12 United States Patent

Wozniak et al.

US011010093B2

(10) Patent No.: US 11,010,093 B2
45) Date of Patent: May 18, 2021

(54) DELEGATING AN ACCESS REQUEST TO
ADDRESS LOAD IMBALANCES IN A
DISPERSED STORAGE NETWORK

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Ethan S. Wozniak, Park Ridge, IL
(US); Praveen Viraraghavan, Chicago,

1L, (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent 1s extended or adjusted under 35

U.S.C. 134(b) by 32 days.
(21) Appl. No.: 16/249,590
(22) Filed: Jan. 16, 2019

(65) Prior Publication Data
US 2020/0225871 Al Jul. 16, 2020

(51) Int. CL

GOGF 3/06 (2006.01)
GOGF 11/10 (2006.01)
GOGF 3/16 (2006.01)
(52) U.S. CL
CPC ... GOGF 3/0659 (2013.01); GOGF 3/067

(2013.01); GO6F 3/0613 (2013.01); GO6F
1171076 (2013.01)

(58) Field of Classification Search

None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,352,954 B2* 1/2013 Gokhale GOG6F 9/5016
718/105

8,688,949 B2 4/2014 Resch et al.

9,794,337 B2 10/2017 Peake et al.

9,836,352 B2 12/2017 Resch et al.
10,523,237 B2* 12/2019 Li ...oooovieiiiinnni., HO3M 13/6356
2003/0182348 Al1* 9/2003 Leong GOO6F 9/4856
718/100
2008/0208361 Al* 8/2008 Grgic GO5B 19/41865
700/2

(Continued)

OTHER PUBLICATIONS

Guo et al., A Novel Security Network Storage System Based on
Internet, IEEE, Conference Paper, pp. 1123-1127. (Year: 2009).*

Primary Examiner — April Y Blair
Assistant Examiner — Dipakkumar B Gandhi

(74) Attorney, Agent, or Firm — James Nock; Andrew D.
Wright; Roberts Calderon Safran & Cole, P.C.

(57) ABSTRACT

A method begins by obtaining a set of load level information
regarding a set of dispersed storage (DS) processing units of
a plurality of sets of DS processing units of the DSN. The
method continues by determining whether the first DS
processing unit has a load imbalance based on the set of load
level information. When the first DS processing unit has the
load imbalance, the method continues by determining
whether to delegate a first access request of one or more
access requests to another DS processing unit. When deter-
mining to delegate the first access request, the method
continues by determiming a delegate DS processing unit of
the set of DS processing units based on the set of load level
information. The method continues by instructing the first
DS processing unit to send the first access request to the
delegate DS processing unit for processing.

14 Claims, 7 Drawing Sheets

e as LEms —as Aaas Sas San S aEm Ea Es Ew oEw s o

camputing device 12 corhiputing device 16
computing core 26
OMpUING care £ comptiting care 26 - gata 4l
5 glient
A - 05 client _
maduie 34 module 34 : computing
+ " e 5 core 2y
““““ interface 32 " inlerface3? | | interface 30 |ee— | interface 3¢
A A
computing device 14
—» interface 33
gompuiing
core 26
managing
Y unil 18
interface 33 Soiasbanieained aadeadbashasas an sad ndiaaibanianlianlin
} : Y Y i
computing ! str::rageii}nrt U} o0 E storage unit 36 !
cove 26 i = | :
integrity processing t ! distributed, or dispersed, storage
unit 20 t DSN memaory 22 ¥ network {DSNY 10

— Eem. ames s e —mem o

US 11,010,093 B2
Page 2

(56)

U.S. PATENT DOCUM

2010/0094967 Al*
2010/0094981 Al*
2014/0208154 Al*
2015/0052354 Al*
2016/0255150 AlL*

2017/0286154 Al

* cited by examiner

References Cited

4/2010
4/2010
7/2014
2/2015
9/2016

10/2017

Zuckerman

EINTTS

iiiiiiiiiiiiiiiiii
ttttttttttttttt
iiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiii

Baptist et al.

iiiiiiiii

HO4L 67/1002

709/219
HO04L. 41/20

709/222
GO6F 11/073

714/6.12
GOO6F 21/6218

713/165
GOOF 3/067

709/213

US 11,010,093 B2

Sheet 1 of 7

May 18, 2021

U.S. Patent

5T (NSQ) Homau . phowewnsda R
obeiols ‘pesiadsip J0 ‘poIngiIsp : |
GTE “ “

m o 9¢ _

| g¢ nun abeiors XY = 7. _ |

_w (ng) yun obesols | |

: |

g1 hun
Buibeuew

Gg 9109
bunnduwiod

¢C goRLRul

71 901Aap Bunndwiod

0¢ i i

§7 2409
Bunnduwioo

r wigSgla, e L L o ipSgSglgl L o] , EpSgSater ipSgSatak] AgSghalat L L

fe siompu

0% Q0eLalU 5% coRLIOI

+¢ ainpowl
Juaio 5

g7 9409 bujndwiod

g1 901A8p buiinduwiod

e T I 208Ha)u

7 momtmE_

e snpow
jusiio Sd

gz 8400 Bughdwo

7| 201nep Bunndwos

0/ ainpow Qg sinpow 00 snpow

g/ ajnpow Z/ 9npows soeuo | |
| S0BLIBJUI YJomiau - 9delaUl YEH a0BLBIUI 8N

a0BpS)UI NSO | | eoeualul OH ysey

{7/ 8inpow

US 11,010,093 B2

™~

— 8G 80els)Ul |Od 79 5019

~ NOY

S __

=

s 9,
— — 29 9npow
m 9% Lm__o.;coo el U9 mom_tﬁc_ aoeolUl
_ Ol Oi 80IA8P O

o 5C 0G sjnpow

AoWwstl utews Buissao0.d

" | 19108U00 Aiowew

GG yun Buissaooid
soiydelb ospia

May 18, 2021

U.S. Patent

07 9109 Bugndwoo

R |

010,093 B2

2

US 11

Sheet 3 of 7

May 18, 2021

U.S. Patent

mm_m JO Em

SOlIS Blep pepodud = g3
SBU 3OS = NS

Pax
14704
PEX
Pix
PiX

£GX

394

£EX

£CX

ELX

9¢ £# NS

OjUl ‘AR

(D)

2GX

A2
¢eX
(CX

A%

2.4
2124
LEX
L CX
X

Q1 198{qo elep

43¢
80
44

{1 HneA
Q] aweu agls

G Ol

Juewibas ejep

Wad 01d od _
AR ad ¢]
£d ¢ LG 9

(NG xipeu Emv

=

(A=) Xueus
buiposus

_L_l
P

Buiweu
0 ‘BUIdlS
‘Buiposus

Jol8

A Juswbes
e1ep

L uswibes
elep

gl J0 71 2omap bunndwios

0O 0 o x o
B T T e &=

<y
.
Li.

&
)
L.

