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SELF-LEARNING DISASTER-AVOIDANCE
AND RECOVERY

BACKGROUND

The present mvention relates in general to information
technology (IT) and in particular to preemptive disaster-
avoidance and disaster-recovery technologies that predict
and attempt to mitigate catastrophic failures before those
tailures occur.

One goal of disaster-avoidance and recovery technologies
1s to reduce downtime resulting from the occurrence of a
catastrophic event. This goal can be expedited when it 1s
possible to predict which devices and inirastructure compo-
nents are most likely to fail.

Real-world systems and networks, however, may sufler
from enormous numbers of vulnerabilities that vary con-
tinuously as devices, network connections, and inirastruc-
ture components undergo software and hardware updates,
and as network topologies, business practices, component
dependencies, and configuration settings evolve during daily
operations.

In such cases, known disaster-avoidance and recovery
technologies cannot reliably identify vulnerabilities or pre-
dict points of failure by merely automating or scaling up
human methods of system maintenance.

SUMMARY

Embodiments of the present invention include disaster-
avoildance systems, methods, and computer program prod-
ucts for self-learning disaster-avoidance and disaster-recov-
ery. Each component of a data center 1s associated with a
table of conditions that are represented as rules of a knowl-
edgebase. Each condition associates a possible characteristic
of a component with a degree of vulnerability to failure that
1s incurred by the occurrence of the characteristic, and also
identifies remedial steps that can be taken to preemptively
avoild the occurrence of a failure when the characteristic
exists or to mitigate adverse eflects of an actual occurrence
of such a failure. The knowledgebase 1s trained by artifi-
cially intelligent machine-learning technology that derives
inferences from historical logs and current extrinsic data to
associate component characteristics with component failures
and with remedial procedures. When a component’s total

degree of vulnerability exceeds a predefined threshold value,
the system assembles a subset of the remedial steps associ-
ated with the component mto a remedial procedure. The
system then directs downstream systems or administrators to
implement the procedure in order to avoid a failure or
mitigate the adverse eflects of an unavoidable failure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a cloud computing environment according,
to an embodiment of the present invention.

FIG. 2 depicts abstraction model layers according to an
embodiment of the present invention.

FIG. 3 shows the structure of a computer system and
computer program code that may be used to implement a
method for selt-learning disaster-avoidance and recovery in
accordance with embodiments of the present invention.

FIG. 4 shows the topology of a system for seli-learming
disaster-avoidance and recovery in accordance with embodi-
ments of the present invention.
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FIG. 5A 1s a flow chart that shows seli-learning and
predictive steps of a method for self-learning disaster-
avoidance and recovery, 1n accordance with embodiments of
the present mnvention.

FIG. 5B 1s a tflow chart that shows automated recovery
procedures 1mtiated by a seli-learning disaster-avoidance
and recovery system, in accordance with embodiments of
the present mnvention.

DETAILED DESCRIPTION

One goal of disaster-avoidance and disaster-recovery
technologies 1s to reduce downtime resulting from the
occurrence ol a catastrophic event. This goal 1s more fea-
sible when 1t 1s possible to predict which devices, applica-
tions, and infrastructure components are most vulnerable to
imminent failure. Such predictions can help a disaster-
avoidance mechanism perform preemptive remedial proce-
dures to prevent a disaster from occurring and, 1f a disaster
does occur, can facilitate eflorts to diagnose the cause of the
tailure and select a recovery plan.

Specific disaster predictions are not generally possible in
real-world computing environments, which comprise large
numbers of vulnerabilities that vary continuously as devices,
network connections, and infrastructure components
undergo software and hardware updates, as network topolo-
gies, business practices, and configuration settings evolve
during the course of daily operations, and as extrinsic
factors, such as adverse weather conditions and power
outages create new vulnerabilities 1n real time.

In these and other cases, 1t may not be possible to reliably
identily vulnerabilities or to anticipate points of failure
through manual methods of hands-on system administration
or by merely upscaling or automating known human meth-
ods. It 1s thus difficult for both human and automated
system-maintenance entities to plan for or eflectively pre-
allocate money, manpower, and other resources to disaster-
mitigation strategies.

Embodiments of the present invention address this prob-
lem with practical applications that comprise seli-learning
systems, methods, and computer program products that
improve current disaster-avoidance and disaster-recovery
technologies. These self-learning embodiments comprise
logical components, including a machine-trainable disaster-
avoildance knowledgebase (DKB), a vulnerability-profiling
Predictive Profiler 405 application, and a set of component-
characteristics tables (CTTs) that intelligently identify and
quantize vulnerabilities. These components allow embodi-
ments to predict failures and to automatically assemble and
implement seli-healing avoidance and recovery procedures.

Unlike conventional, reactive, disaster-recovery strategies
that seek to minimize the damage caused by a catastrophic
event, embodiments of the present invention comprise pre-
dictive mechanisms that reduce or eliminate downtime by
preemptively reducing the chance or severity of a cata-
strophic event. These preemptive procedures are generally
targeted to particularly vulnerable components and require
less cost, less downtime, and fewer resources than would
normally be required to migrate an entire failed environment
to a contingency datacenter while specialists i1solate, diag-
nose, and remedy an unexpected failure.

It 1s to be understood that although this disclosure
includes a detailed description on cloud computing, 1imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
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conjunction with any other type of computing environment
now known or later developed.

Cloud computing 1s a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
ellort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand seli-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops; and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There 1s
a sense ol location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specity
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale 1n. To the consumer,
the capabilities available for provisioning oiten appear to be
unlimited and can be purchased 1n any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer 1s to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer 1s to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer 1s to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer 1s able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
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infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure i1s operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or ofl-premises.

Community cloud: the cloud infrastructure i1s shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or ofl-premises.

Public cloud: the cloud infrastructure 1s made available to
the general public or a large industry group and 1s owned by
an organization selling cloud services.

Hybrd cloud: the cloud infrastructure 1s a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
1zed or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment 1s service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing 1s
an infrastructure that includes a network of interconnected
nodes.

Retferring now to FIG. 1, illustrative cloud computing
environment 50 1s depicted. As shown, cloud computing
environment 50 includes one or more cloud computing
nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 34A, desktop computer 54B,
laptop computer 34C, and/or automobile computer system
54N may communicate. Nodes 10 may communicate with
one another. They may be grouped (not shown) physically or
virtually, 1n one or more networks, such as Private, Com-
munity, Public, or Hybrid clouds as described hereinabove,
or a combination thereof. This allows cloud computing
environment 50 to ofler infrastructure, platforms and/or
soltware as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
1s understood that the types of computing devices 54A-N
shown 1n FIG. 1 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50
can communicate with any type of computerized device over
any type ol network and/or network addressable connection
(e.g., using a web browser).

Referring now to FIG. 2, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG.
1) 1s shown. It should be understood 1n advance that the
components, layers, and functions shown in FIG. 2 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
soltware components. Examples of hardware components
include: mainirames 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking
components 66. In some embodiments, soltware compo-
nents 1nclude network application server software 67 and
database software 68.

Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities may be
provided: wvirtual servers 71; virtual storage 72; virtual
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networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients

73.

In one example; management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption ol these resources. In one example, these
resources may include application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement 1s
anticipated 1n accordance with an SLA.

Workloads layer 90 provides examples of functionality
tor which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation 91;
soltware development and lifecycle management 92; virtual
classroom education delivery 93; data analytics processing
94; transaction processing 95; and orchestration of complex
methods and systems for self-learning disaster-avoidance
and recovery 96.

Aspects of the present mnvention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, microcode,
etc.) or embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module,” or “system.”

