US010992998B2

a2 United States Patent (10) Patent No.: US 10,992,998 B2

Bergstrom 45) Date of Patent: *Apr. 27,2021
(54) METHOD AND SYSTEM FOR ADAPTIVE (56) References Cited
VIRTUAL BROADCASTING OF DIGITAL N
CONTENT U.S. PATENT DOCUMENTS
. _ . 6,275,470 Bl 8/2001 Riccuulli
(71) Applicant: SI}(SSTEM73, INC., Christiansted, VI 7388.841 B2 6/2008 Shao et al,
(US) (Continued)
(72) Inventor: I(V:[g;tlas Bergstrom, Puerto de la Cruz FOREIGN PATENT DOCUMENTS
| o CN 101039262 A 9/2007
(73) Assignee: SYSTEM?73, INC., Christiansted, VI CN 101547347 A 9/2009
(US) (Continued)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 0 days.

OTHER PUBLICATTIONS

Zhu et al.; “Dynamic Overlay Routing based on Available Band-

This patent is subject to a terminal dis- width Estimation: A Simulation Study”, Computer Networks; (2006);
claimer. vol. 50; pp. 742-762. (Year: 2006).*
(Continued)

(21) Appl. No.: 16/250,570
Primary Examiner — Omar S Parra

(22) Filed: Jan. 17, 2019 (74) Attorney, Agent, or Firm — Mayer Brown LLP
(65) Prior Publication Data (57) ABSTRACT
US 2019/0158930 A1 May 23, 2019 The virtual broadcast system of the present invention opti-
o mizes the routing of digital content among nodes along
Related U.S. Application Data overlay networks that are dynamically reconfigured based
(63) Continuation of application No. 15/678,826, filed on upon forecasts of frequently-changing congestion levels of
Aug. 16, 2017, now Pat. No. 10,225,619, which is a component interconnections within an underlying network.

In the context of delivering streaming video over the Internet

(Continued) to large numbers of concurrent users, the present invention
(51) Int. CL. makes eflicient use of the limited capacity of congested ASN
HO4N 21/647 (2011.01) peering points l:?y employing deep learning techﬁniques. to
HO04L 12/18 (2006.01) forecast congestion levels across those ASN peering points
. | and, based on those forecasts, to optimize the routing of

(Continued)

video content along dynamically reconfigured overlay net-
works. The virtual broadcast system handles unscheduled as
well as scheduled events, streams live as well as pre-
recorded events, and streams those events 1n real time with

(52) U.S. CL
CPC ... HO4N 21/64738 (2013.01); HO4L 12/18
(2013.01); HO4L 12/1886 (2013.01):

(Continued) minimal delay 1n a highly scalable fashion that maintains a
(58) Field of Classification Search consistent QoE among large numbers of concurrent viewers.
None
See application file for complete search history. 22 Claims, 4 Drawing Sheets

ASN A Node — Peering Paint and
A Mode — A Node
Pearing Pomt CONNECTOR

A Node _ w=» 195 Backbooe CONNECTOR

B MNode or B:A Node 100

C nokie

US 10,992,998 B2
Page 2

(60)

(1)

(52)

(56)

2003/0018811
2003/0061619
2005/0015511

Related U.S. Application Data

continuation of application No. 14/848,268, filed on
Sep. 8, 2015, now Pat. No. 9,769,336.

Provisional application No. 62/096,938, filed on Dec.
26, 2014.
Int. CL
HO4L 12/729 (2013.01)
HO4L 12911 (2013.01)
HO4L 12/26 (2006.01)
HO4L 12/24 (2006.01)
HO4L 29/06 (2006.01)
HO4N 21/25 (2011.01)
HO4N 21/61 (2011.01)
HO4L 12/751 (2013.01)
HO4L 12/715 (2013.01)
HO4L 12/501 (2013.01)
HO4L 12/707 (2013.01)
HO4L 12/721 (2013.01)
U.S. CL
CPC HO4L 41/0816 (2013.01); HO4L 43/0882
(2013.01); HO4L 43/0888 (2013.01); HO4L
43/0894 (2013.01); HO4L 45/125 (2013.01);
HO4L 47/823 (2013.01); HO4L 65/4076
(2013.01); HO4L 65/80 (2013.01); HO4N
21251 (2013.01); HO4N 21/6125 (2013.01);
HO41L 45/02 (2013.01); HO4L 45/04 (2013.01);
HO4L 45/22 (2013.01); HO4L 45/64 (2013.01);
HO4L 45/70 (2013.01); HO4L 47/127
(2013.01)
References Cited

U.S. PATENT DOCUMENTS

9,769,536 B2 9/2017 Bergstrom
10,158,554 Bl 12/2018 Bae et al.
10,225,619 B2 3/2019 Bergstrom
1/2003 Schwartz et al.
3/2003 Gilammaressi
1/2005 Izmailov et al.

Al

Al

Al
2005/0083848 Al 4/2005 Shao
2006/0218301 Al 9/2006 O’Toole et al.
2007/0150498 Al 6/2007 L1 et al.
2007/0253341 Al 11/2007 Atkinson et al.
2008/0059631 Al 3/2008 Bergstrom et al.
2008/0144511 Al 6/2008 Marcondes et al.
2008/0183891 Al 7/2008 Ni et al.
2008/0263130 Al 10/2008 Michalowitz et al.
2008/0298240 Al 12/2008 Lee et al.
2010/0027442 Al 2/2010 Chockler et al.
2010/0100768 Al 4/2010 Yamamoto et al.
2010/0228848 Al 9/2010 Kis
2010/0278069 Al 11/2010 Sharma
2011/0211444 Al 9/2011 Das et al.
2013/0287035 Al 10/2013 Scholl
2013/0297731 Al 11/2013 Chan et al.
2013/0305299 Al 11/2013 Bergstrom et al.
2014/0098685 Al 4/2014 Shattil
2014/0320500 Al 10/2014 Fletcher et al.
2015/0372873 Al 12/2015 Mahadevan et al.

2018/0309636 Al 10/2018 Strom et al.
2018/0331969 Al 11/2018 Chen et al.
2019/0312810 Al 10/2019 Strom et al.

FOREIGN PATENT DOCUMENTS

EP 1398924 A2 3/2004
EP 2815562 Bl 4/2015
WO 2008129536 A2 10/2008
WO 2014173704 A1l 10/2014
WO 2016/103051 Al 6/2016
WO 2016089435 Al 6/2016
WO 2018193082 A] 10/2018

OTHER PUBLICATTIONS

European Search Report and the Annex to the European Search

Report recerved in European Application No. 15202716 and dated
Apr. 26, 2016 (19 pages).

Jain et al.; “Path Selection Using Available Bandwidth Estimation
In Overlay-Based Video Streaming”; “Networking 2007; vol. 4479
of the Series Lecture Notes in Computer Science”; pp. 628-639.
Lee et al.; “Bandwidth-Aware Routing in Overlay Networks;”
INFOCOM 2008; The 27th Conference on Computer Communica-
tions; IEEE; (2008) (pp. 2405-2413).

Zhang et al; “Dynamic Overlay Routing Based on Active Probing
Measurements: An Emulation Study;” Optical Society of America;
(2009); (2 pages).

International Search Report of PCT/IB2015/002604 dated May 4,
2016 (5 pages).

Written Opinion received 1n PCT/IB2015/002604 and dated May 4,
2016 (15 pages).

Extended Search Report received 1n EP 17186964.7 and dated Sep.
27, 2017 (15 pages).

Wan, XiaoLin; “Analysis and Design for VoIP Teleconferencing
System Based on P2P-SIP Technique;” International Conference on
Electronics and Optoelectronics (ICEOE 2011); (2011); (4 pages).
Liu et. al.; “CMT-SR: A selective retransmission based concurrent
multipath transmission mechanism for conversational video;” Com-
puter Networks 112 (2017) 360-371; (2017); (12 pages).

Wiritten Opinion and International Search Report received in PCT/
EP2018/060169 and dated Sep. 21, 2018 (40 pages).

Report received from the International Searching Authority regard-
ing the multiple inventions in PCT/EP2018/060169 together with
the Partial International Search and the Provisional Opinion mailed
on Jul. 19, 2018 (19 pages).

Jain Manish, Dovrolis Constantine. “Path Selection Using Available
Bandwidth Estimation in Overlay-Based Video Streaming”. nnual
International Conference on the Theory and Applications of Cryp-
tographic Techniques, EUROCRYPT 2018; [Lecture Notes in Com-
puter Science; Lect.Notes Computer], Springer, Berlin, Heidelberg.
pp. 628-639 (May 14, 2007). URL: https://link.springer.com/chapter/
10.1007/978-3-540-7260 6-7_54.

Sung-Ju Lee et al. “Bandwidth-Aware Routing in Overlay Net-
works”. INFOCOM 2008. The 27th Conference on Computer

Communications. IEEE, IEEE, Piscataway, NJ, USA (Apr. 13,
2008). DOI: 10.1109/INFOCOM.2008.235.

Xinxin Zhang et al; “Dynamic overlay routing based on active
probing measurements: An emulation study.” Asia Communications

and Photonics Conference and Exhibition. pp. 1-7 (Nov. 2, 2009).
URL: https://1eeexplore.ieee.org/document/5405397.

* cited by examiner

9PON V ~ 9PON V
pue julod 8ullead —8PONY ST

= opoud 0ST 7 4
” 001 T 'Old 3PON V:g J03PON ST OVI _.
2.-..,..
w— JPON VY Otcl
” JOLO4ANNQD =2U0g)oey P
~
o dOLIANNQOD JUI0d SulIaad)
)
-

NSV OLL

Sheet 1 of 4

Apr. 27, 2021

|...... ..
Vgt e T

oy

=4
-r

LA R E A" LN

ﬁ.lh L]
i ...niﬂ...i%....-.ri\hﬂ\....

U.S. Patent

@\ .

A 00¢ ¢ ‘Ol

> o

&N\

=N ,.

2 L

= 1av01dN

s 101e21UNWIWO)

M 027 0LT
-

19AR|9Y 19A1900Y

.4
I
-
< dLlH
> T
=
)
INPOSHaM
_ 9¢c¢
o J9Ae|d Q1S
) ced
r~
gl
X duiweaas aandepy
z 44

19SMmoag gam

H1HGOM STALLH Q1S
CCC ” 0&C

SAIVYLI dlS
0CC

9J3IAnod LNAITD

U.S. Patent

JOYUO|A]

3JUBWI0IDd
0G¢ e

elawe)
61

Aejdsi(
SLC

Jjoyaepy NJOMION
L1C

AIOWIBIN Nd)d
vTT | 4%
MS/MH Q1S
0LC

US 10,992,998 B2

Sheet 3 of 4

Apr. 27, 2021

U.S. Patent

00¢€

J9AJIS JUDUO))

(10d) u1dluQ-jo-uiod
08¢

NIV [SUuey)
G8¢E

1920549
9C¢

NNLS
[&4°

SAI¥VYHAIT AlS

0742

¢ ‘DOl

JOAIDG Suljeusis
0E€

ad
9OUBWLIOMDG

1E21101SIH
ove |

ad
NJOMION

AeponQ
GLE

1)oel] dduew.io}Idd
01743

101e3al)
NA0MION AelionQ
0&¢

laddeln doaQ

09¢

HIAY3IS Isedpeoug [eniIA

Jojoesix3 yselds

06¢&

Jo1depy yJOomioN
[1E

SO
oT€

AJOLIB N Ndd

Vit
MS/MH ails

ClE

OLlt

US 10,992,998 B2

Sheet 4 of 4

Apr. 27, 2021

U.S. Patent

00v

SIUS1D AQ UOIIDB]8S/Y24eBS JO) SjpuUeY) MaN
se sause|ds, saiiiiuapl AjsSnonuiluod Jolded1xd yse|ds
0Sv

~sdoy, julod dulisad AjiuenD
PDUE OJU] PIOHUOIN aZAjeuY A|Shonulluo)
L2514

siuawgas o3pIA 10} Ss1sanbal

~P€q|[e}, 1UBID pUE sa|l] 1SSHUEA

10} s3senbal 1ual|D 01 spuodsal JoAIaS |0d
4

SOPON VY ,1SaJeau, wod) 1sanbal uodn
s19yoed UBWSas OBPIA JBpaad, Wealls
GEY

$91N0Y NSY-I21U] pue NSY-eJiu
yiog (1uswdas 0opIA Jad) ainduodsy
Ot

(D40 ‘g ‘v:g ‘v) @poN AJisse|D
9LV

U] 03 JUDWEDS OBPIA [BIHU| WEBIIS
viv

ANAIIDBUUOD JUBI[D AJLIBA
ZTh

guilleallS uidliQ-Jo-1Ulo¢
10} (jsuuey) Jad) syusw8as 0apIA aledalc
Olv

d3AH3S 1SVOAVOdd TVNLYIA

(poloelag adueyd J Ajuo)

o1y g PoUIPOA
1Sonboy

JUDLIBDS OIPIA

yoeqjjes JUDWEDS 0IPIA 1X2N
10} 1sonbay JoAe|d 0apIA 1d20421U|
| GSY
ol EREEN (PaALLY 10N # Ajuo)
" JuUdWEdS 0BPIN Hoeq|je
pue dJi4 3sajluelp] 3Isonbay JoAejd ospIA Ag MorgAe|d 10)
syoyped jJuawgag . JUawidag 0aPIA 01Ul HUNYD sjdwio)
O3PIA 12P3D,, — 0SY
I SPON paleudisac 01 Hunyd Aejay
0ju} 23noy Aejay $iay

(AjSnonuiuo)) aduewJdojiad JOHUOIA
(019 ‘Uit Aejay ualD) T4
OjU] @3ULWIO0LID]

yoegAe|d OSPIA 21.I11U|
STt

JUd W3S OBPIA
jelug

(yoieas HSY1dS 4a14e Ajjeuondo)
lpuuey) uiol 01 1senbay NIOT puss

10)%

(Uoloauuo) Uasmolig ‘sp)
sanljiqede) juaid

(OBPIA 2AI7 duldnlde) JI) JBAIBS |Od

SUaW3as 0opIA | 0} S}UBWSS 03PIA AYOTdN
1OV

10IA3A LNJITD

US 10,992,998 B2

1

METHOD AND SYSTEM FOR ADAPTIVE
VIRTUAL BROADCASTING OF DIGITAL
CONTENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 15/678,826, filed on Aug. 16, 2017, which 1s a
continuation of U.S. patent application Ser. No. 14/848,268,
now U.S. Pat. No. 9,769,536, filed on Sep. 8, 2013, which
claims priority to U.S. provisional patent application Ser.
No. 62/096,938 filed Dec. 26, 2014, the disclosure of which
are hereby incorporated by reference as if fully set forth
herein.

BACKGROUND

Field of Art

The present invention relates generally to an overlay
network architecture for delivering digital content among,
nodes of an underlying network, and more particularly to a
virtual broadcast system that optimizes the routing of digital
content among nodes along overlay networks that are
dynamically reconfigured based upon Iforecasts of fre-
quently-changing levels of congestion at component inter-
connections within the underlying network.

Description of Related Art

Network Congestion

As wired and wireless network traflic continues to expand
exponentially, finite capacity of the shared links or intercon-
nections among components within a network 1s becoming,
an increasingly more relevant and troubling problem. More-
over, because the level of congestion at these shared links 1s
dynamic and subject to a great deal of volatility as network
traflic ebbs and tlows, such congestion 1s ditlicult to measure
at any given time, and particularly diflicult to predict even on
a near-term basis.

