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SEMANTIC STRUCTURE FROM MOTION
FOR ORCHARD RECONSTRUCTION

CROSS-REFERENCE TO RELATED
APPLICATION

The present application 1s based on and claims the benefit
of U.S. provisional patent application Ser. No. 62/718,740,
filed Aug. 14, 2018, the content of which 1s hereby incor-
porated by reference in its entirety.

This invention was made with government support under

2016-67021-24534 awarded by the United States Depart-

ment of Agriculture. The government has certain rights in
the 1vention.

BACKGROUND

The estimation of morphological parameters of fruit trees
(such as tree height, canopy volume and trunk diameter) 1s
important 1n horticultural science, and has become an 1impor-
tant topic 1n precision agriculture. Accurate morphology
estimation can help horticulturists study to what extent these
parameters impact crop vield, health and development. For
example, growers try diflerent root stocks to figure out
which one produces better yield per volume for a specific
geographical area. They also measure parameters such as
tree height or trunk diameter to model fruit production. This
measurement process 1s labor-intensive and not necessarily
accurate.

3D models of rows of orchard trees can be used for
determining the morphological parameters of fruit trees, to
automate pruning of trees, and to estimate yields. To con-
struct such 3D models, 1mages of the orchard trees are
collected and combined to determine the 3D locations of
various points of each tree.

The discussion above 1s merely provided for general
background information and 1s not intended to be used as an
aid 1n determining the scope of the claimed subject matter.
The claimed subject matter 1s not limited to implementations
that solve any or all disadvantages noted 1n the background.

SUMMARY

A method includes constructing a three-dimensional
model of a front side of a row of trees based on a plurality
of images of the front side of the row of trees and construct-
ing a three-dimensional model of a back side of the row of
trees based on a plurality of 1images of the back side of the
row of trees. The three-dimensional model of the front side
of the row of trees 1s merged with the three-dimensional
model of the back side of the row of trees to form a merged
three-dimensional model of the row of trees. The merged
three-dimensional model of the row of trees 1s used to
determine a physical attribute of the row of trees.

In accordance with a further embodiment, a three-dimen-
sional model of a front side of a row of trees 1s constructed
based on a plurality of 1images of the front side of the row of
trees and a three-dimensional model of a back side of the
row of trees 1s constructed based on a plurality of 1mages of
the back side of the row of trees. Front trunk points 1n the
three-dimensional model of the front side that belong to a
trunk of a tree and back trunk points 1n the three-dimensional
model of the back side that belong to the trunk of the tree are
identified. The front trunk points and the back trunk points
are used to align the three-dimensional model of the front
side with the three-dimensional model of the back side.
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2

In accordance with a still further embodiment, a comput-
ing device includes a memory containing front side image
frames and back side image frames for an orchard row. A
processor executing instructions, performs steps that include
constructing a three-dimensional model of a front side of the
orchard row from the front side 1image frames and construct-
ing a three-dimensional model of a back side of the orchard
row from the back side image frames. A front trunk descrip-
tor 1s 1dentified from the three-dimensional model of the
front side and a back trunk descriptor 1s 1dentified from the
three-dimensional model of the back side. The front trunk
descriptor and the back trunk descriptor are then used to
align the three-dimensional model of the back side with the
three-dimensional model of the front side.

This Summary 1s provided to introduce a selection of
concepts 1 a sumplified form that are further described
below 1n the Detailed Description. This Summary 1s not
intended to 1dentify key features or essential features of the
claimed subject matter, nor 1s 1t intended to be used as an aid
in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 provides a block diagram of elements used to
identify plant characteristics from RGB-D images 1n accor-
dance with various embodiments. 1s a front view of an apple
tree.

FIG. 2A shows a silhouette of an apple tree from the front
side.

FIG. 2B shows a silhouette of the apple tree from the back
side.

FIG. 3 provides a block diagram of elements used to
merge front and back reconstructions in accordance with a
first embodiment.

FIG. 4 shows a graph illustrating trunk detection.

FIG. 5 provides a block diagram of elements used to
merge front and back reconstructions 1n accordance with a
second embodiment.

FIG. 6 A shows application of a polygon to an RGB 1mage
during trunk annotation.

FIG. 6B shows the polygon of FIG. 6 A projected onto a
neighboring RGB 1mage.

FIG. 6C shows the selected region of FIG. 6B applied to
another 1image.

FIG. 7 shows modification to camera poses using seman-
tic information about trunks and the ground plane.

FIG. 8 shows a top view of tree segmentation.

FIG. 9 shows a graph of the relationship between apples
merged 1n a reconstruction to the percentage overlap
between reconstructions.

FIG. 10 provides graphs of total fruit counts computed
from the merged reconstruction and independent single side
reconstructions compared to ground truth.

FIG. 11 1s a block diagram of a computing environment
used 1n accordance with the various embodiments.

DETAILED DESCRIPTION

There are many techniques such as Structure from Motion
(SIM) or RGB-D SLAM [S. Agarwal, K. Mierle, et al.,

“Ceres solver,” 2012], [J. Sturm, N. Engelhard, F. Endres,
W. Burgard, and D. Cremers, “A benchmark for the evalu-
ation ol rgb-d slam systems,” 1n Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference
on. IEEE, 2012, pp. 573-580] which can generate recon-
structions of individual sides of the rows. However, existing




US 11,004,262 B2

3

methods cannot merge these two reconstructions: Even with
the manual selection of correspondences, Iterative Closest
Point (ICP) techniques {fail.

Large-scale SIM techmiques can produce consistent
reconstructions with the presence of overlapping side views
or with loop closure. Obtaiming such views in orchard
settings 1s hard because the rows can be extremely long
(sometimes spanning a thousand meters or more). The use of
very precise Real-Time Kinematic (RTK) GPS can be used
to solve the registration problem, but 1t 1s costly and not

always available.
In the embodiments provided below, reconstructions from

both sides of a row of trees are merged without the need for
overlapping views or GPS coordinates. In a first embodi-
ment, this 1s achieved by finding a rigid body transformation
between the occlusion boundaries of a fronto-parallel view
and then estimating a single overlapping depth distance
using 2D shape matching methods and semantic constraints
(e.g. the tree trunks are well approximated by cylinders, their
projection in a side view and front view have the same
width). In a second embodiment, semantic relationships
between each of the two-sides are established and tree
morphology 1s integrated into the reconstruction system,
which 1n turn outputs optimized morphological parameters.

Problem Formulation and Overview of Techmnical
Approach

Consider a row of trees 1n an orchard. Suppose an 1maging,
device moves along one side of the row (which we arbi-
trarily call the “front side”) and captures images. Then it
moves to the “back” side and captures a second set of
images. The 1images can be standard RGB 1mages or they
may also 1include depth information. The 1mages 1n each set
are used to obtain two independent reconstructions repre-
sented as point clouds. The main problem we address 1s to
merge these two reconstructions by computing the scale,
rotation and translation to align them. The problem 1s
formalized as follows:

Problem Definition: Given two sets of input i1mages
{1, “I} from the front and back sides of a row, two
reconstructions {F, B} of {I, “I;} along with extrinsic
camera poses {1, “T,} where i=1, ..., mand j=1, . ..,
n of each image, the goal 1s to merge these two reconstruc-
tions into a single coherent model ° P with combined set of
camera poses {T} by finding a transformation {; T=s
[,/ R 1;7t]} that merges the back side reconstruction with
the front.