US 11,010,093 B2

Sheet 4 of 7

May 18, 2021

U.S. Patent

8 'Ol
4 A . i
| . _ (WO} A_\..m: X118t
G (Wa) xuew elep | = (Xujew papoo | Up0oaD Q
Y ‘ !
» 7 - - 7 - |t (] -
L Ol

A Jusibes
ejep
Buipoosp o |

10119 @ Hv ovm#wmmmao

B buiolsap ° - BUIqWIoD
| juswibes |
eyep |

01 10 7| 90iA8p Bunndwod

US 11,010,093 B2

Sheet 5 of 7

May 18, 2021

U.S. Patent

06 v Hun
buissa00i0

Sd

26 Cf xe:
- sisenbei |, sisenbai
Vo v# Ol gsaooe | V6 EROIULN sseooe
| [9A8)] PEO) | [8A8] peo] |
PSPEOLIBAC
g6 9ld
%95 |eee| %6 | ez | peojfowsw

6 OjUl [9A83} pEO]

06 Z# hun
BUIsSa00i0

sd

76 Z# OJul
IOAS] PEO]

06 L# Jun
buis$82040

26 L#
s1senbal
$S2008L

Sa

v

b6 L# ojus
[oAB| peo|

 %gc | peoifoweur

e[oeorvone

6 Ojul [9A8] pEO

US 11,010,093 B2

Sheet 6 of 7

May 18, 2021

U.S. Patent

06 t# jun
buisSsa00.a

| q ajebajep

1-/6 mc_o_toa
C# S9SU0USal
sseo0e ¥

aci Ol
1~¢h Suoiuod
C# sisenbal
$59008 26 €# 1
sisenbal
$S8008

06 y# Hun
Buissa0id

od

b6 v Ojul
| |ors| pEO|

DOPROJIBAC

b Ol

76 S1senbas
$se00k adA) puz

06 £ Jun
piissas0id

Sd

776 £# oful
i [9A8} PEQ

26 o
S189nbsai
gsaooe !

Vel Old

[-76 suoljod
CH SOSU0USSS
SSO008 prmm——

9¢

jun obeio)s (e~ - —------< GiEsanon
sjebsjap l-gesuoplod L e
m&.. s1sen _u 5. I.I
gseooe COLHET 7
s)senbs

SSadlk

DSPROLIBAD

26 Sisenbal
$S800R 80dA} 1S}

06 }# Jun
puissasoid

Sd

b6 Z# Oju 6 14 oMU
9A9 pRO] 9A9| pEO}

h 4

DSPROLBAO

US 11,010,093 B2

Sheet 7 of 7

May 18, 2021

U.S. Patent

¢l Ol

20.n0s31 Buissanoid siebsiep
Su} 0} 188nhas $83008 1SH} 8L} PuUss

S}senbal 5s800e ”
2JOLL 10 BUO0 BU} JO 1SONDa) $s8008 184
e Buissa00.4d J0j NS(] 841 0 80Un0sa)

Buissaoo.d ejebajep e BuluiLe}ep

Sisanbal ss8noe
jo Ayjeinyd oy} Jo sjsenbas sseooe
10 suo a1ebsiep 0} Jeyisym DuUILLISIeD

S18onhai $88008
10 Ayjeinid sy} JO SUIOS }SBRI 1B $5820id

S0URIRGLUE PBO| B SBY Jiun Buissseoosd
S 1S4l B Jayeym Duuiusielap

sisenhal $88008
10 Aeinid e Buissanoid o} ajgqisuodsal

spun Buisssn0id g J0 188 B 40} .
UOIRULIOJUI 1BAS] PBOJ JO 188 B BuiLie}qo -

el

US 11,010,093 B2

1

DELEGATING AN ACCESS REQUEST TO
ADDRESS LOAD IMBALANCES IN A
DISPERSED STORAGE NETWORK

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable.

INCORPORATION-BY-REFERENCE OF
MAITERIAL SUBMITTED ON A COMPACT
DISC

Not Applicable.

BACKGROUND OF THE INVENTION

Technical Field of the Invention

This invention relates generally to computer networks and
more particularly to processing access requests.

Description of Related Art

Computing devices are known to communicate data,
process data, and/or store data. Such computing devices
range from wireless smart phones, laptops, tablets, personal
computers (PC), work stations, and video game devices, to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a com-
puting device includes a central processing unit (CPU), a
memory system, user input/output interfaces, peripheral
device interfaces, and an interconnecting bus structure.

As 1s further known, a computer may effectively extend
its CPU by using “cloud computing’” to perform one or more
computing functions (e.g., a service, an application, an
algorithm, an arithmetic logic function, etc.) on behalf of the
computer. Further, for large services, applications, and/or
functions, cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service,
application, and/or function. For example, Hadoop 1s an
open source solftware framework that supports distributed
applications enabling application execution by thousands of
computers.

In addition to cloud computing, a computer may use
“cloud storage” as part of 1ts memory system. As 1s known,
cloud storage enables a user, via 1ts computer, to store files,
applications, etc. on an Internet storage system. The Internet
storage system may include a RAID (redundant array of
independent disks) system and/or a dispersed storage system

that uses an error correction scheme to encode data for
storage.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 1s a schematic block diagram of an embodiment of
a dispersed or distributed storage network (DSN) 1n accor-
dance with the present invention;

FI1G. 2 15 a schematic block diagram of an embodiment of
a computing core 1n accordance with the present invention;

FIG. 3 1s a schematic block diagram of an example of
dispersed storage error encoding of data 1n accordance with
the present invention;

5

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1s a schematic block diagram of a generic example
of an error encoding function 1n accordance with the present
imnvention;

FIG. 5 15 a schematic block diagram of a specific example
of an error encoding function 1n accordance with the present
invention;

FIG. 6 1s a schematic block diagram of an example of a
slice name of an encoded data slice (EDS) in accordance
with the present mvention;

FIG. 7 1s a schematic block diagram of an example of
dispersed storage error decoding of data in accordance with
the present invention;

FIG. 8 1s a schematic block diagram of a generic example
of an error decoding function 1n accordance with the present
invention;

FIGS. 9A and 9B i1s a schematic block diagrams of
examples of load level mnformation 1n accordance with the
present 1nvention;

FIG. 10 1s a schematic block diagram of an example of a
set oI DS processing units 90 of a dispersed storage network
(DSN) 1n accordance with the present invention;

FIG. 11 1s a schematic block diagram of an example of
delegating access requests 92 based on the type of access
request 1n accordance with the present invention;

FIGS. 12A and B are schematic block diagrams of
examples of delegating a portion of access requests 1n a
dispersed storage network (DSN) in accordance with the
present invention; and

FIG. 13 1s a flowchart illustrating an example of delegat-
ing access requests 1 a dispersed storage network (DSN) 1n
accordance with the present invention.

DETAILED DESCRIPTION OF TH.
INVENTION

L1

FIG. 1 1s a schematic block diagram of an embodiment of
a dispersed, or distributed, storage network (DSN) 10 that
includes a plurality of computing devices 12-16, a managing
unit 18, an integrity processing unit 20, and a DSN memory
22. The components of the DSN 10 are coupled to a network
24, which may include one or more wireless and/or wire
lined communication systems; one or more non-public
intranet systems and/or public internet systems; and/or one
or more local area networks (LAN) and/or wide area net-
works (WAN).

The DSN memory 22 includes a plurality of storage units
36 that may be located at geographically different sites (e.g.,
one 1n Chicago, one in Milwaukee, etc.), at a common site,
or a combination thereol. For example, 11 the DSN memory
22 includes eight storage units 36, each storage unit is
located at a different site. As another example, 11 the DSN
memory 22 includes eight storage units 36, all eight storage
units are located at the same site. As yet another example, 11
the DSN memory 22 includes eight storage units 36, a first
pair ol storage units are at a first common site, a second pair
ol storage units are at a second common site, a third pair of
storage units are at a third common site, and a fourth pair of
storage units are at a fourth common site. Note that a DSN
memory 22 may include more or less than eight storage units
36. Further note that each storage unit 36 includes a com-
puting core (as shown 1 FIG. 2, or components thereol) and
a plurality of memory devices for storing dispersed error
encoded data.

