US011003715B2

12 United States Patent (10) Patent No.: US 11,003,715 B2

Shattah 45) Date of Patent: May 11, 2021
(54) EQUIPMENT AND METHOD FOR HASH 7,061,874 B2 6/2006 Merugu et al.
TABLE RESIZING 7,116,663 B2 10/2006 Liao

7,234,019 Bl 6/2007 Kao et al.
7,366,830 Bl 4/2008 Maheshwari

(71) Applicant: MELLANOX TECHNOLOGIES, 7,394,809 B2 7/2008 Kumar et al.
LTD., Yokneam (IL) 7,426,518 B2 9/2008 Venkatachary et al.
7,804,699 B2 9/2010 Gupta et al.
: : 7,933,282 Bl 4/2011 Gupta et al.
(72) Inventor: Guy Shattah, Tel Aviv (IL) 8271564 B2 92012 Dade ef al
8,290,934 B2 10/2012 Stergiou et al.
(73) Assignee: MELLANOX TECHNOLOGIES, 8305271 B2 112012 Lictal
LTD., Yokneam (IL) 8,429,143 B2 4/2013 Ellison et al.
(Continued)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 OTHER PURI ICATIONS
U.S.C. 154(b) by 334 days.

U.S. Appl. No. 15/469,530 oflice action dated Dec. 14, 2018.
(21) Appl. No.: 16/132,549 (Continued)

(22) Filed: Sep. 17, 2018 Primary Examiner — Robert W Beausoliel, Ir.
Assistant Examiner — Pedro J Santos

(65) Prior Publication Data (74) Attorney, Agent, or Firm — Kligler & Associates
US 2020/0089816 A1~ Mar. 19, 2020 Patent Attorneys .td
(51) Int. CL (57) ABSTRACT
GoOol 16/901 (2019.01) A method for optimizing hash table lookup speed during
GO6t 9/50 (2006.01) hash table resize on a computing device, the method includ-
(52) U.S. CL ing performing the following on the computing device:
CPC GO6F 16/9014 (2019.01); GO6F 9/5016 providing a first hash table having N slots for entries,
(2013.01); GO6F 9/5022 (2013.01) designating the first hash table as an active hash table,
(58) Field of Classification Search allocating a second hash table, and performing the following

CPC .. GO6F 16/9014; GO6F 16/902; GO6F 3/0647; alter allocating the second hash table: when a hash table
GO6F 3/065 isertion of an entry 1s requested, performing insertion by

USPC e 707/747 inserting the entry to the first hash table and inserting the

See application file for complete search history. entry to the second hash table, and when a hash table lookup

1s requested, looking up the requested entry in the active

(56) References Cited hash table, one of the performing insertion and the perform-

ing deletion including also copying K entries, K being

U.s. PAIENT DOCUMENTS greater than or equal to 1, from the first hash table to the

6611 875 BRI 8/2003 Chopra et al second hash table. Related apparatus and methods are also
6,957,215 B2 10/2005 Stark described.
7,051,078 Bl 5/2006 Cheriton
7,054,315 B2 52006 Liao 17 Claims, 5 Drawing Sheets
200
.10
:;ff_ 100
,
SECOND
HASH TABLE
ffffffffff{;/
— ENTRY 1
f{“ffffffffff/ \
215 HASH TABLE fofffffm,};,
/ ENTRY 1 /
R // LA /%
220

220

US 11,003,715 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,402,786 B2 6/2013 Liu et al.
8,408,296 Bl 6/2013 Cohen
8,619,766 B2 12/2013 Wang et al.
8,650,209 Bl 2/2014 Shattah et al.

Beaman et al.
Schelp et al.

8,800,175 B2 8/201
8,856,203 Bl 10/201

I SN LN L 'S SR U8 [PO

8,938,469 Bl1* 1/2015 Keen HO4L. 45/7453
707/769
9,098,601 B2 8/2015 Wang
9,111,615 Bl 8/2015 Jiang
9,171,030 B1 10/2015 Arad et al.
0,223,711 B2 12/2015 Philip et al.
9,245,626 B2 1/2016 Fingerhut et al.
9,262,312 Bl 2/2016 Gazit et al.
9,317,517 B2 4/2016 Attalun et al.
9,344,366 B2 5/2016 Bouchard et al.
9,406,381 B2 8/2016 Akerib et al.
9,424,366 Bl 8/2016 Gazit et al.
9,438,505 Bl 9/2016 Zhou et al.
9,543,015 Bl 1/2017 Roy
9,569,561 B2 2/2017 Wildman et al.
9,627,063 B2 4/2017 Dharmapurikar
9,659,046 B2 5/2017 Sen et al.
9,704,574 Bl 7/2017 Shamuis
9,779,123 B2 10/2017 Sen et al.
9,785,666 B2 10/2017 L1 et al.
9,866,479 B2 1/2018 Wang et al.
9,892,057 B2 2/2018 Levy et al.
9,984,144 B2 5/2018 Levy et al.
10,049,126 B2 8/2018 Levy et al.
10,068,034 B2 9/2018 Levy et al.