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for

causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an
clectronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
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guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program 1nstructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface 1 each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage i a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present imvention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine 1nstructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written 1 any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, 1n order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart i1llustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks 1n the
flowchart 1llustrations and/or block diagrams, can be 1mple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
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instructions which implement aspects of the function/act
specified 1 the tlowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series ol operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the mstructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified 1n the tflow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams 1n the Figures 1llustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block 1n the flowchart
or block diagrams may represent a module, segment, or
portion ol instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted 1n the Figures. For example, two blocks shown in
succession may, 1n fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations ol special purpose hardware and computer
instructions.

FIG. 3 shows a structure of a computer system and
computer program code that may be used to implement a
method for selt-learning disaster-avoidance and recovery in
accordance with embodiments of the present invention. FIG.
3 refers to objects 301-315.

In FIG. 3, computer system 301 comprises a processor
303 coupled through one or more I/O Interfaces 309 to one
or more hardware data storage devices 311 and one or more
I/0 devices 313 and 315.

Hardware data storage devices 311 may include, but are
not limited to, magnetic tape drives, fixed or removable hard
disks, optical discs, storage-equipped mobile devices, and
solid-state random-access or read-only storage devices. 1/0O
devices may comprise, but are not limited to: mput devices
313, such as keyboards, scanners, handheld telecommuni-
cations devices, touch-sensitive displays, tablets, biometric
readers, joysticks, trackballs, or computer mice; and output
devices 315, which may comprise, but are not limited to
printers, plotters, tablets, mobile telephones, displays, or
sound-producing devices. Data storage devices 311, input
devices 313, and output devices 315 may be located either
locally or at remote sites from which they are connected to
I/O Interface 309 through a network interface.

Processor 303 may also be connected to one or more

memory devices 305, which may include, but are not limited
to, Dynamic RAM (DRAM), Static RAM (SRAM), Pro-

grammable Read-Only Memory (PROM), Field-Program-
mable Gate Arrays (FPGA), Secure Digital memory cards,
SIM cards, or other types of memory devices.

At least one memory device 305 contains stored computer
program code 307, which 1s a computer program that
comprises computer-executable instructions. The stored
computer program code includes a program that implements
a method for self-learning disaster-avoidance and recovery
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in accordance with embodiments of the present invention,
and may 1mplement other embodiments described 1n this
specification, including the methods illustrated i FIGS.
1-5A. The data storage devices 311 may store the computer
program code 307. Computer program code 307 stored in
the storage devices 311 1s configured to be executed by
processor 303 via the memory devices 305. Processor 303
executes the stored computer program code 307.

In some embodiments, rather than being stored and
accessed from a hard drive, optical disc or other writeable,
rewriteable, or removable hardware data-storage device 311,
stored computer program code 307 may be stored on a static,
nonremovable, read-only storage medium such as a Read-
Only Memory (ROM) device 305, or may be accessed by
processor 303 directly from such a static, nonremovable,
read-only medium 305. Similarly, in some embodiments,
stored computer program code 307 may be stored as com-
puter-readable firmware 305, or may be accessed by pro-
cessor 303 directly from such firmware 305, rather than from
a more dynamic or removable hardware data-storage device
311, such as a hard drive or optical disc.

Thus the present mvention discloses a process for sup-
porting computer infrastructure, integrating, hosting, main-
tamning, and deploying computer-readable code into the
computer system 301, wherein the code 1n combination with
the computer system 301 1s capable of performing a method
for seli-learning disaster-avoidance and recovery.

Any of the components of the present invention could be
created, integrated, hosted, maintained, deployed, managed,
serviced, supported, etc. by a service provider who offers to
facilitate a method for self-learning disaster-avoidance and
recovery. Thus the present invention discloses a process for
deploying or integrating computing inirastructure, compris-
ing integrating computer-readable code into the computer
system 301, wheremn the code in combination with the
computer system 301 is capable of performing a method for
seli-learming disaster-avoidance and recovery.

One or more data storage units 311 (or one or more
additional memory devices not shown in FIG. 3) may be
used as a computer-readable hardware storage device having
a computer-readable program embodied therein and/or hav-
ing other data stored therein, wherein the computer-readable
program comprises stored computer program code 307.
Generally, a computer program product (or, alternatively, an
article ol manufacture) of computer system 301 may com-
prise the computer-readable hardware storage device.

In embodiments that comprise components of a net-
worked computing infrastructure, a cloud-computing envi-
ronment, a client-server architecture, or other types of
distributed platforms, functionality of the present invention
may be implemented solely on a client or user device, may
be implemented solely on a remote server or as a service of
a cloud-computing platform, or may be split between local
and remote components.

While 1t 1s understood that program code 307 for a method
for self-learning disaster-avoidance and recovery may be
deploved by manually loading the program code 307
directly into client, server, and proxy computers (not shown)
by loading the program code 307 into a computer-readable
storage medium (e.g., computer data storage device 311),
program code 307 may also be automatically or semi-
automatically deployed into computer system 301 by send-
ing program code 307 to a central server (e.g., computer
system 301) or to a group of central servers. Program code
307 may then be downloaded into client computers (not
shown) that will execute program code 307.
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Alternatively, program code 307 may be sent directly to
the client computer via e-mail. Program code 307 may then
either be detached to a directory on the client computer or
loaded 1nto a directory on the client computer by an e-mail
option that selects a program that detaches program code
307 into the directory.

Another alternative 1s to send program code 307 directly
to a directory on the client computer hard drive. If proxy
servers are configured, the process selects the proxy server
code, determines on which computers to place the proxy
servers’ code, transmits the proxy server code, and then
installs the proxy server code on the proxy computer.
Program code 307 1s then transmitted to the proxy server and
stored on the proxy server.

In one embodiment, program code 307 for a method for
self-learning disaster-avoidance and recovery 1s integrated
into a client, server and network environment by providing
for program code 307 to coexist with software applications
(not shown), operating systems (not shown) and network
operating systems software (not shown) and then installing
program code 307 on the clients and servers 1n the environ-
ment where program code 307 will function.

The first step of the aforementioned integration of code
included 1n program code 307 1s to 1identily any software on
the clients and servers, including the network operating
system (not shown), where program code 307 will be
deployed that are required by program code 307 or that work
in conjunction with program code 307. This identified
soltware includes the network operating system, where the
network operating system comprises software that enhances
a basic operating system by adding networking features.
Next, the solftware applications and version numbers are
identified and compared to a list of software applications and
correct version numbers that have been tested to work with
program code 307. A software application that 1s missing or
that does not match a correct version number 1s upgraded to
the correct version.

A program instruction that passes parameters from pro-
gram code 307 to a software application 1s checked to ensure
that the mstruction’s parameter list matches a parameter list
required by the program code 307. Conversely, a parameter
passed by the software application to program code 307 1s
checked to ensure that the parameter matches a parameter
required by program code 307. The client and server oper-
ating systems, including the network operating systems, are
identified and compared to a list of operating systems,
version numbers, and network soiftware programs that have
been tested to work with program code 307. An operating,
system, version number, or network software program that
does not match an entry of the list of tested operating
systems and version numbers 1s upgraded to the listed level
on the client computers and upgraded to the listed level on
the server computers.

After ensuring that the software, where program code 307
1s to be deployed, 1s at a correct version level that has been
tested to work with program code 307, the integration 1s
completed by 1nstalling program code 307 on the clients and
SErvers.

Embodiments of the present invention may be imple-
mented as a method performed by a processor of a computer
system, as a computer program product, as a computer
system, or as a processor-performed process or service for
supporting computer inirastructure.

FIG. 4 shows the topology of a system for seli-learming
disaster-avoidance and recovery in accordance with embodi-
ments of the present invention. FIG. 4 shows items 400-420

and 4000.
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Disaster-avoidance system 400 monitors the vulnerabili-
ties of components of computing environment 4000 as those
vulnerabilities vary over time. When a predictive profiler
module 405 of disaster-avoidance system 400 1dentifies that
a particular set of components of environment 4000 has
become unacceptably vulnerable to a catastrophic failure,
the predictive profiler 405 initiates a prophylactic action that
attempts to avert the disastrous event before the failure
occurs. I unable to prevent the failure, profiler module 405
automatically launches a procedure intended to mitigate the
downtime and other adverse effects of the failure.

