0] Xiyns Jo/pue xiyaid uowwod ppy i ON
/00| de1g ~ QA
SdA SXINS/XYBIA™ e
e UOWILLIOD B 8ARUY
G0O| dais - Soums.
07 D5 v TP T —

€00} daig

sanfeA pjal} uo paseq sbuls 183

lll

1001 deig -/

LHVIS

US 11,010,287 B1

Sheet 9 of 13

May 18, 2021

U.S. Patent

as|e) :, 55810014 UJUOISIBAUOD)IUBIUNOIIYSI,
‘as|e} 1, uoneibiNereq|laos!,

€. 1, UOISIBA]|1IGO,

‘anJ} 1, 11lg0asn,

Josele IndinQ 1se] #7011 e

naino

1S8] ul Ajuo Juesaid
asuodsal uapjoh

ul Ajuo jJussaid
SON[eA JUSJSHIP oAey

pue "{ojewl pinoys

7L
.1_.-.\._._“. .u?L\.u

F

pIoly

LE DI

os|e] :, 553106014 UJUOISISALUOD)IUBIUNOIDYSI,
‘as|e} :, uoneibiNereq|iaos!,

‘.. 1 UOISIBA]IFO,

‘|onJ} 3, |1Igo9sn,

1asereq INdinQ pareplfeA 2oL S

U.S. Patent May 18, 2021 Sheet 10 of 13 US 11,010,287 B1

Should maich, and
itferent val
golden response
Present only in test
output
1100

hay
Present only in

2
D
..U
O
L
-
aasdt
O
=

L
LR

- iy
T

-

b
o
-
r4
!
»
W,

43{
PR

Y ST
’

T

F
Tk
A
s
o4
7”4

H
A
r
o
“r
rE
.
-
-

Ara
| Ty

‘
g

A
J‘J-

4
o
P
1
7
ju‘ :
4
L

%
:
r

'd
1

patt]
4

?
2
rd
lI,.r"
’
".f:,-'
o
7
-,

i
LA
e
24
F
f‘f
ad
il
#
I'J'
s
i
]

= .
*‘1“« et """H.,' il Fadale W% e
4 - .

.\\ W

& i -

P *-,11.'} L l..ﬂ""‘*'r il H‘H“i& ::.\':‘5 " 3
iy gt ym o
v ‘-.' -% a

'\:11‘-* h"":hﬁ"r
.:'.h"n"'\l‘ "'1 -n-‘

L]
é ¥ ' T gt Y
T ., £ N £33

4
¥

|
]
|
l|.|I"'
M
I|E-_,.-: K
-
4
a
L
F
o
F
%
il
4
v

L]

-
e
i

1204 Test Output Dataset

o L ¥ w iy’ .
. - o, . L \k‘\' =,
ety 1& L b LY By
—r :’-"‘h'ﬁ._ ‘k:-‘-:. ot {,’. :} - t" " ‘d. h'..?'} .;;"h o ‘:-::-:::"r :"'l.."'l-""l-"‘l. z. :‘l'la.-‘k Hﬁ\. ?'h :ﬁ' :}
e "y R Sy " < g L " . BTG 3y, Loagh ::., . i
5 A H\ ."'-,.-.,:} i WL ot T, L \ ﬁ'}“h' . :: pLe, “.‘1‘?\'\ v it 5 L
|] E N FiL XN 4 .
ey bt . SR ~k . i o ot \, Y w"' R L "‘&M e

TN Ny) Lon SR ey B A R AW Mt RN

) L, ..é E Ty e 1‘ - : 1;.

:*\ L .. h R 1‘"\.-:'*-.. -.,?1_1. w- 'l""b"'""u‘ *‘\’r > o ‘_‘.\ f‘:.*-._‘. N _— ""-.-*-..L [, .

A e s N Vet apnes W) ™ Nl s LY b MG

- " ' My, M g . B w

;‘ m‘\\‘ “"Q‘\ i‘\? % ’.::‘ ; LY. S {:1.,_4"-.,\ . o -~ 't: . ﬁ:}:?} S, i{:ﬁ ,M:‘ :} a .

At ¥ N . P * S A S N o e AR
Fi o L ¥ r E oA . o Y
A3 iy 0 SOy N e e O R S SN
- 1||.‘.|I o, '.h.‘_ [L] - - l_ Iy . .
w' R w Liw * - -y 3 ! T)

o LN e, Cj ‘S :‘}, e £, . = 'T:; \ . * 3 e ;‘l?;' i‘h“*";; ::“'- - D
* . k [W, 0
~ " e R T Py v L R A T e

IR . \u S i T e WA - B U A T i o
i Yo Q ‘. e }"r ut . ol o S 2 = - ::-‘ oAy LR :."'l. ™, N TER

Ay - \"'\ ", LN "'“"n‘\ oy ol .,"\,. w4 n -

L > A3 WAy e) e T LI 5 ot T3 e
"y T " o e - Y Rk % ¥ oA, . A s
3 o - > - G m St -aialy N w0 ~ Ny E = o LS :::_ﬂ l:"lh.. - b

. Ny w T iy 3 et A

"-:,'_- -, \ wi :x{‘ F "'r #i“‘hk T q‘.\ n . E‘-.,:} f?':nl"h""- :"'-u.:-:"::' ::: w"'"-'\-!" W :h et ﬂ':;‘h ﬂd.

:) < S Wi T NS

L'
s <

iy -,"‘“‘*
*'d.. L% | [%
s e
R b A
-"h =, "l."
¥, ‘1:‘"-"'-""-
St s

F Rl PN "'1

£
r
[
-
-
A
L
4
2
3
FJ
ra
4
iy
d;-’
IIF'
rl
T
A

F
'f
4
e
-
i
’i"
x
£
o
T

/
o

"
'y

A ¥
T
s

i
-,
“
A
o

¥

o,
o

¥

o, oy
M 3 :
T A ey
'h.‘*-..,ﬂ,l 4-__ AN
sn o L3 A
b,

R - ‘i‘l,"'!\" ‘lh."n.
R T e

o
-

3

r
%
-l

o

PR IR

-
b, +* :,. .,1-;:-'{‘
25 D
by -\"'?‘l:: Rl
W T, [R RS

ey

"discountrate”
"faxagency

"taxrate"”
"taxcode”
Vd

Pd
:

P
o

a
Ea
4
#
Y
7
-+

"memreportgroup”
"cachedListTimeStamps"
O,
i

"discountrate”
"taxagency
"taxcode"

"taxrate”
s
"location

1
l*f

A

F

o
i
#

"cachedListTimeStamps"
72
0,

"priorSavedTxn"

{
]

FIG. 12

1"‘""'-*..} - Hiﬂ .
A

1:!-"\.11. "\.h‘} N \ T h
2 hy i"h"h*-h o o
e ﬁ.h_..,b"'“"‘ . :
a0 S Ry R
. Ry o el A
1'-.*.‘1__ Y 1.-"'!-"'!..«,,* * “-u‘-‘ t.\ "-\h

; o e Mk BN

b ol .

. %
L \ 4 "'rq,_q.‘- B S
.

4
-
F
L
r
s
m
|
-
e
.-ff-r-r

ot

""b.“"h_.-q_'l ;::.:‘h} ﬁ"k,h‘-‘.' a..'-;: e N ‘.\'.t

'b-"-'\..\,\.&

=t
™
A
al" .
A
[&
5

. . . . ") L“.\.—‘ i

h:.?-"..“ T B
gl - . . Ry,

St "f'-“"' “: v M 1 e

v ~
H‘.“l ‘I.._-._"l' K

ol *
| 1
N NN

Mty T, LEEEN ‘.1 e
-

L B

|

:
'
"'-.-
l_:'.lf
e
: h
P

k. 1 H'"l""h.t g,

4

- L .
Fa 'f_.l’r 'i:..l'.ﬂ l'.pf F{

%

H

F
e
=

L]