2002/0089937 Al 7/2002 Venkatachary et al.
2003/0123459 Al 7/2003 Liao
2004/0100950 Al 5/2004 Basu et al.
2006/0209725 Al 9/2006 Cadambi et al.
2008/0192754 Al 8/2008 Ku et al.
2008/0228691 Al 9/2008 Shavit et al.
2008/0259667 Al 10/2008 Wickeraad
2010/0080223 Al 4/2010 Wong et al.
2010/0269024 Al 10/2010 Hao et al.
2012/0054467 Al* 3/2012 Fulton GO6F 16/9014
711/216
2012/0137060 Al 5/2012 Akerib et al.
2012/0275466 Al 11/2012 Bhadra et al.
2013/0311492 Al 11/2013 Calvignac et al.
2014/0006706 Al 1/2014 Wang
2014/0089498 Al 3/2014 Goldfarb et al.
2014/0201307 Al 7/2014 Banavalikar et al.
2014/0215144 Al 7/2014 Valency et al.
2014/0310307 Al 10/2014 Levy et al.
2015/0058595 Al 2/2015 Gura et al.
2015/0127900 Al 5/2015 Dharmapurikar et al.
2015/0207735 Al 7/2015 Kuramoto
2015/0242429 Al 8/2015 Varvello et al.
2015/0244842 Al 8/2015 Laufer et al.
2016/0202932 Al 7/2016 Kadu
2016/0294625 Al 10/2016 Mahkonen et al.
2016/0330301 A1 11/2016 Raindel et al.
2017/0046395 Al 2/2017 L1 et al.
2017/0053012 Al 2/2017 Levy et al.
2017/0147254 Al 5/2017 Adams et al.
2017/0195253 Al 7/2017 Annaluru et al.
2017/0346765 Al 11/2017 Immidi
2018/0278525 Al 9/2018 Levy et al.
2019/0036821 Al 1/2019 Levy et al.

OTHER PUBLICATIONS

Che et al., “DRES: Dynamic Range Encoding Scheme for TCAM
Coprocessors™, IEEE Transactions on Computers, vol. 57, No. 7, pp.
902-915, Jul. 2008.

Liu et al., “TCAM Razor: A Systematic Approach Towards Mini-
mizing Packet Classifiers in TCAMs”, IEEE/ACM Transactions on
Networking, vol. 18, No. 2, pp. 490-500, Apr. 2010.

Liu et al., “All-Match Based Complete Redundancy Removal for
Packet Classifiers in TCAMSs”, Proceedings of IEEE 27th Confer-
ence on Computer Communications (INFOCOM 2008), pp. 574-
582, Apr. 13-18, 2008.

Liu et al., “Complete Redundancy Removal for Packet Classifiers in
TCAMSs”, IEEE Transactions on Parallel and Distributed Systems,
vol. 21, No. 4, pp. 424-437, Apr. 2010.

Taylor et al.,, “Scalable Packet Classification using Distributed
Crossproducting of Field Labels”, IEEE INFOCOM, pp. 1-12,
2005.

U.S. Appl. No. 15/663,758 oflice action dated Mar. 28, 2019.
U.S. Appl. No. 14/827,402 oflice action dated Apr. 16, 2019.

Hua et al., “Variable-Stride Multi-Pattern Matching for Scalable
Deep Packet Inspection”, IEEE INFOCOM | pp. 415-423, Rio de
Janeiro, Brazil, Apr. 19-25, 2009.

Lakshminarayanan et al., “Algorithms for advanced packet classi-
fication with ternary CAMSs”, Proceedings of the 2005 conference
on Applications, technologies, architectures, and protocols for com-
puter communications (SIGCOMM 05), pp. 193-204, Aug. 21-26,
2005.

Pagh, R., “Cuckoo Hashing for Undergraduates™, I'T University of
Copenhagen, 6 pages, Mar. 27, 2006.

Pagh et al., “Cuckoo Hashing”, Journal of Algorithms, vol. 51, pp.
122-144, May 2004.

Kirsch et al., “Less Hashing, Same Performance: Building a Better

Bloom Filter”, Random Structures and Algorithms, vol. 33, 1ssue 2,
pp. 187-218, Sep. 2008.

Kirsch et al., “More Robust Hashing: Cuckoo Hashing with a
Stash”, SIAM Journal on Computing, vol. 39, Issue 4, pp. 1543-
1561, Sep. 2009.

Patrow, A., “General Purpose Hash Function Algorithms™, 6 pages,
year 2000 http://www.partow.net/programming/hashfunctions/.
Laurence et al., “Spam Based Architecture for tcam for Low Area

and Less Power Consumption”, ARPN Journal of Engineering and
Applied Sciences, vol. 10, No. 17, pp. 7607-7612, Sep. 2015.

Song et al., “Fast Hash Table Lookup Using Extended Bloom Filter:
An Aid to Network Processing”, Proceedings of SIGCOMM Con-

ference, Philadelphia, USA, pp. 181-192, Aug. 21-26, 2005.
Waldvogel et al., “Scalable High-Speed Prefix Matching”, ACM
Transactions on Computer Systems (TOCS), vol. 19, Issue 4, pp.
440-482, Nov. 2001.

Vamanan ¢t al., “EfiCuts: optimizing packet classification for
memory and throughput”, Proceedings of the SIGCOMM confer-
ence, New Delhi, India, pp. 207-218, Aug. 30-Sep. 3, 2010.
Singh et al., “Packet classification using multidimensional cutting”,
Proceedings of SIGCOMM Conference, Karlsrube, German, pp.
213-224, Aug. 25-29, 2003.

Taylor et al., “ClassBench: a packet classification benchmark™,
WUCSE-2004-28, Applied Research Laboratory Department of
Computer Science and Engineering, Washington University, Saint
Louis, USA, 37 pages, May 21, 2004.

Demetriades et al., “An Eflicient Hardware-basedMulti-hash Scheme
for High Speed IP Lookup”, 16th IEEE Symposium on High
Performance Interconnects, pp. 103-110, Aug. 26-28, 2008.
Meiners et al., “Algorithmic Approaches to Redesigning TCAM-
Based Systems”, Proceedings of the 2008 ACM SIGMETRICS
international conference on Measurement and modeling of com-
puter systems (SIGMETRICS ’08), pp. 467-468, Jun. 2-6, 2008.
Kasnavi et al., “A cache-based internet protocol address lookup
architecture”, Computer Networks, vol. 52, pp. 303-326, year 2008.
Matousek, et al., “ClassBench-ng: Recasting ClassBench After a
Decade of Network Evolution”, Proceedings of the Symposium on
Architectures for Networking and Communications Systems (ANCS
"17) ,13 pages, May 2017.