Each of the computing devices 12-16, the managing unit
18, and the integrity processing umt 20 include a computing
core 26, which includes network interfaces 30-33. Comput-
ing devices 12-16 may each be a portable computing device

US 11,010,093 B2

3

and/or a fixed computing device. A portable computing
device may be a social networking device, a gaming device,
a cell phone, a smart phone, a digital assistant, a digital
music player, a digital video player, a laptop computer, a
handheld computer, a tablet, a video game controller, and/or
any other portable device that includes a computing core. A
fixed computing device may be a computer (PC), a computer
server, a cable set-top box, a satellite receiver, a television
set, a printer, a fax machine, home entertainment equipment,
a video game console, and/or any type of home or office
computing equipment. Note that each of the managing unit
18 and the integrity processing unit 20 may be separate
computing devices, may be a common computing device,
and/or may be integrated into one or more of the computing
devices 12-16 and/or into one or more of the storage units
36.

Each interface 30, 32, and 33 includes software and
hardware to support one or more communication links via
the network 24 indirectly and/or directly. For example,
interface 30 supports a communication link (e.g., wired,
wireless, direct, via a LAN, wvia the network 24, etc.)
between computing devices 14 and 16. As another example,
interface 32 supports communication links (e.g., a wired
connection, a wireless connection, a LAN connection, and/
or any other type of connection to/from the network 24)
between computing devices 12 & 16 and the DSN memory
22. As yet another example, intertace 33 supports a com-
munication link for each of the managing unit 18 and the
integrity processing unit 20 to the network 24.

Computing devices 12 and 16 include a dispersed storage
(DS) client module 34, which enables the computing device
to dispersed storage error encode and decode data (e.g., data
40) as subsequently described with reference to one or more
of FIGS. 3-8. In tlhis example embodiment, computing
device 16 functions as a dispersed storage processing agent
for computing device 14. In this role, computing device 16
dispersed storage error encodes and decodes data on behalf
of computing device 14. With the use of dispersed storage
error encoding and decoding, the DSN 10 1s tolerant of a
significant number of storage umt failures (the number of
tailures 1s based on parameters of the dispersed storage error
encoding function) without loss of data and without the need
for a redundant or backup copies of the data. Further, the
DSN 10 stores data for an indefinite period of time without
data loss and in a secure manner (e.g., the system 1s very
resistant to unauthorized attempts at accessing the data).

In operation, the managing unit 18 performs DS manage-
ment services. For example, the managing unit 18 estab-
lishes distributed data storage parameters (e.g., vault cre-
ation, distributed storage parameters, security parameters,
billing information, user profile information, etc.) for com-
puting devices 12-14 individually or as part of a group of
user devices. As a specific example, the managing unit 18
coordinates creation of a vault (e.g., a virtual memory block
associated with a portion of an overall namespace of the
DSN) within the DSTN memory 22 for a user device, a
group ol devices, or for public access and establishes per
vault dispersed storage (DS) error encoding parameters for
a vault. The managing unit 18 facilitates storage of DS error
encoding parameters for each vault by updating registry
information of the DSN 10, where the registry information
may be stored in the DSN memory 22, a computing device
12-16, the managing unit 18, and/or the integrity processing
unit 20.

The DSN managing unit 18 creates and stores user profile
information (e.g., an access control list (ACL)) 1 local
memory and/or within memory of the DSN memory 22. The

10

15

20

25

30

35

40

45

50

55

60

65

4

user profile information mcludes authentication information,
permissions, and/or the security parameters. The security
parameters may include encryption/decryption scheme, one
or more encryption keys, key generation scheme, and/or data
encoding/decoding scheme.

The DSN managing unit 18 creates billing information for
a particular user, a user group, a vault access, public vault
access, etc. For mstance, the DSTN managing unit 18 tracks
the number of times a user accesses a non-public vault
and/or public vaults, which can be used to generate a
per-access billing information. In another instance, the
DSTN managing unit 18 tracks the amount of data stored
and/or retrieved by a user device and/or a user group, which
can be used to generate a per-data-amount billing informa-
tion.

As another example, the managing unit 18 performs
network operations, network administration, and/or network
maintenance. Network operations includes authenticating
user data allocation requests (e.g., read and/or write
requests), managing creation of vaults, establishing authen-
tication credentials for user devices, adding/deleting com-
ponents (e.g., user devices, storage units, and/or computing
devices with a DS client module 34) to/from the DSN 10,
and/or establishing authentication credentials for the storage
units 36. Network administration includes monitoring
devices and/or units for failures, maintaiming vault informa-
tion, determinming device and/or unit activation status, deter-
mining device and/or unit loading, and/or determining any
other system level operation that aflects the performance
level of the DSN 10. Network maintenance includes facili-
tating replacing, upgrading, repairing, and/or expanding a
device and/or unit of the DSN 10.

The mtegrity processing unit 20 performs rebuilding of
‘bad’ or missing encoded data slices. At a high level, the
integrity processing unmt 20 performs rebuilding by periodi-
cally attempting to retrieve/list encoded data slices, and/or
slice names of the encoded data slices, from the DSN
memory 22. For retrieved encoded slices, they are checked
for errors due to data corruption, outdated version, etc. If a
slice mncludes an error, 1t 1s flagged as a ‘bad’ slice. For
encoded data slices that were not received and/or not listed,
they are tlagged as missing slices. Bad and/or missing slices
are subsequently rebuilt using other retrieved encoded data
slices that are deemed to be good slices to produce rebuilt
slices. The rebuilt slices are stored in the DSTN memory 22.

FIG. 2 1s a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50,
a memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (I0) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface module 60, at least one 10 device interface module
62, a read only memory (ROM) basic mput output system
(BIOS) 64, and one or more memory mterface modules. The
one or more memory interface module(s) includes one or
more of a universal serial bus (USB) interface module 66, a
host bus adapter (HBA) interface module 68, a network
interface module 70, a flash interface module 72, a hard
drive interface module 74, and a DSN interface module 76.

The DSN interface module 76 functions to mimic a

conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS),

disk file system (DFS), file transier protocol (FTP), web-
based distributed authoring and versioning (WebDAV), etc.)
and/or a block memory interface (e.g., small computer

system 1nterface (SCSI), internet small computer system
intertace (1SCSI), etc.). The DSN interface module 76 and/or
the network interface module 70 may function as one or

US 11,010,093 B2

S

more of the imterface 30-33 of FIG. 1. Note that the 10
device interface module 62 and/or the memory interface
modules 66-76 may be collectively or individually referred
to as 10 ports.