This problem 1s somewhat analogous to that of traflic
congestion at the intersecting junctions of shared roads and
freeways 1n increasingly populated areas. While existing
GPS navigation and traflic control systems measure current
congestion at these junctions, and calculate optimal paths to
reroute 1ndividual drivers around such congestion, their
ability to predict an optimal route 1n advance for any
particular driver 1s hampered by the volatile nature of tratlic
congestion.

When a single company such as Nettlix accounts for over
one-third of peak Internet traflic, companies that deliver
digital mformation over the Internet concurrently (particu-
larly large amounts of linear data) must somehow address
the increasingly volatile nature of Internet congestion. Simi-
larly, as mobile voice and data usage soars, the limited
availability of regulated RF spectrum 1s of particular con-
cern to companies developing high-bandwidth mobile appli-
cations.

While a specific application of the present mvention 1s
described herein 1n the context of delivering streaming video
over the Internet to large numbers of concurrent users, the
principles of the present invention apply equally 1n numer-
ous other contexts where limited capacity of shared links
among network components constrains the routing of any
type of information that can be converted into a digital
format (e.g., audio, images, 3D models, etc.). Other potential

10

15

20

25

30

35

40

45

50

55

60

65

2

applications of the present invention include, for example,
VoIP, corporate videoconferencing, virtual reality, multi-
player gaming, and a variety of other bandwidth-intensive
applications (relative to the level of congestion of shared
links within an underlying network at any given point in
time).

As will be discussed 1n greater detail below, the present
invention does not “cure” the problem of limited capacity or
“network congestion” at component links within an under-
lying network such as the Internet, but instead makes
cilicient use of that limited capacity by momtoring and
analyzing network traflic across those links to optimize the
routing of digital content among nodes of overlay networks
that are dynamically reconfigured based on forecasts of
congestion levels at those links.

Video Streaming Events

Since the advent of the Internet and IP-based routing,
many approaches to streaming video over the Internet have
emerged. Belore discussing their relative advantages and
disadvantages, 1t 1s helpful to step back and consider the
problem being addressed. To distribute video content over
the Internet, 1t must first be captured and digitized. We can
characterize the video content as an “event” that 1s captured
“live” (or generated digitally) and distributed over the
Internet. References herein to video events include the
capture or generation of both video and audio, as well as any
associated metadata.

Video events can either be scheduled or unscheduled. For
example, the “Super Bowl” 1s a scheduled event in that the
time of 1ts occurrence 1s known 1n advance, whereas other
events (e.g., natural disasters, a toddler’s first steps, or even
video on demand—**“VOD”) are unscheduled in that they
may occur with little or no advance warning.

Video content may be captured 1n 1ts entirety to generate
a digitized video file before 1t 1s distributed over the Internet
as any other type of file 1s transferred (e.g., via an “FTP” or
file transfer protocol). However, such a “file transfer”
approach imposes a delay on the recipient’s viewing (play-
ing) of the video content—i.¢., the recipient must wait until
the entire file has been transierred before viewing the video
content. Given the relatively large file sizes of digitized
video, this delay can be significant.

Video content 1s therefore often “streamed” to users so
they can continuously receive and view the content while 1t
1s still being sent. In essence, the video content 1s divided
into an ordered linear stream of small files or *“video
segments” (e.g., 1 to 10 seconds 1n length) that are delivered
to users who can start viewing them as they are recerved. To
view a continuous stream of video content without delay or
ntter, each video segment must be played at regular inter-
vals—e.g., 30 frames per second (Ips). Note, however, that
video segments need not be recerved at regular intervals,
provided that each segment 1s received before the playback
of the prior segment has concluded.

Whether an event 1s scheduled or unscheduled, it can be
streamed “live” (1.e., as the event occurs) or “pre-recorded”
for streaming any time after the occurrence of the event. For
example, the Super Bowl could be captured and streamed
live as the event occurs, or pre-recorded for streaming at a
later time.

Finally, whether an event 1s scheduled or unscheduled,
and whether 1t 1s pre-recorded or streamed live as 1t occurs,
it can be streamed in “real time” (1.e., with a largely
imperceptible delay from sender to recerver) or “delayed” 1n
transit for seconds or even minutes. For example, viewers of
a television program (e.g., a baseball game) that 1s streamed
over the Internet, but not 1n real time, might experience the

US 10,992,998 B2

3

streamed event at diflerent times from one another, or at
different times from viewers watching the same program
broadcast via cable or satellite. Such delays (particularly 1T
more than a few seconds) may diminish a user’s “quality of
experience” (QoE)—i.e., a user-centric or application-level
view ol quality, as contrasted with a “quality of service”
(QoS), which 1s a measure of performance based on net-
work-centric metrics (e.g., packet delay, packet loss, or jitter
caused by routers or other network resources).

For example, social interaction among viewers may be
constrained (wholly apart from jitter or other video artifacts)
due to the fact that viewers experience the same event at
different times. This 1s particularly problematic today when
so many events (scheduled or unscheduled) are communi-
cated 1n real time 1n so many different ways—iIirom broad-
cast radio or television to social media and other Internet
services, accessible via mobile phones and desktop and
laptop computers, as well as via a constantly evolving
domain of consumer electronic devices.

It 1s therefore desirable for a video streaming system to
handle unscheduled as well as scheduled events, to stream
live as well as pre-recorded events, and to stream those
events 1n real time with minimal delay in order to provide
viewers with a consistent QoE. Moreover, as the number of
concurrent viewers of a streaming video event increases,
maintaining a consistent QoE becomes a formidable prob-
lem. For that reason, scalability 1s a key design goal of any
such system.

Despite recent advancements 1n video streaming technol-
ogy, the historical “ad hoc” evolution of the infrastructure of
the Internet still presents significant obstacles to Internet-
based video streaming, not the least of which 1s an incon-
sistent QoS, which leads to network congestion at times and
locations across the Internet that are diflicult to predict.
While a key objective of the present invention 1s to maintain
a consistent QoFE for viewers of streaming video events, this
objective 1s constrained by network congestion across the
Internet which ultimately cannot be eliminated.

Underlying Internet Architecture

Beginning with ARPANET (the earliest packet-switching,
network to implement the Internet protocol suite, or TCP/
IP), and later NSFNFET, the Internet “backbone” was
designed to be a redundant “network of networks” (1.e., the
Internet) that afforded rehiability or “resiliency” by decen-
tralizing control and providing alternative communication
(routing) paths for information to reach its desired destina-
tion. Yet, with packets following different paths among
routers and other shared network resources, maintaining a
consistent QoS or (QoE over the Internet remains an
extremely diflicult problem.

As the Internet backbone evolved and was privatized,
redundancy and overlap developed between traditional
backbone networks and those owned by long-distance tele-
phone carriers. For the purposes of this specification, we
distinguish large “public” networks that provide data to
customers directly, or via other smaller “internet service
provider” (ISP) networks, from large “private” backbone
networks that carry data only among themselves, or serve as
a conduit between large ISPs, but do not directly provide
data to customers. In either case, these large public and
private networks are typically implemented as “fiber rings”™
interconnected via fiber-optic trunk lines—i.e., multiple
fiber-optic cables bundled together to increase network
capacity.

For routing purposes, the largest network providers that
carry the heaviest network traflic (e.g., large ISPs and private
backbone networks) are assigned blocks of IP routing pre-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

fixes known as “autonomous systems” (AS), each of which
1s assigned an “autonomous system number” (ASN). We
refer to each of the large fiber rings owned by these
companies as an ASN. The number of ASNs has grown
dramatically in recent years, from approximately 5000
ASNs fifteen years ago to over 50,000 ASNs across the
world today. As alluded to above, many large network
providers also own backbone fiber-ring networks (1.e., pri-
vate ASNs) that do not service customers, but may be

connected to their own “public ASNs” or those owned by
others.

Because different companies own ASNSs, they enter into
agreements with one another to facilitate the routing of
Internet traflic across ASNs and throughout the global
Internet. Each ASN utilizes a bank of routers often referred
to as a “peering point” to control access to another ASN,
employing a routing protocol known as the “border gateway
protocol” or BGP. Any given ASN may employ multiple
peering points to connect to multiple diflerent ASNs. Inter-
connected ASNs may be geographically adjacent, or may be
far apart, connected via long fiber trunks spanming great
distances (e.g., across countries or even oceans). Public
ASNs may also be interconnected via “private ASNs” or
backbone networks.

Monitoring QoS within and across ASNs 1s extremely
difficult. Large network providers maintain much of the
routing and performance information within their ASNs
(including dynamic congestion metrics) as proprietary.
While the “Open Message Format” (of the current BPG
Version 4) provides for a “data dump” of certain information
when a TCP/IP connection to a BGP router 1s established,
this mechanism 1s not terribly useful as a practical matter.
Many BGP routers do not support the Open Message For-
mat, while others simply turn 1t off. Moreover, the informa-
tion 1s typically 5 minutes out of date, which 1s a relatively
long time given how frequently congestion levels change
across the Internet.

Because such a large amount of Internet trathc flows
across the relatively high-bandwidth peering points inter-
connecting ASNs, these peering points are often key “bottle-
necks” or sources of much of the congestion across the
Internet at any given time, apart from the “last mile”
problem within an ASN (i.e., congestion across the rela-
tively lower-bandwidth wired and wireless connections
between end users and their “gateway” ISPs).

For example, as the tratlic load across an ASN peering
point increases, the routers 1n the ASNs on each side of the
peering point become congested. In other words, these
routers experience high utilization rates of RAM, CPU and
other limited-capacity shared resources. Increased demand
on these resources reduces performance (e.g., bit rates)
across these peering points, and eventually may lead to lost
data packets. Because network tratlic across the Internet 1s
not centrally controlled, 1t 1s diflicult to predict the fre-
quently changing levels of “peering point congestion™ across
the Internet at any given time.

If one cannot guarantee a consistent QoS within and
across ASNs, 1t becomes very dithicult to maintain a con-
sistent QoE for viewers of streaming video events. Any
system that streams video over the Internet 1s subject to
unreliability and constantly changing levels of congestion of
shared routers, particularly at ASN peering points through
which so much Internet traflic flows. This problem 1s exac-
erbated when streaming video to large numbers of concur-
rent viewers across the Internet, and i1n particular across
these ASN peering points.

US 10,992,998 B2

S

Existing Video Streaming Approaches

Various approaches to streaming video over the Internet
have evolved over the past few decades, with a vast array of
terminology employed to characterize and distinguish dii-
ferent techniques for generating overlay network topologies
(on top of the Internet) and delivering video content among
network nodes along these overlay networks. In comparing,
different approaches, it 1s helptul to return brietly to the GPS
navigation analogy, and consider the factors which affect the
time required to travel between any two points or nodes—
1.€., distance, speed and congestion (typically addressed by
reroutmg along a different path).

In the context of routing packets on the Internet, distance
(or geographic proximity) 1s not of direct relevance because
packets travel near the speed of light. Speed, however, 1s
aflected by the number of stops or roadblocks encountered
along a route, or in this context the number of “hops”
encountered at intermediate routers between two nodes.
Thus, two nodes can be said to be “nearby” each other (in
“network proximity™) 1if they are only a relatively few hops
apart, regardless of their geographic proximity. Congestion
at intermediate nodes along the path between two nodes
aflects the overall travel time, and can be addressed by
dynamically rerouting tratlic—i.e., dynamically reconfigur-
ing the overlay networks that determine the path between
two nodes. As will be discussed below, these factors serve to
illustrate key distinctions among different approaches to
streaming video over the Internet.

The most common method of delivering video outside of
the Internet 1s to “broadcast” a video stream (e.g., a televi-
sion program) from a “point of origin” to all destination
viewers simultaneously—e.g., via dedicated cable or satel-
lite 1infrastructure. While network hubs can be employed 1n
a LAN to broadcast information to all network nodes,
broadcasting packets of video segments across switches and
routers over the Internet would be wildly impractical and
ineflicient. Most network users would not be interested 1n
viewing any given “channel” of video content, and signifi-
cant congestion would occur near the point of origin as
routers broadcasting video segments to other routers would
be quickly overwhelmed. A broadcast solution 1s simply not
teasible for delivering a channel of video content over the
Internet from a single point of origin to a large number of
concurrent viewers who can join the channel at any time.

An alternative “multicast” approach ivolves simultane-
ously streaming each video segment from a point of origin
to predefined groups of nodes across the Internet. This
approach 1s similarly impractical for large-scale video dis-
tribution across the Internet. Moreover, specialized inira-
structure 1s required, such as dedicated routers with multi-
casting functionality, which 1s also impractical and
prohibitively expensive for large-scale commercial use.

By contrast to broadcast and multicast techniques, a
“unicast” approach to video streaming involves sending
video segments from a point of origin to a single destination
node (e.g., by establishing a TCP/IP connection with a
defined destination node IP address). But delivering a large
number of unicast packets simultaneously to each viewing
node would also quickly overwhelm routers at or near the
point of origin, and would fail to achieve a consistent QoS
for many of the reasons noted above, not to mention the
enormous cost of providing suflicient bandwidth to handle
such a large number of simultaneous transmissions.

Some VOD companies (such as Nettlix and YouTube)
have employed vanations of this unicast approach that
generally rely on expensive “edge-server” infrastructure.
This approach (sometimes referred to as a “content delivery

10

15

20

25

30

35

40

45

50

55

60

65

6

network™ or CDN) mvolves deploying many physical serv-
ers across the Internet, and distributing copies of each
channel of video content to each server. As a result, viewing
nodes can receive desired video content from a nearby
server (1n network proximity—only a relatively few hops
away from a viewing node).

Each edge server typically has significant bandwidth and
computational capabilities, and essentially constitutes a
separate video content source from which nearby viewing
nodes can obtain any channel of video content at any point
in time (“on demand”). This approach of adding physical
infrastructure 1s somewhat akin to building additional free-
ways and ofl-ramps to enable a greater number of people to
reach popular destinations more quickly (with fewer turns
and less time spent on slower roads).

While different users typically want to watch diflerent
video channels at any given time, VOD systems occasion-
ally face “peak” demand periods during which a particular
video event must be streamed to a large number of concur-
rent viewers (e.g., a final episode of a popular television
series), which can overwhelm even the largest streaming
video company’s inirastructure—or at least result 1n an
inethicient “worst-case” deployment of expensive infrastruc-
ture that 1s frequently underused (1.e., during more common
periods of non-peak demand). Alternative VOD solutions
have attempted to avoid the need for expensive edge-server
infrastructure by replicating and distributing video content
among network nodes themselves (as discussed, for
example, in U.S. Pat. Pub. No. 2008/0059631).

With or without expensive edge-server infrastructure,
none ol these VOD solutions addresses the QoS problem for
unscheduled video events, as they all rely on “pre-seeding”™
edge servers or viewing nodes throughout the Internet with
content known in advance—to ensure a nearby source of
video content. Streaming a live unscheduled event would
require real-time concurrent delivery of video content to all
of these edge servers or viewing nodes, a problem not
addressed by any of these VOD systems.

More recently, certain unicast-based video streaming
standards (e.g., “WebRTC”) have evolved to {facilitate
“pomt-to-poimnt” streaming of video among desktop and
mobile web browsers without the need for any plugins.
Many existing smartphones, as well as desktop and laptop
computers, include WebRTC libraries that support browser-
to-browser video streaming, as well as “adaptive streaming’™
libraries that enable a viewing node to detect 1ts bandwidth
and CPU capacity 1n real time, and automatically request a
lower or higher “bit rate” to adapt to changes in those
metrics.