Hash Tables—Wikibooks, ‘Data Structures/Hash Tables’, 27 pages,
Jul. 15, 2018 https://en.wikibooks.org/wiki/Data_Structures/Hash_
Tables#Table resizing.

Hash Table—Wikipedia—15 pages, Jul. 19, 2018 https://en.wikipedia.
org/w/index.php?title=Hash_table&oldid=851008087.
Hashtable—kkarad/refresh Wiki—GitHub, 2 pages, Sep. 2, 2014
https://github.com/kkarad/refresh/wiki/Hashtable.

US 11,003,715 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Pike et al., “Parallel Space-Efficient Hash Table Resize”, Technical
Disclosure Commons, Defensive Publications Series, 11 pages,
Mar. 23, 2015.

Williams et al., “Five Myths about Hash Tables™, Blog at WordPress.
com, 15 pages, Oct. 1, 2012.

Levy et a;., U.S. Appl. No. 16/052,646, filed Aug. 2, 2018.

U.S. Appl. No. 16/559,658 office action dated Jul. 23, 2020.

Xu et al., “A Novel Hash-based Packet Classification Algorithm,”
5th International Conference on Information Communications &
Signal Processing, pp. 1504-1508, Dec. 2005.

U.S. Appl. No. 16/559,658 Oflice Action dated Nov. 25, 2020.
Pontarelli et al., “Parallel d-Pipeline: A Cuckoo Flashing Imple-
mentation for Increased Throughput”, IEEE Transactions on Com-
puters, vol. 65, No. 1, pp. 326-331, Jan. 2016.

Reviriego et al., “Energy Eflicient Exact Matching for Flow Iden-
tification with Cuckoo Aflinity Hashing”, IEEE Communications
Letters, vol. 18, No. 5, pp. 885-888, May 2014.

Pontarelli et al., “Cuckoo Cache: A Technique to Improve Flow
Monitoring Throughput”, IEEE Internet Computing, vol. 20, 1ssue
4, pp. 1-11, Jul.-Aug. 2016.

Zhou et al., “Scalable, High Performance Ethernet Forwarding with
CUCKOOSWITCH”, CoNEXT ’13, pp. 1-12, Santa Barbara, USA,
Dec. 9-12, 2013.

U.S. Appl. No. 16/052,646 Oflice Action dated Mar. 19, 2021.

* cited by examiner

U.S. Patent May 11, 2021 Sheet 1 of 5 US 11,003,715 B2

FIG. 1

110

100

.%%%%%%ﬂ'ﬁﬁﬁﬁﬂ'ﬁ%%%%%'

"*-.. "*-.. Tong "*-.. "*-.. "5.. "*-..

HASH TABLE 210

210

U.S. Patent May 11, 2021 Sheet 2 of 5 US 11,003,715 B2

FIG. 2

110

100
200

e, T T T T TR T TR TR TR TR T T
Sy e TR TNy THy TRy TNy TH, T8, THy TR, TN
B, T, T

. . . . Fa-
‘."-ﬂ'. f'-l"_ f'-l"_ iR ir

T T T T T T
e My TR, TEy TNy
E‘i"#.ﬁ‘i"#.ﬁi‘#.ﬁi‘#.ﬁ!#. 5

e T P A T
ﬁi‘rﬁi‘rﬁi‘#ﬁi‘#ﬁi‘#% rﬁ‘#ﬁi‘#ﬁi‘#ﬁi‘#ﬁi‘t 5
'.':I" f":ﬂ- f":ﬂ- “":H' "':i' "':i' f":,l- E-:I‘_ “":ﬂ' "':i' "':i' by
ﬁ!‘rﬁi‘ﬁﬂhﬁi‘#ﬁi‘#ﬁi T T P P
-ﬁ'ﬁ'!‘ "}ﬁﬂl "}ﬁﬂl *"'}E_i‘ *"'}E_i‘ "}% ﬁiﬂ.. ﬁii.. -F;E!‘ ;E-'.'.- FE-‘.'.- ;‘“-4.. ;‘“-4.. "}ﬁﬂl "}ﬁﬂl #}E-'J.- L‘-}E-'.'.- "}% e,
Sy e e e o o oy e ot e e e oy e e e e]

=

210

HASH TABLE

SECOND
HASH TABLE

210

U.S. Patent May 11, 2021 Sheet 3 of 5 US 11,003,715 B2

FIG. 3

200

110

100

SECOND
HASH TABLE

N

ENTRY 1 j
o

215 HASH TABLE

-

ENTRY 1 A
...l

%%%%%%%%%%%%%%%%%%-
TG I S I "

%%%% y o, T, T,
‘*ﬂ:, *fs:.. *fs:.. *ﬁz. E NT RY 2 #*ﬁ:f*fs;*ﬁ;*-

####
%%%%%%%%%%%%%%%%%%f

-ﬂ'-ﬂ'-ﬂ'-ﬂ' -H'-H'-ﬂ'-ﬂ'-ﬂ'-ﬂ'-ﬂ'-ﬂ'-ﬂ--ﬂ-_ﬂ_

220

T T N T T T T T T T R R R e e

3
-|l|:.l= -ﬂ'.; -ﬂ'.; -i;; e T T TR T T T T T TR T -i;; -ﬂ'.': -l".': +he

ﬁ!.-'ii.-‘ii.- W, W W W,

Lo, *“-i ENTRY 2 55, %, %,

%%%%ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ%%%%

220

U.S. Patent May 11, 2021 Sheet 4 of 5 US 11,003,715 B2

FIG. 4

(/’ 110

SECOND
HASH TABLE

HASH TABLE

250
250
AMOUNT ; ;
FULL - 300 AMOUNT

FULL

300

US 11,003,715 B2

Sheet 5 of 5

May 11, 2021

U.S. Patent

S 'Ol

418V.L HSVH JAILDV dHL SV J4'19V.L HSVH
1S4dld JH1 41VNDIS3d OL 35V30 ANV 3'18VL HSVH JAILOY
dHL SV 379vV1L HSVYH ANOD3S FHL F1VYNDISIA TvNO3 JHV
419V.1L HSVH ANOOJ4S dHL NI SJId1INd 4O dd9NNN V ANV
319V1L HSVH LSdId JHL NI S3Id 1IN 40 d349INNN VYV NIHM