L] % '\.:u
R &3 S

1202 Validated Output Dataset
4

1531308257000,

L. 2
-
- N
U P
-) . ‘- [
A “ - .
b in Yy ot b T L™ ""h Moo hS .1\." Mot il {hqﬁ.‘c
A - - i it I w " e P it i
iR 12 - . REEERT R — RN N U e 0N n N
e, : CD :,,,:::} B \x:‘ 3 e (- "a_"w"' el 2, ' ol
TR R - T . \". L s 5 S T E"‘u
GJ - [o L 1‘1-‘:\ R"‘" il 1:‘ = =, ~ : w f\l L w¥ o o b "'l-.":"-
. D ey O™ YN . N A W e
Ty _.|_"' ™ - [Q 'w."" f\"‘ "_ L L:. -h.-l:',‘hh‘ a ""'-'\. 1\,"'] - "\ m = - - LY 5‘1:1 1_!. "1.": " LY :"""“-‘\-..
ot H r i - e LY - > — - I::'l "’i"'c,l‘_.. ' L -
£ & W O S NN ne YR X I e 2o O o ™ X 2Ry
- n K - o] Al LI - . L] "" i *""'h
» v ey ""': v - "’H“'\ ‘,Lr“'ln,_ e M e, . h T =
1oy LR H M H"'h " Q l"l;'l-'\,\‘ Ty, W - Ny - . b =y
o - - -
& e 1'.?‘"": “ L.“ : i."u-:._ Q e, o P iy % xﬂ ““\ h u A o e ety ":-1-._ ::ﬂ.‘.}
st 2 C:) e ::’.‘ - o y Q‘h m NS x . W - RS Boivad Yoy N
W e i " K - y Ry & . T iy T W TRy ™
» oY ! { } T | ks w ke T m e Pl ", L O My 2t
w ﬂ'.;":_:-'\: - ‘l’..‘ﬁ.‘l‘ H O \-"r.“-""" : : ."h\ ‘:.‘h' "-:'-; L-\.;:._{. * ";"-"h.“'l : ."::-‘h'lﬁ ﬁ g ¥ & m ‘H . o N 1‘\. :1""'-"'!“ :L 1‘::
- = . : ; W .- . . -.,
— I Q. c O v o) R R B BT & B i T RY
— O < TR >0 e X SRR ¥R
€3 JEIPEW = QO b O T o REHEL ~ > O Q) QL O * N Dy
S LN, | — %, - ™ o, o m he ey I . Tuagd Tty
= nepassact b m Wi iy TR e T 2 Cﬁ 3 M aw S T
- Yo ¥ T { } . R ~ Yorrs b9 { } Y .~ ' i
GJ e m h S 0 ko il i ry "-;‘ 1“‘ : lﬂu" hl"’; O T :"“ I} :}'lr"\ Sy e H}
o h T e Py y x - >< x }w«-.._ N > ORI o
- W S ™ () L, ; 59 e ey 48 e S 44 wro ey
e, R, M "?‘1 ""'h"-.‘;-‘ o ‘HH: h Q o ™ " m— o hY ""'lw."-‘ o ™ A" " vy,
A N > ay o LD XKoo ¢ N Ty Hond Nt R S W g
u "-":_'-" i""\ g \L"’-‘ ;1.;"";_ '.\‘-“h") E:L"'E Q cﬁ Y ""'i""'"'"‘ . 1..11_1\ E ""I""'"""; E 4""""" ot ! F'.'-":-.' Wy k""l. ke
SO ¢ s R g E S0 MO8y AY o R I - - - S R Sy
- - - E -
O =~ g WO g S g NN S - O mo R
- : ™ : : : - : : il s e Q-. : m s .
Q) "
L
L

{
,},
)

)

US 11,010,287 B1

Sheet 11 of 13

May 18, 2021

U.S. Patent

. L&, .sAegbulurewayeu),

h____ m h QN\NQ\N h: --_: m&mqmnb&_
‘ saJidxo |el], :,8dA | abessauw,

* onll,, T JSIYMON2QLIOSONS,

Jesele(IndinQ 1s8] +0¢ | e

1ndino 1s8j] ui Ajuo Jussaid
asuodsal uap|ob ui Ajuo jJussaid
SonN[eA

ASH

ﬁ

}

&L OId

anJ),, :,,paquosqnssi,,

*

Josele(INAiNQ paieplieA 2og | e

]

U.S. Patent May 18, 2021 Sheet 12 of 13 US 11,010,287 B1

"total": 15694,
"max_score”: 1, sffm 1400
"hits": |
{"_index": "hubble_validator_training_model"
" type": "data’,
" id": "lkxzny|tva563286112885820",
" score": 1,
" source": {
"Id": "ths1rubceeb563286118056798",
"endpoint”: "/gbo15/neoservice/settings”,
"field": "$.supportedCurrencies.[*].label",
"nMatched": "314",
"nMissing”: "1",
"nUnmatched"”: "0",
"total": "315",
"matchingWeightage": "99.68254" } |,
{"_Iindex": "hubble_validator_training_model"
" type": "data”,
" id": "dnatkcgefh132521073959585",
" score": 1,
" source”: {
"ild": "dnatkcgefh132521073959585",
"endpoint”: "reports/options/VEND_ BAL DET",
"field”: "$.[*].initialValue.dayOfYear”,
"nMatched": 1106940032,
"nMissing"”: 23870405,
"nUnmatcheq”: 0,
"total”: 1130810437,
"matchingWeightage": 97.889084} },
{ "_Index": "hubble_validator_training_model",
" type": "data”,
" id" "gvxepceo716563286113024578",
" score”: 1,
" source": {
"Id": "kbcwwxvkgy563286136178671",
"endpoint”; "settings”,
"field": "$.hasClassOnTxn",
"nMatcheqd": "59",
"nMissing": "8",
"nUnmatched": "54",
"total": "121",
"matchingWeightage": "48.76033" } }

i

LY

FIG. 14

U.S. Patent May 18, 2021 Sheet 13 of 13 US 11,010,287 B1

1508
Output Device(s)

1502

Non-Persistent Computer
Storage Processor(s)

. 1512
Persistent Communication
Storage Interface

1510
Input Device(s)

FIG. 15A

152
Network

S,
1522

1524 -
Node Y

1526
Client Device

FIG. 158

US 11,010,287 Bl

1

FIELD PROPERTY EXTRACTION AND
FIELD VALUE VALIDATION USING A
VALIDATED DATASET

BACKGROUND

Software development 1s the process of creating and
maintaining a software application. There are several phases
ol software development. In the requirement gathering and
analysis phase, the various requirements for the software
application are determined based on user and infrastructure.
In the design phase, the architecture of the solftware to
achieve the requirements are determined and are then imple-
mented 1n the implementation or coding phase. The software
application 1s tested before being deployed to the production
environment. The software application may further be main-
tained by updating parts of the soitware application. The
various phases of developing software may overlap and may
be repeated. For example, later versions of the software
application may be created by adding functionality to an
carlier version and then tested. By way of another example,
alter deployment of a software application, a fault may be
detected that may require retesting of the software applica-
tion.

One of the important phases of development of the
software application 1s the testing phase. In the testing
phase, the software application 1s executed with a defined set
of 1put to create output. The output may then be compared
against expected output 1n order to determine whether the
soltware executed properly.

SUMMARY

In general, 1n one aspect, one or more embodiments relate
to a method that includes executing, multiple times, a target
application with at least one test input dataset to obtain
multiple test output datasets. The test output data sets each
include multiple field values for multiple fields. The method
turther includes comparing the field values with at least one
validated output dataset to assign the fields into a match
class, an 1gnore class, and an unknown class, extracting,
from the comparing, a field property for a first subset of the
fields 1n the match class, and generating a test result by
adding, to the test result, whether a first subset of the field
values corresponding to the first subset of the fields satisfies
a corresponding field property, and 1gnoring a second subset
of the a second subset of fields classified in the 1gnore class.
The method further includes presenting the test result.

In general, 1n one aspect, one or more embodiments relate
to a system that includes a computer processor, a data
repository including at least one validated dataset including,
at least one test input dataset and at least one validated test
output dataset, a target application including application
logic and an application programing interface, and an appli-
cation tester connected to the data repository, and configured
to execute on the computer processor. The application tester
1s configured to mvoke, multiple times, execution of the
target application with the at least one test mnput dataset to
obtain multiple test output datasets. The test output data sets
cach 1nclude multiple field values for multiple fields. The
application tester 1s further configured to compare the field
values with at least one validated output dataset to assign the
fields 1nto a match class, an 1gnore class, and an unknown
class, extract, from the comparing, a field property for a first
subset of the fields 1n the match class, and generate a test
result by adding, to the test result, whether a first subset of
the field values corresponding to the first subset of the fields

10

15

20

25

30

35

40

45

50

55

60

65

2

satisfies a corresponding field property, and i1gnoring a
second subset of the a second subset of fields classified in the

ignore class. The application tester 1s further configured to

present the test result.

In general, 1n one aspect, one or more embodiments relate
to a non-transitory computer readable medium including
computer readable program code for performing operations.
The operations include executing, multiple times, a target
application with at least one test input dataset to obtain
multiple test output datasets. The test output data sets each
including multiple field values for multiple fields. The
operations further include comparing the field values with at
least one validated output dataset to assign the fields into a
match class, an 1gnore class, and an unknown class, extract-
ing, from the comparing, a field property for a first subset of
the fields in the match class, generating a test result by
adding, to the test result, whether a first subset of the field
values corresponding to the first subset of the fields satisfies
a corresponding field property, and 1gnoring a second subset
of the a second subset of fields classified in the 1gnore class,
and presenting the test result. Other aspects of the invention
will be apparent from the following description and the
appended claims.

BRIEF DESCRIPTION OF DRAWINGS

FIGS. 1, 2, 3, 4, 5, and 6 show schematic diagrams 1n
accordance with one or more embodiments.
FIGS. 7, 8, 9, and 10 show flowcharts 1n accordance with

one or more embodiments.

FIGS. 11, 12, 13, and 14 show examples 1n accordance
with one or more embodiments.

FIGS. 15A and 15B show a computing system 1n accor-
dance with one or more embodiments of the invention.

DETAILED DESCRIPTION

Specific embodiments of the mvention will now be
described 1n detail with reference to the accompanying
figures. Like elements 1n the various figures are denoted by
like reference numerals for consistency.

In the following detailed description of embodiments of
the invention, numerous speciiic details are set forth 1n order
to provide a more thorough understanding of the invention.
However, 1t will be apparent to one of ordinary skill 1n the
art that the invention may be practiced without these specific
details. In other instances, well-known features have not
been described 1n detail to avoid unnecessarily complicating,
the description.