FIG. 3 1s a schematic block diagram of an example of
dispersed storage error encoding of data. When a computing
device 12 or 16 has data to store it disperse storage error
encodes the data 1n accordance with a dispersed storage
error encoding process based on dispersed storage error
encoding parameters. The dispersed storage error encoding
parameters include an encoding function (e.g., information
dispersal algorithm, Reed-Solomon, Cauchy Reed-Solo-
mon, systematic encoding, non-systematic encoding, on-line
codes, etc.), a data segmenting protocol (e.g., data segment
s1ze, fixed, variable, etc.), and per data segment encoding
values. The per data segment encoding values include a
total, or pillar width, number (T) of encoded data slices per
encoding of a data segment 1.e., 1n a set of encoded data
slices); a decode threshold number (D) of encoded data
slices of a set of encoded data slices that are needed to
recover the data segment; a read threshold number (R) of
encoded data slices to indicate a number of encoded data
slices per set to be read from storage for decoding of the data
segment; and/or a write threshold number (W) to indicate a
number of encoded data slices per set that must be accurately
stored before the encoded data segment 1s deemed to have
been properly stored. The dispersed storage error encoding,
parameters may further include slicing information (e.g., the
number of encoded data slices that will be created for each
data segment) and/or slice security imnformation (e.g., per
encoded data slice encryption, compression, integrity check-
sum, etc.).

In the present example, Cauchy Reed-Solomon has been
selected as the encoding function (a generic example 1s
shown 1n FIG. 4 and a specific example 1s shown 1n FIG. 35);
the data segmenting protocol 1s to divide the data object 1nto
fixed sized data segments; and the per data segment encod-
ing values include: a pillar width of 5, a decode threshold of
3, a read threshold of 4, and a write threshold of 4. In
accordance with the data segmenting protocol, the comput-
ing device 12 or 16 divides the data (e.g., a file (e.g., text,
video, audio, etc.), a data object, or other data arrangement)
into a plurality of fixed sized data segments (e.g., 1 through
Y of a fixed size in range ol Kilo-bytes to Tera-bytes or
more). The number of data segments created 1s dependent of
the size of the data and the data segmenting protocol.

The computing device 12 or 16 then disperse storage error
encodes a data segment using the selected encoding function
(e.g., Cauchy Reed-Solomon) to produce a set of encoded
data slices. FIG. 4 illustrates a generic Cauchy Reed-
Solomon encoding function, which includes an encoding
matrix (EM), a data matrix (DM), and a coded matrix (CM).
The size of the encoding matrix (EM) 1s dependent on the
pillar width number (1) and the decode threshold number
(D) of selected per data segment encoding values. To pro-
duce the data matrix (DM), the data segment 1s divided into
a plurality of data blocks and the data blocks are arranged
into D number of rows with Z data blocks per row. Note that
7. 1s a function of the number of data blocks created from the
data segment and the decode threshold number (D). The
coded matrix 1s produced by matrix multiplying the data
matrix by the encoding matrx.

FIG. 5 illustrates a specific example of Cauchy Reed-
Solomon encoding with a pillar number (1) of five and
decode threshold number of three. In this example, a first
data segment 1s divided into twelve data blocks (D1-D12).
The coded matrix includes five rows of coded data blocks,

5

10

15

20

25

30

35

40

45

50

55

60

65

6

where the first row of X11-X14 corresponds to a first
encoded data slice (EDS 1_1), the second row of X21-X24
corresponds to a second encoded data slice (EDS 2_1), the
third row of X31-X34 corresponds to a third encoded data
slice (EDS 3_1), the fourth row of X41-X44 corresponds to
a Tourth encoded data slice (EDS 4_1), and the fifth row of
X51-X54 corresponds to a fifth encoded data slice (EDS
5_1). Note that the second number of the EDS designation
corresponds to the data segment number.

Returning to the discussion of FIG. 3, the computing
device also creates a slice name (SN) for each encoded data
slice (EDS) 1n the set of encoded data slices. A typical format
for a slice name 80 1s shown 1n FIG. 6. As shown, the slice
name (SN) 80 includes a pillar number of the encoded data
slice (e.g., one of 1-T), a data segment number (e.g., one of
1-Y'), a vault identifier (ID), a data object identifier (ID), and
may further include revision level information of the
encoded data slices. The slice name functions as, at least part
of, a DSN address for the encoded data slice for storage and
retrieval from the DSN memory 22.

As a result of encoding, the computing device 12 or 16
produces a plurality of sets of encoded data slices, which are
provided with their respective slice names to the storage
units for storage. As shown, the first set of encoded data
slices includes EDS 1_1 through EDS 5_1 and the first set
of slice names includes SN 1_1 through SN 5_1 and the last
set of encoded data slices includes EDS 1_Y through EDS
5_Y and the last set of slice names includes SN 1_Y through
SN S_Y.

FIG. 7 1s a schematic block diagram of an example of
dispersed storage error decoding of a data object that was
dispersed storage error encoded and stored 1n the example of
FIG. 4. In this example, the computing device 12 or 16
retrieves from the storage units at least the decode threshold
number of encoded data slices per data segment. As a
specific example, the computing device retrieves a read
threshold number of encoded data slices.

To recover a data segment from a decode threshold
number of encoded data slices, the computing device uses a
decoding function as shown in FIG. 8. As shown, the
decoding function 1s essentially an mverse of the encoding
function of FIG. 4. The coded matrix includes a decode
threshold number of rows (e.g., three 1n this example) and
the decoding matrix in an iversion of the encoding matrix
that includes the corresponding rows of the coded matrix.
For example, if the coded matrix includes rows 1, 2, and 4,
the encoding matrix 1s reduced to rows 1, 2, and 4, and then
inverted to produce the decoding matrix.

FIGS. 9A and 9B i1s a schematic block diagrams of
examples of load level information 94. The load level
information includes one or more load levels of one or more
resources (e.g., DS processing umit, storage unit, etc.) of a
dispersed storage network (DSN). As a specific example of
the one or more load levels for a resource (e.g., as shown 1n
FIG. 9A), the load level information 94 for the resource
includes a resource identification (ID) (e.g., #1), a central
processing unit (CPU) load, a network load, and a memory
load. In this example, the load level information 94 may also
include other fields. For example, the other fields includes
one or more of a reserved field, CPU load threshold, network
load threshold, memory load threshold, an anticipated CPU
load, anticipated network load, anticipated memory load, a
historical latency to other resources (e.g., DS processing
units, storage units, etc.), and a predicted latency to other
resources.

FIG. 9B illustrates an example of the load level informa-
tion 94 that includes information of a plurality of resources

US 11,010,093 B2

7

of the DSN. For example, the load level information 94
indicates that for a first resource ID (e.g., #1), the CPU load
1s low (e.g., 17%) and a network load 1s high (e.g., 83%).
Thus, the load level information 94 indicates that the first
resource 1s able to perform certain additional high compu-
tational requests (e.g., requests that use the CPU of the first
resource, and that don’t dramatically aflect the network load,
without eflecting other requests being handled by the first
resource).

For example, a computing device inspects an access
request for processing by the first resource and determines,
based on the load level information and the access request,
that the first resource can process the request (e.g., process-
ing of the access request will not cause any of the load levels
to exceed a load level threshold).

As another example, the computing device inspects a
second request and determines that the first resource cannot
process the second request without exceeding a load level
threshold. When the network load 1s above a threshold level,
the computing device utilizes the load level information to
determine whether to delegate a request (e.g., part of a
current request or a pending request) from the overloaded
resource to another resource of the DSN. The delegation
process 1s discussed 1n further detail with reference to FIGS.
10-13.

As a speciific example, a second access request 1s received
by resource #2. A computing device of the DSN determines
that the second access request will increase the memory load
level 3%, increase the network load level 3%, and increase
the CPU load 7%. In this example, the resource #2 has a load
level thresholds of CPU load at 90%, network load at 90%,
and memory load of 95%. The computing device determines
based on the load level information that the network load
level for resource #2 will exceed the network load level
threshold by processing the second access request.