Adaptive streaming implementations include Apple’s
“HTTP Live Streaming” (HLS), Microsoit’s “Smooth
Streaming” and the “MPEG-Dash™ ISO standard, among
others. In a typical point-to-point video streaming scenario,
a rece1ving node periodically requests from an HT'TP server
“manifest files,” which include the locations of each avail-
able bit-rate version of upcoming (e.g., the next eight) video
segments. For example, each video segment might be avail-
able 1n 1080p, 720p and 480p versions, reflecting different

“video resolutions” that require different streammg bit rates
(bandwidth) to ensure each video segment 1s delivered 1n
essentially the same amount of time, regardless of 1ts reso-
lution.

Standard HTMLS5 video players (in web browsers that
support WebRTC) typically bufler three video segments
betore they start playing video content. They use the current
manifest file to send an HI'TP request to an HI'TP server for
cach video segment. The sending node then “pushes™ each

US 10,992,998 B2

7

video segment (in small “chunks™) to the receiving node in
accordance with WebRTC standards for playback i the
receiving node’s web browser. If the recerving node sup-
ports adaptive streaming implementations, and determines
that the time required to receive recent video segments 1s
increasing or decreasing significantly, 1t automatically
begins requesting lower or higher bit-rate video segments
from among the choices 1n the manifest file. In other words,
it “adapts™ to 1ts actual bandwidth over time by varying the
resolution of the video segments 1t requests.

The “resolution” of a frame of video 1s a measure of its
widthxheight (e.g., 1920x1080 or 1080p) or number of
pixels 1n a frame, while 1ts “bit rate” refers to the number of
“bits per second” (bps) that are transmitted from a sender to
a receiver. For example, 1f 30 frames of 1080p-resolution
video are delivered every second (30 “frames per second” or
ips), and each color pixel contains 24 bits (24 “bits per
pixel” or 24 bpp), then the bit rate would be equal to almost
1.5 Tbps (1,492,992,000 bps—i.e., 1,492,992,000=(1920x
1080 “pixels per frame” or ppl)x(24 bpp)x(30 1ps).

Standard wvideo codecs employ compression (e.g.,
MPEG2 compression) and other video encoding techniques
to yield lower effective bit rates (e.g., 3 Mbps). In view of
the above, “bit rate” and “resolution”™ are highly correlated
in that one can increase or decrease the etlective bit rate by
providing higher or lower resolution frames of video. We
therefore use these terms somewhat interchangeably herein
in this regard.

WebRTC and adaptive streaming standards permit virtu-
ally any smartphone user to capture and stream live video
events, and also enable such users to join a streaming video
channel originating from another point of origin across the
Internet—ranging from other individual smartphone users to
large companies hosting an array of video content. These
standards are designed, however, for point-to-point video
streaming, and do not address the “video delivery” problem
of streaming a video channel to large numbers of concurrent
viewers across the Internet.

To address this problem, some video streaming compa-
nies (e.g., StreamRoot) have adopted an approach that
typically mvolves a “peer-to-peer” (P2P) or mesh network
topology 1n which video content 1s relayed from one viewing
node to another (sometimes referred to as “peercasting’”). In
a video streaming context, these terms can be used inter-
changeably to refer to overlay networks configured on top of
the Internet that enable viewing nodes to relay streaming
video content to one another 1n a distributed fashion. Deliv-
ering streaming video to large numbers of concurrent view-
ers should be distinguished, however, from non-streaming
uses ol a P2P or mesh network topology, e.g., for file transier
or file sharing applications.

P2P video streaming systems deliver a channel of video
content from a single point of origin to large numbers of
concurrent users over the Internet. Such systems tend to be
both resilient and scalable, in that their distributed nature
tacilitates recovery from individual points of failure (e.g., by
rerouting content via other nodes), and their reliability and
performance actually improve as more nodes are added to
the network (1.e., as more and better routing “relay”™ options
become available).

When new nodes join a video channel or existing nodes
leave (stop viewing) the channel, P2P video streaming
systems must, to some extent, dynamically reconfigure the
topology of the overlay network—i.e., modily at least some
of the routing paths among network nodes to accommodate
the new nodes. For example, when a new node 1s added, its
geographic location may be considered 1n an effort to select

10

15

20

25

30

35

40

45

50

55

60

65

8

nearby existing nodes from which 1t will receive (and to
which it will relay) video content.

But, if “peer” nodes are selected based merely on their
geographic proximity, they still may be relatively “distant™
from one another (and not 1n network proximity)—e.g., 1f
they reside in different ASNs. As a result, traflic among them
may cross one or more potentially congested peering points.
For example, the actual latency between two nodes 1n close
geographic proximity may exceed the sum of the latencies
between each of those nodes and a geographically distant
node. This phenomenon i1s sometimes referred to as a
“triangle 1nequality violation” (T1V), which illustrates the
disadvantages of relying on BGP routing for delivering

digital content among nodes of an overlay network across
ASN peering points.

One reason for this problem with existing P2P video
streaming systems 1s that they are not constructed to be
“compatible” with the underlying architecture of the Inter-
net. Any overlay network topology built on top of the
Internet 1s still subject to many points of disruption or failure
(apart from new or disappearing nodes), such as the myrad
of QoS problems noted above. By not addressing the Inter-
net’s underlying QoS volatility, particularly at ASN peering
points, such systems face significant obstacles in providing
their users with a consistent QoE.

Thus, existing P2P video streaming systems (like GPS
navigation systems) rely on geographic proximity (rather
than network proximity) to select peer relay nodes, and
reroute traflic only “after the fact” once congestion 1s
encountered. Moreover, real-time streaming of linear data to
concurrent users imposes an additional constraint not found
in GPS navigation systems—the content must arrive “simul-
taneously” at each node. Edge-server and other physical
infrastructure approaches (akin to building freeways and
ofl-ramps to provide higher-speed routes) are expensive and
also fail to adequately address the problems of unscheduled
events and high-concurrent usage of any particular event.

There 1s therefore a need for a digital content delivery
system that addresses the deficiencies discussed above, and
takes 1nto account the underlying architecture of the Internet
(particularly at ASN peering points through which so much
Internet traflic flows) 1n generating and dynamically recon-
figuring overlay networks so as to provide client nodes with

[

a consistent QoE.

SUMMARY

In accordance with the present invention, various embodi-
ments of novel methods and architectures are disclosed with
respect to a digital content delivery system that provides
users of nodes on an underlying network (e.g., the Internet)
with a consistent QoE by: (1) maintaining a map of shared
links mterconnecting components of the underlying network
(e.g., ASNs and the peering points interconnecting them),
including a location of each node within one of the compo-
nents (e.g., within an ASN); (2) generating metrics by
monitoring network traflic among the nodes that crosses
those shared links (ASN peering points) along one or more
overlay networks built on top of the underlying network
(Internet); (3) analyzing the metrics and the map over time
to forecast congestion levels reflecting the changing capacity
of the shared links (ASN peering points) over time; and (4)
dynamically reconfiguring the topology of the overlay net-
works, based on the forecasted congestion levels, to generate
optimal routes of the digital content among the client nodes
along the overlay networks.

US 10,992,998 B2

9

Particular embodiments of the “virtual broadcast” system
of the present invention are described herein 1n the context
of providing a consistent QoE among viewers ol one or more
channels of video content, each of which 1s streamed 1n real
time from a single point ol origin to potentially large
numbers of concurrent viewers that may join the channel at
different times (while avoiding the need for edge servers or
other expensive physical infrastructure). As will be
explained 1n greater detail below, we use the term “virtual
broadcast” in the context of unicast streaming of linear
content to concurrent users. From the perspective of the
users, the content 1s “broadcast™ to them, 1n that they receive
the content “simultaneously,” even though unicast streaming,
1s employed to route the content. Other embodiments of the
present invention will be apparent to those skilled 1n the art
in numerous other contexts where limited capacity of shared
links among network components constrains the routing of
any type of information that can be converted into a digital
format.

For the purposes of this specification, a single node that
receives multiple different channels concurrently can be
considered a distinct node on separate overlay networks,
cach defined by a single channel. In a VOD context, each
separate “showing” of a particular program can be consid-
ered a separate channel having 1ts own network of viewing
nodes.

The system of the present invention 1s capable of handling,
unscheduled as well as scheduled events, streaming live as
well as pre-recorded events, and streaming those events in
real time with minimal delay 1n a highly scalable fashion that
maintains a consistent QoE among large numbers of con-
current users—despite being implemented on overlay net-
works built on top of the Internet that are subject to the
Internet’s QoS volatility. Performance of the system and the
QoE of the users actually improve as the number of con-
current users (particularly within any given ASN) increases.

A client-server architecture 1s employed to centralize
server-side routing decisions. Distributed streaming delivery
of video content 1s effected via dynamically reconfigurable
P2P overlay networks that enable video content to be relayed
among (1.e., “pushed” to) the viewing nodes of each video
channel. Client nodes may employ standard HTMLS5 video
players (built into most desktop and mobile web browsers)
to view or play the video, and rely on custom embedded
code (such as Javascript) to implement additional function-
ality, such as managing the receipt of video segments and the
relaying of those video segments to other nodes, as well as
monitoring various performance metrics. In other embodi-
ments, some or all of such functionality may be integrated
into a custom application or mobile app.

The system of the present invention facilitates “point-to-
point” video streaming among desktop and mobile web
browsers, and adapts to changes in node bandwidth by
automatically requesting lower or higher bit-rate video seg-
ments. In one embodiment, the virtual broadcast system
employs unicast standards, including WebRTC and adaptive
streaming standards (such as HLS, MPEG-Dash, or Smooth
Streaming) to facilitate video streaming without the need for
web browser plugins, and to enable nodes to detect their
performance capabilities, such as bandwidth and CPU
capacity.

Each event 1s provided to a central “Virtual Broadcast
Server” for “point-of-origin” delivery of each channel to
concurrent users over multiple dynamically reconfigurable
overlay networks. Events can be obtained from virtually any
source (including a CDN), whether transferred as complete
files or streamed live to the Virtual Broadcast Server. In

10

15

20

25

30

35

40

45

50

55

60

65

10

embodiments utilizing WebRTC, any user with a smart-
phone that implements WebRTC can upload pre-recorded
video events, or capture events live and upload them to the
Virtual Broadcast Server (as well as view other channels
streamed from the Virtual Broadcast Server) for subsequent
delivery to users via the overlay networks.

The Virtual Broadcast Server includes, in one embodi-
ment, a “POI Content Server” which serves as the point of
origin for each channel from which video segments are
delivered via the dynamically reconfigurable overlay net-
works bult on top of the Internet. Video segments are
typically fixed i size (e.g., from 1 to 10 seconds), as
determined by the originating publisher of the video event.
The wvideo segments are viewed by client nodes and
“pushed” (i.e., relayed as individual fixed-size “chunks™ 1n
accordance with the WebRTC standard) from node to node
along the routes defined by the overlay networks. In one
embodiment, each video segment 1s divided into 64 KB
chunks to match the size of a UDP datagram ““packet” for
maximum efliciency when streamed via the MPEG2 trans-
port protocol.

While video segments are eflectively pushed to each
client node 1n most cases, a client node may, in one embodi-
ment, detect that all of the chunks of a video segment have
not arrived 1 time, and may utilize the current manifest file
to request the video segment from the POI Content Server
(1.e., as a “fallback™ feeding location).

As each node seeks to join a channel made available by
the POI Content Server, the node determines (with assis-
tance from the Virtual Broadcast Server in another embodi-
ment) the particular ASN 1 which that node resides. The
Virtual Broadcast Server utilizes this “ASN location™ infor-
mation, along with a dynamic “ASN Interconnection Map™
of the Internet (including ASNs and their various peering
point interconnections) and various monitored performance
metrics, to optimize the routing of the channel content
among overlay networks that are dynamically reconfigured
based on forecasts of the congestion levels at these ASN
peering points. In another embodiment, the Virtual Broad-
cast Server also utilizes each node’s geographic location, 1n
addition to 1ts ASN location, to assist 1n this process.

In one embodiment, the topologies of the overlay net-
works define the routing paths of video segments among the
viewing nodes, and are dynamically reconfigured (in whole
or 1 part) for each video segment of a channel. In another
embodiment, they are dynamically reconfigured (1n whole or
in part) for each chunk of a video segment. In this manner,
the architecture of the Internet (as well as predicted conges-
tion levels at ASN peering points) 1s taken 1nto consideration
in determinming optimal routing paths for each video segment
of a video channel. In another embodiment, 1f some or all of
the routes along the overlay networks are capable of deliv-
ering video segments in time (even if such routes are
non-optimal), then such routes are not reconfigured until a
predefined congestion threshold 1s met, or another suili-
ciently significant problem 1s 1dentified.

In one embodiment, client nodes monitor performance
1ssues relating, for example, to last-mile problems and QoS
problems across the Internet (including congestion at ASN
peering points), as well as congestion resulting from the
number of concurrent viewers of one or more channels of the
virtual broadcast system 1itself. They monitor the time
required to contact designated sites across the Internet, and
across ASNs, as well as the time required to relay video
segments to other nodes. Client-monitored metrics are com-
municated to the Virtual Broadcast Server for use 1n making
dynamic routing decisions. In one embodiment, the Virtual

US 10,992,998 B2

11

Broadcast Server includes a “Signaling Server” to commu-
nicate with client nodes via standard WebSocket protocols.

Client nodes optionally include an “Uploader” that
enables users to capture a video event and upload it to the
Virtual Broadcast Server in real time. Because the path from
any client node to the Virtual Broadcast Server may cross
multiple ASNs, a custom “showering” protocol 1s employed
to facilitate the streaming of the video event, and avoid
packets being delayed or blocked at intermediate routers. In
one embodiment, client nodes can also search for and view
“trending” events (referred to herein as “splashes™) via a
“Splash Extractor” search engine on the Virtual Broadcast
Server that 1dentifies splashes and, based on user searches,
provides users with the ability to stream and view trending
events from across the Internet that are not otherwise made
available via the POI Content Server.

Upon requesting to join a channel, nodes are classified by
the Virtual Broadcast Server based upon their relay capa-
bilities—i.e., their reliable “upstream”™ bandwidth, which 1s
inferred from various factors, including their connection
type (e.g., 3G or 4G cellular, WiF1, LAN, etc.) as well as
theirr CPU, operating system, browser and memory configu-
rations, and other fixed and variable performance metrics
monitored over time. In one embodiment, nodes are classi-
fied into three levels based on their relative relay capability.
The lowest-level nodes (*C” nodes) can view video seg-
ments, but cannot relay them to other nodes. The middle-
level nodes (“B” nodes) can both view and relay video
segments within an ASN. The highest-level nodes (“A”
nodes) can view and relay video segments to other A nodes
both within and across ASNs.

In another embodiment, node classifications can be
dynamically altered, for example, based on monitored per-
formance metrics and the present needs of the system for
more or fewer relay nodes of a given classification. In
addition, if suflicient A nodes exist within an ASN to relay
video segments, an A node may be designated as a “B:A”
node, indicating that it will be treated as a B node, but may
be elevated to an A node 1f needed (e.g., 11 existing A nodes
leave the channel). In one embodiment, 11 an individual node
exhibits a significant change 1n performance (for better or
worse), the node may be reclassified (e.g., from a B node to
a C node, or vice-versa), and, 1if and when the problem
resolves 1tsell, be restored to 1ts initial classification.