Throughout the application, ordinal numbers (e.g., first,
second, third, etc.) may be used as an adjective for an
clement (1.e., any noun in the application). The use of ordinal
numbers 1s not to 1mply or create any particular ordering of
the elements nor to limit any element to being only a single
clement unless expressly disclosed, such as by the use of the
terms “before”, “after”, “single”, and other such terminol-
ogy. Rather, the use of ordinal numbers 1s to distinguish
between the elements. By way of an example, a first element
1s distinct from a second element, and the first element may
encompass more than one element and succeed (or precede)
the second element in an ordering of elements.

In order to validate that a target application 1s functioning,
properly without defects, multiple layers of testing is per-
formed. Even for a small change in the target application,
regression testing 1s performed. One or more embodiments
are directed to tramning a computer system to test and

validate the application programming interfaces (APIs) of

US 11,010,287 Bl

3

the target application. The validation i1s done against the
responses to different sets of requests for different endpoints
of the target application, and the validation 1s used to
identify the defects at the API level.

In particular, embodiments of the invention are directed to 5
training a computer system to learn the field properties of
fields based on output obtained while testing a target appli-
cation using a validated dataset. The target application
generates values for multiple fields. Each field may be a field
identifier, field value pair. Some of the fields are static while 10
other fields are dynamic. For dynamic fields, the field value
1s execution time dependent. In other words, for the same
input, a different execution time may cause different output
values for the field and be valid. For static fields, the same
output value should be generated. The field property defines 15
whether the field 1s static or dynamic, and, 11 dynamic,
whether the field matches a regular expression or should be
1gnored.

In one or more embodiments, a model 1s trained to
intelligently match and 1gnore fields based on the statistical 20
data obtained from the dataset. For the validation of deter-
ministic responses, a regular expression generator and vali-
dator library are implemented. For the matching fields, the
current value and the previous value or regular expression
(regex) are matched, and a new regex 1s generated using the 25
regular expression generator. The new regex satisfies the
values for the field. For unmatched fields, an additional
validation 1s performed whereby a regex 1s generated from
both the fields, which 1s then validated against the existing
regex that has been generated from the cumulation of 30
responses that created the dataset.

In one or more embodiments, the training 1s also continu-
ously improved using reimnforcement learning. The reinforce-
ment learning helps train the model for indeterministic
responses. The output 1s at least similar to a JSON diff with 35
a modification. Specifically, responses are grouped 1nto three
classes, which 1s displayed with separate color coding: (1)
Match class for when an exact match 1s required (e.g.,
creating a transaction with amount X on the same date
should always result in tax amount Y 1n the validated 40
response and the invoice amount for actual response created
with 1tem amount X doesn’t match X+Y) (11) Ignored class
(c.g., fields such as date, time, etc. are 1gnored except to
confirm that the data complies with a regular expression);
and (111) Unknown class 1n which isuflicient data 1s received 45
to determine whether 1n match class or unknown class. The
aim 1s to reduce the number of fields 1n the unknown class
to zero.

During testing, the testing validates the API responses
received for diflerent endpoints. For each endpoint, a vali- 50
dated response 1s compared with the actual response. In one
or more embodiments, validation 1s done in multiple levels.
The first level 1s a high level comparison, whereby status
codes are compared. Further, the determination 1s made
whether the environment received responses. A next level 1s 55
a field level validation. Field level comparison determines
whether the field matches the field property. For example,
the field level comparison may perform JAVASCRIPT
object notation (JSON) testing as described above.

Turning now to the figures, FIGS. 1-6 show schematic 60
diagrams 1n accordance with one or more embodiments.
FIG. 1 shows a schematic diagram of a target application
(100) with 1input and output 1n accordance with one or more
embodiments. The target application (100) 1s any soitware
application or portion thereof that 1s the target of testing. For 65
example, the target application (100) may be an enterprise
application, a web application, a financial management

4

application, an invoicing application, a gaming application,
social media application, etc. As shown 1n FIG. 1, the target
application (100) includes application logic (102) and an
application programming interface (104). The application
logic (102) 1s the set of computer executable software
instructions that perform the functionality of the target
application (100). For example, the application logic (102)
may include storage and retrieval 1nstructions, calculations
and comparisons, and other instructions. The application
logic (102) may have one or more defects (1.e., bug). A
defect 1s an error, failure, or fault in the instructions that
causes the target application logic to produce an incorrect or
unexpected result or to behave incorrectly. Exposure of the
defect may be persistent or intermittent.

The application logic (102) 1s connected to an API (104).
In other words, the application logic 1s communicatively
coupled to the API, whereby different portions of the API
may 1ssue calls to the application logic. The API 1s the
interface by which other applications issue calls to the target
application (100). The API includes multiple endpoints.
Each endpoint corresponds to a portion of the target appli-
cation (100) to which the control may be transierred from
the calling application.

The API (104) 1s configured to receive an input dataset
(106). The input dataset 1s one or more 1mput parameter
values that are received for the target application. In one or
more embodiments, the input dataset 1s for a single API call
to the target application (100). For example, the input dataset
may be an ordered collection of values, field name/field
values pairs, etc. Further, the input dataset may be recerved
directly 1n the API call or referenced 1n the API call.

The output dataset (108) 1s the output of the target
application (100). The output dataset may be directly 1n a
response or stored by the target application. In one or more
embodiments, the output dataset (108) includes a collection

of fields (e.g., field X (110), field Y (112)). Each field may
include a field identifier (e.g., field X i1dentifier (114), field
Y identifier (116)) and a field value (e.g., field X value (118),
field Y value (120)). The field identifier 1s an alphanumeric
value that uniquely 1dentifies the field amongst the collection
of fields output by the target application (100). The field
identifier may be explicitly defined or inferred, such as by
ordering of fields, 1n the output dataset (108). The field value
1s the value produced by the application logic (102) for the
field. The field value may be dependent on the mnput dataset
(106), the execution time, and any defect 1n the application
logic and/or API. The field value may be a defined object
type.

Turning now to FIG. 2, FIG. 2 shows a schematic diagram
of a system for testing the target application (100). As shown
in FIG. 2, the system includes the target application (100),
a data repository (200) and an application tester (202). The
target application (100) 1s the same as the target application
(100) described above with reference to FIG. 1.

In one or more embodiments of the invention, the data
repository (200) 1s any type of storage unit and/or device
(c.g., a file system, database, collection of tables, or any
other storage mechanism) for storing data. Further, the data
repository (200) may include multiple different storage units
and/or devices. The multiple different storage units and/or
devices may or may not be of the same type or located at the
same physical site. The data repository (200) includes test
data (204) and a classification result set (210). The test data
(204) includes the input data that 1s used as input to the target
application (100) and the output data that 1s output by the
target application (100). Specifically, test data (204) includes
validated datasets (206) and test output datasets (208). Each

US 11,010,287 Bl

S

dataset corresponds to a single execution of the target
application. Multiple datasets may exist, whereby each of
the multiple datasets corresponds to different execution
times.

A validated dataset (206) 1s a dataset that 1s known to be
correct. The validated dataset may be created, 1n whole or 1n
part, by a separate application, created by the target appli-
cation (100) and validated by a human or a separate appli-
cation, or otherwise be validated. The validated dataset 1s
described in further detail below with reference to FIG. 3.

The test output datasets (208) are datasets generated by
the target application (100) when testing the target applica-
tion. Each test output dataset may or may not include
incorrect output based on whether the target application
(100) has a defect. A test output dataset exists for a single
execution time. Multiple test output datasets may exist for
the same 1nput dataset. In particular, the multiple test output
datasets may correspond to different execution times of the
target application. The different execution times may be to
determine whether defects exist in the target application that
are exposed intermittently, based on changes to the target
application, for other reasons. Multiple test output datasets
may further exist and correspond to diflerent mnput datasets,
such as to test different parts of the target application (100).
The test output dataset 1s described in further detail below
and 1 FIG. 4.

Continuing with the data repository (200) in FIG. 2, the
data repository (200) further includes a classification result
set (210). The classification result set (210) 1s the set of fields
classified into different classes, and the extracted field prop-
erties for each field. The classes are described 1n further
detail 1n FIG. 6. The classification result set (210) includes
field properties (e.g., field X properties (212), field Y prop-
erties (214)). The field properties are the properties of a
particular output field as determined by the application
tester, discussed below. For example, the field properties
may include a determined class of the field, a regex that
should be matched by the field value, whether the field value
should match exactly, a percentage of time 1n which the field
value matches, and other such information. Field properties
are discussed 1n further detail in FIG. §.

The data repository (200) and the target application (100)
are communicatively connected to an application tester
(202). The application tester (202) 1s a soitware application
that 1s configured to test the target application (100). The
testing of the target application 1s performed contempora-
neously with the extraction of field properties for the target
application. In other words, with the same output datasets,
the application tester (202) learns the field properties and
determines whether the target application exhibits defects.
The application tester (202) includes a test executioner
(216), a field properties extrapolator (218), and a user
interface (220).