The computing device then determines to delegate the
second access request to another resource (e.g., resource #1)
of the DSN. For example, the computing device obtains load
level information for one or more other resources of the
DSN and determines, based on the load level information for
the one or more other resources, to delegate the second
access request to the first resource (e.g., resource #1).

FIG. 10 1s a schematic block diagram of an example of a
set oI DS processing units 90 of a dispersed storage network
(DSN). The set of DS processing units are operable to
process access requests 92 (e.g., write, read, list, rebuild,
etc.) and to delegate one or more of the access requests to
other DS processing units within the DSN. The set of DS
processing units #1-4 90 receive access requests 92. Each
DS processing unit has one or more loads associated with 1ts
performance capabilities (e.g., to process access requests). A
DS processing unit 1s operable to create, store and/or share
the loads as load level information. The set of DS processing,
units #1-4 90 are also operable to send load level informa-
tion 94 to other devices of the DSN. For example, a first DS
processing units #1 90 may send load level info #1 94 to a
second DS processing unit #2 90. In another example, a first
DS processing unit may share knowledge of other DS
processing umts’ load levels according to a gossip protocol
(e.g., dissemination protocol, anti-entropy protocol, etc.). As
access requests 92 are received by the DS processing units,
loads across the set may become unequal. In an example, the
unequal load results 1n a less than desired (e.g., maximum,
above a threshold) performance the set of DS processing
units. When the unequal load impacts the performance of the

10

15

20

25

30

35

40

45

50

55

60

65

8

DSN, a computing device of the DSN may determine to
balance or transfer some of the load to increase performance
of the DSN.

In an example of transierring load amongst a set of DS
processing units when there 1s unequal load levels across the
set of dispersed storage (DS) processing units (e.g., to
improve utilization and performance of the DSN), some
access requests (or portions thereol) of a DS processing unit
that 1s overloaded (e.g., DS processing unit #3 90) are
delegated to another DS processing unit (e.g., DS processing
units #1, 2 and 4). For example, the other DS processing
unit(s) completes the work for the access request and
forwards a response to the access request either to the
original DS processing unit or another computing device
(e.g., a storage unit, another DS processing unit, etc). In an
example, a computing device of the DSN (e.g., a DS
processing unit of the set of DS processing units) determines
when 1t 1s beneficial to delegate requests to other DS
processing units through querying other DS processing units
of the set of DS processing units and comparing respective
load levels associated with the set of DS processing units.

A DS processing unmit may experience diflerent levels of
load than other DS processing units of the set of DS
processing units for various reasons. As a first example, the
DS processing unit experiences different levels of load than
other DS processing units due to load balancing impertec-
tions. As a second example, the DS processing unit experi-
ences different levels of load than other DS processing units
due to a low rate of very costly computational or storage
requests (making load balancing diflicult). As a third
example, the DS processing unit experiences different levels
of load than other DS processing units due to one or more
of the DS processing units having degraded hardware.

In an example, the imbalances 1 load level leads to
suboptimal performance of the DSN, as all resources (e.g.,
DS processing units, storage units, managing units, etc.) are
not used eflectively. For example, a latency for processing
access requests at DS processing units that are overloaded 1s
higher than a threshold. As another example, an overall
throughput may be lower than otherwise possible. To
address these and other 1ssues, DS processing units delegate
client computational or storage requests (e.g., access
requests) to other DS processing units, which reduces their
load.

As a specific example, a DS processing unit #3 90
delegates an access request #3 92 to DS processing unit #4
90 for processing. The delegate DS processing unit #4 90
undertakes the resource intensive operations involved in
processing the access request #3 92. For example, the
resource mtensive operations mcludes one or more of error
coding functions, encryption, veriiying data through check-
sums, communicating with the DS units (e.g., storage units),
and other functions. The DS processing unit #4 then for-
wards the response to the access request to the original DS
processing unit (e.g., DS processing unit #3 90) to be passed
to the client device, or sends the response directly to the
client device.

In an example, to determine when i1t 1s beneficial to
delegate requests, the DS processing units query other DS
processing units for their current load levels. The load levels
could include CPU utilization, memory utilization, network
utilization or other information. This querying may be
determined on one or more of an ongoing periodic basis or
on demand when the DS processing unit’s load level
exceeds a threshold. To reduce the number of queries that
must be made to identify DS processing units with low load
levels, 1n response to queries, DS processing units could

US 11,010,093 B2

9

report both their own load level as well as their knowledge
of other DS processing units’ load levels (e.g., using a gossip
protocol).

In one example, a DS processing unit has a low load level
(e.g., lower than a historical average, lower than a threshold,
suflicient resources to process additional access requests,
etc). Here, the DS processing unit sends a delegation request
to another DS processing unit requesting that a portion of the
access requests the other DS processing umt receives be
delegated to the DS processing unit. In one example, one or
more of the DS processing units ispects client requests and
determines which type of resource they are likely to need
(e.g. CPU, memory, network). The client requests are then
routed to a DS processing unit with a relatively low load for
that type of resource. The delegating access requests accord-
ing to the type of access request 1s discussed 1n further detail
in FIGS. 11-13.

The DS processing units considered for delegation also
include DS processing units running on DS umts (e.g.,
storage units) to make use of their resources even 1 those DS
processing units are not configured to receive requests
directly from client devices. In an example, the delegation to
storage units can be especially beneficial 1n heavy write
workloads where there 1s a high expansion factor of the
network throughput due to the error coding function, while
the maximum network throughput of the DS processing
unit’s network device throughput limait 1s symmetric. In this
case, a DS processing unit could accept more data from
client devices than 1t could write to storage units, due to the
expansion factor of the error coding function. By delegating
some or all of the access requests to other DS processing
units or storage units, higher throughput can be supported
when load levels are unequal.

FIG. 11 1s a schematic block diagram of an example of
delegating access requests 92 based on the type of access
request. A type of access request includes one or more of a
write request, a read request, a list request and a rebuild
request. In this example, a second DS processing unit #2 90
1s determined to be overloaded. The determining 1s based on
one or more of load level mmformation from the second DS
processing unit and on load level information of other DS
processing units of the DSN. For example, the second DS
processing unit determines 1t 1s overloaded when a load level
1s above a threshold load level (e.g., based on the load level
information of the second DS processing unit).

As another example, a device (e.g. a computing device) of
the DSN may determine that an imbalance of load exists
across a plurality of DS processing units based on load level
information of the plurality of DS processing units. For
example, based on the imbalance, the device determines the
second DS processing unit #2 90 1s overloaded. For
example, the device determines that the CPU load 1s above
a load level threshold for the second DS processing unit. As
another example, the device determines that a difference
between the network load of the second DS processing unit
and the network load of another DS processing unit 1s above
a second threshold.

Having determined that the second DS processing unit 1s
overloaded, a computing device of the DSN determines
whether one or more access requests are to be delegated
from the second DS processing unit 90 to one or more other
DS processing units of the DSN based on the type of access
request (e.g., how processing the request aflects the load
levels of a resource). For example, a first type of access
request (e.g., allects the network and CPU load of a DSN
resource) of the access requests #2 92 of the second DS
processing unit 1s delegated to a first DS processing unit

10

15

20

25

30

35

40

45

50

55

60

65

10

based on load level information indicating the first DS
processing unit has a network and CPU load below a
threshold. As another example, a second type of access
request (e.g., primarily aflects the memory of a DSN
resource) of the access requests #2 92 1s delegated to a third
DS processing unit #3 90 based on load level information
indicating an anticipated memory load level for the third DS
processing unit 1s below a memory load threshold.