Profiler 405 knows how to select and perform these
procedures through machine-learning training procedures
that update disaster-avoidance knowledgebase (DKB) 410,
DKB 410 associates characteristics of components 1in envi-
ronment 4000 with weightings or scores that each identify a
relative degree of vulnerability indicated by the current state
ol a particular characteristic.

DKB 410 1s populated and updated by the profiler 405,
which retrieves, analyzes, and organizes data retrieved from
extrinsic data sources 415, such as weather records and
information about past power outages, and from archival
records 420 of computing environment 4000. These archival
records may include combinations of any recorded data
items related to past equipment failures, catastrophic events,
or other conditions that resulted 1n downtime or resource
loss. For example, this data can include past component
failure or error-condition logs; internal and external condi-
tions associated with a past failure; hardware, software, or
network configurations associated with a past failure;
backup and data-retention procedures; performance data;
component dependencies; system-load or usage patterns; or
correlations among these or any other relevant recorded
parameters.

The inferential rules and tables comprised by knowledge-
base 410 also facilitate inferences that allow the addition of
a new component-characteristic table (CCT) to the knowl-
edgebase 410 when a new component 1s added to computing
environment 4000. As described below, each CC'T associates
characteristics of a component of environment 4000 with
that component’s degree of vulnerability to failure. Each
CCT 1s an 1nstance of a template table, and each template
table describes one class of component. A template or
instance can thus be created for a newly added component
based on information retrieved from external sources 415
and archival records 420.

If, for example, the retrieved information indicates that
the newly added component 1s similar to a component that
1s already represented by an existing CCT based on an
existing template described in knowledgebase 410, the sys-
tem can use this information to create a new 1nstance CCT
of that same template to characterize the newly added
component. Similarly, 1f the retrieved information indicates
that the newly added component shares some characteristics
with a component that 1s already represented by an existing
CCT based on an existing template, but 1s different than the
existing component 1n other ways, the artificially intelligent
seli-learning system may use this iformation to create a
new template for the new class of component, and to then
generate an instance of the new template that characterizes
the newly added component.

Knowledgebase 410 may also identily maitigation steps
associated with characteristics enumerated by a CCT tem-
plate, and these steps may be 1dentified as a function of the
retrieved data. For example, i1 a template associated with a
storage-device component identifies a characteristic “failure
to complete backup,” retrieved archival records 420 may
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indicate that, 1n the past, system administrators responded to
similar failures by: 1) updating the backup software; 11)
running a hardware diagnostic on the storage device; and 111)
attempting to manually retrieve and back up any data that 1s
still accessible from the storage device. The system would
then store a mitigation plan 1n knowledgebase 410 that
associates these three steps with the “failure to complete
backup” characteristic in each instance of the storage-device
template. As described 1 FIG. 5, 11 a storage device asso-
ciated with an 1nstance of this template 1s determined to have
become more vulnerable to failure because of the existence
ol the backup-failure condition, the system will automati-
cally integrate these steps imto a preemptive mitigation
procedure 1mtended to prevent such an outage.

The archival records 420 may be stored 1n a database that
1s continuously updated in real-time by maintenance and
logging functions of components of the computing environ-
ment 4000. Similarly, the external data sources 415 com-
prise live, real-time, continuously updated, or frequently
updated data feeds that are updated when an extrinsic
condition changes.

If, for example, archival records database 420 receives
new information from environment 4000 indicating that a
sustained period of sub-zero temperatures has in the past
resulted 1 failure of a particular network infrastructure,
profiler 405 would in response “train” knowledgebase 410,
through known techniques of machine-learning technology,
to establish (or strengthen) a correlation between sustained
sub-zero temperatures and an 1ncrease 1n the infrastructure’s
vulnerability to failure. If a weather forecast captured from
an extrinsic weather-feed data source 415 then predicts three
days of sub-zero temperatures, profiler 405 would update
knowledgebase 410 with the revised weather information.
The knowledgebase 410 would then, based on 1ts recent
training, identify an increased vulnerability of the infrastruc-
ture component to failure, Profiler 405 would respond by
initiating an appropriate preemptive action, such as migrat-
ing critical data to diflerent network infrastructure before a
tailure can occur.

These procedures will be described 1n greater detail in
FIG. §.

Knowledgebase 410 stores or accesses information that
may be represented as a set of component-characteristics
tables (C1Ts) that intelligently identily and quantize vul-
nerabilities of components and combinations of components
of computing environment 4000. For example, 1 a local-
area network (LAN) of environment 4000 contains three
servers, twelve user workstations, a storage device, and 16
network mterfaces, knowledgebase 410 could contain infor-
mation from which wvulnerabilities of the LAN may be
interred.

This document represents each CT'T as a linear table for
pedagogical reasons, but al-world embodiments of knowl-
edgebase 410 may store this information 1n any format and
structure known 1n the fields of expert systems, artificial
intelligence, or machine-learning. For example, each row of
a CTT may be stored as a vector that also includes links or
pointers to other vectors or to particular elements of other
vectors. The examples and embodiments presented 1n this
document should not be construed to limit the present
invention to purely tabular CT'Ts because the present inven-
tion 1s flexible enough to accommodate any sort of 1mple-
mentation of knowledgebase 410 or the CT'Ts contained or
referenced by knowledgebase 410.

In the current example, characteristics and vulnerabilities
of a particular type of LAN server (arbitrarily labeled as a
“001”-type server) may be stored as information enumerated
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in an instance of a SERVERO001 component-characteristic
table. Table 1 shows a template for such a SERVERO0OI
component-characteristics table. In this example, a server
may be categorized as a 001-type server if the server i1s
associated with a certain set of characteristics that an imple-
menter believes related to a degree of vulnerability to
outages or other types of failures.

TABLE 1
Vulner-
Type 001 Server Characteristic Status ability
1 Physical BareMetal Yes 1
2 Virtual Machine Yes 0
3 High availability enabled Yes 2
4 High availability enabled No 1
5 Backup configured Yes 0
6 Backup configured No 5
7 At-risk days #_of _days # of days
8 Consecutive failures during daily backups #_of days #_of days
9 Consecutive failures during weekly backups #_of days # of days
10 Consecutive failures during monthly backups #_of_days # of days
11 Consecutive failures during vearly backups  #_of_days # of days
12 Current image backup (OS) Yes 0
13 Current image backup (OS) No 1
14 DR plan exists Yes 0
15 DR plan exists No 5
16 DR with offsite tape Yes 0
17 DR with offsite tape No 1
18 DR with Storage replication Yes 0
19 DR with Storage replication No 2
20 DR exercises executed periodically Yes 0
21 DR exercises executed periodically No 3
22 Local disk (OS) Yes 0
23 Local disk (OS) No 1
24 External storage device (OS-boot from SAN) Yes 0
25 External storage device (OS-boot from SAN) No 1
26 Monitoring/alerting enabled Yes 0
27 Monitoring/alerting enabled No 1
28 Supported/entitled HW config Yes 0
29 Supported/entitled HW config No 1
30 Supported/entitled SW config Yes 0
31 Supported/entitled SW config No 1
32 DataCenter location Local
33 DataCenter location cloud
34 Weather vuln High 2
35 Weather vuln Medium 1
36 Weather vuln Low 0
37 Regional service outage High 2
38 Regional service outage Medium 1
39 Regional service outage Low 0
40 Third copy of backup data offsite Yes 0
41 Third copy of backup data offsite No 1
42 Security Vulnerability Yes 3
43 Security Vulnerability No 0

In the Table 1 example of a CCT template, the first column
identifies a characteristic or parameter of 001-type servers,
the Status column 1dentifies a value of the characteristic, and
the Vulnerability column identifies a weight, magnitude, or
Vulnerability value that i1s proportional to a degree of
vulnerability that may be incurred by a 001 server if a
corresponding characteristic assumes a corresponding value.