319VL HSVH JAILOV JdHL NI AdLNd d31S3dN0dd dHL
dN Y001 'd3aL1S3N0IY SI dNMOO0T A19V.L HSYH V NIHM "¢
319V1L HSYH dNOO4dS dH1L Ol 3149V.L
HSVH 1S¥I4 3HL NOY4 'L O1 TvNO3
HO NVHL ¥31v3ay9 ONIFG M 'SIIFILINI M AdOD
OS1V NOIL314d dHL ANV NOILH4SNI dHL 40 ANO d04 ¢
419V.L HSVH ANOO4S dH.

NI AdLNd dHL 413134/ 144SNI ANV 3'19VL HSVH 15dl4
JHL NI AMLIN3 3HL 31373A/ L43SNI d31LS3IN0D3Y SI AHLNI
NV 40 NOIL3'14d dO NOILA4SNI F'19VL HSVH V NdHM L
-F18V.L HSVH ANOD4S dHL ONILVOO TIV 4414V

3 1dVL HSVH UNOOJ4S V 41LVOO0 T1V

419VL HSVH JALLOV NV SV 3'18V.L

HSVH 1Sdld dHL J1VNOIS3A ANV S3ld1N
d04 S10O1S N ONIAVH 319VL HSVYH 1Sdld V 4dIANOdd

0¥S

0€S

0¢S

01S

US 11,003,715 B2

1

EQUIPMENT AND METHOD FOR HASH
TABLE RESIZING

FIELD OF THE INVENTION

The present invention relates to methods and apparatus
for optimizing performance of computing equipment when
using hash tables, and particularly but not exclusively to
methods and apparatus for optimizing performance of com-
puting equipment when using hash tables 1n a context where
lookup operations are common.

BACKGROUND OF THE INVENTION

Computing equipment using hash tables 1s well known.
When a hash table reaches a certain level of being full (that
1s, when a certain percentage ol the available slots 1n the
hash table become occupied as entries are added to the hash
table) 1t 1s conventional to increase the size of the hash table
in some way so that the hash table can continue to be used.
Likewise, 1t might be appropriate to reduce the size of a hash
table when the hash table reaches a certain level of being
empty (that 1s, when a certain percentage of the available
slots 1n the hash table become unoccupied as entries are
deleted from the hash table). Various ways of increasing
and/or reducing the size of a hash table are known.
One known way of increasing the size of a hash table 1s
described 1n the Wikibooks reference Data Structures/Hash
Tables, found on the World Wide Web at en.wikibooks.org/
wiki/Data_ Structures/Hash Tables. As described in that ref-
erence, particularly in real-time systems 1t 1s not appropriate
to pay a performance price during hash table enlargement.
To overcome that problem, the reference suggests that:
a new hash table be allocated, leaving the old hash table
in place and checking both hash tables during lookups

when an insertion 1s performed, the inserted record 1s
added to the new hash table, and in addition a certain
number of elements (k) are moved from the old table to
the new table

once all elements have been removed {from the old table,

the old table 1s deallocated

to prevent a situation wherein the new table requires

enlargement before all of the old table elements have
been completely copied over, the size of the new table
relative to the old table must be at least (k+1)/k times
that size of the old table

SUMMARY OF THE INVENTION

The present invention, 1n certain embodiments thereof,
secks to provide improved methods and apparatus for opti-
mizing performance ol computing equipment when using,
hash tables.

The inventor of the present invention believes that the
known methods of and apparatus for using hash tables with
computing equipment, and particularly though not exclu-
sively the known methods for increasing and/or reducing the
s1ze of a hash table, may be less than optimal. The lack of
optimality may particularly, but not exclusively, arise when
lookup operations in the hash table are common.

Throughout the present specification and claims, the term
“resize”, 1n 1ts various grammatical forms, 1s used 1n general
to refer to increasing and/or reducing the size of a hash table.

There 1s thus provided 1n accordance with an exemplary
embodiment of the present mvention a method for optimiz-
ing hash table lookup speed during hash table resize on a
computing device, the method including performing the

10

15

20

25

30

35

40

45

50

55

60

65

2

following on the computing device: providing a first hash
table having N slots for entries, designating the first hash
table as an active hash table, allocating a second hash table,
and performing the following after allocating the second
hash table: when a hash table isertion of an entry 1s
requested, performing insertion by inserting the entry to the
first hash table and inserting the entry to the second hash
table, and when a hash table lookup i1s requested, looking up
the requested entry in the active hash table, one of the
performing msertion and the performing deletion including
also copying K entries, K being greater than or equal to 1,
from the first hash table to the second hash table.

Further 1n accordance with an exemplary embodiment of
the present invention the performing the following after
allocating the second hash table also includes, when a hash
table deletion of an entry 1s requested, performing deletion
by deleting the entry from the first hash table and deleting
the entry from the second hash table.

Still further 1n accordance with an exemplary embodiment
of the present mnvention the second hash table has at least
2N+1 slots for entries.

Additionally 1n accordance with an exemplary embodi-
ment of the present mmvention the method also includes
providing a threshold occupancy level of slots for the first
hash table, wherein the second hash table i1s allocated in
response to a present occupancy level of the first hash table
exceeding the threshold occupancy level, and the second
hash table has more than N slots for entries.

Moreover 1n accordance with an exemplary embodiment
of the present invention the method also includes providing
an enlargement ratio ¢, wherein the threshold occupancy
level 1s approximately equal to N multiplied by the enlarge-
ment ratio e.

Further 1n accordance with an exemplary embodiment of
the present the second hash table has approximately

1+ —xN

entries.