System

FIG. 1 1s a block diagram of a system 1n accordance with
one embodiment. System 100 includes a camera 102 and a
computing device 104. In accordance with one embodiment,
camera 102 1s 1n the RGB-D camera, which provides both
pixel RGB values and pixel depth values. In particular,
camera 102 provides fames of images for the front of a row
of trees designated as front frames 106 and frames of pixel
values for the back of a row trees labeled back frames 108.
Each frame contains RGB values for each pixel, such as
pixel RGB values 110 and 112 as well as pixel depth values,
such as pixel depth values 114 and pixel depth values 116,
which indicate the relative depth of each pixel 1n the image.
Front frames 106 and back frames 108 are provided to a 3D
reconstruction module 118, which uses front frames 106 to
construct a front side 3D model 120 and uses back frames
108 to construct a back side 3D model 122 representing a 3D
reconstruction of the front side of a row of trees and a

separate 3D reconstruction of a back side of the same row of

trees, respectively.
In accordance with one embodiment, the reconstructions
cach begin with finding a relative rigid transformation
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4

between each pair of frames by applying a RANSAC-based
three-point-algorithm [David Forsyth and Jean Ponce. Com-
puter vision: a modern approach. Upper Saddle River, N.J.;
London: Prentice Hall, 2011] on the SIFT matches [David G
Lowe. Distinctive 1mage features from scale-invariant key-
points. International journal of computer vision, 60(2):91-

110, 2004 ] with valid depth values. Pairwise Bundle Adjust-
ment (BA) 1s performed to optimize the relative
transformation and 3D locations of matches by minimizing
2D reprojection errors. For loop detection, we build a Bag of
Words (BoW) model [Josef Si1vic and Andrew Zisserman.
Eflicient visual search of videos cast as text retrieval. IEEE
transactions on pattern analysis and machine intelligence,
31(4):591-606, 2009] to characterize each frame with a
feature vector, which 1s calculated based on diflerent fre-
quencies of visual words. The score matrix 1s obtained by
computing the dot products between all pairs of feature

vectors. Possible loop pairs are first selected by a high score
threshold and then tested by RANSAC-based pose estima-
tion whether a reasonable number of good matches are
obtained (e.g. 100 SIFT matches). Loop pairs are thus
accurately detected and linked with pairs of consecutive
frames by a covisibility graph. Loop detection allows us to
capture each single tree back and forth from different views
on a single side.

For each frame in consecutive pairs, we first perform local
BA to optimize its local frames which have common fea-
tures. To eflectively close the loop, pose graph optimization
|[Hauke Strasdat, J M M Montiel, and Andrew J Davison.
Scale drift-aware large scale monocular slam. Robotics:
Science and Systems VI, 2, 2010] 1s then performed followed
by global BA to finally optimize all camera poses and 3D
points. Given the fact that depth maps 1n outdoor cases are
generated by infrared stereo cameras, we itegrate 3D errors
information into the objective function of bundle adjustment
as follows:

argmin : 1 )
Re, 1., X, J>J >J plEo(c, p)) + plLi(c, p))
¢ peVic)
ol v 2
E,ic, p) =X, — K,[R: | 1] X, ||
v 2
Ei(c, p) = IKi[R; | 517X = Ki[R; | 1] [Re | 21X,

where p 1s the robust Huber cost function [Peter J Huber.
Robust estimation of a location parameter. In Breakthroughs
in statistics, pages 492-518. Springer, 1992], K_ and K, are
intrinsics matrices of the RGB camera and the left infrared
camera, [R.It;] 1s the relative transformation between these
two cameras, [R_It_] 1s the RGB camera pose, X 1s the 3D
location of a point visible from the camera frame ¢, and “X,
and “X  are the observed 2D feature and 3D location in the
RGB camera frame, respectively.

A merge module 124 merges front side 3D model 120
with back side 3D model 122 to provide a single 3D model
126. The single 3D model 126 i1s then provided to a
morphology/phenotyping module 128, which 1dentifies vari-
ous physical attributes 130 of individual trees 1n the row of
trees including, for example, trunk size, number of fruit,
canopy volume, and tree height.

Two alternative embodiments are provided for imple-
menting merge module 124 with one embodiment using a
combination of Primary Component Analysis, occlusion
boundary alignment and tree trunk alignment to merge the
front and back models and the other embodiment modeling
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tree trunks in the front and back models as cylinders and
jointly aligning the cylinders and local ground planes 1n the
front and back models.

First Embodiment of Merge Module

The front-side and back-side reconstructions F, B gener-
ally do not share any local feature matches (point corre-
spondences). To constrain the system, this embodiment
assumes that the occlusion boundary of an object from the
front and back orthographic views should be nearly the same
after rotating the back orthographic view to align with the
front orthographic view. For example, FIG. 2A shows a front
orthographic view of a tree 200 and FIG. 2B shows a back
orthographic view of tree 200 where the line of sight of the
two views are parallel to each other but in opposite direc-
tions. The views of FIGS. 2A and 2B each have a respective
occlusion boundary 202 and 204 that represent the outer
boundary of the parallel projections of the points 1in the
views on the XY plane. As shown, 11 occlusion boundary
204 1s rotated 180 degrees around a vertical axis, it becomes
similar to occlusion boundary 202. The occlusion boundar-
ies of this view can be approximated by the well-known
concept of alpha shapes [H. Edelsbrunner and E. P. Miicke,
“Three-dimensional alpha shapes,” ACM Transactions on
Graphics (1OG), vol. 13, no. 1, pp. 43-72, 1994]. An alpha
hull 1s the generalized version of the convex hull. The
boundaries of an alpha hull «,, , are point pairs that can be
touched by an empty disc of radius alpha, such that the hull
becomes more detailed as alpha decreases.

This embodiment also assumes that tree trunk segments at
the same height from two sides can be treated approximately
as cylinders. When projected to the ground plane they share
the same center of the elliptical shape. If the median planes
ol the detected trunks 1n the front and back reconstructions
are aligned, the maximum depth alignment error 1s bounded
by the trunk widths. In most orchard settings, there are no
leaves/branches attached to the trunks near the ground plane
and the number of 3D points 1n this region are very sparse.

We can use this observation to cluster the 3D points belong-
ing to tree trunks.

Based on these assumptions, the embodiment aligns the
back reconstruction to the front reconstruction by solving
the following minimization problem:

argmin (2)

oo QST Qppg (Pyy, - F), Upna(Pey - 5T+ B)) +

% F opx F o
S,BR,BI:
s, gK, 51

dist(Py - Fyy, Py - 5T - By,

where s 1s a scale applied to the back reconstruction B to
match the scale of the front reconstruction F, ;"R is a
rotation applied to the back reconstruction to align 1t with the
front reconstruction, 't is a translation applied to the back
reconstruction to align it with the front reconstruction, 5 T
1s the combination of scale, rotation and translation applied
to the back reconstruction, F,, and B, denote the detected
trunk points close to the median trunk plane, P, and P_,
denote the orthogonal projection matrix to the front and top
plane, respectively, a,, , computes the alpha shape boundary
points and dist (P, Q) between two point sets P, Q in IR”
1s determined as:
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(3)

_ min ,
dist(P, Q) = VgeQ (p—g)

¥ peP

In this embodiment, merge module 124 solves Eq. (2)
using trusted region methods such as Levenberg-Marquardt
(LM) algorithm [J. J. More’, “The levenberg-marquardt
algorithm: implementation and theory,” in Numerical analy-
s1s. Springer, 1978, pp. 105-116] using an 1nitial solution
that 1s i1dentified using Principal Component Analysis and
ground plane alignment. FIG. 3 provides a block diagram of
clements that make up merge module 124 in accordance
with this embodiment.

In FIG. 3, merge module 124 includes a ground plane

detection module 300 that detects the ground plane 1n both
front side 3D model 120 and back side 3D model 122. The
normals of the identified ground planes are provided to a
PCA alignment module 301, which performs a principle
component analysis on both front side 3D model 120 and
back side 3D model 122 to identily the principle axes in both
front side 3D model 120 and back side 3D model 122. These
principle axes are then aligned by determining rotations that
need to be applied to the principle axes of back side 3D
model 122 to make them parallel with the principle axes of
front side 3D model 120. During this alignment, PCA
alignment module 301 uses the ground plane normal and the
camera poses 1dentified during the formation of front side
3D model 120 and back side 3D model 122 to determine the
depth and up direction of the PCA components.

To further align front side 3D model 120 and back side 3D
model 122, a ground plane alignment 302 determines rota-
tions necessary to align the normals to the ground planes of
front side 3D model 120 and back side 3D model 122. The
combined rotations produced by PCA alignment 301 and
ground plane alignment 302 produces rotation 304 needed to
align front side 3D model 120 with back side 3D model 122.

A scaling module 305 determines a scale transformation
307 to apply to back-side 3D model 122 based on the median
scene height of the image frames and fixes the height of the
ground plane using the median height of ground plane
inliers.