For example, Table 1, row 1 specifies that 1t a 001-type
server 1S a physical bare-metal system, then the server’s
degree of vulnerability to outages 1s increased by one unit.
Row 2 states that 1f the server 1s a virtual machine, the
server’s degree of vulnerability does not change. Similarly,
row 8 specifies that 1f attempts to perform a daily backup of
a 001-type server has repeatedly failed, that server’s degree
of vulnerability increases by a number of units equal to the
number of consecutive days of failures. Rows 14-15 specily
that 11 no disaster-recovery plan exists for the 001-type
server described by the table, then that server’s degree of
vulnerability increases by five units.
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Embodiments of the present invention are not limited to
the characteristics shown 1n Table 1. The present invention
1s flexible enough to accommodate tables that comprise any
set of characteristics that an implementer believes are asso-

14

ciated 1in dependency relationships. For example, if a first
template characterizes vulnerabilities of a first type of stor-
age device and a second template characterizes vulnerabili-
ties of a type of storage-device network interface that

ciated with a component’s vulnerability to failure. These ° provides access to the first type of storage device, a third
tables may also comprise any set of characteristics that, as template could combine contents of the first two 1n order to
described below and 1 FIG. 5, are associated with a characterize vulnerabilities of a storage-device/interface
component’s vulnerability to failure by inferences generated subsystem. Because a dependency between an instance of
by profiler 405, from archival records 420, from extrinsic the storage device and an instance of the network interface
data sources 415, from information previously stored in 1Y increases the device’s vulnerability to an outage when the
knowledgebase 410, or through any other cognitive or interface suflers an outage, the combined template provides
inferential means known 1n the art. a more robust characterization of the storage device’s over-
Certain embodiments may initially populate a table tem- all vulnerabaility.
plate or an instance with characteristics selected by an In this way, the CCTs stored 1n knowledgebase 410 may
implementer with expert knowledge of the component or L pe organized into tree structures, where the leat of each tree
environment 4000 associated with the ter plate or instance, 1s a MI instance that identifies vulnerabilities of a single
and then continuously revise the template or instance 1n component of environment 4000 and the root of the highest-
response to machine-learning traiming sessions or as a func- level tree 1s a CCT 1nstance that characterizes vulnerabilities
tion of inferences automatically generated by profiler 403, of the entire computing environment 4000.
from archival records 420, from extrinsic data sources 415, °°  Table 2 is an instance of a CCT template that comprises
from 1nformation previously stored 1in knowledgebase 410, vulnerabilities of a particular instance of a type-001 server
or through any other cognitive or inferential means known named S001-01. This example does not include every row of
in the art. Table 1, since some rows identity mutually exclusive con-
A template may be created and stored in knowledgebase ditions. Instead, Table 2 shows the actual state of each
410 for any component or set of components 1n computing 2> characteristic of server S001-01 and sums the degrees of
environment 4000. For example, 1n addition to the template vulnerability of each characteristic to provide a total vul-
shown 1n Table 1 for type-001 servers, knowledgebase 410 nerability for server S001-01.
TABLE 2
Component  Characteristic Status  Vulnerability
1 S001-01 High availability enabled Ves 0
2 S001-01 Backup yes 0
3 S001-01 At-risk days 0 0
4 S001-01 Consecutive failures for daily backups 0 0
5 S001-01 Consecutive failures for weekly backups 0 0
6 S001-01 Consecutive failures for monthly backups 0 0
7 S001-01 Consecutive failures for yearly backups 0 0
& S001-01 Image backup (OS) Ves 0
9 S001-01 DR 1mmplemented yes 0
10 S001-01 DR with offsite tape yes 0
11 S001-01 DR with Storage replication no 1
12 S001-01 DR exercises executed periodically Ves 0
13 S001-01 Local disk (OS) yes 0
14 S001-01 External storage device (OS-boot from SAN) no 1
15 S001-01 Dual path for SAN access yes 0
16 S001-01 Dual path for Network access yes 0
17 S001-01 Monitoring/alerting enabled Ves 0
18 S001-01 Supported/entitled HW config yes 0
19 S001-01 Supported/entitied SW config yes 0
20 S001-01 DataCenter location local 0
21 S001-01 Weather vuln low 0
22 S001-01 Regional service outage low 0
23 S001-01 Third copy of backup data offsite no 1
24 Vuln KB Vulnerability score for similar environments 2
23 TOTAL S
: 55 : :
could, 1n the current example, store a second template for In this example, Table 2, row 24 contains an entry
002-type servers (where a 001-type server might be a “Vulnerability score for similar environments” not shown 1n
general-purpose application server and a 002-type server the template of Table 1. In some embodiments, profiler 405
might be a network-attached-storage (NAS) server), a third may automatically create and add this entry to a CCT
template for network-interface cards, a fourth template fora , template instance for a specific component when the addi-

first type of user workstation, a fifth template for a second
type of user workstation, and a sixth template for storage
devices.

Embodiments may also create and store 1n knowledgebase

410 templates and instances of CCTs for combinations of 65

components. Such templates and instances may be espe-
cially useful when characterizing components that are asso-

tional vulnerability information may be inferred from exist-
ing mformation stored in knowledgebase 410. For example,
if servers of type 001 have been found in the past to fail with
regularity when 1nstalled 1 other computer environments,
this entry may increase the overall vulnerability score of

type-001 servers 1n the current environment 4000. This step
1s described 1n greater detail in FIG. 5.
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Table 2, row 25 contains a total vulnerability score that 1s
derived as a function of the vulnerabilities 1dentified 1n rows
1-24. In the example of Table 2, this total vulnerability of
server S001-01 1s dertved by merely adding the vulnerabili-
ties identified 1n rows 1-24. Other embodiments may use
more complex statistical or other computational methods
known 1n the art, as desired by an implementer, to derive a
total vulnerability score 1n row 25. In the example of Table
2, server S001-01 has a total vulnerability score, or Vulner-
ability Profile of 35, indicating that server S001-01 1s more
vulnerable to failure than are any servers (or other compo-
nents or combinations of components) that have scores less
than 5.

Implementers may use any means known 1n the art to
assign scores to characteristics enumerated 1 a CCT. These
scores may be calibrated on any scale desired by an imple-
menter, such as decimal scores capable of varying from 0.0
through 1.0, integer scores that range from 1 through 10, or
nonlinear scores calibrated on a logarithmic scale. In all
cases, eflorts should be made to ensure the relative degrees
of vulnerability identified by each score. For example, all
characteristic associated with a vulnerability value of 3
should represent a potential vulnerability to failure that 1s
greater than that of a characteristic that associated with a
vulnerability of 2.

As FIG. 5 describes 1n greater detail, Vulnerability Pro-
files may be aggregated up the hierarchy of CCT 1nstances
stored 1n or referenced by knowledgebase 410. For example,
a vulnerability score for a small data center that comprises
a network of five servers may be characterized by seven
component-characterization tables (CCTs): one table for
each server, a sixth table that identifies the data center’s
potential vulnerability due to the data center’s physical
location, and a seventh table that identifies vulnerability due
to 1mpending weather conditions. These tables may be
supplemented by an eighth wvulnerability score that 1s
inferred from archival information stored 1n knowledgebase
410. This eighth score might be computed as a function of
the number or frequency of past outages associated with
similar data centers and identified by the knowledgebase
410.

The resulting Vulnerability Profile for the entire data
center 1s shown 1n Table 3.

TABLE 3

Component Vulnerability

SERVERI

SERVER?2

SERVER3

SERVER4

SERVERS

Data Center Location
Weather Data

Risk KB

— b = W B ]

]
|

Total

In the example of Table 3, vulnerability scores are
assigned to the five servers, where each score 1s derived
from the summed score computed in each server’s CCT. The
data center location score and weather data score are derived
from location and weather CC'Ts or from inferences made by
profiler 405 from information receirved from extrinsic data
sources 415 or retrieved from archival records 420.