In another embodiment, client nodes are allocated mul-
tiple “slots” (based, for example, on their capabilities and
client performance metrics) to enable them to relay and
receive the chunks of a video segment to and from multiple
other nodes. In this embodiment, client nodes receive a
video segment from only one “feeding” node, but may
“feed” or relay that video segment to multiple other client
nodes. A nodes are allocated up to eight relay slots, four for
relaying to A nodes within the same ASN and four for
relaying to A nodes in other ASNs—i.e., across an ASN
peering point. B:A and B nodes are allocated up to eight slots
for relaying to other client nodes (1.e., other B:A, B and C
nodes) within their ASN. In another embodiment, a client
node may be “fed” by multiple other client nodes (e.g., by
alternating chunks among multiple mmcoming slots). This
technique may be employed for high bit-rate (e.g., 4K) video
streams 1n which higher performance 1s required.

In another embodiment, certain nodes (based, for
example, on their capabilities and client performance met-
rics) may recerve multiple resolutions of a video segment
from a single feeder node (or, in an alternate embodiment,
receive different resolutions from different feeder nodes). I
the upstream bandwidth of these nodes 1s suflicient, they

10

15

20

25

30

35

40

45

50

55

60

65

12

may be deemed “‘polycasting” nodes and, to the extent
needed, may also relay or feed those multiple resolutions of
a video segment to one or more designated nodes.

To facilitate the dynamic reconfiguration of the overlay
networks, the Virtual Broadcast Server employs a “Deep
Mapper” deep learning engine that continuously analyzes
performance metrics to predict the level of congestion across
ASN peering points—i.e., to predict the congestion level of
an ASN peering point a short time (e.g., one minute) into the
future. In one embodiment, a predicted “congestion value”
1s generated for each potential inter-ASN path between A
nodes—e.g., from one A node 1n an ASN to an A node 1n
another ASN. In another embodiment, the congestion value
reflects the predicted level of congestion for the optimal path
between each pair of A nodes.

In one embodiment, the Virtual Broadcast Server employs
an “Overlay Network Creator” to generate and dynamically
reconfigure (1n whole or 1n part) both inter-ASN and 1ntra-
ASN overlay networks—e.g., determining an optimal path
for video segments to be pushed from one node to another
both within and across ASNs. In this embodiment, the
Overlay Network Creator considers the number of available
slots that each node can utilize, as well as the number of
resolutions each node can receive or relay.

The Overlay Network Creator generates and dynamically
reconfigures (with the assistance of the Deep Mapper) an
inter-ASN “Virtual Data Trunk™ overlay network, which
represents the topology of the A nodes. In other words, 1t
represents the A nodes and the links or routing paths that a
video segment will follow among those A nodes within and
(1n particular) across ASNs—i.¢., through potentially con-
gested ASN peering points.

The Virtual Data Trunk 1dentifies the set of A nodes which
will be 1nstructed to request each video segment from the
nearby POI Content Server (e.g., using the current manifest
file), as well as the set of A nodes to which each of them will
push that video segment, and so on (both within and across
ASNSs). As a result, that video segment will be spread across
every ASN containing a viewing node. To reach each
viewing node, the segment may also travel across interim
private backbone ASNs with no viewing nodes.

Overlay Network Creator also generates one or more
intra-ASN “Swarm™ overlay networks to relay a video
segment from A nodes within an ASN to the B:A, B and C
nodes within that ASN. These Swarm overlay networks may
be dynamically reconfigured (1in whole or 1n part) for each
video segment (or for each chunk of a video segment 1n an
alternate embodiment). In one embodiment, each Swarm
overlay network within an ASN represents a hierarchical
topology (with respect to an A node within the ASN) of the
B:A, B and C nodes that receive, view and relay (with the
exception of C nodes) the video segment among the nodes
in that Swarm hierarchy.

Thus, the virtual broadcast system and methods of the
present invention make eflicient use of limited capacity at
ASN peering points and other key points of congestion by
monitoring and analyzing network traflic to optimize the
routing of digital content among nodes of Virtual Data Trunk
and Swarm overlay networks that are dynamically recon-
figured based on forecasts of congestion levels at these key
congestion points, thereby maintaining a consistent QoE
among system users.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a graph illustrating one embodiment of overlay
networks of the present invention dynamaically configured on
top of the Internet;

US 10,992,998 B2

13

FIG. 2 1s a block diagram 1llustrating one embodiment of
key client-side components of a client streaming video

device of the present invention;

FIG. 3 1s a block diagram illustrating one embodiment of
key server-side components of a virtual broadcast server of
the present invention.

FIG. 4 1s a flowchart illustrating one embodiment of a
dynamic video streaming process of the present ivention.

DETAILED DESCRIPTION

Detalled embodiments of the systems and methods of the
present invention are illustrated in the accompanying Fig-
ures and described below. It should be noted at the outset
that the present invention 1s not limited to the particular
embodiments discussed below with reference to the Figures.

As noted above, while a specific application of the present
invention 1s described herein 1n the context of delivering
streaming video over the Internet to large numbers of
concurrent users, the principles of the present invention
apply equally 1in numerous other contexts where limited
capacity of shared links among network components con-
strains the routing of any type of digital content.

Even within the context of delivering streaming video
over the Internet, the allocation of functionality between
client nodes and server components described herein 1s the
result of design tradeofls, and much of this functionality
could be reallocated between client-side and server-side
components without departing from the spirit of the present
invention. Similarly, the client-side functionality could be
allocated 1nto a single modular component or spread across
multiple different components, and could be implemented as
one or more standalone applications or mobile apps, or as a
combination of standalone applications or apps and
Javascript or other scripting or programming languages.
Moreover, server-side components could be implemented on
a single hardware server, or across multiple different servers.
Such functionality could also be integrated into a single
software module or allocated among diflerent software
modules spread across one or more hardware servers.

Finally, 1n those embodiments 1n which standard proto-
cols and libranies are utilized (e.g., HI'TP, WebSocket,
WebRTC, STUN and various adaptive streaming standards),
the functionality provided by some or all of such standard
protocols and libraries could be replaced with other standard
or proprietary implementations, without departing from the
spirit of the present invention.

Overlay Networks

FIG. 1 1s a graph illustrating one embodiment of Overlay
Networks 100 of the present invention mapped on top of the
Internet. Although the Internet can itself be illustrated 1n a
myriad of different ways, FIG. 1 illustrates the Internet as a
set of ASN 110 fiber rings, interconnected via Peering Points
120. The individual client nodes viewing a particular video
channel at any point 1n time are 1llustrated inside each ASN
110. Though not shown i1n FIG. 1, multiple channels, and
thus multiple sets of Overlay Networks 100, could (in one
embodiment) be active concurrently.

As noted above, a Virtual Data Trunk overlay network
represents the mterconnections 175 among the A nodes 130,
both within an ASN 110 (directly connected) and across
ASNs 110 (1.e., via Peering Points 120). Backbone connec-
tor 195 illustrates the interconnection of A nodes between
two ASNs 110, via a private ASN (not shown) that does not
include any commercial nodes, but merely interconnects two
public ASNs 110. For example, backbone connector 193 1s
shown connecting an A node 130 1n ASN 110-/ with an A

5

10

15

20

25

30

35

40

45

50

55

60

65

14

node 130 in ASN 110-e. In this scenario, tratlic between
those two A nodes 130 may travel through multiple “private”™
Peering Points 120 (or other proprietary connections with
private ASNSs).

As alluded to above, 1n one embodiment, the performance
of such connections can be monitored only at the endpoints
(1.e., the two A nodes 130), as 1s the case with connections
175 between A nodes 130 1n two different public ASNs 110
(1.e., via a Peering Point 120). Trathic along a connection 175
between two A nodes 130 1n the same ASN 110 will likely
be relatively faster than tratlic across ASNs 110, as it does
not traverse a potentially congested Peering Point 120.
Though background connector 195 and connections 175
to/from A nodes 130 are illustrated with one-way arrows,
these retlect only current one-way routing paths, despite the
fact that two-way connectivity 1s supported among all client
nodes illustrated in FIG. 1.

It should be noted that all traffic between any two client
nodes of the present invention traverses the public Internet,
and thus passes through various intermediate routers (not
shown) which affect QoS. The system monitors QoS etlects
both within an ASN 110 and across ASNs 110 (and thus one
or more Peering Points 120). In one embodiment, such
intra-ASN and inter-ASN traflic 1s monitored by each client
node (at the direction of the Virtual Broadcast Server), and
delivered to the Virtual Broadcast Server for dynamic recon-
figuration of the nodes and routing paths represented by
Overlay Networks 100 (including the Virtual Data Trunk
overlay network among A nodes 130 and the Swarm overlay
networks from each A node 130 within an ASN 110 to the
B (and B:A) nodes 140 and C nodes 150 within that ASN
110).

FIG. 1 illustrates the various routing paths that a video
segment follows among client nodes given a “current state”
of these Overlay Networks 100. In other words, it illustrates
a current topology of these Overlay Networks 100 which, 1n
one embodiment, can be dynamically reconfigured for each
video segment (and, in an alternate embodiment, for each
chunk of a video segment). It should be noted that, for any
particular video segment, Overlay Networks 100 may or
may not be reconfigured (in whole or m part), as this
decision will depend at least in part upon the performance
metrics gathered over time.

ASN 110-c illustrates a scenario 1n which the POI Content
Server (not shown) resides in ASN 110-¢ or nearby (e.g.,
across one or two other ASNs 110), and responds to an
HTTP request to deliver the current video segment to A node
130-a to mitiate the streaming ol video segments on a
channel along the Overlay Networks 100. As will be dis-
cussed in greater detail below, the POI Content Server
typically will deliver each wvideo segment to multiple
requesting A nodes 130 in the same or nearby ASN 110, and
these A nodes 130 will in turn push the video segment to
multiple other nodes along the Overlay Networks 100,
resulting 1n a “redistribution” of multiple concurrent copies
of chunks of video segments being delivered to and relayed
from client nodes at any given point 1n time.

In this scenario, A node 130-a relays the video segment to
two other A nodes 130—one within ASN 110-¢ and another
across a Peering Point 120 to ASN 110-a. As noted above,
the Virtual Data Trunk overlay network represents the rout-
ing paths that a video segment will follow as 1t 1s relayed
among A nodes 130 within and across ASNs 110. Thus, 1n
this scenario, the video segment is relayed not only among
multiple A nodes 130 within ASN 110-c¢, but also from ASN
110-a across various Peering Points 120 to multiple directly
interconnected ASNs (1.e., 110-q, 110-d, 110-f and 110-g),

US 10,992,998 B2

15

from which 1t 1s further relayed across multiple hops of the
Virtual Data Trunk overlay network to other ASNs 110.

As will be explained 1n greater detail below, the number
of A nodes 130 required within an ASN 110 will depend
upon various factors, such as the number of other client
viewing nodes within that ASN 110, as well as their relative
capabilities (as determined by their classification, number of
open slots and performance metrics monitored over time).
For example, ASNs 110-5, 110-/, 110-; and 110~/ are each
illustrated with only a single A node 130, even though they
have differing numbers of other client nodes to feed (com-
pare the single other node 1n ASN 110-f to the many other
nodes in ASN 110-7).

While the monitored upstream bandwidth of a node 1s a
key factor in determining how many nodes i1t will feed
directly (1.e., how many outgoing slots will be used), 1t 1s
important to recognize that the length of the “chain” of
nodes within an ASN 110 (relaying a video segment from
one to the next, and so forth) 1s largely irrelevant given how
quickly these relays are eflected (typically well under 1 ms).
For example, the single A node 1n ASN 110-i, which directly
teeds two A nodes 1n external ASNs 110 (ASN 110-g and
ASN 110-j) as well as two B nodes 130 within ASN 110-/,
uses 4 outgoing slots (reflecting relatively high monitored
upstream bandwidth in this embodiment). Yet, the long
chain of B nodes 140 and C nodes 150 which are indirectly
fed from the single A node in ASN 110-i 1s not a reflection
of 1ts upstream bandwidth.

Within each ASN 110, one or more Swarm overlay
networks are generated (dynamically reconfigured for each
video segment in this embodiment) to relay the video
segment within that ASN 110 from each A node (1.e., the
“root” node of a Swarm overlay network) to the various B
(and B:A) nodes 140 and C nodes 150 within that Swarm
overlay network. Although only one Swarm overlay network
1s 1llustrated 1 ASN 110-¢ (as compared to two Swarm
overlay networks 1llustrated 1n ASN 110-7), the number of
Swarm overlay networks generated within each ASN 110
(and internal topology of each Swarm overlay network) will
depend on various factors, such as the number of client
viewing nodes within that ASN 110, as well as current and
historical performance metrics, number of open slots, efc.

As noted above, a client node, such as A node 130-4 1n
ASN 110-b, can recerve a video segment from multiple other
client nodes (in this case from two other A nodes 130 1n
different ASNs (110-a and 110-d). In one embodiment, these
two other feeding nodes alternate sending chunks of the
video segment to A node 130-5 for performance reasons—
¢.g., because these chunks cross Peering Points 120, whose
levels of congestion are continuously monitored, as will be
explained 1n greater detail. In other embodiments, this may
be done for purposes of redundancy—e.g., because the
reliability of the feeding nodes may be questionable based
upon historical performance metrics (apart from or 1n addi-
tion to congestion of Peering Points 120.

The methods by which performance metrics are moni-
tored, video segments are relayed and Overlay Networks
100 are dynamically reconfigured, are explored 1n greater
detail below with respect to FIG. 4, following a discussion
of key client-side (FIG. 2) and server-side (FIG. 3) func-
tional components that implement these methods.

Client Streaming Video Device

Turning to FIG. 2, Client Device 200 illustrates one
embodiment of key components of a client streaming device
of the present invention. Client Device 200 can be imple-
mented as a desktop or laptop computer, as well as a
smartphone or other mobile device, or virtually any other

10

15

20

25

30

35

40

45

50

55

60

65

16

consumer electronic device capable of handling streaming
content, such as streaming video. Client Device 200 includes
certain standard hardware and software computing compo-
nents and related peripherals 210, including a CPU 212,
Memory 214, Operating System 216, Network Adapter 217,
Display 218 and Camera 219, which are well known 1n the
art. Client Device 200 utilizes these components and periph-
crals 210, along with certain Standard Libraries 220, to
become a network node, and to receive, display and relay
streaming video content among other network nodes of the
virtual broadcast system of the present invention.

The present mvention leverages certain Standard Librar-
1ies 220 (also found on most smartphones, as well as many
other computing devices) that implement network protocols
and other functionality which can be employed to facilitate
streaming video content between devices. For example,
video content can be streamed between two smartphone
users and displayed on their mobile web browsers without

requiring any plugins. Standard Libranes 220 include
WebRTC 222 APIs (which {facilitate browser-to-browser

communication for streaming video content), various Adap-
tive Streaming 224 implementations, such as HLS, MPEG-
Dash, and Smooth Streaming, among others (which enable
automatic adjustment of streaming bit rates to “adapt™ to
real-time detection of changes 1n client bandwidth and CPU
capacity), the WebSocket 226 protocol (which facilitates
rapid two-way client-server communications over a single
TCP/IP connection) and HTTP 228 (for less-frequent stan-
dard communications between web servers and client web
browsers).

Client Device 200 also includes a Standard Player 232 (in
one embodiment, a standard video player integrated into a
Standard HITMLS5 Web Browser 230) to view or play stream-
ing digital content. In other embodiments, Standard Player
232 1s integrated 1nto a standalone desktop application or
smartphone app. One advantage of leveraging Standard
HTMLS5 Web Browser 230 i1s that many of the Standard
Libraries 220 are designed to work with web browsers, and
thus do not require any plugins or other custom functionality
that would necessitate a standalone desktop application or
smartphone app.

