12 United States Patent

Kuang et al.

US011003547B2

(10) Patent No.:
45) Date of Patent:

US 11,003,547 B2
May 11, 2021

(54) METHOD, APPARATUS AND COMPUTER

(56)

References Cited

PROGRAM PRODUCT FOR MANAGING
DATA STORAGE

(71) Applicant: EMC IP Holding Company LLC,
Hopkinton, MA (US)
(72) Inventors: Yaming Kuang, Shanghai (CN); Jun
Liu, Shanghai (CN); Xiao Hua Fan,
Shanghai (CN)
(73) Assignee: EMC IP Holding Company LLC,
Hopkinton, MA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 81 days.
(21) Appl. No.: 16/126,116
(22) Filed: Sep. 10, 2018
(65) Prior Publication Data
US 2020/0042399 Al Feb. 6, 2020
(51) Imt. CL
GO6F 11/14 (2006.01)
(52) U.S. CL
CPC ... GO6F 1171458 (2013.01); GOGF 11/1448
(2013.01); GOOF 2201/80 (2013.01); GO6F
2201/815 (2013.01);, GO6F 2201/582 (2013.01)
(58) Field of Classification Search

CPC GO6F 11/1458; GO6F 11/1448; GO6F

2201/80; GO6F 2201/815; GO6F 2201/82
See application file for complete search history.

400
P

U.S. PATENT DOCUMENTS

8,631,272 B2* 1/2014 Prabhakaran GOO6F 11/1662
710/114

9,081,771 B1* 7/2015 Faibish GOO6F 16/00
2002/0069313 Al* 6/2002 Douniwa GOO6F 11/1435
711/102

2005/0210218 Al* 9/2005 Hoogterp GOo6F 3/0613
711/203

2009/0300082 Al™* 12/2009 Cheneeonn. GO6F 12/023
2011/0072199 Al1l* 3/2011 Reiterooocceveenn, GO6F 13/14
711/103

2014/0040540 Al* 2/2014 Pruthi GOo6F 3/0611
711/103

2017/0031940 Al* 2/2017 Subramanian GO6F 16/13
2017/0300246 Al* 10/2017 Michaeli GO6F 3/065

* cited by examiner

Primary Examiner — Kamini B Patel
Assistant Examiner — Kurosu Risa Altaf

(74) Attorney, Agent, or Firm — Krishnendu Gupta;
Nikhil Patel

(57) ABSTRACT

There 1s disclosed techniques for managing data storage. In
one embodiment, the techmiques comprise recording index
information in a block-based segment of a file system. The
index information relates to an extent list 1n a virtual block
map (VBM) pointing to the block-based segment. The
techniques also comprise detecting an error in connection
with the VBM. The techniques also comprise rebuilding the
VBM based on the index information in response to detect-
ing the error.

18 Claims, 7 Drawing Sheets

recording index information in a block-based
segment of a file system, wherem the 1ndex
information relates to an extent hist in a virtual

block map (VBM) pointing to the block-based

segment

41

ey

detecting an error 1n connection with the VBM

420

in response to detecting the error, rebuilding the

VBM based on the index mformation

430

U.S. Patent May 11, 2021 Sheet 1 of 7 US 11,003,547 B2

2100
100

116
S

134U1 134U2

W7y [-136U STORAGE
40 DEDUP 150] .

SW | HW -

| POLICY
| 142

13401 13402 1360

U.S. Patent

May 11, 2021 Sheet 2 of 7

212

FILE-1

LEAF B 210 '

-
A2 T L - >

SEGMENT VEM

LA LoC WEIGHT '

A loc-A WA
B locB WB
C LocC WC
D LocD WD

e
e

EXTENT LIST
Y

10
-UNCOMPRESSED
DATA

FIG. 2

US 11,003,547 B2

DATA
BLOCKS

(COMPRESSED)|

DATA-B |
(COMPRESSED)]

DATA-C |
COMPRESSED

DATA-D
(COMPRESSED)}

U.S. Patent May 11, 2021 Sheet 3 of 7 US 11,003,547 B2

310 . 328

Qeisesd

SEULTR O - L —

310 320

L [] .
l:. R
' e A H '
T X A T T N N N R I I A I RN I N MR L B LN L 1*1*1* l'_ Ir|-~_-Irl [l*l*l*lbl- .\.*.\'.ilk-*.\' pigh *-" *-*-*-.-*-b-bl " -~-* r
. O B T R T R R I e e e R e N I N A T N R N R N R N N N . £ . . -3 "
llllllllllllllll § b b bk LB LI i i f F & ir i kF ik r F ir fr F irk i F bk ir bk F i F ir Fr ¥ ir g F F i ke if ik Ik ip
o . C e R e e e e e T T e e T el e B e e e e e e T e T i e e T e e e e e T e ey
Lt
- e " " e i " S X

A R N e N T T T N N R R T R N N I T R IR PN - TR PR RNl -.-.lbh LR " SRR RCEE NN N L AL RCHE N CNE T
TN '-:-'-: : :-: :-:-:-' b :-1-:1'-: '-: ¥ LN *-;k:l:l:b:lll:’r*l:b:b:\-*l:b:b:b:l;b*b*b:l :rb:bbb*b:_u-'rb:lr'rb:b:b:;‘ru-*q-:u-:b‘_b'ru-'rlr:b*u-:u-:b:l- 'kkb:k;l*k:b*\-*k*k*b:‘-:b:\-:b:‘-:\-:‘-:‘:**k*b*\-* .
....... r ..
L i'.lf"lr i"‘ll' Jl'r i"i'.#hi'l_i"'\'. L i'll#" k i'bi'bi'._lrl_\"_l \'bi'.i"lr.#'-l"#‘ i'. kbtl*!*l*l-*'a*‘*l*lkrtb*l-*'rkl- L '\'I_#'i"#._#" i'*#‘#'i"#pi"i'*#bi"i"ﬁ"#b#l\'blrbi"'\"
! L Lt r o, Ll Al s AL i e i N -l A i L L L L B L
LT L .. S et - S R S S e A S e e
.. "

..........................
..
...

--

..

--- L ENEEEEN]
LTI LI I P N A PR P L N P N "_-lq 'r"'rb'r.'rblrblr'r'r bbbbbbbbbbb e e e e e e t‘-‘b‘#‘h.b.l.t o e i-.#.'b‘b. bn*lbq-*q.‘**q*-r***l 'rl*i t-*-*lbl 'r-*lr N Ir|r"_-"_-.r- tb***qu*k*q tq-*r*btq*l 'r"Jr.'r.lr. I|_-I_..-.I o
ir I I I i b F r L L] LI R T T T D D R L L =k kb Fr ki ik ki X F bk ik b ki rkrirkkirk -
Fa ey kb e e e h'b_b N v B Fo e e e e R '+:#‘#h#~#‘#Lt*#*#'#*#'#b#b#~#~#bk*#'#*##k*t‘r .
T T w e e T e e e T T e AL A A R S A e SRS SR R B S e LI

2
L -
&
o
B3
B
FY
5
>

aaaaaaaaaaa

e
: %
1

%
.%}
:::
| §
i
| %
4
.{-
:..
. %i
L

US 11,003,547 B2

Sheet 4 of 7

May 11, 2021

U.S. Patent

L]
» -
]

S

e

I T T e A

AT

B

-

-

-

-

=

-

-

[
r

LR LN

i, e, i, i, o, o e

lr-'. o, ir, i, ;'. .l'. .i'. .-'. o, i, i,

|
§

'

=T

Lo N N R

L Py L

Y Y kN e e BN

E_L_L

ae

ok
e
s

r
i
XX
¥

ax
....”.r”.........-_
A
2wk
'
s
g
" a
s
Tty
it
SR
Py

¥

Ty
)

XN

L)
»

)
L

r

r

)
)
B

.
.

| I T]

e

NN

P

=
=
r

.
[]
¥
™
Pt
»

pLLL R

fene

»
L

T T oo T T I T

TR R

T T T A T T

oaTaTa e "

*m e s e e e " T e e " " " e "a s T s " T e " Ta

Tl el

-

e x i

TR

=

R ey

3
s

2

ey

A A,

-
'

-
'

R T e e

.

.l.-f A

Fh FhkFEkk
.‘... ..‘.. -.II.-.--"*. ﬂ.

g?
i
%
s
;
;
:

-

-

-

[

- . -

-

N o
"

YRR

[.

.

-ll.-lll-l-.-llll.f.i -I-.-I.-I -lll-r.-l-lll.il.-ll L] 4.1- -llil L | -I. I.il 4 -ll.-l.il.-l'.il f.# -I.-I 4.1

[Nl Tl Tl Nl kel Tl il Rl Tl il Sl Tl Rl Rl Tl Sl Nl Sl Tl Tl Bl N Tl Tk Tk Tl T A Tl Rl et)

AT

Ty

i

.F r .
_.l.._w_ el i, A, Al ol s,

b*b
P
»

r
¥
Pl

| I]
F
g
x
e i:;*fa- »

-'|
.
.
.
.
| I |
*l*bl
Kk
XN

[]
e
i
Py

L)
)

-'|
2T
.
e
.
n bk]
P e ey
ok k ki
ERE AR
N e)

L B NE B L NC BC N RC N NE R

L4

¥

.-
a7a
.
[.
s
N N N NN NN

Pl

»
wra e

.
L)

r
)
»

X
)
#"-Iii +

T

L)

L J
e

J*l*i*-l L

r

‘-b
v
R

.