FIGS. 12A and B are schematic block diagrams of
examples of delegating a portion (one or more tasks) of
access requests 1 a dispersed storage network (DSN). As
shown 1n FIG. 12A, an overloaded DS processing unit #3 90
receives access requests #3 92 that includes a plurality of
access requests #3 portions 92-1 for processing an access
request #3 92. A computing device of the DSN determines
a delegate storage unit 36 (e.g., a storage unit 36 of FIG. 1)
to delegate one or more portions 92-1 of the access request
#3 92.

Having determined the delegate storage unmit 36, the
access request portions 92-1 are sent from the DS processing
unmt #3 90 to the delegate storage unit 36 for processing.
Note the delegation may include a command on where the
delegate storage unit 1s to send a corresponding access
request portion 97-1. Having recerved the access request
portions 92-1, the delegate storage unit 36 processes the
access request portions 92-1. The delegate storage unit 36
then sends (e.g., according to the command) access response
portions 97-1 to the DS processing unit #3 90 or to another
device (e.g., another storage unit) of the DSN. For example,
when the access request 1s a write request, the access
responses portion 97-1 may include an indication of storage
status of one or more encoded data slices associated with the
write request.

FIG. 12B shows a similar delegation as FIG. 12A, with
the delegate processing resource being a delegate DS pro-
cessing unit (e.g., delegate DS processing unit #4) instead of
a delegate storage unit 36.

FIG. 13 1s a flowchart illustrating an example of delegat-
ing access requests 1 a dispersed storage network (DSN).
The method begins at step 132, where a computing device
(e.g., a DS processing unit, a computing device 12-16 of
FIG. 1) of the DSN obtains a set of load level information
for the set of DS processing units. The set of load level
information includes information regarding the set of DS
processing unit’s ability to process the plurality of access
requests. Note the DSN includes a plurality of sets of DS
processing units that includes the set of DS processing units.
Further note an access request of the plurality of access
requests 1s regarding one or more encoded data slices.

In an example, a first DS processing unit of the set of DS
processing umt has first load level information of the set of
load level information. The first load level information
includes one or more load levels regarding processing
capabilities of the first DS processing unit for processing one
or more access requests of the plurality of access requests.
For example, the load level information includes one or
more ol a central processing unit (CPU) utilization load
level, a memory utilization load level, and a network utili-
zation load level. Note other load levels or information that
indicate the ability of a set of DS processing units to process
the plurality of access requests may also be mncluded in the
load level information.

For example, the load level mformation includes one or
more ol DS processing unit and storage unit availability,
historical information, and scheduled maintenance. Further
note the obtaining may be done on a periodic basis or when
a load level of a DS processing unit exceeds a load level

US 11,010,093 B2

11

threshold. For example, a first DS processing unit has a
network utilization load level of 82% (above an 80% thresh-
old), as such, the computing device obtains load level
information for at least some of the set of DS processing
units (e.g., the first DS processing unit and other DS
processing units) to determine i1f a delegation of current or
future access requests 1s predicted to reduce the network
utilization load level of the first DS processing unit.

Having obtained the set of load level information, the
method continues with step 134, where the computing
device determines whether the first DS processing unit has
a load imbalance based on the set of load level information.
As an example, the load imbalance 1s determined when the
first DS processing unit above a threshold. As another
example, the load imbalance 1s determined when a difler-
ence ol corresponding loads across a set of DS processing
units 1s above a threshold. As yet another example, the load
imbalance 1s determined when loads (e.g., aggregate for the
set, load of a first DS processing unit of the set) of a first set
of DS processing units are above a threshold difference than
loads of a second set of DS processing units.

When the first DS processing unit does not have the load
imbalance, the method branches to step 144, where the first
DS processing unit processes at least some of the plurality
ol access requests. When the first DS processing unit has the
load 1imbalance, the method continues to step 136, where the
computing device determines whether to delegate a first
access request of the one or more access requests. In one
example, the determining i1s based on whether delegating
improves the performance of the set of DS processing units.
For example, the determining may be based on determining
that the delegation will reduce a predicted latency for the set
of DS processing units to process the first access request. As
another example, the determining may be based on deter-
mimng that the delegation will increase a predicted through-
put for the set of DS processing units.

When the computing device determines not to delegate,
the method continues to step 144. When the computing
device determines to delegate, the method continues to step
138, where the computing device determines a delegate
processing resource of the DSN for processing an access
request based on the set of load level information. Note the
set of load level information may further include load levels
of one or more sets ol storage units and the delegating
processing resource may be one of a DS processing unit, a
managing unit, and a storage unit.

The determining may also be based on a type of the access
request and information 1n included 1n the access request
(e.g., dispersed data storage parameters for a set of encoded
data slices). For example, when the type of access request 1s
a write request and includes a high (e.g., 18/10 (pillar width
to decode) threshold or greater) expansion factor (e.g., based
on the dispersed data storage parameters) the computing
device ranks (e.g., by score (e.g., using a deterministic
function)) a storage unit higher than a DS processing unit
with similar load levels (e.g., both having similar network
load levels) and delegates the write request to the storage
unit. As another example, when the type of access request 1s
a write request and includes a low (e.g., 14/10 or lower)
expansion factor, the computing device ranks a DS process-
ing unit above a storage unit with similar load levels and
delegates the write request to the DS processing unit. As yet
another example, when the type of access request 1s a write
request, the computing device determine to delegate the
access request to a highest ranking storage unit. Note a
storage unit may be determined as the delegate processing

10

15

20

25

30

35

40

45

50

55

60

65

12

resource for any type (e.g., list, read, write, etc.) of access
request to improve the functioming (e.g. throughput) of the
DSN.

Having determined the delegate processing resource, the
method continues with step 140, where the computing
device instructs the first DS processing umt to send the
access request to the delegate processing resource for pro-
cessing. Having delegated the first access request, the
method may loop back to step 134 where computing device
determines whether the first DS processing units has a load
imbalance. Alternatively, the method loops back to step 132,
where the computing device obtains the set of load level
information (e.g., an updated set of load level information).

Note the above steps may be implemented by a computer
readable storage medium that includes at least one memory
section that stores operational instructions that, when
executed by a processing system of a dispersed storage
network (DSN) that includes a processor and a memory,
causes the processing system to perform one or more of the
above steps.

It 1s noted that terminologies as may be used herein such
as bit stream, stream, signal sequence, etc. (or their equiva-
lents) have been used interchangeably to describe digital
information whose content corresponds to any of a number
of desired types (e.g., data, video, speech, audio, etc. any of
which may generally be referred to as ‘data’).