The test executioner (216) 1s a software and/or hardware
module that 1s configured to execute tests on the target
application. Specifically, the test executioner (216) 1s con-
figured to 1ssue calls to the target application (100) with one
or more 1nput datasets and obtain output datasets from the
execution ol the target application. The field properties
extrapolator (218) 1s configured to determine field properties
for each field. In one or more embodiments, the field
properties extrapolator (218) 1s configured to perform rein-
forcement learning of field properties. Specifically, a prion
knowledge of the field properties does not exist. Through
reinforcement learning, the field properties are determined.
In one or more embodiments, because the output dataset
may have errors, not all output values for the same field are

10

15

20

25

30

35

40

45

50

55

60

65

6

correct. Thus, not all output values match the extrapolated
field properties. The field properties extrapolator (218) 1s
configured to learn the field properties even when such
errors exist.

In one or more embodiments, the user interface (220)
includes functionality to present test results. In one or more
embodiments, the user interface may be a graphical user
interface. Test results are the output of the application tester
and are dependent on the class assigned to each field.
Multiple levels of test results may be generated and pre-
sented 1n the user interface. At the target application level,
the test results indicates the percentage of tests in which
output errors are identified, the amount of the target appli-
cation tested through the set of tests, whether the target
application had defects, and other such test results. At the
test level, for each test, the test result may indicate whether
an error 1s determined to exist, the number or percentage of
fields having an error, the number or percentage of fields
ignored, etc. At the field level, the test results may include
the field properties of each field and the pass rate of each
field. At the field value level, the test results show the field
values generated by the target application for a particular
test. The test results may be visually encoded based on the
class assigned to each field. For example, when the class
assigned to the field 1s an 1gnored class, the class may remain
in a neutral color. It the class 1s a match class, one color may
be used when the field exists but does not match, another
color may be used when a field exists and matches, another
color may be used when the field 1s 1n the validated output
dataset and does not match, and another set of colors may be
used based on whether the field does not match the regex for
the field.

Turning now to FIG. 3, FIG. 3 shows a schematic diagram
of a validated dataset (300). As shown in FIG. 3, the
validated dataset (300) includes a test mput dataset (302)
and a validated output dataset (304). The test input dataset
(302) 1s the input dataset, such as input dataset (106), that
corresponds to the validated output dataset (304). The vali-
dated output dataset (304) 1s an output dataset, such as
output dataset (108), that 1s validated and corresponds to the
test mput dataset (302). In other words, when the nput
dataset (106) 1s used as mput to the target application, a
correct response 1s the validated output dataset (304). As
such, the validated output data set may include multiple
ficlds (306), whereby the fields correspond to the fields
discussed above with reference to FIG. 1. The validated
output dataset may be referred to as a golden response.

Turning to FIG. 4, a test output dataset (400) 1s an output
dataset that may or may not be valid. In other words, the test
output dataset (400) 1s the result of a test execution of the
target application. The test output dataset (400) includes an
input 1dentifier (402) that uniquely identifies a test mput
dataset (e.g., test mput dataset (302) in FIG. 3). The mput
identifier 1s related 1n storage to the test output dataset (404),
which includes one or more fields (403). When the test
output dataset has an input 1dentifier identifying a test input
data set that 1s related to a particular validated output dataset,
the particular validated output dataset 1s said to correspond
to the test output dataset. In other words, the particular
validated output dataset 1s a corresponding validated output
dataset for the test output dataset. The fields may be the same
as the fields discussed above with reference to FIG. 1, for a
particular test input dataset. As described above, the fields
may vary between the validated output dataset and the test
output dataset for the same test input dataset. For example,
additional fields may exist, some fields may be removed, and
the field values may vary.

US 11,010,287 Bl

7

FIG. 5 shows a diagram of field properties (500). The field
properties (300) include a field identifier (502), a field class
(504), and a regex (506). Field properties may further input
test information, such as pass rate for the field, and other
properties discussed above with reference to FIG. 2. The
field i1dentifier (502) may be the field i1dentifier discussed
above with respect to FIG. 1. In one or more embodiments,
the field identifier 1s unique among all possible output fields
of the target application (100). Hundreds or thousands of
fields may exist. The field identifier uniquely 1dentifies the
field across all of the possible fields. The field class (504) 1s
the test class of the field and defines how the field value 1s
interpreted to determine whether the field 1s valid. The class
1s discussed 1n additional detail 1n FIG. 6. The regex (506)
1s a sequence ol characters that defines a pattern, which the
field value matches. For example, the regex may define
whether a numeric sequence follows an alphabetic sequence,
a number of characters in each sequence, etc. Thus, when the
field values do not match exactly, the regex may define the
output that constitutes valid output.

FIG. 6 shows a diagram of field classes (600) 1n accor-
dance with one or more embodiments. A field may be
assigned to a single field class. The class defines how the
output 1s interpreted. The field classes (600) includes an
unknown class (602), an 1gnore class (604), and a match
class (606). The unknown class (602) 1s a class that have
fields 1n which 1mnsuflicient data exists to determine whether
the field value should be 1gnored or matched. Initially, all
fieclds may be 1n the unknown class. However, through
training, the number of fields in the unknown class (602) 1s
reduced. The 1gnore class (604) includes the fields whose
output 1s 1gnored. In other words, for the 1gnore class, the
field value 1s not used 1n the test result. By way of an
example, the 1gnore class may include time and date stamps,
and other values that change with each test execution.

The match class (606) 1s the class that includes the fields
that are used to determine whether the application has
defects. The fields in the match class (606) must match, on
some level, the validated output field value 1n order to be
determined to be error free. A failure to match 1s a deter-
mined error 1n the output dataset. Further, an error in fields
in the match class (606) are determined to correspond to
defects of the application. The match class (606) includes an
exact match subclass (608) and a regex match subclass
(610). In the exact match subclass (608), an output field
value must match exactly the validated output field value. In
the regex match subclass, the field value must match the
corresponding regex for the field but does not have to match
the validated output field value.

While FIGS. 1-6 show a configuration of components,
other configurations may be used without departing from the
scope of the mvention. For example, various components
may be combined to create a single component. As another
example, the functionality performed by a single component
may be performed by two or more components.

FIGS. 7-10 show flowcharts 1n accordance with one or
more embodiments. While the various steps in these tlow-
charts are presented and described sequentially, one of
ordinary skill will appreciate that some or all of the steps
may be executed in different orders, may be combined or
omitted, and some or all of the steps may be executed 1n
parallel. Furthermore, the steps may be performed actively
or passively. For example, some steps may be performed
using polling or be interrupt driven 1n accordance with one
or more embodiments of the invention. By way of an
example, determination steps may not require a processor to
process an nstruction unless an interrupt i1s recerved to

10

15

20

25

30

35

40

45

50

55

60

65

8

signily that condition exists 1n accordance with one or more
embodiments of the mvention. As another example, deter-
mination steps may be performed by performing a test, such
as checking a data value to test whether the value 1is
consistent with the tested condition 1n accordance with one
or more embodiments of the invention.

Turning to FIG. 7, a flowchart for testing a target appli-
cation 1s shown. In Step 701, a test input dataset 1s selected.
The application tester may test the target application with
multiple test mput datasets. Further, the application tester
may test the target application using the same test input
dataset multiple times, for different execution times. Each
execution time corresponds to a separate call to the target
application. The order by which the application tester test
various test mput datasets may vary and may be configur-
able. For example, iI a known defect 1s determined to exist
and 1s corrected, the one or more test input datasets that 1s
targeted to test the corrected portion of the target application
may be selected. Remaining test input datasets may not be
tested. By way of another example, the application tester
may 1terate through all of the test input datasets and may
perform the iteration multiple times.

In Step 703, the target application 1s executed using the
test input dataset. The test executioner 1ssues an API call to
the target application. The API call may include the test
input dataset or reference the test input dataset. In response,
the API of the target application issues corresponding calls
to the application logic, which uses the test input dataset as
iput to execute the target application.

In Step 705, the test output dataset 1s stored. The target
application may store the test output dataset with an 1den-
tifier and send a reference to the storage location as a
response to the test executioner. As another example, the
target application may output the test output dataset directly
to the test executioner. The test executioner may store the
input 1dentifier with the test output dataset.

In Step 707, fields of the test output dataset are compared
with the corresponding validated output dataset, field prop-
erties are extracted, and a comparison result 1s obtained. At
least 1nitially, the comparison 1s performed with the corre-
sponding validated output dataset and field properties are
determined from the comparison. In general, field properties
are determined using a statistical analysis. For example, 1f,
for a threshold percentage of times, a particular field has a
field value 1n the test output dataset that exactly matches the
field value 1n the corresponding validated output dataset,
then the field property 1s set to indicate that the field class 1s
exactly match class. By way of another example, 11, for a
threshold percentage of times, a particular field has a certain
form (e.g., matches a regular expression), then the field
property value may be regex match with the regex that
matches the field the threshold percentage of time. For
example, the threshold percentage for matching may be
ninety or ninety five percent. Fields that consistently do not
match, either exactly or a regex, or do not match at least a
threshold percentage of times may be set as 1gnore fields.
Fields that do not have statistically significant information to
classily the field, such as because not enough test output
datasets exist having the field or because the field 1s 1ncon-
sistent 1 matching or not matching are classified in the
unknown class.