.

.

.

.

.

.

.

.

.

.

.

1]

1]

[]

1]

r

| N T B

e e e ey
o S Jr:

L4

¥
T T e T e

PR N N

NN N NN NN NN NN RN YW

'
L

T T T e R

-y o= o=
'-l-
“ o or mom E o E R -

S

-

e, v

S
] ..l.
' -l.

'

R
_““

By

-u.
 Br

T e T e M T

-'l.‘ll"l-.'l' I.-' I“'I' .I."-ﬁ'.' I"..'ﬂl';-.l.'..' I‘-'I-';-'I'-.J

-

[XX N N

]
XN

A

FEEa

0 A el el O e, e Bl ol ol ol e h

U.S. Patent May 11, 2021 Sheet 5 of 7 US 11,003,547 B2

400

recording index imformation in a block-based
segment of a file system, wheremn the index
information relates to an extent list in a virtual
block map (VBM) pointing to the block-based
segment

410

detecting an error in connection with the VBM
420

in response to detecting the error, rebuilding the
VBM based on the index information

430

FI1G. 4

U.S. Patent May 11, 2021 Sheet 6 of 7 US 11,003,547 B2

1’390\

1110-1 1110-2 1110-L

3

ARPPS

VIRTUAL VIRTUAL | . VIRTUAL
MACHINE MACHINE MACHINE
1102-1 f; ~1102-2 L 102
HYPERVISOR 1104
PHYSICAL INFRASTRUCTURE 1105

FIG. 5

US 11,003,547 B2

Sheet 7 of 7

May 11, 2021

U.S. Patent

J] 303N RIOMLIN

1 AHOWIN

L=¢0C 1
F0IAZ0 DNISS3008d

A UG

Jonga |
ONISSIOONd |

)

9 Ol

AHOM LN

&-¢0Ct
20IAHU
ONISSH00dd

&GOCH
A
ONISSH00Hd

US 11,003,547 B2

1

METHOD, APPARATUS AND COMPUTER
PROGRAM PRODUCT FOR MANAGING
DATA STORAGE

TECHNICAL FIELD 5

The present invention relates generally to data storage.
More particularly, the present invention relates to a method,
an apparatus and a computer program product for managing
data storage. 10

BACKGROUND OF THE INVENTION

Computer systems may include different resources used
by one or more host processors. Resources and host proces- 15
sOrs 1n a computer system may be interconnected by one or
more communication connections. These resources may
include, for example, data storage devices such as those
included in the data storage systems manufactured by Dell
EMC of Hopkinton, Mass. These data storage systems may 20
be coupled to one or more servers or host processors and
provide storage services to each host processor. Multiple
data storage systems from one or more different vendors
may be connected and may provide common data storage for
one or more host processors 1n a computer system. 25

A host processor may perform a variety of data processing
tasks and operations using the data storage system. For
example, a host processor may pertorm basic system 1/0
operations 1n connection with data requests, such as data
read and write operations. 30

Host processor systems may store and retrieve data using
a storage device containing a plurality of host interface unaits,
disk drives, and disk interface units. The host systems access
the storage device through a plurality of channels provided
therewith. Host systems provide data and access control 35
information through the channels to the storage device and
the storage device provides data to the host systems also
through the channels. The host systems do not address the
disk drives of the storage device directly, but rather, access
what appears to the host systems as a plurality of logical disk 40
units. The logical disk units may or may not correspond to
the actual disk drives. Allowing multiple host systems to
access the single storage device unit allows the host systems
to share data 1n the device. In order to facilitate sharing of
the data on the device, additional software on the data 45
storage systems may also be used.

In data storage systems where high-availability 1s a neces-
sity, system administrators are constantly faced with the
challenges of preserving data integrity and ensuring avail-
ability of critical system components. One critical system 50
component in any computer processing system 1s its file
system. File systems include software programs and data
structures that define the use of underlying data storage
devices. File systems are responsible for orgamzing disk
storage 1nto files and directories and keeping track of which 55
part of disk storage belong to which file and which are not
being used.

The accuracy and consistency of a file system 1s necessary
to relate applications and data used by those applications.
However, there may exist the potential for data corruption 1n 60
any computer system and therefore measures are taken to
periodically ensure that the file system i1s consistent and
accurate. In a data storage system, hundreds of files may be
created, modified, and deleted on a regular basis. Each time
a file 1s modified, the data storage system performs a series 65
of file system updates. These updates, when written to a disk
storage reliably, yield a consistent file system. However, a

2

file system can develop inconsistencies in several ways.
Problems may result from an unclean shutdown, i1 a system
1s shut down 1mproperly, or when a mounted file system 1s
taken offline improperly. Inconsistencies can also result
from defective hardware or hardware failures. Additionally,
inconsistencies can also result from software errors or user
CITOrS.

Additionally, the need for high performance, high capac-
ity information technology systems 1s driven by several
factors. In many industries, critical information technology
applications require outstanding levels of service. At the
same time, the world 1s experiencing an information explo-
s10n as more and more users demand timely access to a huge
and steadily growing mass of data including high quality
multimedia content. The users also demand that information
technology solutions protect data and perform under harsh
conditions with minimal data loss and mimimum data
unavailability. Computing systems of all types are not only
accommodating more data but are also becoming more and
more mterconnected, raising the amounts of data exchanged
at a geometric rate.

To address this demand, modern data storage systems
(“storage systems”) are put to a variety of commercial uses.
For example, they are coupled with host systems to store
data for purposes of product development, and large storage
systems are used by financial institutions to store critical
data 1n large databases. For many uses to which such storage
systems are put, 1t 1s highly important that they be highly
reliable and highly efficient so that critical data 1s not lost or
unavailable.

A file system checking (FSCK) utility provides a mecha-
nism to help detect and fix inconsistencies 1n a file system.
The FSCK utility verifies the integrity of the file system and
optionally repairs the file system. In general, the primary
function of the FSCK utility 1s to help maintain the integrity

of the file system. The FSCK utility verifies the metadata of
a lle system, recovers inconsistent metadata to a consistent

state and thus restores the integrity of the file system.

SUMMARY OF THE INVENTION

There 1s disclosed a method, comprising: recording index
information m a block-based segment of a file system,
wherein the index information relates to an extent list in a
virtual block map (VBM) pointing to the block-based seg-
ment; detecting an error 1n connection with the VBM; and in
response to detecting the error, rebuilding the VBM based on
the index information.

There 1s also disclosed an apparatus, comprising:
memory; and processing circuitry coupled to the memory,
the memory storing instructions which, when executed by
the processing circuitry, cause the processing circuitry to:
record index information in a block-based segment of a file
system, wherein the index information relates to an extent
list 1n a virtual block map (VBM) pointing to the block-
based segment; detect an error 1n connection with the VBM;
and 1n response to detecting the error, rebuild the VBM
based on the index information.

There 1s also disclosed a computer program product
having a non-transitory computer readable medium which
stores a set of instructions, the set of instructions, when
carried out by processing circuitry, causing the processing
circuitry to perform a method of: recording index informa-
tion 1n a block-based segment of a file system, wherein the
index information relates to an extent list 1n a virtual block
map (VBM) pointing to the block-based segment; detecting

US 11,003,547 B2

3

an error in connection with the VBM; and i response to
detecting the error, rebuilding the VBM based on the 1index
information.

BRIEF DESCRIPTION OF THE DRAWINGS

The mnvention will be more clearly understood from the
following description of preferred embodiments thereof,
which are given by way of examples only, with reference to
the accompanying drawings, 1n which:

FIG. 1 1s an example of an embodiment of a computer
system that may utilize the techniques described herein;

FI1G. 2 illustrate 1n further detail components that may be
used 1n connection with the techniques described herein,
according to one embodiment of the disclosure;

FIGS. 3A-3D illustrates in further detail components that
may be used 1n connection with the techniques described
herein, according to one embodiment of the disclosure;

FIG. 4 1s a flowchart showing an example method that
may be used in connection with techniques herein according,
to an exemplary embodiment of the disclosure;

FIG. 5 illustrates an exemplary processing platform that
may be used to implement at least a portion of one or more
embodiments of the disclosure comprising a cloud inira-
structure; and

FIG. 6 illustrates another exemplary processing platform
that may be used to implement at least a portion of one or
more embodiments of the disclosure.

DETAILED DESCRIPTION

[lustrative embodiments of the present disclosure will be
described herein with reference to exemplary communica-
tion, storage and processing devices. It 1s to be appreciated,
however, that the disclosure 1s not restricted to use with the
particular 1illustrative configurations shown. Aspects of the
disclosure provide methods and systems and computer pro-
gram products for managing data storage.

Data reduction 1s an efliciency feature that allows users to
store information using less storage capacity than storage
capacity used without data reduction. Data storage systems
often employ data reduction techniques, such as data com-
pression, deduplication and/or pattern matching, to improve
storage efliciency. With such data reduction, users can
significantly increase storage utilization for data, such as file
data and block data.