Further 1n accordance with an exemplary embodiment of
the present invention the method also includes providing a
threshold occupancy level of slots for the first hash table,
wherein the second hash table 1s allocated 1n response to a
present occupancy level of the first hash table reaching a
level less than the threshold occupancy level, and the second
hash table has fewer than N slots for entries.

Still further 1n accordance with an exemplary embodiment
of the present invention the method also includes providing
a diminution ratio d, wherein the threshold occupancy level
1s approximately equal to N multiplied by the diminution
ratio d.

Additionally 1n accordance with an exemplary embodi-
ment of the present mvention the second hash table has
approximately

d*N

entries.

Moreover in accordance with an exemplary embodiment
of the present the performing the following further includes
when a number of entries 1n the first hash table and a number
of entries 1n the second hash table are equal, designating the
second hash table as the active hash table and ceasing to
designate the first hash table as the active hash table.

Further 1n accordance with an exemplary embodiment of
the present invention the method includes after the desig-

US 11,003,715 B2

3

nating the second hash table as the active hash table,
deallocating the first hash table.

There 1s also provide in accordance with another exem-
plary embodiment of the present invention a computing
device including a processing umt, and memory for storing
a first hash table having N slots for entries, the processing
unit being configured for designating the first hash table as
an active hash table, allocating a second hash table, and
performing the following after allocating the second hash
table: when a hash table insertion of an entry 1s requested,
performing insertion by inserting the entry to the first hash
table and inserting the entry to the second hash table, and
when a hash table lookup i1s requested, looking up the
requested entry 1n the active hash table, one of the perform-
ing insertion and the performing deletion including also
copying K entries, K being greater than or equal to 1, from
the first hash table to the second hash table.

Further in accordance with an exemplary embodiment of
the present invention the performing the following after
allocating the second hash table also includes when a hash
table deletion of an entry 1s requested, performing deletion
by deleting the entry from the first hash table and deleting
the entry from the second hash table.

Still further 1n accordance with an exemplary embodiment
of the present mvention the second hash table has at least
2N+1 slots for entries.

Additionally 1n accordance with an exemplary embodi-
ment of the present invention the processing unit 1s also
configured for providing a threshold occupancy level of slots
for the first hash table, wherein the second hash table 1s
allocated 1n response to a present occupancy level of the first
hash table exceeding the threshold occupancy level, and the
second hash table has more than N slots for entries.

Moreover 1n accordance with an exemplary embodiment
of the present invention the processing umit is also config-
ured for providing an enlargement ratio e, wherein the
threshold occupancy level 1s approximately equal to N
multiplied by the enlargement ratio e.

Further in accordance with an exemplary embodiment of
the present invention the second hash table has approxi-
mately

1+ — =N

entries.

Still further 1n accordance with an exemplary embodiment
of the present invention the processing umit is also config-
ured for providing a threshold occupancy level of slots for
the first hash table, wherein the second hash table 1s allo-
cated 1n response to a present occupancy level of the first
hash table reaching a level less than the threshold occupancy
level, and the second hash table has fewer than N slots for
entries.

Additionally 1n accordance with an exemplary embodi-
ment of the present invention the processing unit 1s also
configured for providing an diminution ratio d, wherein the
threshold occupancy level 1s approximately equal to N
multiplied by the diminution ratio d.

Moreover 1n accordance with an exemplary embodiment
of the present invention the second hash table has approxi-
mately

d*N

entries.

10

15

20

25

30

35

40

45

50

55

60

65

4

Further 1n accordance with an exemplary embodiment of
the present invention the performing the following after
allocating the second hash table further includes when a
number of entries 1n the first hash table and a number of
entries 1n the second hash table are equal, designating the
second hash table as the active hash table and ceasing to
designate the first hash table as the active hash table.

Still further 1n accordance with an exemplary embodiment
of the present invention the performing the following after
allocating the second hash table further includes after the
designating the second hash table as the active hash table,
deallocating the first hash table.

BRIEF DESCRIPTION OF THE

DRAWINGS

The present invention will be understood and appreciated
more fully from the following detailed description, taken in
conjunction with the drawings 1n which:

FIG. 1 1s a simplified pictorial illustration of computing
equipment comprising a hash table, constructed and opera-
tive in accordance with an embodiment of the present
invention;

FIG. 2 1s a simplified pictorial 1llustration of the comput-
ing equipment comprising a hash table of FIG. 1, depicting
an operation taking place after a hash table of increased size
has been allocated;

FIG. 3 1s a simplified pictorial 1llustration of the comput-
ing equipment comprising a hash table of FIG. 1, depicting
a Turther operation taking place after a hash table of
increased size has been allocated;

FIG. 4 1s a simplified pictorial 1llustration of the comput-
ing equipment comprising a hash table of FIG. 1, depicting
an operation 1 which a new hash table becomes active 1n
place of an existing hash table; and

FIG. 5 1s a simplified flow chart illustration of a method
ol operation of the apparatus of FIGS. 1-4.

DETAILED DESCRIPTION OF AN
EMBODIMENT

Reference 1s now made to FIG. 1 which 1s a simplified
pictorial illustration of computing equipment comprising a
hash table, constructed and operative in accordance with an
embodiment of the present invention.

The computing equipment of FIG. 1 (which 1s not explic-
itly shown), may be any appropriate computing equipment.
One particular non-limiting example of computing equip-
ment which may use a hash table, in which using various
embodiments of the present invention with the goal of
optimizing performance may be useful, 1s described 1n US
Published Patent Application 2016/0330301 of Mellanox
Technologies, Ltd.

In FIG. 1, a hash table 100, instantiated in the computing,
equipment (not shown), 1s depicted. The hash table 100,
which may comprise any appropriate hash table as 1s well
known 1n the art, 1s pointed to by an active hash table pointer
110, indicating that the hash table 100 1s an active hash table.