An x-y plane projecting module 306 then projects both
front s1ide 3D model 120 and rotated and scaled back side 3D
model 122 on to an Xx-y plane. This results 1n a front
projection 308 and a back projection 310. The outlines of
these projections are then aligned by projection alignment
module 312 to produce an x-y translation 314 for aligning
front side 3D model 120 with the back side 3D model 122.
In accordance with one embodiment, projection alignment
module 312 uses alpha volume analysis to compute the
occlusion boundary and 2D shape matching techniques [A.
Myronenko and X. Song, “Point set registration: Coherent
point dniit,” IEEE transactions on pattern analysis and
machine intelligence, vol. 32, no. 12, pp. 2262-2275, 2010]
to compute the translation in the x-y plane.

Front side 3D model 120 and rotated and scaled back side
3D model 122 are also provided to a trunk detection module
316, which examines the 3D models to 1identity front trunks
318 identified from front side 3D model 120 and back trunks
320 identified from back side 3D model 122 using a trunk
detection method described below. A trunk median plane
detection module 322 then uses the median position of the
trunks to define a median front trunk plane 324 and a median
back trunk plane 326. A depth alignment module 328 then
identifies a depth (z) translation that will align the back trunk
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plane 326 with the front trunk plane 324 and thereby link
front trunks 318 to back trunks 320 resulting in depth
translation 330. Together, depth translation 330, x-y trans-
lation 314, scale 307 and rotations 304 provide a transior-
mation matrix that 1s applied to back side 3D model 122 to
align 1t with front side 3D model 120.

After these steps, the point clouds are roughly aligned and
the trivial initial solution s=1, ;“R=l,_,, » t=0, _, leads to
convergence. This method does not compute the trunk
overlap distance precisely. However, 1t provides correspon-
dence between the trunks from both side. Using the Random
Sample Consensus (RANSAC) [M. A. Fischler and R. C.

Bolles, “Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6,

pp. 381-3935, 1981] scheme, the trunk and the ground area
around each tree are modeled as a cylinder and a plane,
respectively. This semantic information, 1.e., trunks and
ground areas, can be exploited into the bundle adjustment to
turther eliminate misalignment of two-sides reconstructions
by adjusting camera poses and 3D information of semantic
objects and feature points.

We describe each of these steps 1n details. We start with
the mtial step of PCA and ground plane alignment.
Ground Plane Estimation and Alignment Using PCA

The main goal of this step i1s to eliminate most of the
rotational difference required to align the two reconstruc-
tions. As 1s well known, this 1s normally solved by Principle
Component Analysis (PCA). We assume that the length of
the portion of the row covered by the mput reconstruction 1s
always longer than the height of the trees and the depth
captured. Therefore, the first principle component always
denotes the length of the row covered. The other two
principle components though vary from reconstruction to
reconstruction. Therefore, while aligning the principal com-
ponents we need to be aware of which principle component
denotes scene depth and which one denotes height.

To automatically figure out the scene “up” and “depth”
directions we estimate the ground plane. We perform a
simple three-point RANSAC method for plane estimation
[M. Y. Yang and W. Forstner, “Plane detection 1n point cloud
data,” 1n Proceedings of the 2nd int conf on machine control
guidance, Bonn, vol. 1, 2010, pp. 95-104]. Afterward, we
align the corresponding principal components. If necessary,
we 1lip the depth direction of one of the reconstructions to
ensure that the frontal depth planes are opposing each other.
Afterwards, we align the ground plane normals and rotate
the point clouds to a canonical frame of reference (X, Y, 7)
where X=[1, 0, 0]*, Y=[O, 1, 0]" (up direction) and Z=[0, O,

” (depth dlrectlon) Next, we fix the scale of the recon-
structions using the maximum and minimum height of the
trees and fix the height of the ground plane using inliers. The
reconstructions are now roughly aligned 1n terms of rotation
and translation in Y direction.

Alignment of Orthographic Projection Boundaries

In the last section, we roughly aligned the two reconstruc-
tions 1n terms of rotation, scale and, translation with respect
to the ground plane. Now we have to estimate translation in
the canonical direction X=[1, 0, 0] and Z=[0, 0, 1]*. We
start with solving for the translation i X direction. In
practice, reconstructions are not perfect, and the ground
plane 1s not perfectly planar. Consequently, our estimation in
the previous step contains some error in terms of rotation,
scale and translation 1n X and Y-directions. We use a method
that computes this residual rotation, translation and scaling,

along with the translation 1n the X direction.
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As outlined above, to solve this we utilize the occlusion
boundary of the reconstructions from orthographic front
views. We use alpha volume analysis to compute the occlu-
sion boundaries. The alpha hull boundaries are basically a
set of 2D points. Thus, essentially we are solving a 2D point
set registration problem. As our alpha boundaries are noisy
we use a shape alignment method, Coherent Point Drift
algorithm (CPD) [A. Myronenko and X. Song, “Point set
registration: Coherent point dnift,” IEEE transactions on
pattern analysis and machine intelligence, vol. 32, no. 12,
pp. 2262-2275, 2010.]. Myronenko et. al cast the point set
registration problem as a probability density estimation
problem. They represent one of the mput point set as the
centroids of a Gaussian Mixture Model (GMM) [C. E.
Rasmussen, “The infinite gaussian mixture model,” 1n
Advances in neural information processing systems, 2000,
pp. 554-560] and the other input as data. For the rigid
transformation case, they reparameterize the GMM cen-
troids 1n terms of rotation transformation and scale. They
estimate the parameters by mimmizing the negative log
likelihood using the Expectation Maximization algorithm
[Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain
mr 1mages through a hidden markov random field model and
the expectation-maximization algorithm,” [EEE transac-
tions on medical imaging, vol. 20, no. 1, pp. 45-57, 2001].
Additionally, they add an extra component in the GMM to
account for noise and outliers. At the optimum value of the
parameters, two point sets are aligned. We apply the trans-
formation computed by CPD to the entire point cloud to
align them 1n the XY directions.

Alignment 1 Depth Direction Using Trunk Information

The principle ambiguity left 1s the relative depth distance
between the two reconstructions. In an orchard row, trees are
generally planted 1n straight lines and tree trunks are per-
pendicular to the ground. Therefore, we can 1magine the
existences of a central trunk plane bisecting the trunks. For
cach individual reconstruction, this bisector plane can be
approximated by the median depth-plane of the detected
trunks and we can align the reconstructions roughly by
aligning the points close to this median plane.

Trunk Detection: In most orchard settings, there are no
leaves/branches attached to the trunks near the ground plane.
Consequently, the number of 3D points 1n the trunk region
close to the ground 1s very small. This 1s shown 1n FIG. 4,
which provides a graph 404 of the number of 3D points in
the 3D reconstruction (shown along vertical axis 400) at
different distances from the ground plane (shown along
horizontal axis 402). Flat region 406 of graph 404 represents
the trunk region and 1s easily i1dentified by the utlhzmg the
derivative of a curve describing graph 404. The region with
the minimum number of points and two knee points around
it 1s used to find the trunks close to the ground

A median filtering of the trunk points °F, ., °B,. is per-
formed to identity front trunk descriptors in the form of
trunk points along a front median plane and to identify back
trunk descriptors 1n the form trunk points along a back
median plane. Afterward, the trunk points of the front
median plane and trunk points of the back median plane are
aligned using Coherent Point Drift (CPD) method [A.
Myronenko and X. Song, “Point set registration: Coherent
pont dnit,” IEEE transactions on pattern analysis and
machine intelligence, vol. 32, no. 12, pp. 2262-2273, 2010].

After this step, both the reconstructions are in the same
frame of reference and they have a very small difference 1n
terms of rotation, translation, and scale. The trivial initial
solution of s=1, ;"R=I, ., 5 t=0,., leads to fast conver-
gence. As a byproduct from this process, a trunk to trunk
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correspondences has been established between the two
reconstructions. This correspondence 1s then used to per-
form semantic bundle alignment as discussed next.
Semantic Bundle Adjustment

(Given a height interval from the estimated ground plane,
the trunk slice can be treated as a cylinder from two-sides
reconstructions, which can be parameterized by 1ts axis,
center and radius. Without loss of generality, the local
ground area of a tree 1s assumed as a plane defined by 1ts
normal and center. To eliminate the misalignment of two-
sides reconstructions, the 1nitial transformation 1s first cal-
culated using such semantic information, 1.¢., tree trunks and
ground areas around each tree. To address the 1ssue of
accumulated errors of camera poses, two-sides 3D recon-

structions after imitial alignment need to be further optimized
by minimizing the cost of the semantic bundle adjustment

(4)

argmin

Rca Ic, Rs-,u Is, Xp

V=d) ), >, PAEs ¢ p)

¢ peVis,c)

Ep(s, ¢, p) = di([Rs | 5][Re | 117K, by)°

where ¢, (1=0,1) 1s the loss function of the distance between
an s-th object and observed points belongs to 1t, J 1s the cost
function for the standard bundle adjustment [B. Triggs, P. F.
McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle
adjustment modern synthesis,” in International workshop on
vision algorithms. Springer, 1999, pp. 298-372], X is the
p-th observed 2D feature and 1ts 3D location in the c-th
camera {rame, p 1s the robust Huber cost function, and the
weight A balances between the cost J of feature points and
the cost of semantic object points. See our technical report
[W. Dong and V. Isler, ““Iree morphology for phenotyping
from semantics-based mapping in orchard environments,”
Technical Report TR-18-0XX, University of Minnesota,
Computer Science & Engineering Department, Tech. Rep.,
2018], which 1s hereby incorporated by reference.