Data storage systems commonly arrange data in file
systems, and file systems commonly store data, as well as
metadata, 1n blocks. As 1s known, a “block™ 1s the smallest
unit of storage that a file system can allocate. Blocks for a
given file system are generally of fixed size, such as 4 KB
(kilobytes), 8 KB, or some other fixed size.

File systems typically categorize blocks as either allo-
cated or free. Allocated blocks are those which are currently
in use, whereas Ifree blocks are those which are not currently
in use. As a file system operates, the file system tends to
allocate new blocks, to accommodate new data, but the file
system also tends to generate new iree blocks, as previously
allocated blocks become free. The file system may run
utilities (e.g., space maker, file system reorganizer) to
coalesce ranges of contiguous iree blocks. For example, a
utility may move data found in allocated blocks between
areas of the file system to create large regions of entirely free
blocks. In various examples, the file system may return such
regions ol free blocks to a storage pool; the file system may
also make such regions available to accommodate new
writes of sequential data.

10

15

20

25

30

35

40

45

50

55

60

65

4

In a storage system enabled with inline data compression,
data of the file system 1s generally compressed down to sizes
smaller than a block and such compressed data 1s packed
together 1n multi-block segments. Further, a file system
manager may include a persistent file data cache (PFDC)
aggregation logic that selects a set of allocation units (also
referred to herein as “data fragments”™ or “storage extents™ or
“blocks™) for compressing the set of allocation units and
organizes the compressed allocation units 1 a segment.
Further, each compressed allocation unit 1n a segment may
also be simply referred to herein as a fragment. Thus, data
of a file system may be stored in a set of segments. A
segment may be composed from multiple contiguous blocks
where data stored in the segment imncludes multiple com-
pressed storage extents having various sizes.

Further, for each compressed storage extent 1n a segment
of a file system, a corresponding weight i1s associated where
the weight 1s arranged to indicate whether the respective
storage extent 1s currently part of any file 1n the file system.
In response to performing a file system operation that
changes the weight of a storage extent 1n a segment of a file
system to a value that indicates that the storage extent 1s no
longer part of any {file in the file system, the storage extent
1s marked as a free storage extent such that a scavenging
utility can scavenge Iree space at a later time.

Described 1n following paragraphs are techniques that
may be used 1n an embodiment in accordance with the
techniques disclosed herein.

FIG. 1 depicts an example embodiment of a system 100
that may be used in connection with performing the tech-
niques described herein. Here, multiple host computing

devices (“hosts™) 110, shown as devices 110(1) through

110(N), access a data storage system 116 over a network
114. The data storage system 116 includes a storage proces-
sor, or “SP,” 120 and storage 180. In one example, the
storage 180 includes multiple disk drives, such as magnetic
disk drnives, electronic flash drives, optical drives, and/or
other types of drives. Such disk drives may be arranged 1n
RAID (Redundant Array of Independent/Inexpensive Disks)
groups, for example, or in any other suitable way.

In an example, the data storage system 116 includes
multiple SPs, like the SP 120 (e.g., a second SP, 120a). The
SPs may be provided as circuit board assemblies, or
“blades,” that plug 1nto a chassis that encloses and cools the
SPs. The chassis may have a backplane for interconnecting
the SPs, and additional connections may be made among
SPs using cables. No particular hardware configuration 1s
required, however, as any number of SPs, including a single
SP, may be provided and the SP 120 can be any type of
computing device capable of processing host 10s.

The network 114 may be any type of network or combi-
nation of networks, such as a storage area network (SAN),
a local area network (LAN), a wide area network (WAN),
the Internet, and/or some other type of network or combi-
nation of networks, for example. The hosts 110(1-N) may
connect to the SP 120 using various technologies, such as
Fibre Channel, 1SCSI (Internet Small Computer Systems
interface), NFS (Network File System), SMB (Server Mes-
sage Block) 3.0, and CIFS (Common Internet File System),
for example. Any number of hosts 110(1-N) may be pro-
vided, using any of the above protocols, some subset thereof,

or other protocols besides those shown. As 1s known, Fibre
Channel and 1SCSI are block-based protocols, whereas NES,
SMB 3.0, and CIFS are file-based protocols. The SP 120 1s

configured to receive 10 requests 112(1-N) according to

US 11,003,547 B2

S

block-based and/or file-based protocols and to respond to
such 10 requests 112(1-N) by reading and/or writing the
storage 180.

As further shown 1n FIG. 1, the SP 120 includes one or
more commumnication interfaces 122, a set of processing
units 124, compression hardware 126, and memory 130. The
communication interfaces 122 may be provided, {for
example, as SCSI target adapters and/or network interface
adapters for converting electronic and/or optical signals
received over the network 114 to electronic form for use by
the SP 120. The set of processing units 124 includes one or
more processing chips and/or assemblies. In a particular
example, the set of processing units 124 includes numerous
multi-core CPUSs.

The compression hardware 126 includes dedicated hard-
ware, €.g., one or more integrated circuits, chipsets, sub-
assemblies, and the like, for performing data compression
and decompression in hardware. The hardware 1s “dedi-
cated” 1n that 1t does not perform general-purpose comput-
ing but rather 1s focused on compression and decompression
of data. In some examples, compression hardware 126 takes
the form of a separate circuit board, which may be provided
as a daughterboard on SP 120 or as an independent assembly
that connects to the SP 120 over a backplane, midplane, or
set of cables, for example. A non-limiting example of
compression hardware 126 includes the Intel® QuickAssist
Adapter, which 1s available from Intel Corporation of Santa
Clara, Calif.

The memory 130 includes both volatile memory (e.g.,
RAM), and non-volatile memory, such as one or more
ROMs, disk drives, solid state drives, and the like. The set
of processing units 124 and the memory 130 together form
control circuitry, which 1s constructed and arranged to carry
out various methods and functions as described herein. Also,
the memory 130 includes a variety of soltware constructs
realized 1n the form of executable instructions. When the
executable mstructions are run by the set of processing units
124, the set of processing units 124 are caused to carry out
the operations of the software constructs. Although certain
soltware constructs are specifically shown and described, 1t
1s understood that the memory 130 typically includes many
other software constructs, which are not shown, such as an
operating system, various applications, processes, and dae-
mons.

As further shown 1n FIG. 1, the memory 130 “includes,”
1.€., realizes by execution of software instructions, a cache
132, an inline compression (ILC) engine 140, a deduplica-
tion engine 150, and a data object 170. A compression policy
142 provides control mput to the ILC engine 140. The
deduplication engine 150 optionally performs deduplication
by determining 11 a first allocation unit of data 1n the storage
system matches a second allocation unit of data. When a
match 1s found, the leaf pointer for the first allocation unit
1s replaced with a deduplication pointer to the leaf pointer of
the second allocation unait.

In addition, the memory 130 may also optionally includes
an mline decompression engine (not shown) and a decom-
pression policy (not shown), as would be apparent to a
person of ordinary skill in the art. Both the compression
policy 142 and the decompression policy receive perifor-
mance data 160, that describes a set of operating conditions
in the data storage system 116.

In an example, the data object 170 1s a host-accessible
data object, such as a LUN, a file system, or a virtual
machine disk (e.g., a VVol (Virtual Volume), available from
VMWare, Inc. of Palo Alto, Calif. The SP 120 exposes the

data object 170 to hosts 110 for reading, writing, and/or

10

15

20

25

30

35

40

45

50

55

60

65

6

other data operations. In one particular, non-limiting
example, the SP 120 runs an internal file system and
implements the data object 170 within a single file of that file
system. In such an example, the SP 120 includes mapping
(not shown) to convert read and write requests from hosts
110 (e.g., 10 requests 112(1-N)) to corresponding reads and
writes to the file 1 the internal file system.

As further shown i FIG. 1, ILC engine 140 includes a
software component (SW) 140q and a hardware component
(HW) 14056. The software component 140q includes a com-
pression method, such as an algorithm, which may be
implemented using software instructions. Such instructions
may be loaded in memory and executed by processing units
124, or some subset thereof, for compressing data directly,
1.¢., without involvement of the compression hardware 126.
In comparison, the hardware component 1405 1includes
soltware constructs, such as a drniver and API (application
programmer interface) for communicating with compression
hardware 126, ¢.g., for directing data to be compressed by
the compression hardware 126. In some examples, either or
both components 140a and 1405 support multiple compres-
sion algorithms. The compression policy 142 and/or a user
may select a compression algorithm best suited for current
operating conditions, e.g., by selecting an algorithm that
produces a high compression ratio for some data, by select-
ing an algorithm that executes at high speed for other data,
and so forth.

For deduplicating data, the deduplication engine 150
includes a software component (SW) 150a and a hardware
component (HW) 1505. The software component 150q
includes a deduplication algorithm 1mplemented using sofit-
ware 1nstructions, which may be loaded 1n memory and
executed by any of processing units 124 for deduplicating
data 1n soitware. The hardware component 1505 1ncludes
software constructs, such as a driver and API for commu-
nicating with optional deduplication hardware (not shown),
¢.g., for directing data to be deduplicated by the deduplica-
tion hardware. Either or both components 150a and 15056
may support multiple deduplication algorithms. In some
examples, the ILC engine 140 and the deduplication engine
150 are provided together 1n a single set of software objects,
rather than as separate objects, as shown.