As may be used herein, the terms “‘substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but 1s not limited
to, component values, itegrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between 1tems ranges from a differ-
ence of a few percent to magnmitude differences. As may also
be used herein, the term(s) “configured to”, “operably
coupled to”, “coupled to”, and/or “coupling” includes direct
coupling between items and/or indirect coupling between
items via an intervening item (e.g., an 1tem 1ncludes, but 1s
not limited to, a component, an element, a circuit, and/or a
module) where, for an example of indirect coupling, the
intervening item does not modity the information of a signal
but may adjust its current level, voltage level, and/or power
level. As may further be used herein, inferred coupling (i.e.,
where one element 1s coupled to another element by infer-
ence) includes direct and indirect coupling between two
items in the same manner as “coupled to”. As may even
further be used herein, the term “configured to”, “operable
to”, “coupled to”, or “operably coupled to” indicates that an
item 1ncludes one or more of power connections, 1nput(s),
output(s), etc., to perform, when activated, one or more 1ts
corresponding functions and may further include inferred
coupling to one or more other 1tems. As may still further be
used herein, the term ‘“associated with”, includes direct
and/or 1ndirect coupling of separate items and/or one item
being embedded within another item.

As may be used herein, the term “compares favorably”,
indicates that a comparison between two or more items,
signals, etc., provides a desired relationship. For example,
when the desired relationship 1s that signal 1 has a greater
magnitude than signal 2, a favorable comparison may be
achieved when the magnitude of signal 1 1s greater than that
of signal 2 or when the magnitude of signal 2 1s less than that
of signal 1. As may be used herein, the term “compares
unfavorably”, indicates that a comparison between two or
more 1tems, signals, etc., fails to provide the desired rela-

tionship.

US 11,010,093 B2

13

As may also be used herein, the terms “processing mod-
ule”, “processing circuit”, “processor’, and/or “processing,
unit” may be a single processing device or a plurality of
processing devices. Such a processing device may be a
microprocessor, micro-controller, digital signal processor,
microcomputer, central processing unit, field programmable
gate array, programmable logic device, state machine, logic
circuitry, analog circuitry, digital circuitry, and/or any device
that manipulates signals (analog and/or digital) based on
hard coding of the circuitry and/or operational instructions.
The processing module, module, processing circuit, and/or
processing unit may be, or further include, memory and/or
an ntegrated memory element, which may be a single
memory device, a plurality of memory devices, and/or
embedded circuitry of another processing module, module,
processing circuit, and/or processing unit. Such a memory
device may be a read-only memory, random access memory,
volatile memory, non-volatile memory, static memory,
dynamic memory, flash memory, cache memory, and/or any
device that stores digital information. Note that 1f the
processing module, module, processing circuit, and/or pro-
cessing unit mcludes more than one processing device, the
processing devices may be centrally located (e.g., directly
coupled together via a wired and/or wireless bus structure)
or may be distributedly located (e.g., cloud computing via
indirect coupling via a local area network and/or a wide area
network). Further note that 11 the processing module, mod-
ule, processing circuit, and/or processing unit implements
one or more ol its functions via a state machine, analog
circuitry, digital circuitry, and/or logic circuitry, the memory
and/or memory element storing the corresponding opera-
tional 1nstructions may be embedded within, or external to,
the circuitry comprising the state machine, analog circuitry,
digital circuitry, and/or logic circuitry. Still further note that,
the memory element may store, and the processing module,
module, processing circuit, and/or processing unit executes,
hard coded and/or operational 1nstructions corresponding to
at least some of the steps and/or functions illustrated in one
or more of the Figures. Such a memory device or memory
clement can be included in an article of manufacture.

One or more embodiments have been described above
with the aid of method steps 1llustrating the performance of
specified functions and relationships thereof. The boundar-
ies and sequence of these functional building blocks and
method steps have been arbitrarily defined herein for con-
venience of description. Alternate boundaries and sequences
can be defined so long as the specified functions and
relationships are appropriately performed. Any such alter-
nate boundaries or sequences are thus within the scope and
spirit of the claims. Further, the boundaries of these func-
tional building blocks have been arbitrarily defined for
convenience ol description. Alternate boundaries could be
defined as long as the certain significant functions are
appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality.

To the extent used, the flow diagram block boundaries and
sequence could have been defined otherwise and still per-
form the certain significant functionality. Such alternate
definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claims. One of average skill in the art will also
recognize that the functional bwlding blocks, and other
illustrative blocks, modules and components herein, can be
implemented as illustrated or by discrete components, appli-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

cation specific integrated circuits, processors executing
appropriate software and the like or any combination
thereof.

In addition, a flow diagram may include a “start” and/or
“continue” indication. The “start” and “continue” indica-
tions retlect that the steps presented can optionally be
incorporated 1n or otherwise used 1n conjunction with other
routines. In this context, “start” indicates the beginning of
the first step presented and may be preceded by other
activities not specifically shown. Further, the “continue”
indication retlects that the steps presented may be performed
multiple times and/or may be succeeded by other activities
not specifically shown. Further, while a tlow diagram 1ndi-
cates a particular ordering of steps, other orderings are
likewise possible provided that the principles of causality
are maintained.

The one or more embodiments are used herein to 1llustrate
one or more aspects, one or more features, one or more
concepts, and/or one or more examples. A physical embodi-
ment of an apparatus, an article of manufacture, a machine,
and/or of a process may include one or more of the aspects,
features, concepts, examples, etc. described with reference
to one or more of the embodiments discussed herein. Fur-
ther, from figure to figure, the embodiments may incorporate
the same or similarly named functions, steps, modules, eftc.
that may use the same or different reference numbers and, as
such, the functions, steps, modules, etc. may be the same or
similar functions, steps, modules, etc. or different ones.

Unless specifically stated to the contra, signals to, from,
and/or between elements 1n a figure of any of the figures
presented herein may be analog or digital, continuous time
or discrete time, and single-ended or differential. For
instance, 1f a signal path 1s shown as a single-ended path, 1t
also represents a diflerential signal path. Similarly, 11 a signal
path 1s shown as a differential path, it also represents a
single-ended signal path. While one or more particular
architectures are described herein, other architectures can
likewise be implemented that use one or more data buses not
expressly shown, direct connectivity between elements, and/
or indirect coupling between other elements as recognized
by one of average skill in the art.

The term “module” 1s used in the description of one or
more of the embodiments. A module implements one or
more functions via a device such as a processor or other
processing device or other hardware that may include or
operate 1n association with a memory that stores operational
istructions. A module may operate independently and/or 1n
conjunction with software and/or firmware. As also used
herein, a module may contain one or more sub-modules,
cach of which may be one or more modules.

As may further be used herein, a computer readable
memory includes one or more memory elements. A memory
clement may be a separate memory device, multiple
memory devices, or a set of memory locations within a
memory device. Such a memory device may be a read-only
memory, random access memory, volatile memory, non-
volatile memory, static memory, dynamic memory, tlash
memory, cache memory, and/or any device that stores digital
information. The memory device may be 1n a form a solid
state memory, a hard drive memory, cloud memory, thumb
drive, server memory, computing device memory, and/or
other physical medium for storing digital information.

While particular combinations of various functions and
features of the one or more embodiments have been
expressly described herein, other combinations of these
features and functions are likewise possible. The present

US 11,010,093 B2

15

disclosure 1s not limited by the particular examples disclosed
herein and expressly incorporates these other combinations.