Moreover, web browsers also support client-side scripting,
languages, such as Javascript, which 1s frequently used to
supplement standard web browser functionality (delivered,
for example, from a standard web server as part of a
webpage, without requiring any client browser plugins). In
one embodiment, the non-standard key components of Cli-
ent Device 200 (including Communicator 270, Performance
Monitor 240, Recerver 250, Relayer 260, and Uploader 280)
are 1implemented 1n Javascript, and Content Arrays 255 are
generated and maintained by that Javascript code. It should
be noted, however, that some or all of these components can
be implemented in other programming languages, and in
standalone desktop applications or smartphone apps, with-
out departing from the spirit of the present invention.

The Standard Libraries 220 facilitate generic point-to-
point (unicast) streaming of content, including video con-
tent. The non-standard key components of Client Device 200
address the client-side aspects of the digital content delivery
architecture implemented by the virtual broadcast system of

the present invention. In one embodiment, a streaming
protocol 1s built on top of WebRTC 222 in which routing of
content 1s centralized via a client-server architecture, and the
content 1tself 1s streamed 1n a distributed fashion (pushed
from node to node) via dynamically reconfigurable P2P
overlay networks.

US 10,992,998 B2

17

A user of Client Device 200 may {irst encounter one or
more channels of content 1n various different ways—e.g., via
links 1n an email or on a webpage, or even from within a
standalone desktop application or smartphone app. In one
embodiment, Virtual Broadcast Server 300 (discussed in
greater detaill below with respect to FIG. 3) delivers a
standard HI'MLS webpage with a selection of channels to
HTMLS Web Browser 230. This “channel webpage”
includes proprietary Javascript code that 1s interpreted by
HTMLS5 Web Browser 230 to implement the functionality of
the non-standard components of Client Device 200, which
includes communicating with Signaling Server 330 as well
as with other client nodes (e.g., using WebRTC 222 and
Adaptive Streaming 224 libraries), as well as receiving,
processing and relaying chunks of video segments from and
to such nodes.

Upon clicking on a channel link 1n the channel webpage,
the user generates a request to join a particular channel of
video content that 1s currently being streamed, or, 1n another
embodiment, will begin streaming at a later predefined point
in time (a “join request”). Signaling Server 330 of Virtual
Broadcast Server 300 responds to the join request by
attempting to establish a WebSocket 226 connection with
Client Device 200 via Communicator 270. As will be
discussed in greater detail below with respect to FIG. 3,
Virtual Broadcast Server 300 employs the “STUN” 322
protocol to discover the public IP address of Client Device
200 (e.g., behind a NAT firewall) so that Client Device 200
can establish a WebSocket 226 connection with Virtual
Broadcast Server 300, and WebRTC 222 connections with
other Client Devices 200 for receiving and relaying video
content.

In the embodiments discussed herein, Client Device 200
joins only one video channel at any given time. In other
embodiments, Client Device 200 may join multiple channels
concurrently without departing from the spirit of the present
invention.

Client Device 200 utilizes Communicator 270 for bidi-
rectional communications with Signaling Server 330 to
facilitate rapid exchanges of messages while keeping a
single TCP/IP connection open. As will be discussed 1n
greater detail below, such communications are employed for
various purposes, including (1) providing Virtual Broadcast

Server 300 with initial information regarding Client Device
200 capabilities (e.g., OS, web browser and connection
type—3G, 4G, WiFi1, LAN, etc.), (1) enabling Virtual
Broadcast Server 300 to verily client node connectivity for
subsequent WebRTC 222 inter-node streaming of video
segments via Overlay Networks 100, and (111) exchanging
real-time dynamic monitoring information (obtained wvia
Performance Monitor 240, as discussed below) with Virtual
Broadcast Server 300.

In one embodiment, this Javascript code contained in the
channel webpage also analyzes the capabilities of Client
Device 200 to determine whether 1t 1s a C node (that receives
video segments, but does not relay them to other client
nodes), and provides this information to Signaling Server
330. In other embodiments, certain capabilities of the Client
Device 200 are sent to the Virtual Broadcast Server 300,
which determines whether the Client Device 200 1s a C
node.

This Javascript code also facilitates communications with
POI Content Server 380 to manage the receipt of video
segments by Receiver 250 for playback by Standard Player
232. This process 1s, 1n eflect, an extension of the standard

10

15

20

25

30

35

40

45

50

55

60

65

18

point to point video streaming scenario, which leverages
standard WebRTC 222 and Adaptive Streaming 224 func-
tionality.

In one embodiment, Standard Web Browser 230 interprets
the proprietary Javascript code from the channel webpage to
request manifest files periodically as described above. Such
standard HTTP requests are directed to POI Content Server
380, which provides the manifest files. Standard Web
Browser 230 also leverages the standard Adaptive Streaming
224 libraries to request the video segments themselves from
the locations specified 1n the manifest file, including higher
or lower bit rate versions of these video segments as
discussed above (e.g., when a change 1in bandwidth 1is
detected).

These requests for video segments are intercepted by the
proprietary Javascript code from the channel webpage—i.e.,
because each video segment 1s pushed to Client Device 200
from another (feeder) node of Overlay Networks 100 (obvi-
ating the need for Client Device 200 to initiate an HITP
“pull” request). In one embodiment (discussed 1n greater
detail below), Virtual Broadcast Server 300 adds Client
Device 200 to Overlay Networks 100 (and thus to the
channel) shortly after the join request 1s received, so that one
or more 1nitial video segments will be pushed to Client
Device 200 to enable 1t to begin playing the video content as
soon as possible.

As Receiver 250 receives chunks of each video segment,
it generates Content Arrays 255 to facilitate the receipt and
playback of the video segments, as well as the relaying of the
video segments (11 Client Device 200 1s not designated a C
node) to other client nodes. Receiver 250 generates a
Receive Array 256 to compile the chunks into a complete
video segment, which 1s provided to the three-segment
bufler maintained by Standard Player 232. If, upon inter-
cepting the HT'TP request for a video segment, Receiver 250
determines that the complete video segment 1s not yet 1n
Receive Array 256, then the video segment will be requested
from an alternate (or “fallback™) location specified in the
mamfest file (1.e., POI Content Server 380). From the
perspective of Standard Player 232, 1t receives video seg-
ments i response to standard HTTP requests, and 1s
unaware that the video segments are actually being pushed
to Client Device 200 via Overlay Networks 100.

Moreover, in one embodiment, Receiver 250 also lever-
ages Adaptive Streaming 224 libraries to communicate to
Signaling Server 330 (via Communicator 270) the bit rate
that Client Device 200 can handle (regardless of whether
Standard Player 232 makes such a request in the normal
manner via the manifest file). For example, 1f Client Device
200 experiences a temporary significant drop 1n its band-
width (resulting in a video segment not arrving in Receive
Array 256 before it 1s needed), it might request one (fall-
back) video segment from POI Content Server 380, and then
be pushed subsequent lower-resolution video segments via
Overlay Networks 100. Once its bit rate returns to normal,
it might then be pushed higher-resolution video segments as
it did belfore the problem occurred.

As noted above, 1n one embodiment, Virtual Broadcast
Server 300 dynamically reconfigures Overlay Networks 100
for each video segment, including Virtual Data Trunk over-
lay networks (among A nodes within and across ASNs) and
Swarm overlay networks (from each A node within an ASN
to other nodes within that ASN). Unless Client Device 200
1s classified as a C node (that recerves video segments, but
does not relay them to other client nodes), Relayer 260 will
receive instructions from Virtual Broadcast Server 300 (with
respect to each video segment of the video channel 1t joined)

US 10,992,998 B2

19

regarding the node or nodes to which 1t will relay that video
segment. As discussed above with reference to FIG. 1,
whether Client Device 200 1s an A, B:A or B node, 1t may
be asked to relay the video segment to multiple other client
nodes.

The length of video segments (e.g., from 1-10 seconds) 1s

defined by the oniginator of the video content 1n accordance
with Adaptive Streaming 224 standards. Relayer 260 waill
relay the video segment to each designated destination client
node by pushing chunks in accordance with the “RTC-
DataChannel” component of the WebRTC 222 standard
(which does not mandate a signaling protocol)
In one embodiment, each video segment 1s divided into 64
KB chunks to match the size of a UDP datagram (“packet™)
for maximum efliciency when streamed via the MPEG2
transport protocol. Client Device 200 sends and receives
UDP “packets” one chunk at a time (falling back to TCP
when necessary per the WebRTC 222 standard). A 1-second
video segment, for example, would contain approximately
625 chunks (assuming a 1080p H.264 encoder, which yields
about 5000 Kbps).

As Recetrver 250 recerves chunks of each video segment,
it generates Recerve Array 256 to compile those chunks and
construct complete video segments. Relayer 260 generates
Relay Array 257 to compile those chunks for the purpose of
sending (relaying) them to designated destination client
nodes. In this manner, Relay Array 257 acts as a buller for
incoming and outgoing chunks of a video segment. As will
be discussed below, Performance Monitor 240 tracks the
time required to stream the entire video segment to each
designated destination client node, and reports that metric
back to Virtual Broadcast Server 300 (for subsequent use in
dynamically reconfiguring Overlay Networks 100).

In one embodiment, a receiving client node receives a
video segment from a single feeding node, such as Client
Device 200. In another embodiment, multiple potential
teeding nodes are selected by Virtual Broadcast Server 300,
and they communicate among themselves to negotiate the
“top two” candidates (e.g., based upon current bandwidth or
other monitored performance metrics), and then alternate
sending chunks to the designated receiving client node.

In another embodiment, multiple different resolutions
(e.g., 1080p, 720p and 480p) of each video segment are
pushed among A nodes, and Virtual Broadcast Server 300
directs the A node at the root of each Swarm overlay network
which of those resolutions to push to the other nodes within
that Swarm overlay network (e.g., based upon the capabili-
ties of those other nodes, as discussed in greater detail
below).

During the time that Recerver 250 1s receiving the chunks
ol a video segment for playback, and Relayer 260 1s stream-
ing those chunks to other designated client nodes, Perfor-
mance Monitor 240 gathers various static and real-time
dynamic performance metrics as directed by Virtual Broad-
cast Server 300, and continuously provides such metrics
back to Virtual Broadcast Server 300 via Signaling Server
330.

As noted above, such metrics are used by Virtual Broad-
cast Server 300 to dynamically reconfigure Overlay Net-
works 100 to optimize routing of the next video segment. In
particular, the performance metrics are used to classily and
reclassily client nodes, allocate and de-allocate slots for
relaying video segments to other client nodes, determine
which resolutions of video segments can be recerved and
relayed to other client nodes, and ultimately modity a subset
of the routing paths among the client nodes when Overlay
Networks 100 are dynamically reconfigured. The precise

10

15

20

25

30

35

40

45

50

55

60

65

20

manner 1n which these performance metrics are utilized by
Virtual Broadcast Server 300 will be discussed in greater
detail below with respect to FIG. 3.

Static performance metrics, such as the type of operating
system, browser and connection (e.g., 3G or 4G cellular,
WikF1, LAN, etc.), are not likely to change frequently and are
typically reported to Signaling Server 330 only upon the
initial join request by Client Device 200 (though they will be
reported 1n the event of a change—e.g., a change 1n cellular
connection from 3G to 4G).

While dynamic information could be collected and
reported on a continuous basis (1.¢., as it 1s gathered), various
tradeolls are taken 1into account in one embodiment to ensure
that the “overhead” (frequency of monitoring and reporting
these dynamic metrics to Signaling Server 330) does not
aflect the “payload” or performance of the delivery of the
video 1tself (1.e., the streaming of chunks to and from Client
Device 200). In one embodiment, such metrics are used
solely for the next video segment, while in other embodi-
ments, changes can be eflected for the next chunk (or
multiple chunks) during the delivery of the current video
segment.

In one embodiment, two types of dynamic performance
monitoring are performed. The first mnvolves “ping” times
(or other similar measurements) to known sites on the
Internet (e.g., to a Yahoo web server, Virtual Broadcast
Server, etc.), both within and across the ASN 1n which Client
Device 200 resides. Individually, such metrics provide
insight into the performance of Client Device 200, while
collectively they provide additional insight into QoS both
within the ASN 1n which Client Device 200 resides, and
across ASNs via particular Peering Points. While the Virtual
Data Trunk overlay network (among A nodes) 1s of relatively
greater concern (due to congestion at Peering Points), con-
gestion within an ASN 1s also relevant (as it might, for
example, require dynamic reconfiguration of at least part of
one or more of the Swarm overlay networks within the
ASN).

The other type of dynamic performance monitoring
involves the total time required to relay a video segment
from one client node to another. In one embodiment, each
node (other than C nodes) records the “start” time when 1t
sent the first chunk of a video segment to a designated
destination client node, as well as the “stop” time after the
last chunk of that video segment was received (e.g., because
the WebRTC 222 standard provides verifications of each
packet). Performance Monitor 240 sends this total time (for
cach video segment 1t sends) to Signaling Server 330. This
metric also can provide insight not only regarding the
individual performance of Client Device 200, but also the
level of congestion both within 1ts ASN, and across ASNs
(e.g., 1 Client Device 200 1s an A node feeding another A
node across an ASN Peering Point).

In one embodiment, the user of Client Device 200 can
also be the oniginator of video content. In most cases, this
scenario results from the ever-increasing quality of smart-
phone cameras (such as Camera 219), which enable users to
capture video events “anywhere at any time.” But, 1t 1s also
possible for users of desktop or laptop computers, as well as
smartphones, to obtain pre-recorded video events from other
sources.

The problem 1s that Client Device 200 must somehow
stream 1ts video content across the Internet to Virtual Broad-
cast Server 300, which may be many hops away across
multiple ASNs. Uploader 280 addresses this problem via a
proprietary “showering” protocol designed to avoid UDP
packets being delayed or blocked at intermediate routers. In

US 10,992,998 B2

21

one embodiment, Uploader 280 1s implemented via a dedi-
cated smartphone app on Client Device 200, as opposed to
relying on more limited client-side Javascript functionality.

To implement this showering protocol, Uploader 280
establishes a TCP/IP connection with Virtual Broadcast
Server 300, and employs UDP “bursts”™ to deliver the largest
IP packet sizes available (“maximum transmission unit” or
MTU). Yet, continuous UDP streams (whether sent via a
single router port or distributed across multiple router ports)
will often be detected by intermediate routers as a “denial of
service” (DOS) attack, and thus blocked. Moreover, such
UDP streams may overflow a router’s allocated memory
(e.g., a FIFO queue) because routers typically allocate
memory for UDP packets (as opposed to more common TCP
packets) only while they are being received.

To address these obstacles, Uploader 280 not only dis-
tributes UDP packets among multiple ports (e.g., 6 ports in
one embodiment), 1t also delays the packets sent on any
individual port to avoid being detected as a DOS attack. In
one embodiment, the delay on each port 1s long enough to
avoid detection as a DOS attack, and long enough to enable
routers to allocate suflicient memory, but short enough to
provide sufficient bandwidth to deliver a video segment
across multiple ASNs, and short enough to avoid being
perceived as the end of a UDP stream (which would cause
the router to stop allocating memory for UDP packets and
essentially “throw them away™).