In one example operation, hosts 110(1-N) 1ssue IO
requests 112(1-N) to the data storage system 116 to perform
reads and writes of data object 170. SP 120 receives the 10
requests 112(1-N) at communications interface(s) 122 and
passes them to memory 130 for further processing. Some 10
requests 112(1-N) specily data wrtes 112W, and others
specily data reads 112R, for example. Cache 132 receives
write requests 112W and stores data specified thereby in
cache elements 134. In a non-limiting example, the cache
132 1s arranged as a circular data log, with data elements 134
that are specified 1in newly-arriving write requests 112W
added to a head and with further processing steps pulling
data elements 134 from a tail. In an example, the cache 132
1s 1mplemented 1n DRAM (Dynamic Random Access
Memory), the contents of which are mirrored between SPs
120 and 120a and persisted using batteries. In an example,
SP 120 may acknowledge writes 112W back to originating
hosts 110 once the data specified 1n those writes 112W are
stored 1n the cache 132 and mirrored to a similar cache on
SP 120q. It should be appreciated that the data storage
system 116 may host multiple data objects, 1.e., not only the
data object 170, and that the cache 132 may be shared across
those data objects.

When the SP 120 1s performing writes, the ILC engine
140 selects between the software component 140aq and the

US 11,003,547 B2

7

hardware component 1405 based on input from the com-
pression policy 142. For example, the ILC engine 140 1s
configured to steer incoming write requests 112W either to
the software component 1404 for performing software com-
pression or to the hardware component 1406 for performing
hardware compression.

In an example, cache 132 flushes to the respective data
objects, e.g., on a periodic basis. For example, cache 132
may flush a given uncompressed element 134U1 to data
object 170 via ILC engine 140. In accordance with com-
pression policy 142, ILC engine 140 selectively directs data
in element 134U1 to software component 140a or to hard-
ware component 1405. In this example, compression policy
142 selects software component 140a. As a result, software
component 140a receives the data of element 134U1 and
applies a software compression algorithm to compress the
data. The software compression algorithm resides in the
memory 130 and 1s executed on the data of element 134U
by one or more of the processing units 124. Software
component 140a then directs the SP 120 to store the result-
ing compressed data 134C1 (the compressed version of the
data in element 134U1) 1n the data object 170. Storing the
compressed data 134C1 1n data object 170 may involve both
storing the data itself and storing any metadata structures
required to support the data 134C1, such as block pointers,
a compression header, and other metadata.

It should be appreciated that this act of storing data 134C1
in data object 170 provides the first storage of such data 1n
the data object 170. For example, there was no previous
storage of the data of element 134U1 1n the data object 170.
Rather, the compression of data in element 134U1 proceeds
“inline,” 1n one or more embodiments, because it 1s con-
ducted 1n the course of processing the first write of the data
to the data object 170.

Continuing to another write operation, cache 132 may
proceed to tlush a given element 134U2 to data object 170
via ILC engine 140, which, in this case, directs data com-
pression to hardware component 1405, again 1n accordance
with policy 142. As a result, hardware component 14056
directs the data in element 134U2 to compression hardware
126, which obtains the data and performs a high-speed
hardware compression on the data. Hardware component
1406 then directs the SP 120 to store the resulting com-
pressed data 134C2 (the compressed version of the data in
clement 134U2) 1n the data object 170. Compression of data
in element 134U2 also takes place inline, rather than 1n the
background, as there i1s no previous storage of data of
clement 134U2 1n the data object 170.

In an example, directing the ILC engine 140 to perform
hardware or software compression further entails specifying,
a particular compression algorithm. The algorithm to be
used in each case 1s based on compression policy 142 and/or
specified by a user of the data storage system 116. Further,
it should be appreciated that compression policy 142 may
operate ILC engine 140 1n a pass-through mode, 1.¢., one 1n
which no compression 1s performed. Thus, i some
examples, compression may be avoided altogether 1f the SP
120 1s too busy to use either hardware or software compres-
S1011.

In some examples, storage 180 1s provided 1n the form of
multiple extents, with two extents E1 and E2 particularly
shown. In an example, the data storage system 116 monitors
a “data temperature” of each extent, 1.e., a frequency of read
and/or write operations performed on each extent, and
selects compression algorithms based on the data tempera-
ture of extents to which writes are directed. For example, 11
extent E1 1s “hot,” meaning that 1t has a high data tempera-

10

15

20

25

30

35

40

45

50

55

60

65

8

ture, and the data storage system 116 receives a write
directed to E1, then compression policy 142 may select a
compression algorithm that executes at a high speed for
compressing the data directed to E1. However, 11 extent E2
1s “cold,” meaning that 1t has a low data temperature, and the
data storage system 116 receives a write directed to E2, then
compression policy 142 may select a compression algorithm
that executes at high compression ratio for compressing data
directed to E2.

With the arrangement of FIG. 1, the SP 120 intelligently
directs compression and other data reduction tasks to sofit-
ware or to hardware based on operating conditions in the
data storage system 116. For example, if the set of process-
ing units 124 are already busy but the compression hardware
126 1s not, the compression policy 142 can direct more
compression tasks to hardware component 1405. Con-
versely, 11 compression hardware 126 1s busy but the set of
processing units 124 are not, the compression policy 142 can
direct more compression tasks to software component 140q.
Decompression policy may likewise direct decompression
tasks based on operating conditions, at least to the extent that
direction to hardware or software 1s not already dictated by
the algorithm used for compression. In this manner, the data
storage system 116 1s able to perform inline compression
using both hardware and software techniques, leveraging the
capabilities of both while applying them in proportions that
result 1n best overall performance.

In such an embodiment in which element 120 of FIG. 1
1s implemented using one or more data storage systems, each
of the data storage systems may include code thereon for
performing the techniques as described herein.

Servers or host systems, such as 110(1)-110(N), provide
data and access control information through channels to the
storage systems, and the storage systems may also provide
data to the host systems also through the channels. The host
systems may not address the disk drives of the storage
systems directly, but rather access to data may be provided
to one or more host systems from what the host systems
view as a plurality of logical devices or logical volumes
(LVs). The LVs may or may not correspond to the actual disk
drives. For example, one or more LVs may reside on a single
physical disk drive. Data 1n a single storage system may be
accessed by multiple hosts allowing the hosts to share the
data residing therein. An LV or LUN may be used to refer
to the foregoing logically defined devices or volumes.

The data storage system may be a single unitary data
storage system, such as single data storage array, including
two storage processors or compute processing units. Tech-
niques herein may be more generally used in connection
with any one or more data storage systems each including a
different number of storage processors than as illustrated
herein. The data storage system 116 may be a data storage
array, such as a Unity™, a VNX™ or VNXe™ data storage
array by Dell EMC of Hopkinton, Mass., including a plu-
rality of data storage devices 116 and at least two storage
processors 120a. Additionally, the two storage processors
120a may be used in connection with failover processing
when communicating with a management system for the
storage system. Client software on the management system
may be used in connection with performing data storage
system management by 1ssuing commands to the data stor-
age system 116 and/or receiving responses irom the data
storage system 116 over a connection. In one embodiment,
the management system may be a laptop or desktop com-
puter system.

The particular data storage system as described in this
embodiment, or a particular device thereof, such as a disk,

US 11,003,547 B2

9

should not be construed as a limitation. Other types of
commercially available data storage systems, as well as
processors and hardware controlling access to these particu-
lar devices, may also be included in an embodiment.

In some arrangements, the data storage system 116 pro-
vides block-based storage by storing the data in blocks of
logical storage units (LUNSs) or volumes and addressing the
blocks using logical block addresses (LBAs). In other
arrangements, the data storage system 116 provides file-
based storage by storing data as files of a file system and
locating file data using mnode structures. In yet other arrange-
ments, the data storage system 116 stores LUNs and file
systems, stores file systems within LUNs, and so on.

As further shown 1n FIG. 1, the memory 130 includes a
file system and a file system manager 162. A file system 1s
implemented as an arrangement of blocks, which are orga-
nized 1n an address space. Each of the blocks has a location
in the address space, identified by FSBN (file system block
number). Further, such address space in which blocks of a
file system are orgamized may be organized in a logical
address space where the file system manager 162 further
maps respective logical oflsets for respective blocks to
physical addresses of respective blocks at specified FSBNs.
In some cases, data to be written to a file system are directed
to blocks that have already been allocated and mapped by
the file system manager 162, such that the data writes
prescribe overwrites of existing blocks. In other cases, data
to be written to a file system do not vet have any associated
physical storage, such that the file system must allocate new
blocks to the file system to store the data. Further, for
example, FSBN may range from zero to some large number,
with each value of FSBN identifying a respective block
location. The file system manager 162 performs various
processing on a file system, such as allocating blocks,
freeing blocks, maintaining counters, and scavenging for
free space.