Second Embodiment of Merge Module

FIG. § provides a block diagram of elements of merge
module 124 1n accordance with the second embodiment.
Trunk Fitting and Local Ground Estimation

Accurate geometry estimation relies on good depth maps.
The raw depth maps are usually noisy, especially 1n orchard
environments. The big uncertainty of depth values around
frequent occlusions between trees and leaves causes gener-
ated 3D points tloating in the air. Merge module 124 first
improves the depth map of front-side model 120 and back-
side model 122 using a pixel depth adjustment and filtering
module 550. In accordance with one embodiment, pixel
depth adjustment and filtering module 550 uses a Truncated
Signed Distance Function (TSDF) [Brian Curless and Marc
Levoy. A volumetric method for building complex models
from range 1mages. In Proceedings of the 23vd annual
conference on Computer graphics and interactive tech-
nigues, pages 303-312. ACM, 1996] to accumulate depth
values from nearby frames (e.g. 10 closest frames) with the
camera poses obtained during the formation of front-side
model 120 and back-side model 122. The pixel value of the
raw depth 1s 1gnored 1f 1t 1s largely different from the
corresponding value in the fused depth obtained by ray
casting. A floating pixel removal filter [Soheil Sotoodeh.
Outlier detection 1n laser scanner point clouds. International
Arvchives of Photogrammetry, Remote Sensing and Spatial
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Information Sciences, 36(5):297-302, 2006] 1s fturther
applied to eliminate any pixel of the raw depth that has no
nearby 3D points within a certain distance threshold.

Trunk Region-of-Interest Selection: Horticulturists typi-
cally measure the trunk diameter of a fruit tree at the height
about a first width above the graft union. Merge module 124
of FIG. 5 includes a trunk region of interest selection module
500, which produces a user interface 502 that allows a user
to designate locations on trunks where the diameter of the
trunk 1s to be measured.

FIG. 6A provides an example of user interface 302
showing an 1mage frame 600 of a tree trunk 601 that the user
1s able to annotate by defining and positioning a polygon 602
on top of a portion of tree trunk 600. 3D points of the 3D
model that correspond to the pixels within polygon 602 of
this frame are then projected to the next image frame c+1.
As shown 1n FIG. 6B, a second image 604 1s then produced
in user interface 502 showing the next frame c+1 with the
projected pixels 606 highlighted and enclosed by a convex
polygon 608. If convex polygon 608 does not include all of
the desired region of the tree trunk or 1f convex polygon 608
includes pixels outside of the desired region, the user
modifies convex polygon 608 in second image 604 so that 1t
accurately covers the desired region. The new annotated
polygon 1s updated to create projected regions for the
following frames. For example, in FIG. 6C, user interface
502 shows a third image 610 having a highlighted projected
region 612. The nearby frames usually have correct pro-
jected regions and are thus skipped without any annotation.
The trunk annotation can be replaced by trunk detection 1f
there 1s no need for an exact diameter estimation.

Trunk Cylinder: Using the identified regions, a trunk
cylinder construction module 3504 identifies back trunk
descriptors and front trunk descriptors in the form of back
cylinders 506 and front cylinders 508 from the back side 3D
model 122 and the front side 3D model 120, respectively.
Each cylinder 1n back cylinders 506 and front cylinders 508
includes a radius of the cylinder, an axis of the cylinder and
an origin for the cylinder representing the intersection of the
axis with the bottom of the cylinder.

Specifically, for annotated frames, a 3D point cloud of the
trunk 1 frame ¢ 1s generated and filtered by taking the
intersection of polygon masks with two nearby frames c-1
and c+1. The 3D points are then fit to a cylinder d param-
cterized by 1ts axis “n, center “O, and radius “r,. The
height “h ; of the cylinder 1s determined by a bounding box
of 3D points along “n ..

A good cylinder model should not only fit most of the 3D
points but also obtain a reasonable size from the image. To
robustly model the cylinder, 2D constraints are integrated
into a RANSAC scheme [Martin A Fischler and Robert C
Bolles. Random sample consensus: a paradigm for model
fitting with applications to 1mage analysis and automated
cartography. Communications of the ACM, 24(6):381-395,
1981] with the nine-point algorithm [Christian Beder and
Woligang Forstner. Direct solutions for computing cylinders
from minimal sets of 3d points. Computer Vision—ECCYV
2006, pages 135-146, 2006]. Specifically, Canny edge detec-
tion [John Canny. A computational approach to edge detec-
tion. ILEE Transactions on pattern analysis and machine
intelligence, (6):679-698, 1986] 1s first performed. Based on
the silhouette of the annotated polygon, two trunk bound-
aries are detected and fitted to lines 1 and 1, using the total
least squares method [Gene H Golub and Charles F Van
Loan. An analysis of the total least squares problem. SIAM
Journal on Numerical Analysis, 17(6):883-893, 1980]. Two

cylinder boundaries 1, and 1, are extracted by projecting the
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circles of two cvlinder ends onto the image. The trunk
cylinder in frame ¢ 1s further optimized by minimizing the

cost function

12

From a geometric view, to align the 3D models of a tree
row from both sides, at least two annotated trunks and one
estimated local ground are required. 3D models are first
constrained on the local ground plane. The translation and
rotation along the ground plane are further constrained by

5
aremin 2 L . (5) two lfrunk-cyllnders. Multlple trunlfs and' loca..ﬁ grounds can
o Cy Zed(ﬂXp, d)+ M||1e — 1a|| +]|15 ). provide a robust solution. In the discussion of trunk fitting
@ e Ty above, an 1-th annotated trunk from twofsi(ies an_notated
views 1s described by its cylinder axes nd and “n / with a
0 umt length, and 1ts orlglns i OPJ and BO /. Similarly, a ]-th
where e, 1s the distance function of a 3D point “X | to the estlmated local ground ‘s described by et plane normal © n; J
cylinder, and 1, , 1g .1 ,and 1, are normalized unit Vectors and & n; /_and its origins F()pf and OPJ
Local Ground Plane. A local ground plane construction Flrst cyhnder axes and plane normals in B after the
module 510 1dentifies one or more front ground planes 512 relative transformation must be equal to their corresponding
from front side 3D model 120 and one or more back ground Ny ones in F. Then, the first two constraints have the torm
planes 514 from back side 3D model 122. Without loss of
generality, the local ground of a tree 1s assumed as a plane
. . . f Fp B F_i
defined by its normal “n,, and center “O,, in frame c. Unlike { pR-"ry ="y (©)
trunk annotation, only frame number 1s recorded for plane gR-%nl ="n!
estimation. However, 1t 1s not always the case that the .,
majority of 3D points are from the ground, which highl , _ _
q jority P St ghly where the first constraint links the front trunks to their
epends on the scene and the camera view. The standard o hack trunk
RANSAC-based method fails to detect the ground plane so respective back runs. - -

_ S P Second, the origins of cylinders in B transformed to F
ground plane construction module 510 modities the degen- should lie on the same axis-line. Then, the cross product
erate condition of the RANSAC by using the prior nfor- 25 petween the cylinder axis and the difference of two-sides
mation of the trunk axis “n, transformed from the closest origins should be a zero vector
anl}otated trame: “n, should roughly align with “n,, and.the Fp ix(,FREO 14, F1=F O 1)=0 (7)
estimated plane should be on the boundary of all 3D points He o aleo Tnks fhe § " he back trunk
along “n, within the distance threshold t,. The local ground which also links the Iront trunks 1o the back trunks.