As Uploader 280 delivers each video segment to Virtual
Broadcast Server 300 i1n this manner, Virtual Broadcast
Server 300 then generates a channel to redistribute this video
content along Overlay Networks 100 as if 1t had been
received from a more traditional CDN. In another embodi-
ment, Virtual Broadcast Server 300 employs this proprietary
showering protocol 1n the relatively infrequent scenarios 1n
which 1t 1s the fallback point-of-origin source of a video
segment for a client node whose current video segment did
not arrtve 1n time along the Overlay Networks 100.

Virtual Broadcast Server

FIG. 3 illustrates one embodiment of key server-side
components of a Virtual Broadcast Server 300 of the present
invention. As noted above, while the components of Virtual
Broadcast Server 300 are illustrated 1n a single physical
hardware server, the functionality of these components can
be reallocated among multiple different physical hardware
devices and different software modules without departing
from the spirit of the present ivention.

Virtual Broadcast Server 300 includes certain standard
functionality, such as Standard HW/SW 310, found in most
hardware servers—e.g., a CPU 312, Memory 314, Operating,
System 316, Network Adapter 317 and a Display 318. In
certain embodiments, Virtual Broadcast Server 300 also
leverages Standard Libraries 320, which may include, for
example, (1) the STUN 322 protocol (*Session Traversal
Utilities for NAT™), which facilitates the discovery of public
[P addresses of Client Devices 200 behind a NAT firewall,
so that client nodes can send and receive video to and from
other client nodes, as well as establish connections with
Virtual Broadcast Server 300; (1) the WebSocket 326 pro-
tocol, which facilitates rapid two-way client-server commu-
nications over a single TCP/IP connection; and (111) HT'TP
328, which 1s employed for less-frequent standard commu-
nications with client web browsers, such as Standard
HTMLS5 Web Browser 230.

Virtual Broadcast Server 300 need not support WebRTC
222 and Adaptive Streaming 224 standards because 1t 1s not
a client node on the Overlay Networks 100, even though 1t
continually analyzes performance metrics obtained from

10

15

20

25

30

35

40

45

50

55

60

65

22

client nodes, and dynamically reconfigures the routing paths
for the channels of video content distributed among those
client nodes along the Overlay Networks 100.

Virtual Broadcast Server 300 serves as the “channel
originator” point of origin for the Overlay Networks 100, 1n
particular, for the Virtual Data Trunk overlay network. In
one embodiment, POI Content Server 380 designates one or
more nearby A nodes (preferably 1n its ASN, 11 possible) to
issue HT'TP requests for video segments. These A nodes
cllectively serve as the root of the Virtual Data Trunk
overlay network, and push each video segment to other A
nodes within and across ASNs, and ultimately to other nodes
via the Swarm overlay networks within each ASN.

As will be described 1n greater detail below with reference
to POI Content Server 380, such “channel origination”
functionality does not require use of the standard WebR1C
222 and Adaptive Streaming 224 libraries which are targeted
at browser-to-browser video streaming. As noted above, POI
Content Server 380 also serves as the occasional alternative
(fallback) source of video segments for client nodes who do
not receive the current video segment in time along the
Overlay Networks 100. Such client nodes i1ssue HTTP
requests to which POI Content Server 380 responds by
sending them the requested video segment.

As also noted above, POI Content Server 380 serves as
the point of origin for all video channels (in one embodi-
ment), whether the video content 1s obtained from a Client
Device 200 via Uploader 280 or from a more traditional
CDN (and whether 1t 15 streamed to Virtual Broadcast Server
300 1n real time, or provided 1n advance for streaming at a
later time).

Channel Admin 383 is responsible for setting up and
maintaining each channel, while POI Content Server 380
prepares the video content itself for streaming as a channel
to client nodes. In one embodiment, Channel Admin 385
generates and maintains the channel webpage for delivery
by POI Content Server 380 over the Internet, and use by
Signaling Server 330 1n responding to join requests from
Client Devices 200 seeking to join a particular channel.

For support purposes, a ‘“viewer support console” 1s
established and maintained by Channel Admin 383 to sup-
port individual viewers whose Client Devices 200 are expe-
riencing problems, as well as a “playout center” for live-
monitoring of all video channels so that channel-specific and
region-speciiic problems can be addressed (e.g., as support
calls accrue from a particular geographic region). Real-time
monitoring of “channel analytics” 1s also maintained by
Channel Admin 3835 to provide data useful for these support
functions, as well as for the originators of video content
(e.g., at a CDN). For example, analytics include real-time
metrics regarding the current state of each video channel and
the network nodes along the Overlay Networks 100, as well
as last-mile and other problems relating to video bit rates,
points of congestion, node latency, eftc.

Finally, “channel administration” functionality 1s pro-
vided to manage the video channels and interface with
Signaling Server 330 so that 1t has current information
necessary to facilitate 1ts communications with Client
Devices 200 (e.g., regarding joimning a channel, providing
client-monitored performance metrics, obtaining routing
and resolution or bit-rate changes for relay targets, etc.).

The remaiming server-side functionality illustrated 1n FIG.
3, with the exception of Splash Extractor 390, will be
described, for simplicity, 1n the context of a single channel
of video content. Note, however, that this functionality 1s

US 10,992,998 B2

23

performed concurrently, in one embodiment, for multiple
channels at any given time, and for a variety of digital
content.

Before client nodes access a video channel, the video
content 1s transcoded to create multiple lower-resolution
streams ol video segments. In one embodiment, POI Content
Server 380 1s implemented as an HT'TP 228 server that can
communicate with Standard HTMLS Web Browsers 230
within Client Devices 200. Unlike Signaling Server 330,
which establishes WebSocket 225 connections with Client
Devices 200 for frequent two-way communications (e.g.,
exchanging routing changes, performance data, etc.), POI
Content Server 380 responds to relatively infrequent client
HTTP 228 requests from Standard HIMLS Web Browsers
230 for manifest files, occasional video segments that did
not arrive 1 time via Overlay Networks 100, etc.

As noted above, POI Content Server 380 also relies on the
HTTP 228 protocol to implement 1ts higher-bandwidth chan-
nel origination functionality—i.e., by responding to HT'TP
requests for video segments from nearby A nodes (at the root
of the Virtual Data Trunk overlay network, typically in the
same ASN as POI Content Server 380, or within one or two
hops). In other embodiments, these video segments are
pushed to those A nodes in accordance with WebRTC 222
and Adaptive Streaming 224 standards, or via other video
streaming techniques (including the showering protocol
used by Uploader 280 as discussed above).

In one embodiment, POI Content Server 380 transcodes
video content mto 3 different resolutions (1080p, 720p and
480p), while various other higher and lower resolutions are
supported 1n other embodiments (e.g., 4K, 360VR, 180VR,
240p, etc.), including a single fixed resolution for all video
content. If the original source video 1s provided at a lower
resolution (e.g., 720p), then only 720p and 480p resolutions
can be supported for that video channel. This functionality
tacilitates adaptive bit-rate streaming, whether mnitiated by
client nodes (as discussed above) or by Virtual Broadcast
Server 300 based upon an analysis of client performance
metrics.

In one embodiment, POI Content Server 380 initiates a
channel by responding to an HTTP request to provide all
available versions (e.g., 3 different resolutions) of each
video segment to one or more nearby nodes (typically A
nodes) which 1nmitiate the pushing of each video segment
along the Overlay Networks 100. In another embodiment,
these nodes relay all versions to B nodes (and B:A nodes),
and ultimately to C nodes, so that every client node may
leverage Adaptive Streaming 224 capabilities. Nodes that
relay multiple resolutions to other nodes are “polycasting”
these multiple versions of a video segment to other client
nodes via the Overlay Networks 100, as explained 1n greater
detail below.

Note that, while POI Content Server 380 initiates a
channel by providing video segments to one or more nearby
nodes (in response to HI'TP requests), all client viewing
nodes eflectively receive and view each video segment
concurrently—i.e., they are all 1n sync, provided that each
video segment traverses the Overlay Networks 100 before
playback of the prior video segment has concluded. Because
Client Devices 200 bufler at least 3 video segments 1n this
embodiment, this bufler provides some “margin for error”
should a video segment occasionally be delayed. Moreover,
in another embodiment, the initiation of a channel can be
delayed to provide additional buflering when POI Content
Server 380 first starts “broadcasting” the channel. When a
Client Device 200 1ssues a request for a video segment
directly from fallback POI Content Server 380 (e.g., because

10

15

20

25

30

35

40

45

50

55

60

65

24

the video segment did not arrive 1 time via the Overlay
Networks 100), this bufler may be needed, for example, 1T
that video segment crosses one or more ASNSs.

As noted above, POI Content Server 380 also provides
periodic manifest files 1n response to requests from Client
Device 200. Although these manifest files are delivered via
standard HT'TP 328 protocols, they are relatively small and
far less time critical than video segments. In one embodi-
ment, each manifest file identifies the location of the next 8
video segments at various available bit rates. In this embodi-
ment, the locations are the fallback locations on POI Content
Server 380 because video segments are pushed to each
Client Device 200 via the Overlay Networks 100.

Once a channel of video content has been prepared for
streaming (starting with POI Content Server 380), Signaling
Server 330 waits for join requests from Client Devices 200.
Upon receiving a join request for that channel from a Client
Device 200, Signaling Server 330 relies on the STUN 322
protocol to ensure that 1t can establish a WebSocket 326
connection through any NAT firewall that might be present
on that Client Device 200. Moreover, by identitying the
public IP address of that Client Device 200, it can provide
that public IP address to other client nodes (e.g., for relaying
a video segment to that Client Device 200).

Once a WebSocket 326 connection 1s established, the
Clhient Device 200 provides Signaling Server 330 with
information regarding 1ts capabilities (e.g., OS, web browser
and connection type—3G, 4G, WiF1, LAN, etc.) including,
in one embodiment, whether Client Device 200 1s a C node
(e.g., assumed for cellular connections 1n this embodiment).
Client Device 200 also provides its ASN location to Signal-
ing Server 330, which will later be used to add Client Device
200 to the Overlay Networks 100.

In one embodiment, Signaling Server 330 prioritizes
delivery of one or more initial video segments to Client
Device 200 (via the Overlay Networks 100) so that 1t can
begin playing the channel’s video content as soon as pos-
sible. To mnitiate this process, it turns control over to Overlay
Network Creator 350, which adds Client Device 200 to a
Swarm overlay network within 1ts ASN (e.g., by directing a
B node within that ASN to relay video segments to Client
Device 200). Note that Client Device 200 has still not yet
been classified, and will not yet relay any video segments to
other client nodes. But, by being part of Overlay Networks
100, Client Device 200 can start receiving video segments
and playing the channel’s video content, as well as collect
client performance metrics, which will facilitate 1ts classi-
fication.

Signaling Server 330 then obtains (via its WebSocket 326
connection) the upstream and downstream bandwidth of
Client Device 200. Note that this metric 1s not terribly
usetul, as the connection may cross multiple ASNs (even
though Signaling Server 330 knows the ASN location of
Chient Device 200). A more relevant metric will relate to
communications between Client Device 200 and other client
nodes within 1ts own ASN.

Upon receiving client performance information (collected
by Performance Monitor 240 on Client Device 200) from
Client Device 200 (and from other client nodes), Signaling
Server 330 forwards that information to Performance
Tracker 340 for initial analysis and subsequent use by
Overlay Network Creator 350 and Deep Mapper 360 1n
dynamically reclassifying client nodes and reconfiguring
Overlay Networks 100 for the next video segment, as
explained below. Performance Tracker 340 monitors the
performance of each client node and determines whether the
client node 1s still “alive.” For example, 11 Client Device 20

US 10,992,998 B2

25

has closed the connection and left the channel, or does not
respond to a “ping”” within a threshold amount of time, 1t will
be deemed to have left the channel (whether intentionally, or
as the result of a hardware or software failure). Performance
Tracker 340 also converts the client performance metrics
into an appropriate format for storage in Historical Perfor-
mance DB 345, and use by Overlay Network Creator 350
and Deep Mapper 360.

In one embodiment, Overlay Network Creator 350 1s also
responsible, with the assistance of Deep Mapper 360, for the
continuous process of evaluating current and historical client
performance metrics (maintained in Historical Performance
DB 345) and dynamically, for each video segment (1)
reclassitying client nodes and (11) optimizing routing paths
by generating and reconfiguring the Overlay Networks 100,
including the Virtual Data Trunk overlay network (for relay-
ing the video segment among A nodes, within and across
ASNs) and the Swarm overlay networks (for relaying the
video segment from each A node within an ASN, to certain
other B:A, B and C nodes withuin that ASN). The topology
of the Overlay Networks 100 1s maintained in Overlay
Network DB 375, for use by Overlay Network Creator 350
and Deep Mapper 360.

With respect to the performance metrics received from
newly added Client Device 200, Overlay Network Creator
350 utilizes those metrics to mitially classify Client Device
200. In one embodiment, this process 1s also used to poten-
tially reclassily client nodes for every video segment (not
simply when they join the channel). While client nodes are
not typically reclassified very frequently, a client may expe-
rience a temporary drop in bandwidth (e.g., from a home
microwave or other interference). Also, as more A nodes are
required (e.g., for redundancy, or due to client nodes that
leaves a channel), B:A nodes may be upgraded to A nodes.
Other problems detected within an ASN, or across ASNs,
may also require that certain nodes be reclassified.

Overlay Network Creator 350 allocates to Client Device
200 incoming and outgoing slots (1.e., network ports) so that
it can recei1ve chunks of video segments (via incoming slots)
pushed from other client nodes, and can relay (push) those
chunks of video segments (via outgoing slots) to other client
nodes. While the WebRTC 224 standard supports 256
incoming and outgoing ports (slots), only a single incoming
slot 1s allocated 1n one embodiment (to maximize the quality
of video content that can be played on Client Device 200)
and a maximum of 8 outgoing slots are allocated (to maxi-
mize throughput along the Overlay Networks 100 and
support a broad range of Client Devices 200 and limited-
bandwidth connections). As noted above, A nodes are allo-
cated 4 outgoing slots for relaying video segments to other
A nodes across ASN Peering Points, and 4 outgoing slots for
relaying video segments to other A nodes within 1ts ASN. As
will be explained below, not all allocated slots will neces-
sarily be used at any given point 1n time.

Overlay Network Creator 350 analyzes the downstream
and upstream bandwidth of Client Device 200 to facilitate
the classification process. As noted above, if Client Device
200 joins via a cellular connection (3G, 4G or even LTE), 1t
1s automatically deemed to be too unreliable to relay video
segments, and 1s therefore classified as a C node. In other
embodiments, such an automatic classification may be lim-
ited to certain cellular connections (e.g., 3G), or eliminated
altogether.

In one embodiment, Overlay Network Creator 3350
employs categories of typical downstream/upstream band-
width (1n Mbps) to facilitate further classification, including;:
(1) LAN connections (e.g., 100/100), (2) Fiber connections

10

15

20

25

30

35

40

45

50

55

60

65

26

(100/50), (3) ADSL connections (100/20), Cable connec-
tions (100/10) and WiF1 connections, which vary greatly). In
this embodiment, 11 Client Device 200 1s not already deemed
a C node, and has an upstream bandwidth of at least 50
Mbps, 1t 1s mitially categorized as an A node (or as a B:A
node 1 Deep Mapper 360 indicates that no additional A
nodes are required in 1ts ASN). Otherwise, 1t will be cat-
cgorized as a B node.