In at least one embodiment of the current technique, an
address space of a file system may be provided in multiple
ranges, where each range 1s a contiguous range of FSBNs
(File System Block Number) and 1s configured to store
blocks containing file data. In addition, a range includes file
system metadata, such as iodes, indirect blocks (IBs), and
virtual block maps (VBMs), for example, as discussed
further below 1n conjunction with FIG. 2. As 1s known,
inodes are metadata structures that store information about
files and may include pointers to IBs. IBs include pointers
that point either to other IBs or to data blocks. IBs may be
arranged 1n multiple layers, forming IB trees, with leaves of
the IB trees including block pointers that point to data
blocks. Together, the leal IB’s of a file define the file’s
logical address space, with each block pointer in each leaf 1B
specilying a logical address into the file. Virtual block maps
(VBMs) are structures placed between block pointers of leat
IBs and respective data blocks to provide data block virtu-
alization. The term “VBM” as used herein describes a
metadata structure that has a location 1n a file system that can
be pointed to by other metadata structures 1n the file system
and that includes a block pointer to another location 1n a file
system, where a data block or another VBM 1s stored.
However, 1t should be appreciated that data and metadata
may be organized in other ways, or even randomly, within
a file system. The particular arrangement described above
herein 1s intended merely to be 1llustrative.

Further, 1n at least one embodiment of the current tech-
nique, ranges associated with an address space of a file
system may be of any size and of any number. In some
examples, the file system manager 162 organizes ranges 1n

5

10

15

20

25

30

35

40

45

50

55

60

65

10

a hierarchy. For instance, each range may include a rela-
tively small number of contiguous blocks, such as 16 or 32
blocks, for example, with such ranges provided as leaves of
a tree. Looking up the tree, ranges may be further organized
in CG (cylinder groups), slices (units of file system provi-
sioning, which may be 256 MB or 1 GB 1n size, for
example), groups of slices, and the entire file system, for
example. Although ranges as described above herein apply
to the lowest level of the tree, the term “‘ranges™ as used
herein may refer to groupings of contiguous blocks at any
level.

In at least one embodiment of the technique, hosts 110
(1-N) 1ssue 10 requests 112(1-N) to the data storage system
116. The SP 120 receives the 10 requests 112(1-N) at the
communication interfaces 122 and initiates further process-
ing. Such processing may include, for example, performing
read and write operations on a file system, creating new files
in the file system, deleting files, and the like. Over time, a file
system changes, with new data blocks being allocated and
allocated data blocks being freed. In addition, the file system
manager 162 also tracks 1Ireed storage extents. In an
example, storage extents are versions of block-denominated
data, which are compressed down to sub-block sizes and
packed together in multi-block segments. Further, a file
system operation may cause a storage extent in a range to be
freed, e.g., 1n response to a punch-hole or write-split opera-
tion. Further, a range may have a relatively large number of
freed fragments but may still be a poor candidate for
free-space scavenging 1f 1t has a relatively small number of
allocated blocks. With one or more candidate ranges 1den-
tified, the file system manager 162 may proceed to perform
free-space scavenging on such range or ranges. Such scav-
enging may include, for example, liberating unused blocks
from segments (e.g., alter compacting out any unused por-
tions), moving segments from one range to another to create
free space, and coalescing free space to support contiguous
writes and/or to recycle storage resources by returning such
resources to a storage pool. Thus, file system manager 162
may scavenge Iree space, such as by performing garbage
collection, space reclamation, and/or free-space coalescing.

In at least one embodiment, the data storage system 116
may further comprise a space savings accounting module
that implements a data reduction monitoring and reporting
technique. As discussed above, the exemplary deduplication
engine 150 optionally performs deduplication by determin-
ing if a first allocation unit of data 1n the storage system
matches a second allocation unit of data by comparing SHA
(Secure Hash Algorithm) hash values of the allocation units.
For example, when a match i1s found, the deduplication
engine 150 may replace the leat pointer for the first alloca-
tion unit with a deduplication pointer to the leal pointer of
the second allocation umit. One or more space savings
counters may be optionally incremented, for example, by the
space savings accounting module. The hash values of each
(or, alternatively, the top N) original previously processed
allocation units may also be stored.

As noted above, 1n at least one embodiment, the data
storage system 116 may maintain a number of space savings
counters and metrics to report data reduction space savings.
In some embodiments, compression and deduplication data
reductions may be reported separately and/or in combina-
tion. For example the data reduction savings attributed to
compression can be reported independently of the data
reduction attributed to deduplication. In addition, the data
reduction savings attributed to deduplication can be reported
independently of the data reduction attributed to compres-
sion. For example, the data reduction attributed to dedupli-

US 11,003,547 B2

11

cation may be obtained by determining a difference between
(1) a total number of pointers comprised of a sum of a
number of leal pointers and a number of deduplication
pointers, and (11) the number of leaf pointers.

FIG. 2 illustrates a more detailed representation of com-
ponents that may be included in an embodiment using the
techniques herein. As shown 1n FIG. 2, a segment 250 that
stores data of a file system 1s composed from multiple data
blocks 260. Here, exemplary segment 250 1s made up of at
least ten data blocks 260(1) through 260(10); however, the
number of data blocks per segment may vary. In an example,
the data blocks 260 are contiguous, meaning that they have
consecutive FSBNs 1n a file system address space for the file
system. Although segment 250 1s composed from individual
data blocks 260, the file system treats the segment 2350 as one
continuous space. Compressed storage extents 2352, i.e.,
Data-A through Data-D, etc., are packed inside the segment
250. In an example, each of storage extents 252 1s mitially
a block-sized set of data, which has been compressed down
to a smaller size. An 8-block segment may store the com-
pressed equivalent of 12 or 16 blocks or more of uncom-
pressed data, for example. The amount of compression
depends on the compressibility of the data and the particular
compression algorithm used. Diflerent compressed storage
extents 252 typically have different sizes. Further, for each
storage extent 252 in the segment 250, a corresponding
weight 1s maintained, the weight arranged to indicate
whether the respective storage extent 252 1s currently part of
any file 1n a file system by indicating whether other block
pointers 1n the file system point to that block pointer.

The segment 250 has an address (e.g., FSBN 241) in the
file system, and a segment VBM (Virtual Block Map) 240
points to that address. For example, segment VBM 240
stores a segment pointer 241, which stores the FSBN of the
segment 2350. By convention, the FSBN of segment 250 may

be the FSBN of its first data block, 1.e., block 260(1).
Although not shown, each block 260(1)-260(10) may have
its respective per-block metadata (BMD), which acts as
representative metadata for the respective, block 260(1)-260
(10), and which includes a backward pointer to the segment
VBM 240.

As further shown 1n FIG. 2, the segment VBM 240 stores
information regarding the number ol extents 243 in the
segment 2350 and an extent list 244. The extent list 244 acts
as an index into the segment 250, by associating each
compressed storage extent 252, 1dentified by logical address
(e.g., LA values A through D, etc.), with a corresponding
location within the segment 250 (e.g., Location values
Loc-A through Loc-D, etc., which indicate physical oflsets)
and a corresponding weight (e.g., Weight values WA through
WD, etc.). The weights provide indications of whether the
associated storage extents are currently in use by any files 1n
the file system. For example, a positive number for a weight
may indicate that at least one file 1n the file system refer-
ences the associated storage extent 252. Conversely, a
weight of zero may mean that no file 1n the file system
currently references that storage extent 252. It should be
appreciated, however, that various numbering schemes for
reference weights may be used, such that positive numbers
could easily be replaced with negative numbers and zero
could easily be replaced with some different baseline value.
The particular numbering scheme described herein 1s there-
fore mtended to be illustrative rather than limiting.

In an example, the weight (e.g., Weight values WA
through WD, etc.) for a storage extent 252 retlects a sum, or
“total distributed weight,” of the weights of all block point-
ers 1n the file system that point to the associated storage

5

10

15

20

25

30

35

40

45

50

55

60

65

12

extent. In addition, the segment VBM 240 may include an
overall weight 242, which reflects a sum of all weights of all
block pointers 1n the file system that point to extents tracked
by the segment VBM 240. Thus, in general, the value of
overall weight 242 should be equal to the sum of all weights
in the extent list 242.

Various block pointers 212, 222, and 232 are shown to the
lett 1n FI1G. 2. In an example, each block pointer 1s disposed
within a leaf IB (Indirect Block), also referred to herein as
a mapping pointer (MP), which performs mapping of logical
addresses for a respective file to corresponding physical
addresses 1n the file system. Here, leatf IB 210 1s provided for
mapping data of a first file (F1) and contains block pointers
212(1) through 212(3). Also, leaf IB 220 1s provided {for
mapping data of a second file (F2) and contains block
pointers 222(1) through 222(3). Further, leal IB 230 1s
provided for mapping data of a third file (F3) and contains
block pointers 232(1) and 232(2). Each of leaf IBs 210, 220,
and 230 may include any number of block pointers, such as
1024 block pointers each; however, only a small number are
shown for ease of illustration. Although a single leat 1B 210
1s shown for file-1, the file-1 may have many leaf IBs, which
may be arranged in an IB tree for mapping a large logical
address range of the file to corresponding physical addresses
in a file system to which the file belongs. A “physical
address” 1s a unique address within a physical address space
of the file system.