The data center’s total vulnerability score of 27 1s then
straightforwardly computed as the sum of each component’s
vulnerability score, the data center’s location-related and
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weather-related vulnerabilities, and additional vulnerabili-
ties inferred from knowledgebase 410°s previously trained
contents. These scores may all vary continuously as the
knowledgebase 410 1s continuously updated by profiler 405
in response to continuously updated extrinsic data (such as
updated weather forecasts) and continuous updates to the
archival record database 420 (such as reports of new failures
ol servers similar to servers SERVER1-SERVERS or com-
puting environments that have other characteristics similar
to that of the small data center).

FIG. 5A 1s a flow chart that illustrates self-learning and
predictive steps of a method for self-learning disaster-
avoidance and recovery, 1in accordance with embodiments of
the present invention. FIG. SA shows steps 500-525, which
may be performed by embodiments that incorporate the
platforms and logical components shown i FIGS. 1-4.

In step 500, knowledgebase 410 undergoes training via
machine-learning or other types of cognitive training meth-
ods known 1n the art, such as submitting to knowledgebase
410 a machine-learning corpus from which the knowledge-
base 410 may infer characteristics and behaviors of compo-
nents of computing environment 4000, correlations between
certain conditions and a component’s degree of vulnerability
to failure, and preemptive steps that may be taken to avoid
failure when an unacceptable degree of vulnerability exists.

In some embodiments, predictive profiler 405 submits
corpora to knowledgebase 410 and performs other machine-
learning tasks associated with using machine-learning tech-
nology to train a self-learning application. In other embodi-
ments, some or all of these operations can be offloaded to a
distinct training module that works in conjunction with other
components of a machine-learning function to train knowl-
edgebase 410.

One goal of these operations 1s to train knowledgebase
410 to mtelligently associate a relative degrees of vulner-
ability to failure which specific characteristics or conditions
of components and combinations of components comprised
by environment 4000. As described in FIG. 4, knowledge-
base 410 contains, or contains links to, component-charac-
teristic tables (CCTs) that each assign a relative degree of
vulnerability to characteristics and conditions of these com-
ponents and combinations. Each CCT 1s an imstance of a
template table that enumerates characteristics from which
may be inferred a particular class of component’s degrees of
vulnerability. Each relevant component, or combination of
components, of environment 4000 1s characterized by an
instance, comprised 1n knowledgebase 410, of one of these
templates.

Knowledgebase 410 also contains rules and additional
information used by the system to refine each CCT and
template and to 1dentily steps capable of preemptively
averting a disaster when a particular type of vulnerability
rises to an unacceptable level, or capable of mitigating the
results of such a disaster 1f the disaster cannot be avoided.

The training materials from which knowledgebase 410
learns to generate and refine these templates, CCTs, rules,
and additional information may include:

Archival records 410 that relate past failures and correc-
tive procedures with particular characteristics, condi-
tions, configurations, or states of specific components.
These records may be collected by profiler 403, or by
another module of the disaster-avoidance system or of
the machine-learning system, from logs and other
records generated by any monitoring mechanism
known 1n the art. These records 410 could, for example,
comprise system logs, application error logs, audit
trails, transaction logs, or reports and repair tickets
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generated by maintenance and administration person-
nel. Archival records 410 may also be received from
other computing environments that share characteris-
tics with environment 4000 or that comprise compo-
nents and configurations similar to those comprised by 5
environment 4000.
Extrinsic data sources 4135 that allow knowledgebase 410
to associate extrinsic conditions with relative degrees
of vulnerability to failure and corrective actions taken
to preempt or mitigate the eflects of a failure. For 10
example, extrinsic data sources 415 may comprise
weather records that can be correlated with archival
records 410 1n order to infer that the occurrence of a
tropical storm increases the vulnerability of a particular
type of data center to site-wide power outages. 15
Extrinsic sources 415 may also include industry stan-
dards, conventions, product literature, and third-party
reference materials. For example, 1f a vendor publishes
a mean-time-between-faillures (MTBE) specification
for a particular model computer, knowledgebase 410 20
could infer from this information a relative vulnerabil-
ity of a server based on that model. In a more nuanced
example, 11 the vendor publishes MTBF figures for the
model at different operating temperatures, a CCT tem-
plate for that model may comprise multiple character- 25
istics that each identily a degree of vulnerability at a
different ambient temperature.

At the conclusion of step 500, knowledgebase 410 will
contain an 1nitial set of CCT templates that each associate a
set of vulnerability-related characteristics and corresponding 30
preemptive or corrective procedures with a type ol compo-
nent or combination of components of environment 4000.
These templates are described 1n greater detail 1n FIG. 4 and
Table 1.

In step 503, profiler 405, 1n conjunction with knowledge- 35
base 410, associates a degree of vulnerability with each CCT
characteristic 1dentified 1n step 500. These associations may
be made by any means known 1n the art, such as by means
ol mierential methods of cognitive computing or by means
ol a machine-learning mechanism by which the knowledge- 40
base 410 learns to estimate relative vulnerabailities based on
past events. For example, a CCT of a particular class of
server may contain a “25% average CPU utilization™ char-
acteristic and a “50% average CPU utilization™ characteris-
tic. IT archival records 420 indicate that servers averaging 45
50% utilization have 1n the past had double the failure rate
of servers averaging 25% utilization, then 1n this step, the
“23% average CPU utilization™ characteristic could be
assigned a degree of vulnerability equal to 2 and the “350%
average CPU utilization™ characteristic would be assigned a 50
degree of vulnerability equal to 4.

As described 1n FIG. 4, any sort of scale may be used to
specily relative degrees of vulnerability, as desired by an
implementer. For example, the above “25% average CPU
utilization™” characteristic could, 1t desired by an imple- 55
menter, have been associated with a vulnerability of 0 and
the “50% average CPU utilization” characteristic associated
with a vulnerability of 1. In all cases, a higher degree of
vulnerability must indicate that a characteristic has been
demonstrated 1n the past to have a greater degree of corre- 60
lation with failures or outages.

If desired by an implementer, degrees of vulnerability
comprised by a CCT template, or by an instance of a
template, may be further weighted as a function of the
criticality of a particular component or of a particular class 65
of component. For example, 1f a critical server 1s based on
the same hardware as a noncritical public workstation, and
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both devices are known to have identical failure rates,
vulnerabilities 1dentified 1n the cnitical server’s CCT tem-
plate or instance may be more heavily weighted than those
ol the noncritical workstation. This weighting difference can
indicate the greater impact, or more extensive ripple eflects,
of a critical-component failure. Furthermore, i the overall
vulnerabilities of both the critical and noncritical compo-
nents are elements of a data center’s overall vulnerability,
the difference 1mn weighting would better represent the fact
that the entire data center 1s more vulnerable to an outage 11
the critical server fails than it would be 1 a mere workstation
fails.

It 1s not essential that these degrees of vulnerability be
iitially estimated with great precision. As new mformation
becomes available over time from extrinsic data sources 415
and archival records 420, profiler 405 will continue to
fine-tune the knowledgebase CCTs through additional train-
ing. Even 1f the mitial degrees of vulnerability selected 1n
step 305 do not provide suflicient predictive value, the
system’s self-learning nature will ensure that the system
over time learns to more accurately predict failures and
outages and to identily effective steps to take when a failure
1s determined to be imminent.

In step 510, profiler 405 retrieves listings of the compo-
nents to be monitored by the system. These listings may be
retrieved by any means known in the art, including extract-
ing the lists from sources similar to those that provide
archival records 420, using knowledgebase rules to select
components that fall into component classes that have in the
past been most often tracked or that have in the past been
associated with characteristics that correlate 1n significant
ways with relevant degrees of vulnerability to failure.