As will be discussed below, Overlay Network Creator 350
further analyzes the upstream bandwidth of Client Device
200 (in one embodiment) to calculates the number of
available outgoing slots it can utilize before 1t determines the
extent to which (if any) 1t should dynamically reconfigure
Overlay Networks 100. It also determines the extent to
which Client Device 200 1s capable of receiving and/or
polycasting multiple resolutions.

In one embodiment, the full downstream bandwidth of a
client node 1s utilized for its single incoming slot, while only
4 of i1ts upstream bandwidth 1s utilized for relaying video
segments among 1ts outgoing slots. Its full upstream band-
width 1s not utilized, as the relaying of video segments may
interfere with TCP/IP and other connections that Client
Device 200 1s using for other applications.

Overlay Network Creator 350 analyzes the downstream
bandwidth of Client Device 200 (even if classified as a C
node) to determine the number of resolutions 1t can support
via 1ts single incoming slot. For example, 1f 1080p requires
a bit rate of 3 Mbps, and 720p requires a bit rate of 1.5 Mbps
and 480p requires a bit rate of 500 Kbps, then Client Device
200 would require a downstream bandwidth of at least 5
Mbps to support all 3 resolutions, at least 4.5 Mbps to
support 1080p and 720p, at least 3 Mbps to support 1080p
only, at least 2 Mbps to support 720p and 480p, at least 1.5
Mbps to support 720p only, and at least 500 Kbps to support
480p only. In one embodiment, bit rates lower than 3500
Kbps will not be supported. In other embodiments, lower
resolutions may be supported, and other techmiques (e.g.,
greater compression, different video formats, etc.) may be
employed to lessen the bandwidth requirements.

As noted above, 1n one embodiment, A, B:A and B nodes
may also be deemed polycasting nodes that can relay
multiple resolutions to other nodes via one or more of its
outgoing slots. In this regard, Overlay Network Creator 350
analyzes the upstream bandwidth of Client Device 200 to
determine the number of resolutions 1t can relay to other
client nodes.

Because a client node can utilize only 3 of 1ts upstream
bandwidth 1n this embodiment, Client Device 200 would
require an upstream bandwidth of at least 15 Mbps (per
outgoing slot) to polycast all 3 resolutions, at least 13.5
Mbps (per outgoing slot) to polycast 1080p and 720p, at
least 9 Mbps (per outgoing slot) to send 1080p only, at least
6 Mbps (per outgoing slot) to polycast 720p and 480p, at
least 4.5 Mbps (per outgoing slot) to relay 720p only, and at
least 1.5 Mbps (per outgoing slot) to relay 480p only.

Client Device 200 cannot relay a resolution that 1t does
not receive. Moreover, the polycasting capabilities of Client
Device 200 are considered 1n conjunction with the ability of
other client nodes to receive multiple resolutions, as
explained below. But, as noted above, Client Device 200
employs Adaptive Streaming 224 implementations to
request lower or higher resolution versions of video seg-
ments as 1t experiences significant changes 1n its bandwidth.
IT 1t receives multiple diflerent resolutions of a video seg-
ment, 1t will simply play the highest-resolution 1t received.

Assuming Client Device 200 1s not a C node, Overlay
Network Creator 350 calculates the number of available

US 10,992,998 B2

27

outgoing slots 1t can utilize by analyzing its upstream
bandwidth, as well as considering the extent to which it can
polycast multiple resolutions. For example, if Client Device
200 1s classified as an A node with a LAN connection having
an upstream bandwidth of 100 Mbps, 1t can utilize only
about 6 outgoing slots for polycasting video segments both
within its ASN and across ASNs. In this embodiment,
Overlay Network Creator 350 would allocate 4 slots for
polycasting to other A nodes across ASNs (giving these
inter-ASN slots priority), leaving 2 remaining slots for
polycasting to other A nodes within 1ts ASN. In other
embodiments, these allocations could of course vary without
departing from the spirit of the invention.

Similarly, if Chient Device 200 1s classified as a B:A or B
node with a cable connection having an upstream bandwidth
of 10 Mbps, 1t could utilize only 1 outgoing slot for
polycasting 720p and 480p resolutions, or sending only
1080p. In one embodiment, priority 1s given to higher-
quality resolutions (to the extent nodes can receive that
resolution), and thus one slot would be allocated for 1080p
only. Here too, these allocations could vary without depart-
ing from the spirit of the ivention.

Having classified Client Device 200, and determined the
number of slots than can be utilized (including polycasting,
multiple resolutions), Overlay Network Creator 350 then
determines the extent to which it will dynamically recon-
figure the Overlay Networks 100 to optimize routing paths.
if Client Device 200 1s an A node, then Overlay Network
Creator 350 will first obtain from Deep Mapper 360 the
congestion levels for each mter-ASN path between A nodes
(as discussed in greater detail below), and will then dynami-
cally reconfigure at least part of the Virtual Data Trunk
overlay network to incorporate Client Device 200.

For example, given a set of weighted paths (each path
having a “congestion level” weighting), Overlay Network
Creator 350 employs standard path-finding techniques to
determine the optimal path to distribute a video segment
among the A nodes (analogous, for example, to GPS navi-
gation routing). Note, however, that this process 1s slightly
complicated by the use of multiple relay slots—e.g., 4
outgoing slots for A nodes relaying to A nodes within an
ASN, and 4 outgoing slots for A nodes relaying to A nodes
across an ASN Peering Point. Yet, this 1s only a slight
variation of the simplest case 1n which an A node has only
1 outgoing slot. In other words, Overlay Network Creator
350 tracks the number of open (unused) slots during the
generation or reconfiguration of the Virtual Data Trunk
overlay network, and stops assigning a particular A node as
a relay source once 1t no longer has any unused open slots.

If Client Device 200 1s a B: A or B node, Overlay Network
Creator 350 dynamically reconfigures some or all of the
intra-ASN Swarm overlay networks 1n the ASN 1 which
Client Device 200 resides. Note that, 1f there are multiple A
nodes within that ASN, their routes among each other will
be determined as part of the Virtual Data Trunk overlay
network. In one embodiment, only one A node will be
utilized to create a Swarm overlay network (if suflicient slots
are available), while 1n other embodiments, the other nodes
can be allocated equally among the multiple A nodes, or
distributed based on relative upstream bandwidth or other
metrics.

With respect to any particular A nodes, and remaining B,
B:A and C nodes within an ASN, these nodes are first ranked
based on their classification (1.e., B: A, then B, then C), and
then based on their relative bandwidth (1.e., number of
available slots that can be utilized, as described above). Note
that the Swarm overlay network i1s a hierarchy in this

10

15

20

25

30

35

40

45

50

55

60

65

28

embodiment, given that each node has only a single feeder
node. Similar techniques can be employed for non-hierar-
chical “mesh™ swarms 1n other embodiments.

In this hierarchical Swarm embodiment, the process
begins with the root A node, which will have a certain
number of outgoing slots that can be utilized (e.g., 2
outgoing slots). Those slots will be routed to the next level
of the hierarchy—e.g., the 2 B:A nodes with the highest
number of available slots that can be utilized. Once these
paths are determined, the available outgoing slots of those
nodes will be routed to the remaining B:A nodes with the
highest number of available slots. This process continues
down the hierarchy (through the B nodes, and finally the C
nodes) until all paths have been determined.

Note that the length of a chain beneath any client node
(e.g., 100 client nodes, each with a single outgoing slot) 1s
of relatively little concern given the relatively high speed
(well under 1 ms) of a relay between nodes within an ASN.
Given a 1-second video segment, chains of hundreds of
nodes can still be accommodated (though they would be
rare, given that many nodes within an ASN will likely
support multiple outgoing slots). In the event that all nodes
could not be included 1n a Swarm (e.g., if C nodes and B
nodes with 0 available slots remained unaccounted for), then
there would be a need for additional nodes with open slots
in that ASN, which would be allocated as they became
available. In the interim, such nodes would be directed to
request video segments from the POI Content Server 380.

Belore turning to Deep Mapper 360, which predicts and
quantifies the congestion levels across ASN Peering Points
(e.g., for the next minute), 1t 1s helpful to understand the
limitations of BGP routing protocols to appreciate the sig-
nificance of ASN Peering Point congestion. BGP routers
determine congestion at “routing time” and have no predic-
tive abilities. They are aware only of their own routers, and
the latency “1 hop away” across an ASN Peering Point. They
are unaware of the number of hops or latency to any ultimate
destination, which may be multiple hops away across mul-
tiple ASN Peering Points. Given a choice of multiple ASN
Peering Points, they essentially choose the one with the most
available bandwidth at the moment (1.e., the one with an
open slot and the lowest latency 1 hop away).

By contrast, Deep Mapper 360 leverages its knowledge of
the underlying architecture of the Internet. In one embodi-
ment, Deep Mapper 360 maintains an ASN Interconnection
Map of the Internet (including ASNs and their various
Peering Point interconnections), as roughly illustrated in
FIG. 1. This map does not change frequently, though 1t 1s
monitored, 1n one embodiment, every 5 minutes to capture
such infrequent changes.

The Overlay Networks 100 constructed on top of these
ASNss are, however, analyzed frequently (e.g., via client-side
monitoring as discussed above), and potentially reconfig-
ured every video segment (e.g., every second 1n one embodi-
ment) by Virtual Broadcast Server 300. In practice, however,
Overlay Networks 100 are actually modified only when
warranted—e.g., not only when new nodes join or leave the
channel, but also when suflicient problems are detected
(based upon current and historical information maintained 1n
Historical Performance DB 345).

For example, multiple internal “congestion thresholds”
are employed 1n one embodiment. Upon initial detection of
a relatively low threshold of congestion specific to a par-
ticular Client Device 200 or within an ASN, Overlay Net-
work Creator 350 merely “marks” the Client Device 200 or
ASN, and watts to see 11 the problem recurs (e.g., on the next
video segment). If so, 1t may lower the resolution (and thus

US 10,992,998 B2

29

bit rate) of the next video segment relayed to that client node
(or all client nodes within that “problem™ ASN). Eventually,
if the problem gets worse (e.g., exceeding a higher conges-
tion threshold), then a portion of the Overlay Networks 100
(e.g., a subset IP range within an ASN) may be dynamically
reconiigured. Finally, an entire ASN, or perhaps the Virtual
Data Trunk overlay network itself, may require dynamic
reconiiguration.

In any event, the goal of these congestion thresholds 1s to
identify and correct problems proactively, before they
degenerate into more significant problems causing video
segments to be lost, or even causing client nodes to resort to
obtaining a video segment from the fallback location of the
POI Content Server 380.

By maintaining an awareness of the ASN Interconnection
Map of the Internet, and the ASN location of the nodes on
the Overlay Networks 100, and monitoring in real time the
current and historical performance of those nodes, Deep
Mapper 360 mimmizes the likelihood that any client node
will unnecessarily relay a video segment to a distant client
node (e.g., many hops away across multiple ASN Peering,
Points). For example, as an initial matter in one embodi-
ment, the Virtual Data Trunk overlay network will tend to
route video segments (whenever possible) from one A node
to another A node in the same ASN or in a nearby ASN
across a single ASN Peering Point.

However, not all single hops are created equally. For
example, Deep Mapper 360 may “learn” over time (based
upon client performance metrics maintained in Historical
Performance DB 345) that a Peering Point between “ASN 17
and “ASN 2 1s becoming congested, and may “predict” that
a 2-hop route from “ASN 17 to “ASN 3”7 to “ASN 27 1s
actually faster than the current 1-hop route (or will be faster
in the very near future based upon recent and historical
trends). By quantitying Peering Point congestion based upon
actual current and historical performance of A nodes across
Peering Points, Deep Mapper 360 can facilitate dynamic
reconfiguration of the topology of the Virtual Data Trunk
overlay network—potentially for every video segment, or at
least when Peering Point congestion necessitates such
changes (based on internal thresholds).

In one embodiment, Deep Mapper 360 quantifies conges-
tion with respect to each pair of Anodes (whether they reside
in the same ASN or in different ASNs), employing a scale
from 1 to 10, with 1 being the lowest level of predicted
near-term congestion and 10 being the highest. As noted
above, Overlay Network Creator 350 utilizes this congestion
level “score” to compare diflerent potential routes among A
nodes and determine the most eflicient route (1.e., the lowest
“weighted hop” route). As a result, A nodes that are most
“distant” (1n weighted hops) from POI Content Server 380
will minimize the amount of time necessary for a video
segment to traverse the Virtual Data Trunk overlay network
to such A nodes from POI Content Server 380.

In one embodiment, for each pair of A nodes, Deep
Mapper 360 generates a predicted congestion level score for
each route from one A node to the other, and then selects the
lowest congestion level score to be applied to that pair of A
nodes, which 1t returns to Overlay Network 350. In other
embodiments, Deep Mapper 360 generates a diflerent func-
tion of those predicted congestion level scores (for each
route from one A node to the other), such as an average, a
median, etc.).

Deep Mapper 360 1s, 1n one embodiment, a deep learming
engine that continuously analyzes the performance metrics
maintained 1n Historical Performance DB 345, and predicts
(c.g., one minute into the future) the level of congestion

10

15

20

25

30

35

40

45

50

55

60

65

30

across ASN Peering Points. It should be noted that, like any
deep learning engine, Deep Mapper 360 employs multiple
non-linear transformations to model the behavior of ASN
Peering Points, with respect to traiflic among A nodes across
those Peering Points.

As noted above, 1t cannot eflectively monitor the bulk of
the Internet trathic that crosses those Peering Points, but only
the eflect over time that such traflic has on the inter-ASN
hops between A nodes across those Peering Points. As more
performance metrics are obtained, the better it can predict
the time required for such inter-ASN hops, which 1s then
quantified as a relative congestion level (e.g., as compared
to intra-ASN hops which are typically far less congested,
though also monitored 1n this embodiment).

Because the congestion level of Peering Points 1s so
dynamic, such predictions can only be accurate for a short
period of time. But, given that this analysis 1s performed on
a continuous basis, and may change for the next 1-second
video segment, 1t 1s not critical that the prediction be
accurate for a long period of time.

In one embodiment, Deep Mapper 360 initially quantifies
ASN Peering Points based on very coarse information (1.¢.,
before a great deal of client performance metrics are
obtained). For example, 1f an ASN has 1000 Peering Points,
it can be assumed to be a backbone that 1s likely much faster
than another ASN with 6 Peering Points. As more client
performance metrics are obtained, these ASN Peering Point
congestion levels will become more accurate. In another
embodiment, multiple “learning nodes” are deployed to
“jump start” a new channel. These learning nodes are
send-only nodes that do not view the video, but are deployed
solely to provide client performance mformation quickly, so
that Deep Mapper 360 can begin to make more accurate
predictions earlier than would otherwise be the case.

Moreover, 1 one embodiment, Deep Mapper 360 also
considers intra-ASN congestion, as this can suggest the
need, for example, for additional A nodes within an ASN,
and thus the creation of additional Swarm overlay networks.
For example, 1f many client nodes within an ASN are
gradually taking longer to obtain video segments over time,
Deep Mapper 360 marks the ASN to indicate that additional
A nodes are required, and Overlay Network Creator 350 may
“promote” one or more B:A nodes to A nodes, resulting 1n
a partial reconfiguration of the Virtual Data Trunk overlay
network, and ultimately requiring new Swarm overlay net-
works within the ASN. In another embodiment, Deep Map-
per 360 applies deep learning techniques within each ASN,
and assists Overlay Network Creator 350 in generating
intra-ASN Swarm overlay networks.