Each of block pointers 212, 222, and 232 has an associ-
ated poimnter value and an associated weight. For example,
block pointers 212(1) through 212(3) have pointer values
PA1 through PC1 and weights WA1 through WC1, respec-
tively, block pointers 222(1) through 222(3) have pointer
values PA2 through PC2 and weights WA2 through WC2,
respectively, and block pointers 232(1) through 232(2) have
pointer values PD through PE and weights WD through WE,
respectively.

Regarding files F1 and F2, pointer values PA1 and PA2
point to segment VBM 240 and specity the logical extent for
Data-A, e.g., by specitying the FSBN of segment VBM 240
and an offset that indicates an extent position. In a like
manner, pointer values PB1 and PB2 point to segment VBM
240 and specity the logical extent for Data-B, and pointer
values PC1 and PC2 point to segment VBM 240 and specily
the logical extent for Data-C. It can thus be seen that block
pomnters 212 and 222 share compressed storage extents
Data-A, Data-B, and Data-C. For example, files F1 and F2
may be snapshots 1n the same version set. Regarding file F3,
pointer value PD points to Data-D stored in segment 250 and
pointer value PE points to Data-E stored outside the segment
250. File F3 does not appear to have a snapshot relationship
with either of files F1 or F2. If one assumes that data block
sharing for the storage extents 252 1s limited to that shown,
then, 1n an example, the following relationships may hold:

WA=WAL1+WA?2;
WBE=WB1+WB2;
WC=WC1+W(2;
WD=WD; and

Weight 242=2Wi ({for i=a through 4, plus any addi-
tional extents 252 tracked by extent list 244).

The detail shown 1n segment 450 indicates an example
layout 252 of data items. In at least one embodiment of the
current techmique, each compression header 1s a fixed-size
data structure that includes fields for specifying compression

US 11,003,547 B2

13

parameters, such as compression algorithm, length, CRC
(cyclic redundancy check), and flags. In some examples, the
header specifies whether the compression was performed in
hardware or in software. Further, for instance, Header-A can
be found at Loc-A and 1s immediately followed by com-
pressed Data-A. Likewise, Header-B can be found at Loc-B
and 1s immediately followed by compressed Data-B. Simi-
larly, Header-C can be found at Loc-C and 1s immediately
tollowed by compressed Data-C.

For performing writes, the ILC engine 140 generates each
compression header (Header-A, Header-B, Header-C, etc.)
when performing compression on data blocks 260, and
directs a file system to store the compression header together
with the compressed data. The ILC engine 140 generates
different headers for different data, with each header speci-
fying a respective compression algorithm. For performing
data reads, a file system looks up the compressed data, e.g.,
by following a pointer 212, 222, 232 1n the leaf IB 210, 220,
230 to the segment VBM 240, which specifies a location
within the segment 250. A file system reads a header at the
specified location, 1dentifies the compression algorithm that
was used to compress the data, and then directs the ILDC
engine to decompress the compressed data using the speci-
fied algorithm.

In at least one embodiment of the current technique, for
example, upon receiving a request to overwrite and/or
update data of data block (Data-D) pointed to by block
pointer 232(a), a determination 1s made as to whether the
data block (Data-D) has been shared among any other file.
Further, a determination 1s made as to whether the size of the
compressed extent (also referred to herein as ““allocation
unit”’) storing contents of Data-D in segment 250 can
accommodate the updated data. Based on the determination,
the updated data 1s written 1n a compressed format to the
compressed extent for Data-D in the segment 250 1nstead of
allocating another allocation unit 1n a new segment.

For additional details regarding the data storage system of
FIGS. 1 and 2, see, for example, U.S. patent application Ser.
No. 15/393,331, filed Dec. 29, 2016, entitled “Managing
Inline Data Compression 1in Storage Systems,”, incorporated
by reference herein 1n 1ts entirety.

It should, however, be noted that an inline deduplication
ecnabled file system having at least some of the above
components may encounter a data mismatch (DMC) sce-
nario when FSR 1s running in background and later there 1s
a FSCK procedure performed in connection with the file
system. The root cause of the DMC relates to ILD FSR
compaction and the mdex (1dx) information related to the
compacted blocks being lost. As discussed above, FSR
refers to a filesystem reorganizer which provides the func-
tionality to reclaim space from the filesystem. Later, 1f the
file system 1s offline because a VBM needs to be rebuilt
(either because of VBM lost write or VBM 1nternal CRC
mismatch), FSCK will rebuild the extents based on the
sequence the data blocks appears in ZipHeader, which 1s not
correct after compaction. This will be described further
below.

FIGS. 3A-3D 1illustrate a more detailed representation of
components that may be included in an embodiment using
the techniques herein. In this particular embodiment, the
figures 1llustrate various stages of managing data storage 1n

a lile system containing components similar to those
described 1n FIG. 2. Turning mitially to FIG. 3A, the figure

illustrates a VBM 310 (referred to as ILC-VBM-I in the
figure) and a segment 320 similar to the corresponding
teatures 1n FIG. 2. However, 1n this particular embodiment,
the figure omits the leal IBs for ease of illustration. The

10

15

20

25

30

35

40

45

50

55

60

65

14

VBM 310 comprises an extent list with each entry in the list
containing offset, weight, and zLen fields. The VBM 310
also comprises an imndex 1n connection with the extent list
(1.e., 1dx: O corresponds to the first entry 1n the extent list,
1dx: 1 corresponds to the second entry in the extent list, etc.).

Additionally, as discussed above, the weight 1n the extent
list for a storage extent reflects a sum, or “total distributed
weight,” of the weights of all block pointers or mapping
pointers (MPs) 1n the file system that point to the associated
storage extent. For example, in this particular embodiment,
the weight field 1n the extent list in the VBM 310 includes
weights of 10 to indicate that one MP points to each of A,
C, D and E. Additionally, the weight field in the extent list
in the VBM 310 includes a weight of 20 to indicate that a
deduplication MP also points to B. It should be understood
that in this particular embodiment the oflset-B comprises a
weight 20 to indicate a deduplication MP B1 1s deduplicated
to oifset-B. The zLen describes the length of the compressed
area 1n the segment 320 (e.g., zLen=length(ZipHeader+
SHA+Data)).

In this particular embodiment, the segment 320 comprises
a ZipHeader and a digest (SHA) to enable 1t to maintain
extra data describing the compressed data. For example, as
discussed above, the ZipHeader may contain information
about the size of the compressed data, the compression
method 1t used, the CRC {for the validation of header, etc.
The digest (SHA) may represent a fingerprint of original
uncompressed allocation unit (AU) to enable the system to
judge 11 AUs have the same data and can be deduplicated. As
illustrated, the segment 320 comprises 5 AU compressed
and written together. For example, the “A” AU 1s com-
pressed and represented by ZipH-A+SHA-A+Data-A. The
other 4 AUs are also similarly represented in the figure.

The VBM 310 also comprises a bitmap 1n a VBM header
to assist with a rebuild. In at least one embodiment, a
D-bitmap having 12 bits 1s included 1n a VBM header with
cach bit representing whether an extent has been mvolved
with deduplication (1.e., there 1s some MP deduplication to
this extent). The D-bitmap i the VBM header assists the
FSCK to detect any extent uniquely owned by MPs with
same oilset stored in the extent such that the FSCK can pick
up and do reconnect of these MPs. For those extents with
d-bit map 1n D-bitmap, the FSCK will not reconnect any of
these MPs because any MP associated with any possible
oflset could be a candidate to map to this extent. As a result,
the FSCK will have no choice but to mark them as all BAD
since the FSCK can’t distinguish who should point to which
extent.

Additionally, 1n some embodiments, another bitmap may
be used in IB’s BMD which 1s a region bitmap. In at least
one embodiment, a bit 1s set in the bitmap when there 1s an
MP being written and this MP 1s deduplicated to some
extent. In one embodiment, the bitmap describes for mul-
tiple occurrences ol one or more parts of the file system
block whether the respective one or more parts are associ-
ated with deduplication. For example, the bitmap may be 16
bits, each bit tracking 64 MPs. As a result, the FSCK may
be able to safely convert appropriate MPs to holes (e.g., a
hole may be a file system block address that have not be
written yet or a block address that has been written before
but later truncated by the user) 11 the bits 1n the region bitmap
are not set but leave those MPs as BAD (e.g., BAD MP is
set by file system due to some unrecoverable situations, any
user read to these BAD MP will be returned with I/O error
(file system still online), any user write to the BAD MP
won’t matter since i1t will overwrite the MP with a new block
address) for which region the bit has not been set.

US 11,003,547 B2

15

For additional details regarding the bitmap and the said
use of the bitmap, see, for example, U.S. patent application
Ser. No. 15/887,068, filed Feb. 2, 2018, entitled “METHOD,
APPARATUS AND COMPUTER PROGRAM PRODUCT
FOR MANAGING DATA INCONSISTENCIES IN FILE
SYSTEMS”, and U.S. patent application Ser. No. 16/034,
216, filed Aug. 3, 2018, entitled “METHOD, APPARATUS
AND COMPUTER PROGRAM PRODUCT FOR MAN-
AGING DATA STORAGE”, both incorporated by reference
herein 1n their entirety.