: : c 3o Lastly, the origins of local planes 1n B after the transfor-
in frame ¢ 1s thus defined by the plane normal “n_ and the . .
L. L P mation to F must lie on the same plane. Thus, the dot product
origin “0O_. Local ground estimation from the front side can D .
P . . between the plane normal and the difference of two-sides
turther help annotations for the back side. . .
. . origins should be zero
Rotation and Translation F Ee B L Eo
For a tree row, front-side model 120 and back-side model Ry RTOp+p 1= Op)=0 (8)
122 are expressed in their own frames F and B, respectively. °>  Following the order of constraints above, Eqs. 6-8 can be
The goal 1s to first align the two models by estimating the rearranged into a system of Ax=b by treating each element
initial transformation [, Rl ;" t], and further optimize the 3D of [5 Rl ] as unknowns, where “n/=[n,?, n,%
reconstruction based on semantic information. 113d]T . n=[n",“ n'zd, n',“], Bnpf =[n/”, n?, n/’].
Initial Transformation: A rotation and translation i1denti- and 114,:;"r [n',?, n'.?, n'/”]? for the axes, and the elements of
fication model 516 uses back cylinders 506, front cylinders “° origins have the similar form. Here, the matrix A and vector
508, front ground planes 512 and back ground planes 514 to b are
nd 0 0 14 0 0 ng 0 0 0 0 0 (9)
0 né 0 0 14 0 0 ng 0 0 0 0
0 0 ng 0 0 né 0 0 ng 0 0 0
ny 0 0 15 0 0 ny 0 0 0 0 0
0 n? 0 0 n? 0 0 n? 0 0 0 0
0 0 n’ 0 0 nb 0 0 n; o 0 0 |
0 —n'%0¢  ndod 0 —n'%08 404 0 —n'%0¢ n'dos 0 -w$¢ n¢
n'$o? 0 —n'4o¢  n'4od 0 —n'%0%  n'od 0 —n%o% w4 0 -n'?
—n'o% w4 0 —n'$o% 9ol 0 —n'od 9o 0 ¢ 09 0
IR O S Yo R A 2 S 0 S L 2 S o S 0 G L 1o S S TR O S
Wi wd el ot W wh wiod—wdod wicd —wiod widt-nwiot wiolen3o} ot |

identify rotations and translations 518 that will jointly
mimmize the angle offset between the axes of front and back
cylinders for a same trunk, the lateral displacement of the
origins of the front and back cylinders for a same trunk, and
the vertical displacement of the origins of the same front and

back ground planes.

65

I FiiT
]

respectively, and x=[r,”, r,”, r.’, ;“t']? withr,, r, and r, as

three columns of ;" R.

We solve the system with multiple cylinders and planes
for the least squares solution. The solution of ,*R may not
meet the properties of an orthonormal matrix, but can be
computed to approximate a rotation matrix by minimizing
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the Frobenius norm of their difference [Gene H Golub and
Charles F Van Loan. Matrix computations, volume 3. JHU
Press, 2012]. An accurate 1nitial value can be obtained from
an analytical solution by using the resultant of polynomials
| Wenbo Dong and Volkan Isler. A novel method for extrinsic
calibration of a 2-d laser-rangefinder and a camera. arXiv
preprint arXiv:1603.04132, 2016]. With multiple pairs of
cylinders and planes from both sides, we formulate an
optimization problem

argmin (10)
> UlesIF +lesDIF) + ) (le2(DIF +e3())
/

Fp F
g K, gl

i

where ¢,, e,, e, and e, are residuals of Egs. (6)-(8). The
solution 1s further refined using the Levenberg-Marquard
(LM) method [Kenneth Levenberg. A method for the solu-
tion of certain non-linear problems 1n least squares. Quar-
terly of applied mathematics, 2(2):164-168, 1944; Donald W

Marquardt. An algorithm for least-squares estimation of
nonlinear parameters. Journal of the society for Industrial
and Applied Mathematics, 11(2):431-441, 1963] with the

rotation represented by the Rodrigues formula [Olinde
Rodrigues. Des lois ge’ome’ trigues qui
re’ gissent les de’ placements d 'un syste me solide dans
['espace: et de la variation des

cordonne’ es provenant de ces

de placements conside 're’s inde

‘vendamment des causes qui peuvent les produire . 1840].

Semantic Bundle Adjustment: To address the issue of
accumulated errors of camera poses, two-sides 3D recon-
structions after mnitial alignment need to be further opti-
mized. In accordance with the embodiment, this optimiza-
tion 1s performed by applying a semantic bundle adjustment
520 to mnitial rotation and translation 518 to produce final
rotation and translation 3522. Semantic bundle adjustment
520 uses semantic information, 1.e. trunks and local grounds,
integrated in a bundle adjustment to tune camera poses and
3D feature points until reasonable semantic conditions are
reached. Specifically, two halves of a trunk from both sides
should be well-aligned, and two-sides local grounds of a tree
should refer to the same one. With semantic constraints, 3D
points belonging to the same object are adjusted to fit onto
the shape together with the camera poses corrected simul-
taneously.

For example, 1n FIG. 7(a) two front-side camera poses
702 and 704 and one back-side camera pose 706 are shown
without semantic constraints. Camera poses 702, 704 and
706 are defined as [R,lt,], [R;It,], and [R;lt;], where R
represents the rotation matrix and t the translation of the
camera. Camera pose 702 captures 3D points 708 and 710,
camera pose 704 captures 3D points 712 and 714 and camera
pose 706 captures 3D points 716 and 718. Without semantic
constraints, points 708-718 are permitted to be in any
location and as a result, the camera poses are not con-
strained. However, with semantic constraints as shown 1n
FIG. 7(b), points 708-718 are constrained to being located
on semantic objects such as trunk cylinder 720 and ground
plane 722 resulting 1n refined camera poses 724, 726 and
728 ([R',It",], [R'5It'5], and [R';1t';]) Tor 1initial camera poses
702, 704 and 706, respectively

Technically, a semantic object with 1ndex s 1s character-
1zed by 1ts unique pose [R It ] in the world frame and 1ts 3D
shape b.. For a cylinder object, the shape 1s represented by
its x-axi1s (as the cylinder axis), origin and a radius r_. For a
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plane object, the shape 1s described by 1ts z-axis (as the plane
normal), origin and a threshold t_ for bounding an interval
along the plane normal. The cylinder radius r. and the
plane-interval threshold t_ are automatically determined by
the fitting algorithms above. As a 3D {feature point, the
orientation R_ and the position t, of an object are unknown
and to be estimated by semantic bundle adjustment.

Given the correspondences of objects between two sides,

the objective function of semantic bundle adjustment 1s as
tollows

(11)

argmin
R, 1, K, 15, X,

> > PAEys, ¢ p))

c peVis|,c)

V=J+)
o >
£y (s, ¢, P) — @!([Rs | Is][Rc | Iﬂ'] : Xpa ‘bs)

where (,(1=0) 1s the loss function for a plane object 0,(X,
b )=|lmax(x,-t., 0, —x,-t_)||, and 0,(1=1) is the loss function
for a cylinder object @, (X, bs):H\/X22+x32—r5H, with an input
3d point X=[x,, X, X5] .

The geometric meaning 1s that after transformation to the
object frame, we penalize a 3D point belonging to a cylinder
if 1t 1s far away from the cylinder surface. Similarly, a 3D
point belonging to a plane 1s penalized 1f 1t 1s out of the
boundary of the plane. The weight A_ balances between the
cost J of feature points and the cost of semantic object
points. In theory, we treat equally both a 3D feature point
and an object. As the rotation 1s defined by its angle-axis,
semantic BA 1s performed by using the LM method with
automatic differentiation 1n Ceres Solver [Sameer Agarwal,
Keir Mierle, et al. Ceres solver, 2012].

Measuring Tree Morphology

Trunk Diameter: The trunk diameter of each tree can be
estimated from the second embodiment of merge module
124 using volumetric fusion of depth maps from all nearby
frames. The 3D points of the trunk slice are extracted from
3D meshes based on the height to the ground that is
determined from the annotated 3D points. The trunk diam-
eter 1s thus robustly estimated from both sides by minimiz-
ing the cost

argmin (12)
“ng, Png, £ 04,204, ry Z

e2(X,, d) + AZ E\(c, d)
p=iF.B} C

Ee, d) = 510 = 1| + [l515 - 1|

where 1 and ‘1 s are two boundary normal of the trunk
d i c-th annotated frame. The trunk diameter 1s eventually
2r ;.