In some cases, the system may not have access to a
complete set of data required for a specific component or for
a specific template. In such cases, the cognitive aspects of
the system, relying on knowledgebase rules inferred from
previously retrieved data and on similarities among existing
CCT templates and instances, may attempt to guess at the
missing data. For example, 1f a new storage device oflers a
capacity that 1s an order of magnitude greater than any
storage device currently installed 1n environment 4000, there
may be no CCT template for such a device in the knowl-
edgebase 410. In such a case, the system might derive a new
CCT template for that new device from a template that 1s the
closest match for the device. Although some characteristics
of the previous template may not apply to the new device,
the new template would be similar enough to provide a
starting point for a template that 1s more specific to the new
device. As with other CCT templates in knowledgebase 410,
this new template would be 1teratively refined over time in
step 5235, based on real-world feedback. Because of the
system’s self-learming capabilities, the system will eventu-
ally learn how to properly characterize the new device and
how to accurately associate vulnerabilities to each charac-
teristic.

At the conclusion of step 510, the system will have
created an instance of a component-characteristics table for
cach component, or combination of components, of envi-
ronment 4000 that an implementer wishes to track. In some
embodiments, the system may have created an instance of a
component-characteristics table for each component, or
combination of components, ol environment 4000 that the
system recognizes as being relevant contributors to a data
center’s vulnerability to outages. When making such as
recognition, the system would rely on experience gained
through ongoing machine-learning traiming sessions based
on extrinsic and archival mformation 4135-420. This expe-
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rience allows the system to continuously learn how to
identify which components and conditions are capable of
contributing to a data center’s vulnerability to outages.

Each CCT instance will have been tailored to match the
actual configuration or condition of the component, or
combination of components, associated with the instance.
This may be done 1mn a manner described in FIG. 4 and
shown 1n Tables 1 and 2. For example, 1 a CCT template for
print-server components contains two entries “Available
ports” and “No available ports,” each instance of this
template that 1s associated with a specific, real-world print
server running in computing environment 4000 would con-
tain only one of the two entries, depending on the server’s
number of available ports.

In step 5135, profiler 405 or another module of the seli-
learning disaster-avoidance system derives a vulnerability-
profile value of each CCT instance populated in step 515.
Each value may be derived by merely summing the degrees
of vulnerability enumerated 1n the table instance, or may be
derived by more mnvolved computational procedures, as
desired by an implementer. This procedure 1s discussed 1n
greater detail 1n FIG. 4 and 1llustrated by Tables 2 and 3.

This procedure may be performed 1n a hierarchical man-
ner. For example, 1 knowledgebase 410 comprises a CCT
instance for each of six servers hosted by a particular LAN,
a CCT 1nstance for the network infrastructure of the LAN,
and twelve CCT 1nstances for user devices attached to the
L AN infrastructure, these nineteen CCTs will each be asso-
ciated with a corresponding Vulnerability Profile value that
specifles a corresponding component’s relative degree of
vulnerability to failure. If the knowledgebase 410 also
contains a CC'T instance that specifies the relative degree of
vulnerability of the entire LAN, that LAN instance may
enumerate the nineteen server, infrastructure, and user-
device Vulnerability Profile values. In this example, the
Vulnerability Profile value of the LAN instance would be
derived as the sum of the nineteen component values.

A single Vulnerability Profile value of an enftire data
center or other computing environment 4000 may be derived
in this manner. By summing Vulnerability Profile values of
various components of environment 4000 into Vulnerability
Profile values of combinations of components 1n a hierar-
chical manner, a top-level Vulnerability Profile value that

comprises vulnerability values of the entire environment
4000 may be represented as a single number.

In step 520, profiler 405 1dentifies steps that may be taken
to avoid or mitigate the effects of failures associated with
cach characteristic or vulnerability identified by a CCT
instance i the knowledgebase 410. For example, if a
RAID-storage CCT template identifies a characteristic “bad
sectors 1dentified,” profiler 405 may i1dentify steps that
should be taken when this characteristic 1s identified as
being present 1n any instance of the RAID-storage CCT.
Such steps might include running diagnostics or replacing a
failing disk.

These steps may be selected as part of a procedure to be
performed aiter a failure as occurred, in order to mitigate the
adverse eflects of the failure. In other cases, these steps may
be selected as part of a procedure to be performed when the
condition 1s detected, so as to prevent a failure from occur-
ring.

In some cases, these steps may be mvoked only when
several conditions occur contemporaneously. For example,
rather than performing preemptive steps simply because bad

sectors have been identified at some location in the RAID
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array, a knowledgebase rule may require steps to be per-
formed only when bad sectors are i1dentified on more than
one disk of the array.

In yet other cases, a knowledgebase rule may require steps
to be taken when a total Vulnerability Profile value of a
component exceeds a predefined threshold value. In 1nitial
value of this threshold may be chosen at will by an 1imple-
menter and later iteratively refined through continuing
machine-learning procedures as the self-learning disaster-
avoildance system continues to retrieve and process records
from extrinsic sources 415 and archival records 420.

In some embodiments, these recovery rules and steps are
stored 1n knowledgebase 410. In other embodiments, they
may be stored in any other repository accessible to the
seli-learning disaster-avoidance system, or represented 1in
any manner known in the art of artificially intelligent,
cognitive, or self-learning application software.

In step 520, profiler 405 continues to perform previous
steps of the method of FIG. 5A, 1n response to continuing,
receipt of updated information from extrinsic data sources
415 and archival records 420. For example, 11 weather
conditions are considered to be factors aflecting an environ-
ment 4000°s vulnerability to outages, profiler 405 would
continue to update CCT templates and instances that enu-
merate degrees of vulnerability as functions of specific
weather events. In such a case, 1f new reports of power
outages due to snow accumulations greater than six inches
are retrieved as archival records 420, profiler 405 might
increase the degrees of vulnerability of snow-related char-
acteristics listed 1n certain CCT templates and instances.
This revision would retlect the increased likelithood of an
outage should a major snowstorm occur. Similarly, 1f
updated data recerved from an extrinsic source 415 suggests
that a major snowstorm 1s imminent, CCT 1instances based
on templates that comprise snow-related characteristics
would be revised to add those characteristics.

This revision procedure 1s performed indefinitely, ensur-
ing that the system continues to learn from continually
updated extrinsic sources 415 and archival records 420.
Over e, the knowledgebase 410, and the CCT templates,
CCT 1instances, mitigating or preemptive steps, and rules
become more closely rooted in real-world conditions, occur-
rences, and behaviors. The system thus eventually learns to
accurately i1dentily the existence of an unacceptable degree
of vulnerability to failure. And when such an unacceptable
degree 1s 1dentified, the hierarchical nature of the compo-
nent-characteristic tables stored i1n knowledgebase 410
allows the system to quickly identily the particular compo-
nents, and the particular characteristics of those components,
that are contributing to the data center’s vulnerability.

This procedure continues until either: an outage, failure,
or other proscribed event occurs; or 11) a Vulnerability
Profile exceeds a predefined threshold value. In eitther case,
the system 1initiates the remedial mitigating or recovery
procedure of FIG. 5B.