FI1G. 3B illustrates another stage in managing data storage
in the file system. In this particular embodiment, the figure
illustrates the layout of VBM 310 and the segment 320 after
truncation to Offset-A, Ofiset-C and Oflset D. In this par-
ticular embodiment, to truncate MP Oflset-A, Offset-C and
Offset D means the appropriate weight fields of the extent
list are set to zero so there 1s no MPs referencing this AU and
the storage can then be freed. It should be understood that
this may happen when a user want to zero-fill the offset-A/
C/D or truncate the file.

FI1G. 3C illustrates another stage in managing data storage
in the file system. In this particular embodiment, the figure
illustrates the layout of VBM 310 and the segment 320 1n
response to the deployment of ILD FSR. In this particular
embodiment, and as illustrated 1n the figure, the ILD FSR
involves FSR compaction and 1s deployed after the trunca-
tion described in the previous figure. Here, the ILD FSR
causes the respective oflset and zLen for A, C and D to be
set to 0 and the data block B and E to be moved to the
beginning of the segment 320 so that the remaining blocks
can be freed. However, for ILD FSR, the VBM list will not
be compacted as ILD requires the VBM list index to remain
the same for each valid element 1n order to avoid a potential
data mismatch (DMC) scenario. For example, 1f the VBM
310 was compacted as part of ILD FSR, the oflset B and
oflset E would correspond to 1dx:0 and 1dx:1, respectiully.
Subsequently,, 11 there was a read from MP Ofiset-B1, the 1dx
in MP-B1 would still be pointing to idx:1 but the said index
would be mapped to data block E after the compaction of the
VBM and the segment 320.

Additionally, the techniques as described herein are con-
figured to avoid another potential DMC scenario caused by
the traditional FSCK approaches to rebuilding VBM after
FSR compaction. As discussed above, 1n this embodiment,
data block B and E are moved to the beginning of the
segment 320 so that the remaining blocks can be freed.
However, the movement of the blocks B and E to the
beginning of the segment 320 results in the loss of 1dx
information related to the blocks B and E. For example, 1f
the file system 1s put oflline to rebuild the VBM (e.g., VBM
lost write or VBM 1ternal CRC mismatch), the traditional
FSCK approach would rebuild the extents based on the
sequence that the data blocks appear in ZipHeader. In this
embodiment, the traditional FSCK approach would rebuild
the VBM based on the sequence of data block B and E such
that the oflset B and ofiset E would correspond to 1dx:0 and
1dx:1, respectfully It should be understood that this would
cause a DMC 1n the event there was a read from MP
Ofiset-B1 after the said rebuild as the 1dx in MP-B1 would

still be pomtmg to 1dx:1 but the said index would be mapped
to data block E. The techniques as described in FIG. 3D
solves this potential DMC scenario.

FIG. 3D illustrates another stage 1n managing data stor-
age. In this particular embodiment, the figure illustrates the
layout of VBM 310 and the segment 320 1n response to the
deployment of ILD FSR. In this particular embodiment, the
ILD FSR comprises providing index information in the

10

15

20

25

30

35

40

45

50

55

60

65

16

respective ZipHeaders of the segment 320. Now, 1n the event
that VBM CRC 1s bad, FSCK will rebuild the VBM extents
based on ZipHeader information 1n the segment 320. For
example, a reserved field in ZipHeader may record the 1dx
of the extent 1n VBM related to that particular data block so
that a later FSCK knows which extent slot to put the rebuilt
extent when VBM 1s marked as corrupted.

FIG. 4 shows an example method 400 that may be carnied
out 1n connection with the system 116. The method 400
typically performed, for example, by the software constructs
described 1n connection with FIG. 1, which reside in the
memory 130 of the storage processor 120 and are run by the
processing circuitry/processing unit(s) 124. The various acts
of method 400 may be ordered in any suitable way. Accord-
ingly, embodiments may be constructed 1n which acts are
performed in orders different from that illustrated, which
may include performing some acts simultaneously.

At step 410, recording index information 1n a block-based
segment of a file system, wherein the index information
relates to an extent list in a virtual block map (VBM)
pointing to the block-based segment. At step 420, detecting
an error 1 connection with the VBM. At step 430, 1n
response to detecting the error, rebuilding the VBM based on
the index information.

The foregoing applications and associated embodiments
should be considered as illustrative only, and numerous
other embodiments can be configured using the techniques
disclosed herein, 1n a wide variety of diflerent applications.

It should also be understood that the disclosed techniques,
as described herein, can be implemented at least 1n part 1n
the form of one or more soltware programs stored in
memory and executed by a processor of a processing device
such as a computer. As mentioned previously, a memory or
other storage device having such program code embodied
therein 1s an example of what 1s more generally referred to
herein as a “computer program product.”

The disclosed techniques may be implemented using one
or more processing platforms. One or more of the processing
modules or other components may therefore each run on a
computer, storage device or other processing platform ele-
ment. A given such element may be viewed as an example
of what 1s more generally referred to herein as a “processing
device.”

As noted above, illustrative embodiments disclosed
herein can provide a number of sigmificant advantages
relative to conventional arrangements. It 1s to be appreciated
that the particular advantages described above and else-
where herein are associated with particular illustrative
embodiments and need not be present 1n other embodiments.
Also, the particular types of information processing system
teatures and functionality as 1llustrated and described herein
are exemplary only, and numerous other arrangements may
be used 1n other embodiments.

In these and other embodiments, compute services can be
offered to cloud infrastructure tenants or other system users
as a PaaS offering, although numerous alternative arrange-
ments are possible.

Some 1llustrative embodiments of a processing platform
that may be used to implement at least a portion of an
information processing system comprises cloud infrastruc-
ture including virtual machines implemented using a hyper-
visor that runs on physical infrastructure. The cloud inira-
structure further comprises sets of applications running on
respective ones of the virtual machines under the control of
the hypervisor. It 1s also possible to use multiple hypervisors
cach providing a set of virtual machines using at least one
underlying physical machine. Different sets of wvirtual

US 11,003,547 B2

17

machines provided by one or more hypervisors may be
utilized 1n configuring multiple instances of various com-
ponents of the system.

These and other types of cloud infrastructure can be used
to provide what 1s also referred to herein as a multi-tenant
environment. One or more system components such as data
storage system 116, or portions thereof, are illustratively
implemented for use by tenants of such a multi-tenant
environment.

Cloud infrastructure as disclosed herein can include
cloud-based systems such as AWS, GCP and Microsofit
Azure™, Virtual machines provided in such systems can be
used to implement at least portions of data storage system
116 1n 1illustrative embodiments. The cloud-based systems
can 1nclude object stores such as Amazon™ S3, GCP Cloud
Storage, and Microsolt Azure™ Blob Storage.

In some embodiments, the cloud infrastructure addition-
ally or alternatively comprises a plurality of containers
implemented using container host devices. For example, a
given container of cloud infrastructure illustratively com-
prises a Docker container or other type of LXC. The
containers may run on virtual machines 1 a multi-tenant
environment, although other arrangements are possible. The
containers may be utilized to implement a variety of difler-
ent types of functionality within the devices. For example,
containers can be used to implement respective processing
devices providing compute services of a cloud-based sys-
tem. Again, containers may be used in combination with
other virtualization infrastructure such as virtual machines
implemented using a hypervisor.

Hlustrative embodiments of processing platforms waill
now be described in greater detail with reference to FIGS. 5
and 6. These platforms may also be used to implement at
least portions of other information processing systems 1n
other embodiments.

Referring now to FIG. 5, one possible processing platform
that may be used to implement at least a portion of one or
more embodiments of the disclosure comprises cloud infra-
structure 1100. The cloud infrastructure 1100 1n this exem-
plary processing platform comprises virtual machines
(VMs) 1102-1, 1102-2, . . . 1102-L implemented using a
hypervisor 1104. The hypervisor 1104 runs on physical
infrastructure 1105. The cloud infrastructure 1100 further
comprises sets ol applications 1110-1, 1110-2, . . . 1110-L
running on respective ones of the virtual machines 1102-1,
1102-2, . .. 1102-L under the control of the hypervisor 1104.

The cloud infrastructure 1100 may encompass the entire
given system or only portions of that given system, such as
one or more of client, servers, controllers, or computing
devices 1n the system.

Although only a single hypervisor 1104 1s shown 1n the
embodiment of FIG. §, the system may of course include
multiple hypervisors each providing a set of wvirtual
machines using at least one underlying physical machine.
Different sets of virtual machines provided by one or more
hypervisors may be ufilized in configuring multiple
instances of various components of the system.

An example of a commercially available hypervisor plat-
form that may be used to implement hypervisor 1104 and
possibly other portions of the system 1n one or more embodi-
ments of the disclosure 1s the VMware® vSphere™ which
may have an associated virtual infrastructure management
system, such as the VMware® vCenter™. As another
example, portions of a given processing platform 1n some
embodiments can comprise converged inirastructure such as
VxRail™, VxRack™, VxBlock™, or Vblock® converged

infrastructure commercially available from VCE, the Virtual

10

15

20

25

30

35

40

45

50

55

60

65

18

Computing Environment Company, now the Converged
Platform and Solutions Division of Dell EMC of Hopkinton,
Mass. The underlying physical machines may comprise one

or more distributed processing platforms that include storage
products, such as VNX™ and Symmetrix VMAX™, both

commercially available from Dell EMC. A varniety of other
storage products may be utilized to implement at least a
portion of the system.