Based on comparing fields to the regex and/or the corre-
sponding validated output dataset, a comparison result 1s
obtained. The comparison result indicates, for each field 1n
the unknown class and the match class, whether the field
matched the validated output dataset or regex for the field.

US 11,010,287 Bl

9

In Step 709, a test result 1s generated based on the
comparison result. The test result includes whether fields
exist either in the validated output dataset or the test output
dataset that do not exist in the test output dataset or the
validated output dataset, respectively. The test result may be
generated based on aggregating statistics for each field in the
match class and unknown class.

Steps 706 and 709 may be performed in parts or phases or
performed after performing Steps 701-705 and 711 multiple
times. For example, a test execution run may include testing,
the target application multiple times with one or more test
input datasets. After the test execution run 1s complete, then
the comparison, extracting field properties, and generating,
the test result may be performed. As another example, the
comparison and the generation of the test results may be
performed contemporaneously with testing. In particular,
alter obtaining multiple test output datasets, the field prop-
erties may be extracted. After, for at least a subset of fields,
the fields are classified into test classes as described above,
the comparison result may be obtained. Thus, the system
may learn over time.

Continuing with FIG. 7, 1n Step 713, a user interface 1s
generated based on the test results. The user interface 1s
generated by inserting into different parts of the interface,
the values from the test results.

In Step 715, the user interface with the test results 1s
presented. The user interface may be presented by transmit-
ting the user intertace, 1n whole or 1n part, to a client device
for display. By way of another example, the user interface
may be presented by displaying the user interface.

FIG. 8 shows a flowchart for performing an initial level
validation. The iitial level validation 1s a high level com-
parison. In Step 801, status codes are obtained. When an API
call 1s 1ssued, one or more status codes are returned. The
status codes indicate whether the request can be successiully
processed, or 1 the client or server has an error. For example,
status code 200 means that the request 1s received and
tulfilled while status code 204 means that an incorrect
location 1s used or that there 1s no information to send back.
Status codes 1n the 400s range indicate that a client error
exists, such as unauthorized client or a bad request. Status
codes 1n the 500s range indicates that a server error exists,
such as server overload, timeout, or the server does not
support the function. Thus, by checking the returned status
codes, a determination may be made at a high level whether
the target application and any server on which the target
application 1s executing 1s functioming properly.

In Step 803, a determination 1s made whether the status
codes satisty a threshold. The threshold may be, for
example, 400 for the error codes or 204. Each returned status
code 1s compared against the threshold. I1 the status codes do
not satisly the threshold, then the validation fails 1 Step
805. Further validation 1s not performed. Continuing with
FIG. 8, a determination 1s made whether responses are
received 1 Step 807. In other words, a determination 1s
made whether any output dataset 1s returned. The determi-
nation of whether responses are received may be performed,
for example, after the determination 1s made that the status
codes satisty a threshold. As another example, the determi-
nation may be made contemporaneously with the status
codes. IT responses are not received, then the validation fails
in Step 805. If the responses are received, the mnitial level
validation 1s a success 1 Step 809. If the mitial level
validation fails, then no further processing 1s performed in
one or more embodiments. However, 1f the imitial level
validation 1s a success, the flow may proceed to FIG. 9 to
perform field level validation.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 9 shows a flowchart for field level validation 1n
accordance with one or more embodiments. In Step 901, a
field value 1s obtained from the field 1n the test output
dataset. The field identifier related to the field value 1s
obtained. The field 1dentifier for the field may be based on
the field value being explicitly labeled with the field 1den-
tifier. As another example, the field 1dentifier may be deter-
mined based on the position of the field i the test output
dataset.

Based on the field identifier, a determination 1s made
whether the field 1s 1n the unknown class 1 Step 903. The
data repository 1s accessed to obtain the field properties
matching the field identifier. From the field properties, the
test class 1s 1dentified. If the test class 1n the field properties
matching the field identifier indicates that the field 1s 1n the
unknown class, then the tlow proceeds to Step 905.

In Step 905, the field 1s used for traiming purposes to
determine the field properties. As a first level training, the
field values may be used to determine whether a statistically
significant number of field values exactly match to classily
the field 1n the exactly match test class. If not, the application
tester proceeds to use the field value to determine a regex.
Using a field for training purposes to generate a regex 1s
described below 1n reference to FIG. 10.

Continuing with the discussion of Step 905 of FIG. 9, the
field value may further be compared against the correspond-
ing field value 1n the corresponding validated output dataset
to determine whether the field value exactly matches the
validated output. A separate color encoding scheme may be
used 1 the GUI for fields that have an unknown test class to
indicate whether the field values match. For example, 11 red
1s used for field values that are 1n the exactly match class and
do not exactly match, yellow or purple may be used for field
values that are 1n the unknown class and do not exactly
match. Once a test class of unknown or 1gnore 1s determined
for a field, previous field values used for training may be
reanalyzed based on the new test class.

Returning to Step 903, 11 the field 1s not in the unknown
test class, the flow may proceed to Step 907 to determine
whether the field 1s 1n the match class. If the test class 1n the
field properties matching the field identifier indicates that the
field 1s not 1n the match class, the field properties may
indicate that the fields are in the 1gnore test class. If the field
properties indicate that the field 1s in the 1gnore test class, the
flow proceeds to Step 909 and the field 1s 1ignored. Thus, test
results do not include the status of the field.

If the test class 1n the field properties matching the field
identifier indicates that the field 1s 1n the match class, the
flow proceeds to Step 911 to determine whether the field
value satisfies the field properties. In particular, 1f the field
properties indicate that the field 1s 1 the exactly match
subclass, then the field value from the test output dataset 1s
compared against the field value 1n the corresponding vali-
dated output dataset to determine whether an exact match
exists. If an exact match does not exist, then the field value
1s set as failed 1n Step 915. In other words, the field value 1s
set with a failed identifier. Thus, 1n the user interface, the
field value may be marked as such. I the exact match does
exist, the field value 1s set as valid i Step 913. Thus, 1n the
user interface, the field value may be marked as valid.

Continuing with the discussion of Step 911, 1t the field
properties indicate that the field 1s 1 the regex match
subclass, then the current regex from the field properties 1s
used. Specifically, a determination 1s made whether the field
value satisfies the current regex. If the field value satisfies
the current regex, the tflow proceeds to Step 913 to set the
field value as valid. If the field value does not satisty the

US 11,010,287 Bl

11

current regex, the flow proceeds to Step 915 to mark the field
value as failed 1n accordance with one or more embodiments
of the invention.

In one or more embodiments, the regex match subclass
and the exact match subclass are continually trained. The
training may be to create a new regex based on the existing
regex, or to ensure that at least a threshold number of field
values for the field continue to exactly match the corre-
sponding validated output dataset.

In Step 917, a determination 1s made whether another field
exists 1n the test output dataset. If another field exists, the
flow returns to Step 901 to process the next field.

FIG. 10 shows a flowchart for generating a regex in
accordance with one or more embodiments. The steps of
FIG. 9 are performed for a particular field. In one or more
embodiments, for a particular field, a regex 1s generated
once a threshold number of test output datasets are received
that include the particular field. The test output datasets may
or may not correspond to the same test input dataset. Further,
with each new field value for the field or when a threshold
number of new field values for a field are recerved after the
regex 1s mitially generated, the regex may be regenerated for
the new field value.

In Step 1001, strings are set based on the field values. In
one or more embodiments, the field values are treated as
strings for the purposes of generating a regex. The existing
regex may also be one of the strings.

In Step 1003, a new regex 1s imtialized. The new regex
does not have any characteristics of any of the strings in
accordance with one or more embodiments.

In Step 1005, a determination 1s made whether the strings
have a common prefix and/or suilix. In particular, a deter-
mination 1s made whether a threshold percentage or number
of strings have the common prefix or suilix. If the strings
have a common prefix and/or suihx, the common prefix
and/or suthx are added to the new regex i Step 1007 1n
accordance with one or more embodiments. For example,
the common prefix or suflix may be one or more punctuation
characters, such as a colon, period or semicolon, a set of
identical alphabetical characters, etc. By adding the common
prefix and/or suflix to the regex, for the comparison, match-
ing field values must also have the common prefix and/or
suilix to match the regex.

The flow continues to Step 1009. In Step 1009, a deter-
mination 1s made whether the strings match a generic
alphabetic expression. A generic alphabetic expression 1s
one 1 which each character 1s 1n the alphabet. The deter-
mination 1s whether at least a portion of the strings starting,
at a start point (e.g., far left character or far right character
for each string) have only characters that are 1n the alphabet.
IT a string 1s an existing regex, then a determination is made
whether at least the portion of the string 1s the generic
alphabetic expression. If a threshold number or percentage
of strings match the generic alphabetic expression, then the
generic alphabetic expression 1s appended to the new regex
in Step 1011. Further, a determination in Step 1021 1s made
whether the length of the matching portion of the strings 1s
the same. Namely, a determination 1s made whether the
strings exhibit the same number of characters matching the
generic alphabetic expression. I the same number of char-
acters of each string match the generic alphabetic expres-
s10on, then the length 1s also set based on the matching length
in Step 1025. In other words, the generic alphabetic expres-
s10n 1s related to the identifier of the defined matching length
in the new regex. If the strings have variable number of
characters, then the generic alphabetic expression 1s related
to the i1dentifier of unknown length 1n the new regex.