In FIG. 1 an entry 210 1s shown being inserted in the hash
table 100. As 1s well known 1n the art, when the entry 210
1s to be 1nserted, a hash function h associated with the hash
table 100 1s applied to all or part of the entry 210; the
resulting value of the hash function h determines a position
within the hash table 100 at which the entry 210 1s inserted.

Similarly, when an entry 1s looked up (not shown) in the
hash table 100, the hash function h 1s applied to the value
which 1s to be looked up in the hash table 100, thereby
determining a position within the table. If an entry 1s found

US 11,003,715 B2

S

at the position, then that 1s the entry which was to be looked
up; 1f no entry 1s found at the position, then no such entry 1s

found 1n the hash table 100.

Persons skilled 1n the art will appreciate that, for the sake
of simplicity of depiction and description, not all details of
use of hash tables are described herein; rather, those details
which are relevant to embodiments described and claimed
herein are described. For example, and without limiting the
generality of the foregoing, well-known techniques for deal-
ing with hash collision are not described herein.

Also shown 1n hash table 100 1s a schematically-depicted
threshold level 115. As described 1n more detail below, 1t
may be appropriate to allocate a hash table of increased size
at or after a time when the hash table 100 becomes full up

to the schematically-depicted threshold level 115. The fol-
lowing computation provides one non-limiting example of
determining an appropriate threshold level 115:

Assume that the hash table 100 can hold N entries.

Define an enlargement ratio ratio_enlarge, such that
O<ratio_enlarge<<l, ratio_enlarge may be defined 1n
advance of use of the hash table 100, or may be
changed during use of the hash table 100, ratio_enlarge
1s also termed herein e.

The threshold level 115 may then have a wvalue
threshold_enlarge=N*ratio_enlarge (or threshold_en-
large may be an integer close to N*ratio_enlarge).

The threshold level 115 1s also termed herein a “threshold
occupancy level”.

Reference 1s now additionally made to FIG. 2, which 1s a
simplified pictorial illustration of the computing equipment
comprising a hash table of FIG. 1, depicting an operation
taking place after a hash table of increased size has been
allocated. In FIG. 2, a second hash table 200 of increased
s1ze 1s shown. It may be appropnate to allocate the second
hash table 200 at or after a time when the hash table 100
becomes full up to the schematically-depicted threshold
level 115, as described above.

The second hash table 200 may have a size given by at
least:

1+ — %N

entries, and 1n any case, greater than N+1 entries. In some
embodiments, 1t may be advantageous for the second hash
table to have a size (number of slots) suflicient to hold at
least 2N+1 entries.

Once the second hash table 200 has been allocated, when
a Turther entry such as entry 210 1s to be added, the entry 210
1s added both to the hash table 100 (which is still the active
hash table, pointed to by the active hash table pointer 110),
and to the second hash table 200. It will be appreciated that,
in general, a first hash function hl may be used for the hash
table 100 while a second hash function h2 may be used for
the second hash table 200. (Alternatively, the functions hl
and h2 may be 1dentical). Thus, persons skilled 1n the art will
appreciate that “extra” computation takes place 1n the phase
shown 1n FIG. 2, a phase 1n which entries are added to both
the hash table 100 and the second hash table 200.

Similarly (not shown), if an entry 1s to be deleted, then the
entry 1s deleted both from the hash table 100 and from the
second hash table 200. Again, it will be appreciated that, 1n
general, a first hash function hl may be used for the hash
table 100 while a second hash function h2 may be used for
the second hash table 200. Thus, persons skilled in the art

5

10

15

20

25

30

35

40

45

50

55

60

65

6

will appreciate that “extra” computation takes place in the
phase shown 1n FIG. 2, a phase 1n which entries are deleted
from both the hash table 100 and the second hash table 200.

Reference 1s now made to FIG. 3, which 1s a simplified
pictorial 1llustration of the computing equipment comprising
a hash table of FIG. 1, depicting a further operation taking
place after a hash table of increased size has been allocated.
In embodiments of the present invention, when an entry 1s
added to the hash table 100 and to the second hash table 200
(or when an entry 1s deleted from the hash table 100 and
from the second hash table 200), a further operation takes
place. In the further operation, depicted in FIG. 3, one or
more entries (shown in FIG. 3, for ease of depiction and by
way of strictly non-limiting example only, as two entries 215
and 220) are copied from the hash table 100 to the second
hash table 200. As with addition of entries, 1t will be
appreciated that, 1n general, a first hash function hl may be
used for the hash table 100 while a second hash function h2
may be used for the second hash table 200 (Alternatively, the
functions hl and h2 may be 1dentical). Thus, the value of the
second hash function h2 will be computed accordingly,
adding “extra” computation to the operation shown 1n FIG.
3.

The number of entries copied as described above from the
hash table 100 to the second hash table 200 may be, by way
of non-limiting example, given by the following formula
(rounded up to the nearest integer):

1

1 — ratio_enlarge

— 1

In general, 1t may be that at least that number of entries may
be copied.

Thus, 1n general, a single isertion will result 1n one entry
being mserted 1nto the hash table 100 (the active hash table),
and to the insertion of a total of at least

1

1 — ratio_enlarge

entries 1nto the second hash table 200.

Persons skilled in the art will appreciate that, as depicted
in FI1G. 2 and 1n FIG. 3, when a lookup of an entry occurs,
the lookup may occur only in the hash table 100, and no
operation need be performed on the second hash table 200
in order to perform a lookup. As persons skilled 1n the art
will appreciate, the operations depicted 1n FIGS. 1-3 leave
the hash table 100 1n a state in which 1t 1s unnecessary to
perform a lookup 1n the second hash table 200, since all
(non-deleted) entries are found in the hash table 100. Thus,
while (as described above and depicted 1n FIG. 2 and 1n FIG.
3) “extra” computation takes place for insertion and for
deletion, no “extra” computation takes place for lookup. In
this sense, inter alia, the operation of the computing appa-
ratus of FIGS. 1-3 i1s optimized in situations in which
lookups are relatively common compared to insertions and
deletions.