In some embodiments, the cloud infrastructure addition-

ally or alternatively comprises a plurality of containers
implemented using container host devices. For example, a
given container of cloud infrastructure illustratively com-
prises a Docker container or other type of LXC. The
containers may be associated with respective tenants of a
multi-tenant environment of the system, although in other
embodiments a given tenant can have multiple containers.
The containers may be utilized to implement a variety of
different types of functionality within the system. For
example, containers can be used to implement respective
compute nodes or cloud storage nodes of a cloud computing
and storage system. The compute nodes or storage nodes
may be associated with respective cloud tenants of a multi-
tenant environment of system. Containers may be used in
combination with other virtualization infrastructure such as
virtual machines implemented using a hypervisor.

As 1s apparent from the above, one or more of the
processing modules or other components of the disclosed
systems may each run on a computer, server, storage device
or other processing platform element. A given such element
may be viewed as an example of what 1s more generally
referred to herein as a “‘processing device.” The cloud
infrastructure 1100 shown 1n FIG. 5 may represent at least
a portion of one processing platform.

Another example of a processing platiorm 1s processing
plattorm 1200 shown i FIG. 6. The processing platform
1200 1n this embodiment comprises at least a portion of the
given system and includes a plurality of processing devices,
denoted 1202-1, 1202-2, 1202-3, . . . 1202-K, which com-
municate with one another over a network 1204. The net-
work 1204 may comprise any type ol network, such as a
wireless area network (WAN), a local area network (LAN),
a satellite network, a telephone or cable network, a cellular
network, a wireless network such as WiF1 or WiMAX, or
various portions or combinations of these and other types of
networks.

The processing device 1202-1 in the processing platiorm
1200 comprises a processor 1210 coupled to a memory
1212. The processor 1210 may comprise a miCroprocessor,
a microcontroller, an application specific itegrated circuit
(ASIC), a field programmable gate array (FPGA) or other
type ol processing circuitry, as well as portions or combi-
nations of such circuitry elements, and the memory 1212,
which may be viewed as an example of a “processor-
readable storage media” storing executable program code of
one or more software programs.

Articles of manufacture comprising such processor-read-
able storage media are considered 1illustrative embodiments.
A given such article of manufacture may comprise, for
example, a storage array, a storage disk or an integrated
circuit containing RAM, ROM or other electronic memory,
or any ol a wide variety of other types of computer program
products. The term “article of manufacture” as used herein
should be understood to exclude transitory, propagating
signals. Numerous other types of computer program prod-
ucts comprising processor-readable storage media can be
used.

US 11,003,547 B2

19

Also included 1n the processing device 1202-1 1s network
interface circuitry 1214, which 1s used to interface the
processing device with the network 1204 and other system
components, and may comprise conventional transceivers.

The other processing devices 1202 of the processing
plattorm 1200 are assumed to be configured in a manner
similar to that shown for processing device 1202-1 1n the
figure.

Again, the particular processing platform 1200 shown 1n
the figure 1s presented by way of example only, and the given
system may include additional or alternative processing
platiorms, as well as numerous distinct processing platforms
in any combination, with each such platform comprising one
or more computers, storage devices or other processing
devices.

Multiple elements of system may be collectively imple-
mented on a common processing platform of the type shown
in FIG. 5 or 6, or each such element may be implemented on
a separate processing platform.

For example, other processing platforms used to imple-
ment 1llustrative embodiments can comprise diflerent types
of virtualization infrastructure, in place of or 1n addition to
virtualization infrastructure comprising virtual machines.
Such virtualization infrastructure 1llustratively includes con-
tainer-based virtualization infrastructure configured to pro-
vide Docker containers or other types of LXCs.

As another example, portions of a given processing plat-
form 1n some embodiments can comprise converged infra-

structure such as VxRail™, VxRack™, VxBlock™, or

Vblock® converged infrastructure commercially available
from VCE, the Virtual Computing Environment Company,
now the Converged Platform and Solutions Division of Dell
EMC.

It should therefore be understood that 1n other embodi-
ments different arrangements of additional or alternative
clements may be used. At least a subset of these elements
may be collectively implemented on a common processing
platform, or each such element may be implemented on a
separate processing platiorm.

Also, numerous other arrangements ol computers, serv-

ers, storage devices or other components are possible 1n the
information processing system. Such components can com-
municate with other elements of the information processing
system over any type of network or other communication
media.

As idicated previously, components of an information
processing system as disclosed herein can be implemented at
least 1n part in the form of one or more software programs
stored 1n memory and executed by a processor of a process-
ing device.

It should again be emphasized that the above-described
embodiments are presented for purposes of illustration only.
Many variations and other alternative embodiments may be
used. For example, the disclosed techniques are applicable
to a wide variety of other types of information processing
systems, compute services platiorms, etc. Also, the particu-
lar configurations of system and device elements and asso-
ciated processing operations illustratively shown in the
drawings can be varied 1n other embodiments. Moreover, the
various assumptions made above 1n the course of describing,
the illustrative embodiments should also be viewed as
exemplary rather than as requirements or limitations of the
disclosure. Numerous other alternative embodiments within
the scope of the appended claims will be readily apparent to
those skilled 1n the art.

10

15

20

25

30

35

40

45

50

55

60

65

20

What 1s claimed 1s:

1. A method, comprising:

recording 1index information 1n a block-based segment of

a file system, wherein the index information relates to
an extent list in a virtual block map (VBM) pointing to
the block-based segment;
detecting an error 1n connection with the VBM, wherein
detecting the error includes analyzing a bitmap includ-
ing one or more bits, wherein each bit represents an
extent having been mvolved with deduplication; and

in response to detecting the error, rebuilding the VBM
based on the index information.

2. The method as claimed 1n claim 1, wherein the index
information 1s recorded 1n respective headers of data stored
in storage extents of the block-based segment.

3. The method as claimed 1n claim 1, wherein the index
information describes the order of respective entries in the
extent list.

4. The method as claimed 1n claim 1, wherein the index
information describes the positioning of respective entries 1n
the extent list that include location information relating to
storage extents in the block-based segment.

5. The method as claimed 1n claim 1, wherein the record-
ing of the index mformation 1s part of a filesystem reorga-
nizer (FSR) compaction that compacts the block-based
segment.

6. The method as claimed 1n claim 1, wherein the rebuild-
ing of the VBM 1s part of a file system checking (FSCK)
procedure.

7. An apparatus, comprising:

memory; and

processing circuitry coupled to the memory, the memory

storing instructions which, when executed by the pro-

cessing circuitry, cause the processing circuitry to:

record index information in a block-based segment of
a file system, wherein the index information relates
to an extent list 1n a virtual block map (VBM)
pointing to the block-based segment;

detect an error in connection with the VBM, wherein
detecting the error includes analyzing a bitmap
including one or more bits, wherein each bit repre-
sents an extent having been 1mvolved with dedupli-
cation; and

in response to detecting the error, rebuild the VBM
based on the index information.

8. The apparatus as claimed 1n claim 7, wherein the index
information 1s recorded 1n respective headers of data stored
in storage extents of the block-based segment.

9. The apparatus as claimed 1n claim 7, wherein the mndex
information describes the order of respective entries in the
extent list.

10. The apparatus as claimed in claim 7, wherein the
index information describes the positioning of respective
entries 1 the extent list that include location information
relating to storage extents in the block-based segment.

11. The apparatus as claimed i claim 7, wherein the
recording of the index information 1s part of a filesystem
reorganizer (FSR) compaction that compacts the block-
based segment.

12. The apparatus as claimed in claim 7, wherein the
rebuilding of the VBM 1s part of a file system checking
(FSCK) procedure.

13. A computer program product having a non-transitory
computer readable medium which stores a set of instruc-
tions, the set of nstructions, when carried out by processing
circuitry, causing the processing circuitry to perform a
method of:

US 11,003,547 B2
21 22

recording index information in a block-based segment of
a file system, wherein the index information relates to
an extent list in a virtual block map (VBM) pointing to
the block-based segment;

detecting an error 1in connection with the VBM, wherein 5

detecting the error includes analyzing a bitmap includ-
ing one or more bits, wherein each bit represents an
extent having been involved with deduplication; and

in response to detecting the error, rebuilding the VBM

based on the index information. 10

14. The computer program product as claimed 1n claim
13, wherein the index imnformation 1s recorded in respective
headers of data stored 1n storage extents of the block-based
segment.

15. The computer program product as claimed in claim 15
13, wherein the index information describes the order of
respective entries 1n the extent list.

16. The computer program product as claimed 1n claim
13, wherein the index information describes the positioning
of respective entries 1n the extent list that mnclude location 20
information relating to storage extents in the block-based
segment.

17. The computer program product as claimed 1n claim
13, wherein the recording of the index information is part of
a filesystem reorgamizer (FSR) compaction that compacts 25
the block-based segment.

18. The computer program product as claimed in claim
13, wherein the rebuilding of the VBM 1s part of a file
system checking (FSCK) procedure.

% x *H % o 30

	Front Page
	Drawings
	Specification
	Claims