Thus, Overlay Network Creator 350 and Deep Mapper
360 work together to establish routes among client nodes
(via Overlay Networks 100) that are based on the Internet’s
underlying architecture (ASN Interconnection Map) and the
ASN location of client nodes overlaid on top of that archi-
tecture, 1n order to minimize relays of video segments across
unnecessarily distant routes (1.e., across multiple ASN Peer-
ing Points). Moreover, Overlay Network Creator 350 and
Deep Mapper 360 also work together to continuously ana-
lyze real-time client performance metrics obtained by Client
Devices 200, and to dynamically reconfigure Overlay Net-
works 100 1n the event such metrics reveal significant
problems (often due to congestion at ASN Peering Points).
As a result, the Internet’s QoS volatility can be monitored,
and the eflects on client nodes of congestion (particularly at
ASN Peering Points) can be minimized by dynamically

US 10,992,998 B2

31

rerouting around such problems “before they occur” (based
on the predicted congestion levels generated by Deep Map-

per 360).

In one embodiment, Virtual Broadcast Server 300
includes a Splash Extractor 390 search engine for the
purpose ol identifying trending video events (“Splashes™),
and enabling users to search among the domain of such
events and immediately stream a desired Splash result as a
video channel from POI Content Server 380 (where such
channel was not otherwise available from Virtual Broadcast
Server 300.

In one embodiment, Splash Extractor 390 collects data

continuously from multiple news sources—e.g., via APIs to
Twitter, RSS Feeds, Reddit, and tens of thousands of online
magazines. On average, thousands of distinct “‘current
events” are revealed in such sources every hour. Splash
Extractor 390 employs novel automated methods to 1identily
such trending events (Splashes) and locate and extract
related videos that can be obtained and streamed via POI
Content Server 380.

Splash Extractor 390 identifies “deviations from the
norm” 1n order to detect Splashes. For example, a baseline
1s developed (without requiring normalized data) by
employing, for example, a standard Levenshtein comparison
algorithm among the domain of news sources. On average,
no more than a few sources will discuss the same “topic”™
(1.e., a collection of keywords) within a short period of time,
unless and until a particular topic 1s 1n fact trending. At that
point (e.g., when 15 or more sources discuss the same topic
within a short period of time), that topic 1s i1dentified as a
deviation, and thus a Splash.

Splash Extractor 390 then extracts the “most important™
keywords from those sources (e.g., 40 keywords in one
embodiment)—in one embodiment, by employing standard
neural network techniques to learn and predict the distinct
keywords from the “splash-related” articles. These key-
words are then categorized (e.g., as news, sports, etc.) and
ranked by frequency.

Splash Extractor 390 then uses those keywords to search
social media for videos relating to each Splash, and indexes
the related text associated with those potential Splash video
channels. Users can then search into that index, or simply
browse the categories of Splash video events. Upon select-
ing a result (whether searched or browsed), the user can
immediately stream the desired video. In one embodiment,
the user 1s simply linked to the current source of the video,
while 1n another embodiment, the video 1s obtained wvia
Virtual Broadcast Server 300, and streamed from POI Con-
tent Server 380 (useful, for example, 1 large numbers of
concurrent users request the same Splash video channel).

Dynamic Video Streaming Process

Having discussed key client-side and server-side compo-
nents of the virtual broadcast system of the present inven-
tion, flowchart 400 of FIG. 4 1illustrates how these compo-
nents interact dynamically. In other words, tlowchart 400
illustrates one embodiment of a dynamic streaming process
of the present invention implemented by such components.
It should be noted that, because much of this process is
event-driven and not linear, flowchart 400 1llustrates steps
from the perspective of the interaction between client-side
and server-side functionality.

Step 401 illustrates the process performed by Uploader
280 (and described above), in which a video event 1s either
captured by a client node (e.g., a smartphone camera 219 on
Client Device 200) or generated digitally or obtained from
an external source. In any event, the client (e.g., Client

10

15

20

25

30

35

40

45

50

55

60

65

32

Device 200) then streams video segments of that video event
(whether captured live or pre-recorded) to Virtual Broadcast
Server 300.

Whether video events are obtained from clients or from a
more traditional CDN (and whether they are pre-recorded or
streamed live), Virtual Broadcast Server 300, in step 410,
prepares each video channel for live streaming from POI
Content Server 380, as discussed above. At this point, 1n one
embodiment, a channel webpage 1s generated and eventually
encountered by a potential client node. When a user of a
Client Device 200 clicks on a desired channel, a join request
1s sent to Signaling Server 330, along with client capabilities
(such as the type of operating system, browser, connection,
etc.). Alternatively, a user of Client Device 200 may encoun-
ter a trending Splash video event (as discussed above) and
select that video event (1in step 410) for streaming as a video
channel from POI Content Server 380.

In step 412, Signaling Server 330 verifies client connec-
tivity to the channel (e.g., by employing the STUN 322
protocol to 1dentity the client’s public IP address), and then
establishes a WebSocket 326 connection through any NAT
firewall that might be present on the client, and later
provides that public IP address to other client nodes for
relaying a video segment to that client. Signaling Server 330
then turns control over to Overlay Network Creator 350,
which adds the (not yet classified) client as a node on the
Overlay Networks 100, from which initial video segments
will be pushed to the client (in step 414) so that the user can
immediately begin viewing the video channel, 1n step 415.

Signaling Server 330 then, 1n step 416, classifies Client
Device 200 as an A, B:A, B or C node, and, 1in step 430,
employs both Overlay Network Creator 350 and Deep
Mapper 360 to dynamically reconfigure the inter-ASN (Vir-
tual Data Trunk) and intra-ASN (Swarm) Overlay Networks
100 to incorporate Client Device 200 in the network topol-
ogy. Signaling Server 330 then provides the relevant route
information to other client nodes to begin relaying video
segments to Client Device 200.

POI Content Server 380, in step 435, then responds to
HTTP requests from nearby nodes (typically A nodes) to
stream video segments to those nodes as the point of origin
of the video channel along the current (reconfigured) Over-
lay Networks 100, each video segment being relayed from
node to node until 1t 1s relayed to and viewed by Client
Device 200.

While Client Device 200 1s receiving chunks and com-
piling them, in step 450, for viewing each video segment of
the channel (and potentially also relaying chunks to other
designated client nodes, 1n step 440), 1t 1s also monitoring 1ts
performance 1n step 4235, as discussed above with respect to
Performance Monitor 240, and providing client performance
metrics to Signaling Server 330. In addition, as each video
segment 15 requested, these requests are intercepted 1n step
455 (by client Javascript code 1n Receiver 250, in one
embodiment) because the video segments are being pushed
to Client Device 200 along the Overlay Networks 100, as
discussed above. The arrow from step 455 to step 425 simply
indicates that the monitoring process in step 425 1s a
continuous one, concurrent with the receipt, viewing and
relaying of chunks of video segments.

As also noted above, Client Device 200 periodically
initiates HI'TP requests for manifest files (e.g., containing
the locations of the next 8 video segments) from POI
Content Server 380, even though video segments are being
pushed to Client Device 200 from other client nodes. Occa-
sionally, 11 a video segment does not arrive 1 time, Client
Device 200 will request that video segment directly from

US 10,992,998 B2

33

POI Content Server 380 as a fallback location. Moreover, on
occasion, 1n accordance with Adaptive Streaming 224 stan-
dards, Client Device 200 may also contact POI Content
Server 380 to request a modified bit rate (e.g., upon detect-
ing a change in 1ts performance levels) for subsequent video
segments. As noted above, however, Receiver 250 may well
detect such need earlier, and contact Virtual Broadcast
Server 300 to eflect such changes via the Overlay Networks
100, directing a feeding client node to push lower or higher
resolution video segments to Client Device 200 automati-
cally (1.e., not 1n response to 1ts request).

In step 452, POI Content Server 380 responds to such
HTTP requests, and delivers the requested manifest files and
tallback video segments to Client Device 200. As noted
above, changes 1n bit rates are addressed via the Overlay
Networks 100 (and 1n step 430), resulting 1n lower or higher
resolution video segments being pushed to Client Device
200.

Step 454 encompasses the continuous process (performed
for each video segment, in one embodiment, and described
in detail above) performed by Performance Tracker 340,
Overlay Network Creator 350 and Deep Mapper 360. In this
step 454, client performance information 1s continuously
updated and, 1f necessary, in step 430 (as indicated by the
arrow from step 4354 to step 430), Overlay Networks 100 are
dynamically reconfigured, and new routing information 1s
provided to relevant relay nodes via Signaling Server 330.

Finally, 1n step 460, Splash Extractor 390 continuously
identifies trending Splash video events, which users of
Client Devices 200 can browse or search for, and then
stream for immediate viewing as discussed above.

The present mvention has been described herein with
reference to specific embodiments as illustrated in the
accompanying drawings. It should be understood that, 1n
light of the present disclosure, additional embodiments of
the concepts disclosed herein may be envisioned and 1mple-

mented within the scope of the present invention by those
skilled 1n the art.

The 1nvention claimed 1s:

1. A virtual broadcast system for routing digital content
concurrently among client nodes of an underlying network,
wherein shared links interconnecting components of the
underlying network have a frequently changing congestion
level as network traflic across those links ebbs and flows, the
virtual broadcast system comprising:

(a) a memory storing a map of the components and shared
links interconnecting them, including a location of each
client node within one of the components;

(b) a performance monitor that generates metrics from
network traflic among the client nodes that crosses
those shared links along an overlay network built on
top of the underlying network;

(c) a deep learning engine that analyzes the metrics and
the map over time, and forecasts congestion levels
reflecting the changing capacity of the shared links over
time; and

(d) an overlay network creator that generates, based upon
the forecasted congestion levels, an overlay network
topology including an optimal route among the client
nodes along the overlay network.

2. A virtual broadcast system for routing video content
concurrently among client nodes on the Internet, wherein
ASN peering points exhibit frequently changing levels of
congestion as network traflic across those ASN peering
points ebbs and tlows, the virtual broadcast system com-
prising:

10

15

20

25

30

35

40

45

50

55

60

65

34

(a) a memory storing a map of the ASNs and peering
points interconnecting them, including a location of
each client node within an ASN;

(b) a performance monitor that generates metrics from
network traflic among the client nodes that crosses
ASN peering points along an overlay network built on
top of the Internet;

(c) a deep learning engine that analyzes the metrics and
the map over time, and forecasts congestion levels
reflecting the changing capacity of the ASN peering
points over time; and

(d) an overlay network creator that generates, based upon
the forecasted congestion levels, an overlay network
topology including an optimal route among the client
nodes along the overlay network.

3. The virtual broadcast system of claim 1 or 2, wherein
cach client node 1s categorized into one of a plurality of
classifications based upon that client node’s ability to relay
the segments of digital content to other client nodes, the
plurality of classifications including: (a) a first classification
of client nodes adapted to receive segments from, and relay
segments to, other client nodes along the overlay network
across ASNs; (b) a second classification of client nodes
adapted to receive segments from, and relay segments to,
other clients nodes located only within the same ASN; and
(c) a third classification of client nodes adapted to receive
segments from, but not relay segments to, other client nodes.

4. The virtual broadcast system of claim 1 or 2, wherein
the underlying network 1s the Internet, and the segments of
digital content are ordered segments of video content con-
currently streamed to the plurality of client nodes.

5. The virtual broadcast system of claim 4, wherein a first
client node relays a plurality of different versions of video
content to a second client node, each version having a
different bit rate or resolution.

6. The virtual broadcast system of claim 1 or 2, wherein
the overlay network creator dynamically reconfigures the
network topology of the overlay network when the quanti-
fied congestion levels meet one or more predefined conges-
tion thresholds.

7. The virtual broadcast system of claim 1 or 2, wherein
the metrics include the ASN location of each of the plurality
of client nodes.

8. The virtual broadcast system of claim 1 or 2, wherein
the deep learning engine forecasts congestion levels based in
part upon historical trends detected from analyses of the
metrics over time.

9. A method adapted to route each of a plurality of
segments of digital content to a plurality of client nodes of
an underlying network for concurrent playback of the seg-
ment by the plurality of client nodes, the method comprising
the following steps:

(a) storing a map of components 1n the underlying net-

work and shared links interconnecting them:;

(b) generating metrics from network tratlic among the
client nodes that crosses those shared links along an
overlay network built on top of the underlying network;

(c) analyzing the metrics and the map over time, and
forecasting congestion levels reflecting the changing
capacity of the shared links over time; and

(d) generating, based upon the forecasted congestion
levels, an overlay network topology including an opti-
mal route among the client nodes along the overlay
network.

10. The method of claim 9, further comprising the step of

categorizing each client node 1nto one of a plurality of
classifications based upon that client node’s ability to relay

US 10,992,998 B2

35

the segments of digital content to other client nodes, the
plurality of classifications including: (a) a first classification
of client nodes adapted to receive segments from, and relay
segments to, other client nodes along the overlay network
across ASNs; (b) a second classification of client nodes
adapted to receive segments from, and relay segments to,
other clients nodes located only within the same ASN; and
(c) a third classification of client nodes adapted to receive
segments from, but not relay segments to, other client nodes.

11. The method of claim 9, wherein the underlying
network 1s the Internet, and the segments of digital content
are ordered segments of wvideo content concurrently
streamed to the plurality of client nodes.

12. The method of claim 11, wherein a first client node
relays a plurality of different versions of video content to a
second client node, each version having a different bit rate
or resolution.

13. The method of claim 9, wherein the step of generating
the overlay network topology 1s performed when the fore-
casted congestion levels meet one or more predefined con-
gestion thresholds.

14. The method of claim 9, wherein the metrics 1include
the ASN location of the client node.

15. The method of claim 9, wherein the forecasted con-
gestion levels are based 1 part upon historical trends
detected from analyses of the metrics over time.

16. A method of routing video content concurrently
among client nodes on the Internet, wherein ASN peering
points exhibit frequently changing levels of congestion as
network traflic across those ASN peering points ebbs and
flows, the virtual broadcast system comprising:

(a) storing a map of the ASNs and peering points inter-
connecting them, including a location of each client
node within an ASN;

(b) generating metrics from network traflic among the
client nodes that crosses ASN peering points along an
overlay network built on top of the Internet;

10

15

20

25

30

35

36

(c) analyzing the metrics and the map over time, and
forecasting congestion levels reflecting the changing
capacity of the ASN peering points over time; and

(d) generating, based upon the forecasted congestion
levels, an overlay network topology including an opti-
mal route among the client nodes along the overlay
network.

17. The method of claim 16, further comprising the step
ol categorizing each client node into one of a plurality of
classifications based upon that client node’s ability to relay
the segments of digital content to other client nodes, the
plurality of classifications including: (a) a first classification
of client nodes adapted to receive segments from, and relay
segments to, other client nodes along the overlay network
across ASNs; (b) a second classification of client nodes
adapted to receive segments from, and relay segments to,
other clients nodes located only within the same ASN; and
(c) a third classification of client nodes adapted to receive
segments Irom, but not relay segments to, other client nodes.

18. The method of claim 16, wherein the underlying
network 1s the Internet, and the segments of digital content
are ordered segments of wvideo content concurrently
streamed to the plurality of client nodes.

19. The method of claim 18, wherein a first client node
relays a plurality of different versions of video content to a
second client node, each version having a different bit rate
or resolution.

20. The method of claim 16, wherein the step of gener-
ating the overlay network topology 1s performed when the
forecasted congestion levels meet one or more predefined
congestion thresholds.

21. The method of claim 16, wherein the metrics include
the ASN location of the client node.

22. The method of claim 16, wherein the forecasted
congestion levels are based 1n part upon historical trends
detected from analyses of the metrics over time.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