What 1s claimed 1s:

1. A method for execution by a computing device of a
dispersed storage network (DSN) comprises:

obtaining a set of load level information regarding a set of

dispersed storage (IDS) processing units of a plurality of
sets of DS processing units of the DSN, wherein the set
of load level information includes storage unit avail-
ability, historical information, and scheduled mainte-
nance and the set of DS processing units process a
plurality of access requests, wherein a first DS process-
ing unit of the sets of DS processing units has a {first
load level information of the set of load level informa-
tion, wherein the first load level information includes
one or more load levels regarding processing capabili-
ties of the first DS processing unit for processing one or
more access requests of the plurality of access requests,
wherein an access request of the plurality of access
requests 1s regarding one or more encoded data slices of
a set of encoded data slices, and wherein a data segment
of data 1s dispersed storage error encoded 1nto the set of
encoded data slices:

determining whether the first DS processing unit has a

load imbalance based on the set of load level informa-
tion;

determining whether to delegate a second access request

of the one or more access requests which includes error
coding functions, encryption, verifying data through
checksums, and commumicating with the plurality of
sets of DS processing units, wherein the determination
1s based on determining the second access request 1s a
write request and imnformation included 1n the second
access request includes dispersed data storage param-
eters for the set of encoded data slices;

when the first DS processing unit has the load imbalance:

determining whether to delegate a first access request
of the one or more access requests;

when delegating the first access request:

determining a delegate DS processing unit of the set of
DS processing units based on the set of load level
information; and

istructing the first DS processing unit to send the first
access request to the delegate DS processing unit for
processing; and

when delegating the second access request:

determining a storage unit of a set of storage units
based on the set of load level information, wherein
the set of load level information further includes one
or more load levels of the storage unit and load levels
of other storage units of the set of storage units
shared by the storage unit using an anti-entropy
protocol gossip protocol; and

instructing the first DS processing unit to send the
second access request to the storage unit for process-
ng.

2. The method of claim 1, wherein a load level informa-
tion of the set of load level information includes one or more
of:

a central processing unit (CPU) utilization load level;

a memory utilization load level; and

a network utilization load level.

3. The method of claim 1, wherein the determiming
whether to delegate the first access request includes one or
more of:

5

10

15

20

25

30

35

40

45

16

determiming the delegating the first access request reduces
a latency for the set of DS processing units to process
the first access request; and

determiming the delegating the f{first access request
increases a throughput for the set of DS processing
units.

4. The method of claim 1, wherein the obtaining the set of

load level information includes one or more of:

obtaining the load level information on a periodic basis;
and

obtaining the load level information when a load level of
a DS processing unit of the set of DS processing units

exceeds a load level threshold.
5. The method of claim 1, wherein the delegate DS

processing unit 1s determined by:

determinming resource requirements for the first access
request;

determining, based on the set of load level information,
one or more DS processing units of the set of DS
processing units have the resource requirements; and

selecting a DS processing unit of the one or more DS
processing units as the delegate DS processing unit.

6. The method of claim 5, wherein the resource require-

ments include one or more of:

an amount of central processing unit (CPU) utilization
needed for processing the first access request;

an amount of memory utilization needed for processing
the first access request; and

an amount of network utilization needed for processing
the first access request.

7. The method of claim 1, wherein the when delegating

the first access request further comprises:

determining a type of the first access request 1s a write
request for storing the data segment;
determining an expansion factor based on dispersed data
storage parameters of the dispersed storage error
encoding the data segment 1nto the set of encoded data
slices:
determining resource requirements for the first access
request based on the type and the expansion factor;
determiming whether a first storage unit of the set of
storage units has resource requirements for processing,
one or more portions of the first access request; and
when the first storage unit has the resource requirements
to:
instruct the first DS processing unit to send at least one
portion of the one or more portions to the storage unit
for processing.
8. A computing device of a dispersed storage network

50 (DSN) comprises:

55

60

65

memory;
an interface; and
a processing module operably coupled to the memory and
the interface, wherein the processing module 1s oper-
able to:
obtain a set of load level information regarding a set of
dispersed storage (DS) processing units of a plurality
ol sets of DS processing units of the DSN, wherein
the set of load level information includes storage unit
availability, historical information, and scheduled
maintenance and the set of DS processing units
process a plurality of access requests, wherein a first
DS processing unit of the set of DS processing units
has a first load level information of the set of load
level information, wherein the first load level infor-
mation 1ncludes one or more load levels regarding
processing capabilities of the first DS processing unit

US 11,010,093 B2

17

for processing one or more access requests of the
plurality of access requests,

wherein an access request of the plurality of access

requests 1s regarding one or more encoded data slices
of a set of encoded data slices, and wherein a data
segment of data 1s dispersed storage error encoded
into the set of encoded data slices;

determine whether the first DS processing unit has a
load 1mbalance based on the set of load level infor-
mation;

determine whether to delegate a second access request
of the plurality of access requests which includes
error coding functions, encryption, verifying data
through checksums, and communicating with the

plurality of sets of DS processing units, wherein the
determination 1s based on determining the second
access request 1s a write request and information
included 1n the second access request includes dis-
persed data storage parameters for the set of encoded
data slices;
when the first DS processing unit has the load 1mbal-
ance:
determine whether to delegate a first access request
of the one or more access requests;
when delegating the first access request:
determine a delegate DS processing unit of the set of
DS processing units based on the set of load level
information; and
instruct the first DS processing unit to send the first
access request to the delegate DS processing unit
for processing; and
when delegating the second access request:
determining a storage unit of a set of storage units
based on the set of load level information, wherein
the set of load level information further mcludes
one or more load levels of the storage unit and
load levels of other storage units of the set of
storage units shared by the storage unit using an
anti-entropy protocol gossip protocol; and
instruct the first DS processing unit to send the
second access request to the storage unit for
processing.

9. The computing device of claim 8, wherein a load level
information of the set of load level information includes one
or more of:

a central processing unit (CPU) utilization load level;

a memory utilization load level; and

a network utilization load level.

10. The computing device of claim 8, wherein the pro-
cessing module 1s operable to determine whether to delegate
the first access request by one or more of:

10

15

20

25

30

35

40

45

50

18

determiming the delegating the first access request reduces
a latency for the set of DS processing units to process
the first access request; and

determining the delegating the first access request

increases a throughput for the set of DS processing
units.

11. The computing device of claim 8, wherein the pro-
cessing module 1s operable to obtain the set of load level
information by one or more of:

obtaining the load level information on a periodic basis;

and

obtaining the load level information when a load level of

a DS processing unit of the set of DS processing units
exceeds a load level threshold.

12. The computing device of claim 8, wherein the pro-
cessing module 1s operable to determine the delegate DS
processing unit by:

determining resource requirements for the first access

request;

determining, based on the set of load level information,

one or more DS processing units of the set of DS

processing units have the resource requirements; and
selecting a DS processing unit of the one or more DS

processing units as the delegate DS processing unit.

13. The computing device of claim 12, wherein the
resource requirements include one or more of:

an amount of central processing unit (CPU) utilization

needed for processing the first access request;

an amount of memory utilization needed for processing

the first access request; and

an amount of network utilization needed for processing

the first access request.

14. The computing device of claim 8, wherein the pro-
cessing module, when delegating the first access request, 1s
turther operable to:

determine a type of the first access request 1s a write

request for storing the data segment;

determine an expansion factor based on dispersed data

storage parameters of the dispersed storage error
encoding the data segment 1nto the set of encoded data
slices:
determine resource requirements for the first access
request based on the type and the expansion factor;

determine whether a first storage unit of the set of storage
units has resource requirements for processing one or
more portions of the first access request; and

when the first storage unit has the resource requirements

to:
instruct the first DS processing unit to send at least one

portion of the one or more portions to the storage unit
for processing.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