At the conclusion of the method of FIG. SA, profiler 405
(or other modules of the preemptive disaster-avoidance
system) will have populated knowledgebase 410 with a set
of component-characteristic templates that each i1dentify:

1) a set of possible characteristics of a particular class of
components comprised by a computing environment 4000,
for a combination of such components, or for an extrinsic
factor like a weather condition:

11) a relative degree of vulnerability to failure or outage
that 1s associated with each characteristic, and that repre-
sents an increase in such vulnerability associated with the
existence of a characteristic; and




US 10,997,015 B2

21

111) an optional set of steps that may be taken when a
relative degree of vulnerability of a component or compo-
nents, or a sum of such degrees of vulnerability, exceed a
predetermined threshold value.
Knowledgebase 410 also contains, or 1dentifies locations
of, component-characteristic tables (CC'ls) each derived as
an 1nstance of one template. Each instance characterized the
state of an actual component or combination of components
comprised by environment 4000. Because some template
characteristics are mutually exclusive, each CCT 1nstance
contains a subset of the characteristics enumerated 1n the
corresponding template.
Knowledgebase 410 also contains a set of rules that allow
the cognitive predictive profiler 405 of disaster-avoidance
system 400 to create, update, and otherwise manage the
CCT templates and instances. For example:
when a component 1s removed from environment 4000,
profiler 405 deletes that component’s table instance
from the knowledgebase 410;

when a component 1s added to environment 4000, profiler
403 selects an appropriate template, creates an instance
of the template for that component, and populates the
instance with characteristics relevant to the component;

if no template 1s an exact match for the component class
of a newly added component, profiler 403 intelligently
determines which template i1dentifies a set of charac-
teristics most similar to characteristics of the new
component and creates a new template and 1nstance for
that component; and

when inter-component dependencies, network topologies,

or component hierarchies suggest that a vulnerability of
a particular component of combination of components
1s a function of vulnerabilities of other components,
profiler 405 creates a new template for the higher-level
particular component or combination that aggregates,
sums, or otherwise combines vulnerabilities of the
other components.

Profiler 4035 1s a self-learming system that 1s continuously
trained by methods of machine-learning to perform these
and similar tasks related to maintaining knowledgebase 410.
As new information arrives from extrinsic data sources 415
and from archival records 420, profiler 405 uses methods of
artificial intelligence to infer semantic meaning from the
arriving information, from which profiler 405 gains further
experience in determining: which characteristics of a com-
ponent are relevant to that component’s vulnerability to
tailure; the relative degree of vulnerability incurred by the
existence of a particular characteristic or condition; which
components are composed of combinations of other com-
ponents or are 1n dependency relationships with other com-
ponents; minimum threshold Vulnerability Profile values for
characteristics, components, or combinations of components
capable of mtiating the recovery procedure of FIG. 5A;
which steps are most ellective 1n preemptively avoiding a
tailure associated with the existence of a certain character-
1stic or combination of characteristics; which steps are most
cllective 1n mitigating the adverse eflects of a failure that
cannot be avoided; which extrinsic factors increase a com-
ponent’s vulnerability to failure; and how to weight each
degree of vulnerability associated with the existence of a
characteristic or condition so as to most accurately predict
when to take steps to avoid or mitigate the effects of an
outage or failure.

As profiler 405 continues to learn to more accurately
perform these operations, profiler 405 continuously updates
knowledgebase 410°s templates, instances, and rules to
better represent the profiler 405°s improved understanding.
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This creates a cognitive, self-learning disaster-avoidance
system 400 that becomes increasingly eflective over time 1n
its efforts to eliminate or mitigate outages and other failures
in computing environment 4000.

FIG. 5B 1s a flow chart that shows automated recovery
procedures 1mtiated by a seli-learning disaster-avoidance
and recovery system, in accordance with embodiments of
the present invention. FIG. SB shows steps 550-570, which
may be performed by embodiments that incorporate the
platforms and logical components shown 1n FIGS. 1-4.

In step 350, disaster-avoidance system 400 or a predictive
profiler module 405 of system 400 detects that either: 1) a
failure or outage of a component or components tracked by
a CCT of knowledgebase 410 has occurred; or 11) a Vulner-
ability Profile of a CCT 1nstance in knowledgebase 410 has
exceeded a predefined threshold value, indicating a compo-
nent or components of environment 4000 has incurred an
unacceptable degree of vulnerability to failure.

In step 355, profiler 405 responds to the detection of step
550 by identifying which components or component char-
acteristics have failed or have generated the unacceptable
level of vulnerability. This step may be performed through
conventional means, such as by detecting that a variable
related to a Vulnerability Profile value has exceeded a
certain magnitude, by cognitive means in which profiler 405
intelligently recognizes (based on past training of profiler
405 and on rules and other information stored in knowl-
edgebase 410) which component or components have failed
or have triggered the vulnerability detection, or through
other means known 1n the art.

In step 560, profiler 405 retrieves recovery steps associ-
ated with each characteristic or component 1dentified 1n step
560. These steps may either identify a procedure for pre-
emptively averting an imminent failure or outage 1dentified
by the high degree of vulnerability detected in step 550, or
may 1dentify a procedure for mitigating the adverse eflects
of an existing outage. As mentioned above, these steps may
have previously been stored in, or associated with, one or
more component-characteristic table (CCT) templates or
instances.

Profiler 405 then, using rules and procedures 1dentified 1n
knowledgebase 410, assembles the retrieved recovery steps
into an overall procedure capable of addressing the failure or
vulnerability detected 1n step 350. In one example, profiler
405 1n step 500 detects an unacceptable Vulnerability Profile
value for a workstation, where the unacceptable value is the
sum of degrees of vulnerability associated with four char-
acteristics of the workstation. Each of these characteristics
identifies three recovery steps mtended to address a corre-
sponding characteristic. In this case, profiler 405, using rules
and inferences stored in knowledgebase 410, intelligently
assembles and condenses those four three-step procedures
into a ten-step procedure capable of correcting the undesir-
able conditions and preventing the at-risk workstation from
failing.

In step 570, disaster-avoidance system 400 directs various
recovery technologies to implement the recovery plan
assembled 1n step 565. These technologies may include
automated diagnostic systems, resiliency systems capable of
backing up, copying, or moving at-risk data, and alert
systems configured to report conditions to downstream
human or automated administration and maintenance enti-
ties.

At the conclusion of the method of FIG. 5B, disaster-
avoildance system records details of the condition detected 1n
step 550, the causes of the condition identified 1n step 3355,
the recovery procedure assembled 1n step 365, and the result
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of the implementation of the recovery procedure. These
details will then be used to further train the profiler 405 and
update the knowledgebase 410 during the next iteration of
step 525.

Examples and embodiments of the present imvention
described 1n this document have been presented for 1llus-
trative purposes. They should not be construed to be exhaus-
tive nor to limit embodiments of the present invention to the
examples and embodiments described here. Many other
modifications and variations of the present invention that do
not depart from the scope and spirit of these examples and
embodiments will be apparent to those possessed of ordinary
skill in the art. The terminology used in this document was
chosen to best explain the principles underlying these
examples and embodiments, in order to 1illustrate practical
applications and technical improvements of the present
invention over known technologies and products, and to
enable readers of ordinary skill 1n the art to better understand
the examples and embodiments disclosed here.

What 1s claimed 1s:
1. A disaster-avoidance system comprising a processor, a
memory coupled to the processor, and a computer-readable
hardware storage device coupled to the processor, the stor-
age device containing program code configured to be run by
the processor via the memory to implement a method for
self-learning disaster-avoidance and recovery, the method
comprising:
associating a first component of a data center with a first
table of conditions,
where a first condition of the first table 1dentifies a first
possible characteristic, a first degree of vulnerability,
and a first set of remedial steps,
where the first degree of vulnerability specifies a degree
of vulnerability to failure of the first component,
where the first degree of vulnerability 1s incurred when
the first component exhibits the first characteristic,
and
where the first set of remedial steps specifies an opera-
tion intended to mitigate the first degree of vulner-
ability;
determining that a sum of all degrees of vulnerability
identified by the first table exceeds a predetermined
vulnerability threshold of the first component,
where exceeding the predetermined wvulnerability
threshold indicates that a remedial procedure must be
performed to address a possible failure of the first
component;
responding to the determiming by 1nserting into the reme-
dial procedure a subset of all remedial steps 1dentified
by conditions of the first table of conditions; and

directing downstream components to perform the reme-
dial procedure.

2. The system of claim 1, where the remedial procedure
1s intended to preemptively avoid an occurrence of the
possible failure.

3. The system of claim 1, where the remedial procedure
1s intended to mitigate an adverse eflect of an occurrence of
the possible failure.