10

15

20

25

30

35

40

45

50

55

60

65

12

Returning to Step 1009, 1 a determination 1s made that the
strings do not match the generic alphabetic expression, the
flow proceeds to Step 1013. In Step 1013, a determination 1s
made whether the strings match a generic numeric expres-
s10n. A generic numeric expression 1s one in which each
character 1s a number or a decimal point (1.e., period or
comma depending on country). The determination 1is
whether at least a portion of the strings starting at a start
point (e.g., far left character or far right character for each
string) have only characters that are numeric. If a string 1s an
existing regex, then a determination 1s made whether at least
the portion of the string 1s the generic numeric expression.
If a threshold number or percentage of strings match the
generic numeric expression, then the generic numeric
expression 1s appended to the new regex in Step 1015.
Further, a determination 1n Step 1021 1s made whether the
length of the matching portion of the strings 1s the same.
Namely, a determination 1s made whether the strings exhibit
the same number of characters matching the generic numeric
expression. If the same number of characters of each string
match the generic numeric expression, then the length 1s also
set based on the matching length 1 Step 1025. In other
words, the generic numeric expression 1s related to the
identifier of the defined matching length 1n the new regex. If
the strings have variable number of characters, then the
generic numeric expression 1s related to the identifier of
unknown length 1n the new regex.

Returning to Step 1013, 1f a determination 1s made that the
strings do not match the generic numeric expression, the
flow proceeds to Step 1017. In Step 1017, a determination 1s
made whether the strings match a generic alphanumeric
expression. A generic alphanumeric expression 1s one 1n
which each character 1s a number or a decimal point (1.¢.,
period or comma depending on country) or an alphabetic
character. The determination 1s whether at least a portion of
the strings starting at a start point (e.g., far left character or
tar right character for each string) have only characters that
are alphanumeric. If a string 1s an existing regex, then a
determination 1s made whether at least the portion of the
string 1s the generic alphanumeric expression. It a threshold
number or percentage of strings match the generic alphanu-
meric expression, then the generic alphanumeric expression
1s appended to the new regex in Step 1019. Further, a
determination 1n Step 1021 1s made whether the length of the
matching portion of the strings 1s the same. Namely, a
determination 1s made whether the strings exhibit the same
number of characters matching the generic alphanumeric
expression. If the same number of characters of each string
match the generic alphanumeric expression, then the length
1s also set based on the matching length 1n Step 1025. In
other words, the generic alphanumeric expression 1s related
to the identifier of the defined matching length in the new
regex. It the strings have variable number of characters, then
the generic alphanumeric expression 1s related to the 1den-
tifier of unknown length in the new regex.

Regardless of whether the generically matching expres-
sion 1s alphabetic, numeric or alphanumeric, the matching
portions of the strings are removed. A determination 1s made
in Step 1027 whether to continue. The determination 1s made
to continue when more portions of the strings exist. If the
determination 1s made to continue, the flow proceeds to Step
1005.

In some cases, strings do not match a generic expression.
In such a scenario, the flow may proceed to determine
whether to continue with a different portion of the strings in
Step 1027 or whether to end. For example, the determination
may be made to end and relate the test class of 1gnore class

US 11,010,287 Bl

13

to the field. Overtime, as new field values are received, fields
in the 1gnore class may be reanalyzed to determine whether
a regex may be generated. If a regex can be generated, the
field 1s removed from (i.e., disassociated with) the i1gnore
class.

The following example 1s for explanatory purposes only
and not intended to limit the scope of the invention. FIGS.
11-13 provide example output of the user interface from
testing a target application. In FIGS. 11-13, left hand side 1s
the validated output dataset for the fields. The right side 1s
the test output dataset. The key (1100) indicates how each
portion 1s determined. As shown by way of the key (1100),
for the purposes of the example, the encoding scheme used
to show various information 1s based on greyscale font
changes. In the user interface, a color encoding scheme may
be used whereby different highlighting colors and/or font
colors may represent difference portions. In other words,
cach portion of the key may be assigned to a different color
rather than greyscale font and the test results may be
encoded accordingly.

FIG. 11 shows a diagram in which both JSONs for the
validated output dataset (1102) and the test output dataset
(1104) are identical. Thus, no font encoding i1s applied as
designated by the key.

FIG. 12 shows a diagram in which the differences
between the JSONs for the validated output dataset (1202)
and the test output dataset (1204) are 1gnored fields. Thus,
the different 1gnored fields are marked as grey italic as
designated by key (1100).

FIG. 13 shows a diagram in which the differences
between the JSONs for the validated output dataset (1302)
and the test output dataset (1304) are fields that do not exist
either in the validated output dataset or the test output
dataset. Further, a field has diflerent value. Thus, the missing
ficlds and fields having differing values are marked as

designated by key (1100).

FIG. 14 shows an example of a JSON (1400) for an
agoregated test result. In particular, testing 1s performed to
generate multiple test output datasets. Information about the
comparison of field values for each field 1s aggregated to
create the JSON (1400). Thus, by using the test results 1n
FIG. 14, a user may determine whether the target application
has a defect.

Embodiments of the invention may be implemented on a
computing system. Any combination of mobile, desktop,
server, router, switch, embedded device, or other types of
hardware may be used. For example, as shown in FIG. 15A,
the computing system (1500) may include one or more
computer processors (1502), non-persistent storage (1504)
(c.g., volatile memory, such as random access memory
(RAM), cache memory), persistent storage (1506) (e.g., a
hard disk, an optical drive such as a compact disk (CD) drive
or digital versatile disk (DVD) drive, a flash memory, etc.),
a communication interface (1512) (e.g., Bluetooth interface,
inirared interface, network interface, optical interface, etc.),
and numerous other elements and functionalities.

The computer processor(s) (1502) may be an integrated
circuit for processing instructions. For example, the com-
puter processor(s) may be one or more cores or micro-cores
of a processor. The computing system (1500) may also
include one or more mput devices (1510), such as a touch-
screen, keyboard, mouse, microphone, touchpad, electronic
pen, or any other type of mput device.

The communication interface (1512) may include an
integrated circuit for connecting the computing system
(1500) to a network (not shown) (e.g., a local area network

(LAN), a wide area network (WAN) such as the Internet,

10

15

20

25

30

35

40

45

50

55

60

65

14

mobile network, or any other type of network) and/or to
another device, such as another computing device.

Further, the computing system (1500) may include one or
more output devices (1508), such as a screen (e.g., a hiquid
crystal display (LLCD), a plasma display, touchscreen, cath-
ode ray tube (CRT) monitor, projector, or other display
device), a printer, external storage, or any other output
device. One or more of the output devices may be the same
or different from the input device(s). The mput and output
device(s) may be locally or remotely connected to the
computer processor(s) (1502), non-persistent storage
(1504), and persistent storage (1506). Many diflerent types
of computing systems exist, and the aforementioned 1nput
and output device(s) may take other forms.

Software instructions 1 the form of computer readable
program code to perform embodiments of the invention may
be stored, 1n whole or 1n part, temporarily or permanently, on
a non-transitory computer readable medium such as a CD,
DVD, storage device, a diskette, a tape, tflash memory,
physical memory, or any other computer readable storage
medium. Specifically, the software instructions may corre-
spond to computer readable program code that, when
executed by a processor(s), 1s configured to perform one or
more embodiments of the invention.

The computing system (1500) in FIG. 15A may be
connected to or be a part of a network. For example, as
shown 1n FIG. 15B, the network (1520) may include mul-
tiple nodes (e.g., node X (1522), node Y (1524)). E

Each node
may correspond to a computing system, such as the com-
puting system shown in FIG. 15A, or a group ol nodes
combined may correspond to the computing system shown
in FIG. 15A. By way of an example, embodiments of the
invention may be implemented on a node of a distributed
system that 1s connected to other nodes. By way of another
example, embodiments of the invention may be imple-
mented on a distributed computing system having multiple
nodes, where each portion of the invention may be located
on a different node within the distributed computing system.
Further, one or more elements of the atorementioned com-
puting system (1500) may be located at a remote location
and connected to the other elements over a network.

Although not shown 1n FIG. 15B, the node may corre-
spond to a blade 1n a server chassis that 1s connected to other
nodes via a backplane. By way of another example, the node
may correspond to a server in a data center. By way of
another example, the node may correspond to a computer
processor or micro-core of a computer processor with shared
memory and/or resources.

The nodes (e.g., node X (1522), node Y (1524)) 1n the
network (1520) may be configured to provide services for a
client device (1526). For example, the nodes may be part of
a cloud computing system. The nodes may include func-
tionality to receive requests from the client device (1526)
and transmit responses to the client device (1526). The client
device (1526) may be a computmg system, such as the
computing system shown in FIG. 15A. Further, the client
device (1526) may include and/or perform all or a portion of
one or more embodiments of the invention.