Canopy Volume: Local grounds are removed given
refined semantic information [R_ It ]. As shown 1n the top
view ol the merged models of FIG. 8, trunks information
indicates the track 800 of the tree row 802. Based on 3D
points distribution [Suchet Bargoti, James P Underwood,
Juan I Nieto, and Salah Sukkarieh. A pipeline for trunk
detection in trellis structured apple orchards. Journal of
Field Robotics, 32 (8):1075-1094, 2013], mitial tree seg-
mentation 1s performed by cutting planes perpendicular to
the row track such as planes 804 and 806. A cuboid bounding
box 808 of a tree 1s created from the perpendicular planes
804 and 806 by connecting planes 804 and 806 with front,
back, top and bottom planes such that all of the 3D points of
the tree are within cuboid bounding box 808. To take care of
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the canopy overlap, each half side of a tree 1s enclosed by a
respective half-cylinder with the radius R =/2d_, where d_ is

the distance from the trunk to the cutting plane resulting in
half-cylinder 810 and half-cylinder 812. Each tree 1s thus
segmented by taking the union of the bounding box and

two-hallf cylinders. We build an alpha shape [Herbert
Edelsbrunner, David Kirkpatrick, and Raimund Seidel. On
the shape of a set of points 1n the plane. IEEE Transactions

on information theory, 29(4):551-559, 1983] enclosing all

3D points of each segmented tree by removing small 1s0-
lated components. The canopy volume i1s automatically
calculated by the alpha-shape algorithm [Herbert Edelsb-

runner and Ermst P Mucke. Three-dimensional alpha shapes.
ACM Transactions on Graphics (10G), 13(1):43-72, 1994].

Tree Height: The outputs of the semantic bundle adjust-
ments discussed above optimized information of trunks and
local grounds. Based on the trunk location, the pole in the
middle of a tree 1s first segmented out for modern orchards.
A bounding box for each tree i1s then created to enclose its
alpha shape from the local ground plane to the top. The tree
height 1s thus obtained as the height of the bounding box.
Experiments

Both embodiments for merging the front-side and back-
side models have been tested.

Testing for First Embodiment

The first embodiment was tested using both simulated and
real datasets.
Simulated Dataset:

The purpose of the simulated dataset 1s to evaluate the
accuracy of the method, when we have perfect 3D recon-
structions as inputs. A tree row 1s constructed using 3D
models of apple trees and the ground plane 1s simulated as
planar points with Gaussian noise. The row 1s split mnto two
arbitrary sections and the split reconstructions are trans-
formed using randomly generated rotation, translation and
scale. The method of the first embodiment was then applied
to these reconstructions. The metric used to evaluate the
performance of the first embodiment 1s the percentage of
apples correctly merged. During each split the number of
apples belonging to both reconstructions 1s determined. This
1s easily accomplished by computing a bounding box for
every apple and determining how many of the bounding
boxes lie within the mntersection of the split clouds. After
merging, the number of intersecting bounding boxes 1s
determined to see how many apples were put back together
by the merge module.

FI1G. 9 shows a graph 904 of percentage of merged apples
(vertical axis 900) as a function of percentage ol overlap
(horizontal axis 902). The percentage of overlap 1s a mea-
sure of how much the front and back side models over-
lapped. For every overlap percentage, the simulation was
performed twice. It 1s evident from FIG. 9 that, that more
than 95% of apples were merged for any amount of overlap.
Real Dataset:

In real datasets, the mput reconstructions often contain
missing components and holes. Therelfore, the eflectiveness
of the merged reconstruction was determined from yield
estimation. Specifically, the number of apples from the
merged reconstructions are counted and compared to the
ground truth as well as single side counts.

Yield Estimation 1n Apple Orchards: We use two datasets
for this purpose:

Dataset]: Dataset]l contains six trees and 1t has 270 apples
in total (Obtained by harvesting).

Dataset2: Dataset2 contains eight trees and it has 274
apples 1n total (Obtained by harvesting).
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Both of these datasets were collected from University of
Minnesota Horticultural Research Center and for both these
datasets the 1mages were acquired using a Samsung Galaxy
S4 cell phone.

We estimate the fruit count from each side of a row and
merge them. First, we detect the fruits using our previously
developed segmentation method [P. Roy, N. Stefas, C. Peng,
H. Bayram, P. Tokekar, and V. Isler, “Robotic surveying of
apple orchards,” University of Minnesota, Department of
Computer Science, Tech. Rep., July 2013]. Afterwards, we
back-project the detected fruits 1n the 1mages to obtain the
fruit location 1n the 3D reconstruction. We perform a con-
nected component analysis to detect the apple clusters 1n 3D.
Then we project individual 3D clusters back to the images
by utilizing the recovered camera motion. We count the
fruits from these reprojected images using our counting
method developed i [P. Roy and V. Isler, “Vision-based
apple counting and vield estimation,” i1n Experimental
Robotics. Springer, 2016]. A 3D cluster can be tracked over
many frames. We choose three frames with the highest
amount of detected apple pixels (from the 3D cluster) and
report the median count of these three frames as the fruit
count for the cluster. We follow this procedure for all the
detected 3D clusters and aggregate the fruit count from a
single side. It 1s notable that we remove the apples on the
ground for all the single side counts by using our found
ground plane.

To merge counts from both sides, we compute the inter-
section of the connected components from both sides. After-
wards, we compute the total counts by using the inclusion-
exclusion principle [T. Andreescu and Z. Feng, “Inclusion-
exclusion principle,” 1 A Path to Combinatorics for
Undergraduates. Springer, 2004, pp. 117-141]. Essentially,
we sum up the counts from all the connected components,
compute the intersections area among them (among 1,
2 ... total number of intersecting clusters) and add/subtract
the weighted parts accordingly. FIG. 10 shows our result.
Our counting accuracy from both sides for Datasetl and
Dataset2 are 94.81% and 91.98%. Compared to the both side
count 1 we just add the single side counts we overcount
significantly —128.8% for Datasetl and 136.86% for Data-
set2. Therefore, 1t 1s evident that merging the rows from both
sides 1s essential to obtain accurate fruit counts.

Testing for Second Embodiment
Datasets and Evaluation Metrics

The second embodiment was tested using three datasets
which are all RGB-D data of apple-tree rows in diflerent
orchards separately captured from two sides. Dataset-1 1s an
apple-tree row with a lot of wild weed captured in a
horizontal view. Dataset-1I 1s captured 1n a tilted view with
a focus on tree trunks. Dataset-1II 1s collected by a camera
attached to a stick 1n a tilted-top view of three canopies. Our
merging algorithm was first performed on each dataset,
followed by trunk diameter estimation 1n Dataset-11, and the
estimation of canopy volume and three height in Dataset-II1.
Implementation Details

Dataset-I contains 21 trees. Due to the interference of wild
weed, only three trunks and three local grounds are used as
semantic information for merging algorithm. For Dataset-II,
2’/ trunks are all annotated with totally 3~4 frames per each
from two sides in order to estimate trunks diameter. In
Dataset-1III, a sub-sample of six trees from 30 are chosen for
merging demonstration. Since the focus of this dataset 1s
estimating canopy volume and tree height, only three trunks
and their local grounds (the middle and two ends) are
marked for merging. We use a caliper to measure the actual

trunks diameter as the Ground Truth (GT). The GT of trees
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height and their canopies diameter 1s obtained by using a
measuring stick and a tape, respectively.
Morphology Estimation Results

Merging 3D Reconstruction: The second embodiment
was able to build well-aligned global 3D models of tree rows
even without annotation for each tree. Specifically, dupli-
cated poles and trunks are all merged. In general, the
merging algorithm only requires two-sides object correspon-
dences around two ends and the middle of each tree row.
When there 1s no need for estimating trunks diameter, we
can roughly annotate a long section of a trunk as a cylinder,
or even other landmarks, such as supporting poles and
stakes. The planar assumption of local ground for each tree
makes general our method which can be applied to any
orchard environments without concern about the terrain.

Comparison and Analysis: In Dataset-II, we select 14
trees among 27 to demonstrate 1n detail the accuracy of our
algorithm for trunks diameter estimation. If without 2D
constraints, trunk diameters are always estimated larger than
GT due to unreliable depth values around scene boundaries.