Reference 1s now made to FIG. 4, which 1s a simplified
pictorial 1llustration of the computing equipment comprising
a hash table of FI1G. 1, depicting an operation in which a new
hash table becomes active 1n place of an existing hash table.
When or after the second hash table 200 has the same
number of entries as, or more entries than, the hash table
100, the second hash table 200 becomes the active hash

US 11,003,715 B2

7

table. This situation 1s depicted schematically 1n FIG. 4. A
“high water mark™ 250 1s shown for each of the hash table
100 and the second hash table 200, with an amount full (not
intended to depict a percentage full) 300 of the hash table
100 being the same as the amount full 300 of the second hash
table 200. At this point the active hash table pointer 110
which formerly pointed to the hash table 100 (the “formerly
pointed” situation being depicted schematically by a dashed
arrow) 1s replaced so that the active hash table pointer 110
now points to the second hash table 200.

The operation by which the active hash table pointer 110
ceases to point at the hash table 100 and begins to point at
the second hash table 200 1s an atomic operation. The term
“atomic operation”, as used throughout the present specifi-
cation and claims in all its grammatic forms, denotes a
situation 1 which from the time that an operation begins
until the time that the operation ends, no other related
operation may take place. By way of strictly non-limiting
example, changing the active hash table pointer 1s an atomic
operation 1n that from the time redirection of the active hash
table pointer 110 from the hash table 100 to the second hash
table 200 begins until the time that the redirection ends, no
other related operation of lookup 1n, addition to, or deletion
from the hash table 100 or the second hash table 200 may
take place. For the sake of simplicity of depiction and
description, specific mechanisms known in the art for ensur-
ing that an operation 1s an atomic operation are neither
described nor shown herein; persons skilled 1n the art may
choose any appropriate such mechanism.

Specific non-limiting examples of allocation of the second
hash table 200 are now provided (referring back to all of

FIGS. 1-4).

In one specific non-limiting example, ratio_enlarge could
be equal to 4. In this example, once the hash table 100 has
N/2 entries (the threshold occupancy level), the second hash
table 200 with size 4N 1s allocated. Thereafter, on each
insertion to the hash table 100, two 1tems are copied from the

hash table 100 to the second hash table 200. Persons skilled
in the art will appreciate that after N/2 insertions to the hash
table 100 (following beginning copying of items from the

hash table 100 to the second hash table 200) the second hash
table 200 contains N entries and the active hash table pointer
110 1s changed to point to the second hash table 200, as
described above.

In a second specific non-limiting example, ratio_enlarge
could be equal to 24. In this example, once the hash table 100
has 2N/3 entries (the threshold occupancy level), the second
hash table 100 1s allocated; the second hash table 100 (1n this
example) may be allocated with size SN. Thereaiter, on each
insertion to the hash table 100, 1n this example 3 1tems are
copied to the second hash table 200. After N/3 1nsertions to
the hash table 100 (following beginning copying of items
from the hash table 100 to the second hash table 200) the
second hash table 200 contains N entries and the active hash
table pointer 100 1s changed to point to the second hash table
200, as described above. In this example, considering the
possibility that deletions also occur, 1f there have been some
deletions from the hash table 100, the deleted items are
either removed also from the second hash table 200 (1f those
items were copied thereto) or alternatively may not be
copied to the second hash table 200 at all.

Generally, the above description relates to increasing the
s1ze of a hash table as entries are added to the hash table and
the hash table becomes “full”. Persons skilled 1n the art waill
appreciate that similar principles could apply, mutatis

10

15

20

25

30

35

40

45

50

55

60

65

8

mutandis, to reducing the size of a hash table as entries are
deleted from a hash table and the hash table becomes
“empty”.

Reference 1s now made to FIG. 5, which 1s a simplified
flow chart illustration of a method of operation of the
apparatus of FIGS. 1-4. The method of FIG. 5, which 1s
largely self-explanatory in light of the above description of
the apparatus of FIGS. 1-4, 1s further described as follows.
In general, 1t 1s appreciated that some steps described in FIG.
5 may be optional or may occur 1n a different order than
shown 1 FIG. 5.

In step 510, a first hash table (such as, by way of
non-limiting example, the hash table 100 of FIGS. 1-4) 1s
provided. The first hash table 1s designated (either in step
510, or before operation of the method of FIG. §, or
otherwise as appropriate) as an active hash table.

In step 520, a second hash table 1s allocated. Allocation of
the second hash table may take place (as described above in
a particular non-limiting example, with reference to FIG. 1
and FIG. 2) when occupancy of the first hash table reaches
a threshold value.

Once the second hash table has been allocated, in step
530:

1. When a hash table insertion or deletion 1s requested, the
entry 1s inserted or deleted, as the case may be, both
to/from the first hash table and to/from the second hash
table.

2. In addition (for one of the insertion and the deletion),
k entries (k being greater than or equal to 1) are copied
from the first hash table to the second hash table. One
particular non-limiting example of determining a value
of k 1s described above with reference to FIG. 3.

3. When a hash table lookup 1s requested, look up of the
entry takes place in the active hash table.

It 1s appreciated that software components of the present
invention may, ii desired, be implemented 1n ROM (read
only memory) form. The software components may, gener-
ally, be implemented 1n hardware, 11 desired, using conven-
tional techniques. It 1s further appreciated that the software
components may be instantiated, for example: as a computer
program product or on a tangible medium. In some cases, 1t
may be possible to instantiate the software components as a
signal interpretable by an appropriate computer, although
such an instantiation may be excluded in certain embodi-
ments of the present mvention.

It 1s appreciated that various features of the invention
which are, for clarity, described in the contexts of separate
embodiments may also be provided in combination 1 a
single embodiment. Conversely, various features of the
invention which are, for brevity, described in the context of
a single embodiment may also be provided separately or 1n
any suitable subcombination.