The computing system or group ol computing systems
described 1n FIGS. 15A and 15B may include functionality
to perform a variety of operations disclosed herein. For
example, the computing system(s) may perform communi-
cation between processes on the same or different system. A
variety ol mechanisms, employing some form of active or
passive communication, may facilitate the exchange of data
between processes on the same device. Examples represen-
tative of these inter-process communications include, but are

US 11,010,287 Bl

15

not limited to, the implementation of a file, a signal, a socket,
a message queue, a pipeline, a semaphore, shared memory,
message passing, and a memory-mapped file. Further details
pertaining to a couple of these non-limiting examples are
provided below.

Based on the client-server networking model, sockets
may serve as interfaces or communication channel end-
points enabling bidirectional data transier between pro-
cesses on the same device. Foremost, following the client-
server networking model, a server process (e.g., a process
that provides data) may create a first socket object. Next, the
server process binds the first socket object, thereby associ-
ating the first socket object with a umique name and/or
address. After creating and binding the first socket object,
the server process then waits and listens for imcoming
connection requests from one or more client processes (e.g.,
processes that seek data). At this point, when a client process
wishes to obtain data from a server process, the client
process starts by creating a second socket object. The client
process then proceeds to generate a connection request that
includes at least the second socket object and the unique
name and/or address associated with the first socket object.
The client process then transmits the connection request to
the server process. Depending on availability, the server
process may accept the connection request, establishing a
communication channel with the client process, or the server
process, busy in handling other operations, may queue the
connection request 1n a butler until server process is ready.
An established connection informs the client process that
communications may commence. In response, the client
process may generate a data request specitying the data that
the client process wishes to obtain. The data request 1s
subsequently transmitted to the server process. Upon receiv-
ing the data request, the server process analyzes the request
and gathers the requested data. Finally, the server process
then generates a reply including at least the requested data
and transmits the reply to the client process. The data may
be transferred, more commonly, as datagrams or a stream of
characters (e.g., bytes).

Shared memory refers to the allocation of virtual memory
space 1n order to substantiate a mechanism for which data
may be communicated and/or accessed by multiple pro-
cesses. In 1mplementing shared memory, an imtializing
process first creates a shareable segment 1n persistent or
non-persistent storage. Post creation, the mitializing process
then mounts the shareable segment, subsequently mapping
the shareable segment 1nto the address space associated with
the mitializing process. Following the mounting, the 1nitial-
1zing process proceeds to 1dentily and grant access permis-
s10n to one or more authorized processes that may also write
and read data to and from the shareable segment. Changes
made to the data in the shareable segment by one process
may immediately affect other processes, which are also
linked to the shareable segment. Further, when one of the
authorized processes accesses the shareable segment, the
shareable segment maps to the address space of that autho-
rized process. Often, only one authorized process may
mount the shareable segment, other than the imitializing
process, at any given time.

Other techniques may be used to share data, such as the
various data described 1n the present application, between
processes without departing from the scope of the invention.
The processes may be part of the same or diflerent appli-
cation and may execute on the same or different computing
system.

Rather than or in addition to sharing data between pro-
cesses, the computing system performing one or more

10

15

20

25

30

35

40

45

50

55

60

65

16

embodiments of the invention may include functionality to
receive data from a user. For example, in one or more
embodiments, a user may submit data via a graphical user
interface (GUI) on the user device. Data may be submitted
via the graphical user interface by a user selecting one or
more graphical user interface widgets or inserting text and
other data into graphical user interface widgets using a
touchpad, a keyboard, a mouse, or any other mnput device. In
response to selecting a particular 1tem, information regard-
ing the particular item may be obtained from persistent or
non-persistent storage by the computer processor. Upon
selection of the item by the user, the contents of the obtained
data regarding the particular item may be displayed on the
user device 1n response to the user’s selection.

By way of another example, a request to obtain data
regarding the particular item may be sent to a server opera-
tively connected to the user device through a network. For
example, the user may select a uniform resource locator
(URL) link within a web client of the user device, thereby
iitiating a Hypertext Transier Protocol (HT'TP) or other
protocol request being sent to the network host associated
with the URL. In response to the request, the server may
extract the data regarding the particular selected 1tem and
send the data to the device that initiated the request. Once the
user device has receirved the data regarding the particular
item, the contents of the received data regarding the par-
ticular 1item may be displayed on the user device in response
to the user’s selection. Further to the above example, the
data recerved from the server after selecting the URL link
may provide a web page in Hyper Text Markup Language
(HTML) that may be rendered by the web client and
displayed on the user device.

Once data 1s obtamned, such as by using techniques
described above or from storage, the computing system, 1n
performing one or more embodiments of the invention, may
extract one or more data 1items from the obtained data. For
example, the extraction may be performed as follows by the
computing system in FIG. 15A. First, the organizing pattern
(e.g., grammar, schema, layout) of the data i1s determined,
which may be based on one or more of the following:
position (e.g., bit or column position, Nth token in a data
stream, etc.), attribute (where the attribute 1s associated with
one or more values), or a hierarchical/tree structure (con-
s1sting of layers of nodes at diflerent levels of detail-such as
in nested packet headers or nested document sections).
Then, the raw, unprocessed stream of data symbols 1s parsed,
in the context of the organizing pattern, into a stream (or
layered structure) of tokens (where each token may have an
associated token “type”).

Next, extraction criteria are used to extract one or more
data 1items from the token stream or structure, where the
extraction criteria are processed according to the organizing
pattern to extract one or more tokens (or nodes from a
layered structure). For position-based data, the token(s) at
the position(s) identified by the extraction criteria are
extracted. For attribute/value-based data, the token(s) and/or
node(s) associated with the attribute(s) satistying the extrac-
tion criteria are extracted. For hierarchical/layered data, the
token(s) associated with the node(s) matching the extraction
criteria are extracted. The extraction criteria may be as
simple as an 1dentifier string or may be a query presented to
a structured data repository (where the data repository may
be organized according to a database schema or data format,
such as XML).

The extracted data may be used for further processing by
the computing system. For example, the computing system
of FIG. 15A, while performing one or more embodiments of

US 11,010,287 Bl

17

the invention, may perform data comparison. Data compari-
son may be used to compare two or more data values (e.g.,
A, B). For example, one or more embodiments may deter-
mine whether A>B, A=B, A =B, A<B, etc. The comparison
may be performed by submitting A, B, and an opcode
specilying an operation related to the comparison into an
arithmetic logic unit (ALU) (i.e., circuitry that performs
arithmetic and/or bitwise logical operations on the two data
values). The ALU outputs the numerical result of the opera-
tion and/or one or more status flags related to the numerical
result. For example, the status flags may indicate whether
the numerical result 1s a positive number, a negative number,
zero, etc. By selecting the proper opcode and then reading
the numerical results and/or status flags, the comparison
may be executed. For example, 1n order to determine 1f A>B,
B may be subtracted from A (1.e., A-B), and the status flags
may be read to determine 1f the result 1s positive (1.e., 1f
A>B, then A-B>0). In one or more embodiments, B may be
considered a threshold, and A 1s deemed to satisty the
threshold 1f A=B or 1f A>B, as determined using the ALU.
In one or more embodiments of the invention, A and B may
be vectors, and comparing A with B requires comparing the
first element of vector A with the first element of vector B,
the second element of vector A with the second element of
vector B, etc. In one or more embodiments, 1f A and B are
strings, the binary values of the strings may be compared.

The computing system in FIG. 15A may implement
and/or be connected to a data repository. For example, one
type of data repository 1s a database. A database 1s a
collection of information configured for ease of data
retrieval, modification, re-organization, and deletion. Data-
base Management System (DBMS) 1s a software application
that provides an interface for users to define, create, query,
update, or administer databases.

The user, or software application, may submit a statement
or query mto the DBMS. Then the DBMS interprets the
statement. The statement may be a select statement to
request information, update statement, create statement,
delete statement, etc. Moreover, the statement may 1nclude
parameters that specity data, or data container (database,
table, record, column, view, etc.), identifier(s), conditions
(comparison operators), functions (e.g. join, full join, count,
average, etc.), sort (e.g. ascending, descending), or others.
The DBMS may execute the statement. For example, the
DBMS may access a memory butler, a reference or index a
file for read, write, deletion, or any combination thereof, for
responding to the statement. The DBMS may load the data
from persistent or non-persistent storage and perform com-
putations to respond to the query. The DBMS may return the
result(s) to the user or software application.

The computing system of FIG. 15A may include func-
tionality to present raw and/or processed data, such as results
of comparisons and other processing. For example, present-
ing data may be accomplished through various presenting
methods. Specifically, data may be presented through a user
interface provided by a computing device. The user interface
may include a GUI that displays information on a display
device, such as a computer monitor or a touchscreen on a
handheld computer device. The GUI may include various
GUI widgets that organize what data 1s shown as well as how
data 1s presented to a user. Furthermore, the GUI may
present data directly to the user, e.g., data presented as actual
data values through text, or rendered by the computing
device into a visual representation of the data, such as
through visualizing a data model.

For example, a GUI may {first obtain a notification from a
software application requesting that a particular data object

10

15

20

25

30

35

40

45

50

55

60

65

18

be presented within the GUI. Next, the GUI may determine
a data object type associated with the particular data object,
¢.g., by obtaining data from a data attribute within the data
object that 1dentifies the data object type. Then, the GUI may
determine any rules designated for displaying that data
object type, e.g., rules specified by a software framework for
a data object class or according to any local parameters
defined by the GUI for presenting that data object type.
Finally, the GUI may obtain data values from the particular
data object and render a visual representation of the data
values within a display device according to the designated
rules for that data object type.