Table I shows that with 2D constraints the average error of

our diameter estimation 1s around 5 mm. For small trunks,
the estimated results are still larger than GT, since the
camera 1s relatively far from small trunks. Large pixel errors
of edge detection (low resolution for trunk boundaries) thus
cause the diameter overfitting. It implies that the camera
should closely capture these trees with small trunks. In
Dataset-111, we perform tree height estimation for 14 trees

chosen among 30. Table II shows that the average error of

our tree height estimation 1s around 4 cm. The estimation
results for trunk diameter and tree height thus demonstrate
the high accuracy of the proposed vision system.

TABLE 1
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divide 18 trees from Dataset-III mnto 6 sections based on
their relatively similar sizes, and report the mean canopy
volume of each section 1n Table III. It should be noticed that
simple cylinder model overestimates the canopy volume.
Thus, 1t 1s reasonable to consider that our proposed method
for canopy volume estimation 1s more suitable to generalize
the geometry of tree structures, which 1s promising to build
the ground truth of tree canopies for horticulturists using the
proposed vision system.

TABL.

L1l

111

Mean Canopy Volume of 6 Tree Sections Using Different Models

Section ID of Mean Canopy Volume (m?)

Model V-1 V-2 V-3 V-4 V-5 V-6

Cylinder 2.957 3.105 2.503 2.1%85 3.155 3.307
Alpha Shape 1.585 1.873 1.351 1.227 1.777 1.912
Convex Hull 1.805 2.177 1.460 1.322 2.064 2.202

FIG. 11 provides an example of a computing device 10
that can be used as a server or client device i in the
embodiments above. Computing device 10 includes a pro-
cessing unit 12, a system memory 14 and a system bus 16
that couples the system memory 14 to the processing unit 12.
System memory 14 includes read only memory (ROM) 18
and random access memory (RAM) 20. A basic input/output
system 22 (BIOS), containing the basic routines that help to
transier information between elements within the computing,
device 10, 1s stored in ROM 18. Computer-executable

Estimation Errors of Trunk Diameter in Dataset-11

Tree ID
T-2 T-4 T-6 T-% -9 T-11 T-13 T-15 T-18 T-19 T-22 T-24 T1-26 T1-27 Mean
Est. 5.24 510 548 R.04 656 650 551 A8 529 570 599 549 577  5.37 —
GT 5.39 412 4777 822 668 6.82 508 523 437 500 5790 563 524 461 —
Error (cm) 0.15 098 0.74 0.18 0.12 032 043 0.64 092 070 029 0.14 053 0.76 049
TABLE 11

Estimation Errors of Tree Height in Dataset-111

Tree ID
H-1 H-2 H-3 H-4 H-5 H-6 H-7 H-16 H-1¥8 H-19 H-20 H-21 H-22 H-23 Mean
Est. 2.145 2.050 2453 2463 2.131 1.997 2.087 2.357 2456 2.311 1.990 2.084 2496 2361 —
GT 2.159 2.032 2362 2515 2.083 1.981 2.108 2438 2413 2.337 2.032 2.057 2489 2413 —
Error (m) 0.014 0.018 0.091 0.052 0.048 0.016 0.021 0.081 0.043 0.026 0.042 0.027 0.007 0.052 0.03%

In Dataset-111, we first segment out six sample trees and
generate enclosing alpha shapes to represent their canopies.
However, the alpha radius should be appropniately chosen.
The alpha shape with a small radius value will produce holes

55

inside the canopy, which 1s not desirable form the view of 60

horticultural study. The best value of alpha radius should
represent a canopy model without holes and produce the
smallest volume. Thus, we set the radius as 0.8 m within the
turning area.

One of the common methods used 1n horticultural science
for modeling canopies 1s to treat a tree as a cylinder. To show
the difference among different models of canopies, we

65

instructions that are to be executed by processing unit 12
may be stored in random access memory 20 before being
executed.

Embodiments of the present invention can be applied 1n
the context of computer systems other than computing
device 10. Other appropriate computer systems include
handheld devices, multi-processor systems, various con-
sumer electronic devices, mainframe computers, and the
like. Those skilled 1n the art will also appreciate that
embodiments can also be applied within computer systems
wherein tasks are performed by remote processing devices

that are linked through a communications network (e.g.,
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communication utilizing Internet or web-based software
systems). For example, program modules may be located 1n
cither local or remote memory storage devices or simulta-
neously 1n both local and remote memory storage devices.
Similarly, any storage of data associated with embodiments
of the present invention may be accomplished utilizing
either local or remote storage devices, or simultaneously
utilizing both local and remote storage devices.

Computing device 10 further includes an optional hard
disc drive 24, an optional external memory device 28, and an
optional optical disc drive 30. External memory device 28
can include an external disc drive or solid state memory that
may be attached to computing device 10 through an inter-
face such as Universal Serial Bus interface 34, which 1s
connected to system bus 16. Optical disc drive 30 can
illustratively be utilized for reading data from (or writing
data to) optical media, such as a CD-ROM disc 32. Hard disc
drive 24 and optical disc drnive 30 are connected to the
system bus 16 by a hard disc drive interface 32 and an
optical disc drive interface 36, respectively. The drives and
external memory devices and their associated computer-
readable media provide nonvolatile storage media for the
computing device 10 on which computer-executable mstruc-
tions and computer-readable data structures may be stored.
Other types of media that are readable by a computer may
also be used 1n the exemplary operation environment.

A number of program modules may be stored in the drives
and RAM 20, including an operating system 38, one or more
application programs 40, other program modules 42 and
program data 44. In particular, application programs 40 can
include programs for implementing any one of modules
discussed above. Program data 44 may include any data used
by the systems and methods discussed above including
image frames 106 and 108.

Processing unit 12, also referred to as a processor,
executes programs 1n system memory 14 and solid state
memory 25 to perform the methods described above.

Input devices including a keyboard 63 and a mouse 65 are
optionally connected to system bus 16 through an Input/
Output iterface 46 that 1s coupled to system bus 16.
Monitor or display 48 1s connected to the system bus 16
through a video adapter S0 and provides graphical images to
users. Other peripheral output devices (e.g., speakers or
printers) could also be included but have not been 1llustrated.
In accordance with some embodiments, monitor 48 com-
prises a touch screen that both displays mput and provides
locations on the screen where the user 1s contacting the
screen.

The computing device 10 may operate in a network
environment utilizing connections to one or more remote
computers, such as a remote computer 32. The remote
computer 52 may be a server, a router, a peer device, or other
common network node. Remote computer 52 may include
many or all of the features and elements described in relation
to computing device 10, although only a memory storage
device 54 has been illustrated 1n FIG. 11. The network
connections depicted in FIG. 11 include a local area network
(LAN) 56 and a wide area network (WAN) 58. Such network
environments are commonplace 1n the art.

The computing device 10 1s connected to the LAN 56
through a network interface 60. The computing device 10 1s
also connected to WAN 58 and includes a modem 62 for
establishing communications over the WAN 58. The modem
62, which may be internal or external, 1s connected to the
system bus 16 via the 1/O interface 46.

In a networked environment, program modules depicted
relative to the computing device 10, or portions thereof, may
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be stored in the remote memory storage device 54. For
example, application programs may be stored utilizing
memory storage device 54. In addition, data associated with
an application program may 1llustratively be stored within
memory storage device 54. It will be appreciated that the
network connections shown 1n FIG. 11 are exemplary and
other means for establishing a communications link between
the computers, such as a wireless mterface communications
link, may be used.

Although elements have been shown or described as
separate embodiments above, portions of each embodiment
may be combined with all or part of other embodiments
described above.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms for
implementing the claims.

What 1s claimed 1s:

1. A method comprising:

constructing a three-dimensional model of a front side of

a row of trees based on a plurality of images of the front
side of the row of trees;

constructing a three-dimensional model of a back side of

the row of trees based on a plurality of 1mages of the
back side of the row of trees;

merging the three-dimensional model of the front side of

the row of trees with the three-dimensional model of
the back side of the row of trees by linking a trunk in
the three-dimensional model of the front side to a trunk
in the three-dimensional model of the back side to form
a merged three-dimensional model of the row of trees
wherein merging the three-dimensional model of the
front side of the row of trees with the three-dimensional
model of the back side of the row of trees comprises:
projecting the three-dimensional model of the front side
of the row of trees onto a plane to form a first
projection;
projecting the three-dimensional model of the back side
of the row of trees onto the plane to form a second
projection;
aligning the second projection with the first projection
to determine a translation used to merge the three-
dimensional model of the front side of the row of
trees with the three-dimensional model of the back
side of the row of trees; and
using the merged three-dimensional model of the row of
trees to determine a physical attribute of the row of
trees.