4. The system of claim 1,

where the first condition 1s defined by an artificially

intelligent machine-learning component of the system

that infers:

an association between an occurrence of the first char-
acteristic and the first degree of vulnerability, and

an indication that the first set of remedial steps 1is
capable of reducing the first degree of vulnerability.
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5. The system of claim 4,
where the inferences are inferred from received sets of
information that identify:
an association linking a past occurrence of the first
condition with a past failure of a component that 1s
in a same category as the first component, and

a result of performing the first set of remedial steps 1n
response to the past failure.
6. The system of claim 5, further comprising:
a knowledgebase that comprises rules representing con-
ditions comprised by the first table,
where the knowledgebase rules are refined by the
machine-learning component 1n response to receiv-
ing each set of the received information, and

where the system learns from the knowledgebase
refinements how to more accurately avoid failures of
the first component and how to more eflectively
mitigate adverse eflects of an actual failure of the
first component.

7. The system of claim 6, further comprising:

detecting a previously undetected component that 1s 1n the
same category as the first component;

responding to the detecting by defining a copy of the first
table that contains values of conditions that character-
1ze a current state of the previously undetected com-
ponent; and

adding rules to the knowledgebase representing the copy
of the first table.

8. The system of claim 6, further comprising:

detecting a previously undetected component that 1s in a
category distinct from any category of any component
associated with a rule of the knowledgebase;

responding to the detecting by determining that the first
table comprises a greater number of characteristics
germane to the previously undetected component than
does any other table represented by rules of the knowl-
edgebase;

defining a partial copy of the first table that contains
values of the germane conditions that characterize a
current state of the previously undetected component;
and

adding rules to the knowledgebase representing the partial
copy of the first table.

9. The system of claim 5, where the received sets of

information comprise:

historical records that identily: previous component fail-
ures, characteristics of previously failing components,
and results of remedial processes undertaken to address
the previous component failures.

10. The system of claim 5, where the received sets of

information comprise:

current information recerved from extrinsic sources from
which may be inferred an occurrence, or a likelihood of
an occurrence, of an extrinsic condition comprised by
the first table of conditions,
where a characteristic identified by the extrinsic con-

dition 1s an environmental characteristic that 1s
extrinsic to the first component and that 1s associated
with an extrinsic degree of vulnerability to failure of
the first component.

11. A method for seli-learning disaster-avoidance and

recovery, the method comprising:

a disaster-avoidance system associating a first component
of a data center with a first table of conditions,
where a first condition of the first table 1dentifies a first

possible characteristic, a first degree of vulnerability,
and a first set of remedial steps,
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where the first degree of vulnerability specifies a degree
of vulnerability to failure of the first component,
where the first degree of vulnerability 1s incurred when
the first component exhibits the first characteristic,
and
where the first set of remedial steps specifies an opera-
tion mtended to mitigate the first degree of vulner-
ability;
the system determiming that a sum of all degrees of
vulnerability 1dentified by the first table exceeds a
predetermined vulnerability threshold of the first com-
ponent,
where exceeding the predetermined vulnerability
threshold indicates that a remedial procedure must be
performed to address a possible failure of the first
component;
the system responding to the determiming by 1nserting into
the remedial procedure a subset of all remedial steps
identified by conditions of the first table of conditions;
and
the system directing downstream components to perform
the remedial procedure.
12. The method of claim 11,
where the first condition 1s defined by an artificially
intelligent machine-learning component of the system
that infers:
an association between an occurrence of the first char-
acteristic and the first degree of vulnerability, and
an indication that the first set of remedial steps 1s
capable of reducing the first degree of vulnerability,
where the inferences are inferred from received sets of
information that identify:
an association linking a past occurrence of the first
condition with a past failure of a component that
1s 1n a same category as the first component, and
a result of performing the first set of remedial steps
in response to the past failure.
13. The method of claim 12, further comprising:
a knowledgebase that comprises rules representing con-
ditions comprised by the first table,
where the knowledgebase rules are refined by the
machine-learning component 1n response to receiv-
ing each set of the received information, and
where the system learns from the knowledgebase
refinements how to more accurately avoid failures of
the first component and how to more eflectively
mitigate adverse eflects of an actual failure of the
first component.
14. The method of claim 13, where the received sets of
information comprise:
historical records that identify: previous component fail-
ures, characteristics of previously failing components,
and results of remedial processes undertaken to address
the previous component failures.
15. The method of claim 13, where the received sets of
information comprise:
current information received from extrinsic sources from
which may be inferred an occurrence, or a likelihood of
an occurrence, of an extrinsic condition comprised by
the first table of conditions,
where a characteristic 1dentified by the extrinsic con-
dition 1s an environmental characteristic that 1is
extrinsic to the first component and that 1s associated
with an extrinsic degree of vulnerabaility to failure of
the first component.
16. The method of claim 11, further comprising providing
at least one support service for at least one of creating,
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integrating, hosting, maintaining, and deploying computer-
readable program code in the computer system, wherein the
computer-readable program code 1n combination with the
computer system 1s configured to implement the associating,
the determining, the responding, and the directing.

17. A computer program product, comprising a first
computer-readable storage medium having a computer-read-
able program code stored therein, the program code config-
ured to be executed by a disaster-avoidance system com-

prising a processor, a memory coupled to the processor, and
a second computer-readable storage medium coupled to the

processor, the storage medium containing program code

configured to be run by the processor via the memory to
implement a method for seli-learning disaster-avoidance and

recovery, the method comprising:

the disaster-avoidance system associating a first compo-
nent of a data center with a first table of conditions,
where a first condition of the first table 1dentifies a first
possible characteristic, a first degree of vulnerability,
and a first set of remedial steps,
where the first degree of vulnerability specifies a degree
of vulnerability to failure of the first component,
where the first degree of vulnerability 1s incurred when
the first component exhibits the first characteristic,
and
where the first set of remedial steps specifies an opera-
tion intended to mitigate the first degree of vulner-
ability;
the system determining that a sum of all degrees of
vulnerability 1dentified by the first table exceeds a
predetermined vulnerability threshold of the first com-
ponent,
where exceeding the predetermined vulnerability
threshold indicates that a remedial procedure must be
performed to address a possible failure of the first
component;
the system responding to the determining by 1nserting into
the remedial procedure a subset of all remedial steps
identified by conditions of the first table of conditions;
and
the system directing downstream components to perform
the remedial procedure.
18. The computer program product of claim 17,
where the first condition 1s defined by an artificially
intelligent machine-learning component of the system
that infers:
an association between an occurrence of the first char-
acteristic and the first degree of vulnerability, and
an indication that the first set of remedial steps 1is
capable of reducing the first degree of vulnerability,
where the inferences are inferred from received sets of
information that identify:
an association linking a past occurrence of the first
condition with a past failure of a component that
1s 1n a same category as the first component, and
a result of performing the first set of remedial steps
in response to the past failure.
19. The computer program product of claim 18, further

60 comprising;

65

a knowledgebase that comprises rules representing con-

ditions comprised by the first table,

where the knowledgebase rules are refined by the
machine-learning component 1n response to receiv-
ing each set of the received information, and

where the system learns from the knowledgebase
refinements how to more accurately avoid failures of
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the first component and how to more eflectively
mitigate adverse eflects of an actual failure of the
first component.
20. The computer program product of claim 18, where the
received sets of information comprise: 5
historical records that identify: previous component fail-
ures, characteristics of previously failing components,
and results of remedial processes undertaken to address
the previous component failures; and
current information received from extrinsic sources from 10
which may be inferred an occurrence, or a likelithood of
an occurrence, of an extrinsic condition comprised by
the first table of conditions,
where a characteristic identified by the extrinsic con-
dition 1s an environmental characteristic that 1s 15
extrinsic to the first component and that 1s associated
with an extrinsic degree of vulnerability to failure of

the first component.
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