It will be appreciated by persons skilled 1n the art that the
present imvention 1s not limited by what has been particu-
larly shown and described hereinabove. Rather the scope of
the invention 1s defined by the appended claims and equiva-
lents thereof:

What 1s claimed 1s:

1. A method for optimizing hash table lookup speed
during hash table resize on a computing device, the method
comprising performing the following on the computing
device:

providing a first hash table having N slots for entries;

designating the first hash table as an active hash table;

allocating a second hash table; and

performing the following after allocating the second hash
table:

US 11,003,715 B2

9

when a hash table insertion of an entry i1s requested,
performing 1nsertion by: inserting the entry to the
first hash table and inserting the entry to the second
hash table; and
when a hash table lookup 1s requested, looking up the
requested entry 1n the active hash table,
wherein the performing insertion comprises: also copying
K entries, K being greater than or equal to 1, from the
first hash table to the second hash table,
the method also comprising providing an enlargement
ratio ¢ and a threshold occupancy level of slots for the
first hash table, the threshold occupancy level being
equal to N multiplied by the enlargement ratio e,
wherein the second hash table 1s allocated 1n response to

a present occupancy level of the first hash table exceed-
ing the threshold occupancy level, and the second hash
table has more than N slots for entries.

2. The method according to claim 1 and wherein the
performing the following after allocating the second hash
table also comprises:

when a hash table deletion of an entry 1s requested,

performing deletion by: deleting the entry from the first
hash table and deleting the entry from the second hash
table, and also copying K entries, K being greater than
or equal to 1, from the first hash table to the second
hash table.

3. The method according to claim 1 and wherein the
second hash table has at least 2ZN+1 slots for entries.

4. The method according to claim 1 and wherein the
second hash table has

1+ — =N

entries.

5. The method according to claim 1 and wherein said
performing the following after allocating the second hash
table turther comprises:

when a number of entries 1n the first hash table and a

number of entries in the second hash table are equal,
designating the second hash table as the active hash
table and ceasing to designate the first hash table as the
active hash table.

6. The method according to claim 5 and further compris-
ng:

after said designating the second hash table as the active

hash table, deallocating the first hash table.

7. A computing device comprising:

a processing unit; and

memory for storing a first hash table having N slots for

entries,

the processing unit being configured for:

designating the first hash table as an active hash table;
allocating a second hash table; and
performing the following after allocating the second
hash table:
when a hash table msertion of an entry 1s requested,
performing insertion by: inserting the entry to the
first hash table and inserting the entry to the
second hash table; and
when a hash table lookup 1s requested, looking up the
requested entry in the active hash table,
wherein the performing msertion comprises: also copy-
ing K entries, K being greater than or equal to 1,
from the first hash table to the second hash table,

10

15

20

25

30

35

40

45

50

55

60

65

10

wherein the processing unit 1s also configured {for:

providing a threshold occupancy level of slots for the first

hash table and an enlargement ratio e, the threshold
occupancy level being equal to N multiplied by the
enlargement ratio e, and

the second hash table 1s allocated 1n response to a present

occupancy level of the first hash table exceeding the
threshold occupancy level, and the second hash table
has more than N slots for entries.

8. The computing device according to claim 7 and
wherein the performing the following after allocating the
second hash table also comprises:

when a hash table deletion of an entry 1s requested,

performing deletion by: deleting the entry from the first
hash table and deleting the entry from the second hash
table, and copying K entries, K being greater than or
equal to 1, from the first hash table to the second hash
table.

9. The computing device according to claim 7 and
wherein the second hash table has at least 2N+1 slots for
entries.

10. The computing device according to claim 7 and
wherein the second hash table has

1+ —xN

entries.

11. The computing device according to claim 7 and
wherein said performing the following after allocating the
second hash table further comprises:

when a number of entries in the first hash table and a

number of entries 1n the second hash table are equal,
designating the second hash table as the active hash
table and ceasing to designate the first hash table as the
active hash table.

12. The computing device according to claim 11 and
wherein said performing the following after allocating the
second hash table further comprises:

after said designating the second hash table as the active

hash table, deallocating the first hash table.

13. A computing device comprising:

a processing umt; and

memory for storing a first hash table having N slots for

entries,

the processing unit being configured for:

designating the first hash table as an active hash table;
providing a threshold occupancy level of slots for the
first hash table and a diminution ratio d, the threshold
occupancy level being equal to N multiplied by the
diminution ratio d;
allocating a second hash table in response to a present
occupancy level of the first hash table reaching a
level less than the threshold occupancy level, the
second hash table having fewer than N slots for
entries; and
performing the following after allocating the second
hash table:
when a hash table insertion of an entry 1s requested,
performing insertion by: mserting the entry to the
first hash table and inserting the entry to the
second hash table; and
when a hash table lookup 1s requested, looking up the
requested entry in the active hash table,

US 11,003,715 B2

11 12
wherein the performing insertion comprises: also copy- table, and copying K entries, K being greater than or
ing K entries, K being greater than or equal to 1, equal to 1, from the first hash table to the second hash
from the first hash table to the second hash table. table. | | | |
14. The computing device according to claim 13 and 16. The computing device according to claim 13 and
wherein the second hash table has 5 wherein said performing the following aiter allocating the

second hash table further comprises:
when a number of entries in the first hash table and a

d* N number of entries 1n the second hash table are equal,
designating the second hash table as the active hash
10 table and ceasing to designate the first hash table as the

entries. active hash table.
15. The computing device according to claim 13 and 17. .The'computing. device accoyding to claim 16 and
wherein the performing the following after allocating the wherein said pertforming the following atter allocating the

second hash table further comprises:

15 after said designating the second hash table as the active
hash table, deallocating the first hash table.

second hash table also comprises:
when a hash table deletion of an entry 1s requested,
performing deletion by: deleting the entry from the first
hash table and deleting the entry from the second hash I

	Front Page
	Drawings
	Specification
	Claims