2. The method of claim 1 further comprising:

identitying a depth position for a trunk of a tree in the

three-dimensional model of the front side of the row of
frees;

identifying a depth position for the trunk of the tree 1n the

three-dimensional model of the back side of the row of
trees; and

aligning the three-dimensional model of the back side of

row with the three-dimensional model of the front side
of the row along a depth direction by aligning the depth
position of the trunk of the tree 1n the three-dimensional
model of the front side of the row of trees with depth
position of the trunk of the tree 1n the three-dimensional
model of the back side of the row of trees.

3. The method of claim 2 wherein 1dentifying a depth for
a trunk in the three-dimensional model of the front side of
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the row of trees comprises 1dentifying a median depth for the identifying a front trunk descriptor from the three-dimen-
trunks of all trees 1n the three-dimensional model of the front sional model of the front side;
side of the row of trees. identifying a back trunk descriptor from the three-dimen-
4. A method comprising: stonal model of the back side; and
constructing a three-dimensional model of a front side of > using the front trunk descriptor and the back trunk
a row of trees based on a plurality of images of the front descriptor to align the three-dimensional model of the
side of the row of trees; back side with the three-dimensional model of the front
constructing a three-dimensional model of a back side of side wherein the front trunk descriptor comprises a
the row of trees based on a plurality of 1images of the front axis and the back trunk descriptor comprises a
back side of the row of trees; 10 back axis and using the front axis and the back axis
identifying front trunk points 1n the three-dimensional comprises rotating the back axis to be closer to parallel
model of the front side that belong to a trunk of a tree to the front axis to align the three-dimensional model of
and 1dentifying back trunk points in the three-dimen- the back side with the three-dimensional model of the
sional model of the back side that belong to the trunk . front side.

of the tree; and

using the front trunk points and the back trunk points to
align the three-dimensional model of the front side with
the three-dimensional model of the back side wherein
using the front trunk points and the back trunk points
comprises identifying a front median plane from the
front trunk points and a back median plane from the
back trunk points and aligning the front median plane
and the back median plane to determine a depth align-
ment for aligning the three-dimensional model of the
back side with three-dimensional model of the front
side.

5. The method of claim 4 further comprising:

projecting the three-dimensional model of the front side
onto a plane to produce a front side projection;

projecting the three-dimensional model of the back side
onto the plane to produce a back side projection; and

aligning the back side projection with the front side
projection to produce a translation that aligns the
three-dimensional model for the back side with the
three-dimensional model for the front side.

6. A computing device comprising;

a memory containing front side image frames and back
side 1mage frames for an orchard row;

a processor executing nstructions to perform steps com-
prising;:

constructing a three-dimensional model of a front side of
the orchard row from the front side image frames;

constructing a three-dimensional model of a back side of
the orchard row from the back side 1image frames;

identifying a front trunk descriptor from the three-dimen-
sional model of the front side;

identifying a back trunk descriptor from the three-dimen-
sional model of the back side; and

using the front trunk descriptor and the back trunk
descriptor to align the three-dimensional model of the
back side with the three-dimensional model of the front
side wherein the front trunk descriptor comprises a
front median trunk plane and the back trunk descriptor
comprises a back median trunk plane and using the
front median trunk plane and the back median trunk
plane comprise aligning the back median trunk plane to
the front median trunk plane.

7. A computing device comprising:

a memory containing front side image frames and back
side 1mage frames for an orchard row;

a processor executing instructions to perform steps com-
prising:

constructing a three-dimensional model of a front side of
the orchard row from the front side image frames;

constructing a three-dimensional model of a back side of
the orchard row from the back side 1image frames;
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8. The computing device of claim 7 wherein the front
trunk descriptor further comprises a front origin and the
back trunk descriptor further comprises a back origin and
using the front origin and the back origin comprises shifting
the back origin so that a difference between the shifted back
origin and the front origin 1s closer to parallel to the front
axis.

9. A method comprising;

constructing a three-dimensional model of a front side of

a row of trees based on a plurality of images of the front
side of the row of trees;

constructing a three-dimensional model of a back side of

the row of trees based on a plurality of 1mages of the
back side of the row of trees;

merging the three-dimensional model of the front side of

the row of trees with the three-dimensional model of
the back side of the row of trees by linking a trunk 1n
the three-dimensional model of the front side to a trunk
in the three-dimensional model of the back side to form
a merged three-dimensional model of the row of trees
wherein merging the three-dimensional model of the
front side of the row of trees with the three-dimensional
model of the back side of the row of trees comprises:
constructing a respective three-dimensional cylinder
for at least two tree trunks in each of the three-
dimensional model of the front side of the row of
trees and the three-dimensional model of the back
side of the row of trees, each three-dimensional
cylinder having an axis; and
identifying a transformation to apply to the three-
dimensional model of the back side of the row of
trees by attempting to make the axis of each cylinder
of the three-dimensional model of the back side of
the row of trees parallel to the axis of each respective
cylinder of the three-dimensional model of the front
side of the row of trees 1dentifying an origin of each
cylinder for at least two tree trunks i1n each of the
three-dimensional model of the front side of the row
of trees and the three-dimensional model of the back
side of the row of trees; and
identifying a transformation to apply to the three-
dimensional model of the back side of the row of
trees by attempting to vertically align the origin of
cach cylinder of the three-dimensional model of the
back side of the row of trees parallel to the origin of
cach respective cylinder of the three-dimensional

model of the front side of the row of trees; and
using the merged three-dimensional model of the row of
trees to determine a physical attribute of the row of
trees.
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10. The method of claim 9 wherein merging the three-
dimensional model of the front side of the row of trees with
the three-dimensional model of the back side of the row of
trees further comprises:

identifying a ground plane 1n each of the three-dimen-

sional model of the front side of the row of trees and the
three-dimensional model of the back side of the row of
trees, the ground plane having an origin; and

identifying a transformation to apply to the three-dimen-
stonal model of the back side of the row of trees by
attempting to place the origin of the ground plane of the
three-dimensional model of the back side of the row of
trees at a same height as the origin of the ground plane
ol the three-dimensional model of the front side of the
row of trees.

11. The method of claim 9 wherein using the front
cylinder and the back cylinder to align the three-dimensional
model of the front side with the three-dimensional model of
the back side comprises using an alignment of an origin of
the front cylinder to an origin the back cylinder relative to
an axis of the front cylinder as a second factor in the joint
optimization.

12. The method of claim 11 further comprising:

identifying a front ground plane proximate the front

cylinder, the front ground plane having a normal and an
origin;

identifying a back ground plane proximate the back

cylinder, the back ground plane having a normal and an
origin; and

using an orientation ol normal of the back ground plane

to the normal of the front ground plane as a third factor
in the joint optimization.
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13. The method of claim 12 further comprising using a
using an alignment of an origin of the front ground plane to
an origin the back ground plane relative to the normal of the
front ground plane as a fourth factor 1n the joint optimiza-
tion.

14. The method of claim 9 further comprising using the
front cylinder and the back cylinder in semantic bundle
adjustment to adjust camera poses of the plurality of images.

15. A method comprising:

constructing a three-dimensional model of a front side of

a row of trees based on a plurality of images of the front
side of the row of trees;

constructing a three-dimensional model of a back side of

the row of trees based on a plurality of 1mages of the
back side of the row of trees;

identifying front trunk points i the three-dimensional

model of the front side that belong to a trunk of a tree
and 1dentifying back trunk points in the three-dimen-
stonal model of the back side that belong to the trunk
of the tree; and

using the front trunk points and the back trunk points to

align the three-dimensional model of the front side with
the three-dimensional model of the back side by form-
ing a front cylinder from the front trunk points and a
back cylinder from the back trunk points and using the
front cylinder and the back cylinder to align the three-
dimensional model of the front side with the three-
dimensional model of the back side by using an orien-
tation of an axis of the back cylinder relative to an
orientation of an axis of the front cylinder as one factor
in a joint optimization.

G ex x = e
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