Data may also be presented through various audio meth-
ods. In particular, data may be rendered 1nto an audio format
and presented as sound through one or more speakers
operably connected to a computing device.

Data may also be presented to a user through haptic
methods. For example, haptic methods may include vibra-
tions or other physical signals generated by the computing
system. For example, data may be presented to a user using,
a vibration generated by a handheld computer device with a
predefined duration and intensity of the vibration to com-
municate the data.

The above description of functions present only a few
examples of functions performed by the computing system
of FIG. 15A and the nodes and/or client device 1n FIG. 15B.
Other functions may be performed using one or more
embodiments of the invention.

While the mvention has been described with respect to a
limited number of embodiments, those skilled in the art,
having benefit of this disclosure, will appreciate that other
embodiments can be devised which do not depart from the
scope of the invention as disclosed herein. Accordingly, the
scope of the mvention should be limited only by the attached
claims.

What 1s claimed 1s:
1. A method comprising:
executing, a plurality of times, a target application with at
least one test input dataset to obtain a plurality of test
output datasets, the plurality of test output datasets each
comprising a plurality of field values for a plurality of
fields:
comparing the plurality of field values with at least one
validated output dataset to classily the plurality of
fields into a match class, an i1gnore class, and an
unknown class by:
for a first field in the plurality of fields of the plurality of
test output datasets:
executing a regular expression (regex) generator using
a first subset of the plurality of field values and a
validated output value 1n the at least one validated
output dataset, and
adding the first field to the match class when the regex
generator generates a first regular expression
(regex);
extracting, from the comparing, a field property for a first
subset of the plurality of fields in the match class;
generating a test result based on a comparison result,
wherein the comparison result 1s obtained by compar-
ing the first subset of the plurality of fields to at least
one of the first regex and the validated output value
in the at least one validated output dataset, and
ignoring a second subset of the plurality of fields
classified 1n the ignore class; and
presenting the test result.

US 11,010,287 Bl

19

2. The method of claim 1, further comprising:

for a second field 1n the plurality of fields of the plurality
ol test output datasets classified to the match class:
determining whether a third subset of the plurality of

field values satisfies a threshold for a match exactly
property value; and

generating the test result according to a number of the

third subset matching the validated output value 1n

the at least one validated output dataset.

3. The method of claim 1, further comprising;:

checking a plurality of status codes from the plurality of
test output datasets; and

determining that a first level validation 1s a success when
the plurality of status codes satisfies a threshold.

4. The method of claim 1, further comprising:

obtaining, from the plurality of field values, a field value
for a second field 1 the plurality of fields of the
plurality of test output datasets;

determining that the second field 1s classified 1n the
unknown class;

using the field value for training based on determining
that the second field 1s classified in the unknown class:
and

training, using the field value, an application tester to
reclassily the second field into the 1gnore class or the
match class.

5. The method of claim 1, further comprising:

obtaining, from the plurality of field values, a field value
for a second field 1 the plurality of fields of the
plurality of test output datasets; and

ignoring the field value based on determining that the
second field 1s classified 1n the 1gnore class.

6. The method of claim 1, further comprising:

obtaining, from the plurality of field values, a field value
for a second field 1 the plurality of fields of the
plurality of test output datasets;

determining that the second field 1s classified 1n the match
class; and

setting, 1n response to determiming that the second field 1s
classified in the match class, the field value as valid

when the field value satisfies the corresponding field
property for the second field.
7. The method of claim 1, further comprising;:
obtaining, from the plurality of field values, a field value
for a second field 1 the plurality of fields of the
plurality of test output datasets;
determining that the second field 1s classified 1n the match
class; and
setting the field value as invalid when the field value does
not satisty the corresponding field property for the
second field.
8. The method of claim 1, further comprising:
training an application tester for a second field of the
plurality of fields of the plurality of test output datasets
by:
setting a plurality of strings 1n the regex generator to
match a subset of the plurality of field values for the
second field,
appending to a second regex, a generic expression
when the plurality of strings match the generic
expression, and
setting a length for the generic expression when the
length 1s the same across the plurality of strings.
9. The method of claim 8, wherein training the application
tester further comprises:

5

10

15

20

25

30

35

40

45

50

55

60

65

20

adding to the second regex, at least one selected from a
group consisting of a common prefix and a common
sullix of the plurality of strings.

10. The method of claim 8, wherein the generic expres-

sion 1s one selected from a group consisting of a generic
alphabetic expression, a generic numeric expression, and a
generic alphanumeric expression.

11. A system comprising:
a computer processor;
a data repository comprising at least one validated dataset
comprising at least one test iput dataset and at least
one validated test output dataset;
a target application comprising application logic and an
application programing interface; and an application
tester connected to the data repository, and configured
to execute on the computer processor, the application
tester configured to:
invoke, a plurality of times, execution of the target
application with the at least one test mnput dataset to
obtain a plurality of test output datasets, the plurality
of test output datasets each comprising a plurality of
field values for a plurality of fields;

compare the plurality of field values with the at least
one validated output dataset to classily the plurality
of fields into a match class, an 1gnore class, and an
unknown class by:

for a first field 1n the plurality of fields of the plurality
of test output datasets: executing a regular expres-
sion (regex) generator using a lirst subset of the
plurality of field values and a validated output value
in the at least one validated output dataset, and
adding the first field to the match class when the
regex generator generates a first regular expression
(regex):

extract, from the comparing, a field property for a first
subset of the plurality of fields in the match class;

generate a test result based on a comparison result,

wherein the comparison result 1s obtained by compar-
ing the first subset of the plurality of fields to at least
one of the first regex and the validated output value

in the at least one validated output dataset, and
ignoring a second subset of the plurality of fields
classified 1n the ignore class; and

present the test result.
12. The system of claim 11, wherein the application tester

comprises a graphical user interface for displaying the test
result, the graphical user interface using different encoding
schemes for the first subset of the plurality of fields as for the
second subset of the plurality of fields.

13. A non-transitory computer readable medium compris-

ing computer readable program code for performing opera-
tions, the operations comprising:

executing, a plurality of times, a target application with at
least one test input dataset to obtain a plurality of test
output datasets, the plurality of test output datasets each
comprising a plurality of field values for a plurality of
fields:

comparing the plurality of field values with at least one
validated output dataset to classily the plurality of
fields into a match class, an i1gnore class, and an
unknown class by: for a first field in the plurality of
fields of the plurality of test output datasets: executing
a regular expression (regex) generator using a {lirst
subset of the plurality of field values and a validated
output value 1n the at least one validated output dataset,

US 11,010,287 Bl

21

and adding the first field to the match class when the
regex generator generates a first regular expression

(regex):
extracting, from the comparing, a field property for a first
subset of the plurality of fields in the match class; 5
generating a test result based on a comparison result,
wherein the comparison result 1s obtained by compar-
ing the first subset of the plurality of fields to at least
one of the first regex and the validated output value
in the at least one validated output dataset, and
ignoring a second subset of the plurality of fields
classified 1n the ignore class; and
presenting the test result.
14. The non-transitory computer readable medium of
claim 13, the operations further comprising:
for a second field in the plurality of fields of the plurality
ol test output datasets assigned classified to the match
class:
determining whether a third subset of the plurality of
field values satisfies a threshold for a match exactly ¢
property value; and
generating the test result according to a number of the
third subset matching the validated output value 1n
the at least one validated output dataset.
15. The non-transitory computer readable medium of ;5
claim 13, the operations further comprising:
checking a plurality of status codes from the plurality of
test output datasets; and
determining that a first level validation 1s a success when
the plurality of status codes satisfies a threshold.
16. The non-transitory computer readable medium of
claim 13, the operations further comprising:

10

15

30

22

obtaining, from the plurality of field values, a field value
for a second field 1 the plurality of fields of the

plurality of test output datasets;

determiming that the second field 1s classified in the
unknown class:

using the field value for training based on determining
that the second field 1s classified in the unknown class:
and
tramning, using the field value, an application tester to
reclassily the second field into the 1gnore class or the
match class.
17. The non-transitory computer readable medium of
claim 13, the operations further comprising:
training an application tester for a second field of the
plurality of fields of the plurality of test output datasets
by:
setting a plurality of strings 1n the regex generator to
match a subset of the plurality of field values for the
second field,
appending to a second regex, a generic expression
when the plurality of strings match the generic
expression, and
setting a length for the generic expression when the
length 1s the same across the plurality of strings.
18. The non-transitory computer readable medium of
claam 17, wherein training the application tester further
COmprises:
adding to the second regex, at least one selected from a
group consisting ol a common prefix and a common
suilix of the plurality of strings.

¥ ¥ # ¥ ¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 11,010,287 Bl Page 1 of 1
APPLICATION NO. : 16/439211

DATED : May 18, 2021

INVENTOR(S) . Trilokesh Barua et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

Item (57) ABSTRACT, Line 13, the words “a second subset of”” should be removed.

Signed and Sealed this
Twenty-sixth Day ot October, 2021

Drew Hirshfeld
Performing the Functions and Duties of the

Under Secretary of Commerce for Intellectual Property and
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

